
A note on Goodman's theoremUlrich KohlenbachDepartment of MathematicsUniversity of MichiganAnn ArborMI 48109, USAApril 1997AbstractGoodman's theorem states that intuitionistic arithmetic in all �nite types plus full choice,HA!+ AC, is conservative over �rst-order intuitionistic arithmetic HA. We show that thisresult does not extend to various subsystems of HA!, HA with restricted induction.1 IntroductionLet E-HA! denote the system of extensional intuitionistic arithmetic and HA! its `neutral' variantas de�ned in [10]).1 E-PA! and PA! are the corresponding theories with classical logic. PA (resp.HA) is �rst-order Peano arithmetic (resp. its intuitionistic version) with all primitive recursivefunctions. T denotes the set of �nite types.The schema AC of full choice is given by S�;�2TAC�;� , whereAC�;� : 8x�9y�A(x; y)! 9Y �(�)8x�A(x; Y x)and A is an arbitrary formula of L(HA!).We also consider a restricted (arithmetical) form of AC:AC0;0ar : 8x09y0A(x; y)! 9f0(0)8x0A(x; fx);where A contains only quanti�ers of type 0 (but maybe parameters of arbitrary type).By the rule of choice we mean ACR : 8x�9y�A(x; y)9Y �(�)8x�A(x; Y x)1Note that both theories contain only equality of type 0 as a primitive relation symbol.1



for all �; � and all formulas A of L(HA!).Classically we have the following well-known situation:(E-)PA! + AC = (E-)PA! + ACRhas the strength of full simple type theory.2Furthermore, even PA!+ AC0;0ar is not �01-conservative over PA!: PA!+ AC0;0ar proves the consis-tency of Peano arithmetic3 whereas PA! is conservative over PA.These facts are in sharp contrast to the intuitionistic case where { in particular { the following isknown:1) (E-)HA! is closed under ACR.2) (E-)HA!+ AC is conservative over (E-)HA! for all formulas A which are implied (relativeto (E-)HA!) by their modi�ed-realizability interpretation.3) E-HA!+ AC is conservative over HA.41) and 2) are proved e.g. in [10],[11] using the `modi�ed-realizability-with-truth' resp. the `modi�ed-realizability' interpretation.3) forHA! instead of E-HA! is due to [4],[5] (a di�erent proof is given in [7]). The generalization toE-HA! was established by Beeson in [1],[2] (using [6] and solving a problem stated by H. Friedman)who refers to 3) for HA! as `Goodman's theorem' (see also [9] for an even stronger result).Let us switch now to the subsystems, (E-)PA!�jn, (E-)HA!�jn of (E-)PA! , (E-)HA! where the fullschema of induction is replaced by the schema of quanti�er{free inductionQF-IA : A0(0) ^ 8x0�A0(x)! A0(x0)�! 8x0A0(x);where A0 is a quanti�er-free formula, and instead of the constants of (E-)HA! we only have 00and symbols for every primitive recursive function plus their de�ning equations (but no higher typefunctional constants). If we add to (E-)PA!�jn, (E-)HA!�jn the combinators ��;� and ��;�;� (fromHA!) as well as the predicative Kleene recursors bR� (and { in the case of HA!�jn { also a functionalallowing de�nition by cases which is redundant in E-HA!�jn) we obtain the systems, (E-)dPA!jn,(E-)dHA!jn due to Feferman (see [3]).PAjn, HAjn are the restrictions of PA, HA with quanti�er-free induction only.Since both the modi�ed-realizability interpretation with and without truth hold for (E-)dHA!jn oneeasily obtains the results 1),2) above also for this restricted system. In this note we observe that 3)fails for dHA!jn (and even for HA!�jn) and HAjn instead of (E-)HA! and HA.2Every instance of AC is derivable in PA!+ ACR and ACR is a derivable rule in (E-)PA!+ AC.3PA!+ AC0;0ar proves the schema of arithmetical comprehension (with arbitrary parameters) and therefore is a�nite type extension of (a function variable version of) the second-order system (�01-CA) which is known to provethe consistency of PA (see e.g. [3](5.5.2)).4HA can be considered as a subsystem of E-HA! either by switching to a de�nitorial extension of E-HA!by adding all primitive recursive functions or modulo a suitable bi-unique mapping � which translates HA into asubsystem of E-HA! , see [10] (1.6.9) for the latter. 2



2 ResultsProposition 1 Let A 2 L(PA) be such that PA ` A. Then one can construct a sentence ~A 2L(PA) such that A$ ~A holds by classical logic and HA!�jn+ AC0;0ar ` ~A.Proof:Let A be such that PA ` A. By negative translation (F ; F 0) it follows that HA ` A0. So thereexists a �nite set G1; : : : ; Gk of instances of the schema of induction IA in HA (more precisely Giis the universal closure of the corresponding instance) such thatHAjn ` k̂i=1Gi ! A0:Let bGi(x; a) be the induction formula belonging to Gi (x being the induction variable and a the(number) parameters of the induction formula), i.e.Gi � 8a� bGi(0; a) ^ 8x� bGi(x; a)! bGi(x0; a)�! 8x bGi(x; a)�:De�ne �Gi :� 8x; a9y�y =0 0$ bGi(x; a)�and consider the formula ~A :� k̂i=1 �Gi ! A0:With classical logic (and 0 6= S0) we have ~A$ A0 $ A.Using AC0;0ar applied to �Gi one showsHA!�jn+ AC0;0ar ` �Gi ! 9f8x; a�fxa =0 0$ bGi(x; a)�:QF-IA applied to A0(x) :� (fxa =0 0) now yields Gi. HenceHA!�jn+ AC0;0ar ` k̂i=1 �Gi ! k̂i=1Giand therefore HA!�jn+ AC0;0ar ` k̂i=1 �Gi ! A0:Hence ~A satis�es the claim of the proposition.Corollary 2 For every n 2 IN one can construct a sentence A 2 L(HAjn) (involving only 0; S;+; �and logic) such that HA!�jn+ AC0;0ar ` A; but PAjn+�0n-IA =̀ A:3



Proof:It is well-known (see e.g. [8]) that for every n 2 IN there exists an arithmetical sentence ~A (involvingonly 0; S;+; � and logic) such that PA ` ~A (and even PAjn+�0n+1-IA ` ~A), but PAjn+�0n-IA =̀ ~A.The corollary now follows from the proposition above.Corollary 3 (E-)HA!�jn+ AC0;0ar is not conservative over HAjn. In particular, Goodman's theoremfails for HA!�jn, HAjn and therefore also for dHA!jn, HAjn.For dHA! jn instead of HA!�jn and without the restriction to the language f0; S;+; �g but with A 2L(HAjn), the proof of proposition 1 is even more easy:It is well-known (see [8]) that for every n 2 IN there is an instance~A :� �8x < a9yA(x; y)! 9y08x < a9y < y0A(x; y)�;where A 2 �0n, of the so-called `collection principle for �0n-formulas' �0n-CP (A containing onlynumber parameters) such that PAjn+�0n-IA =̀ ~A:However dHA!jn+ AC0;0ar ` ~A:AC0;0ar applied to 8x9y(x < a ! A(x; y)) yields a function f such that 8x < aA(x; fx). Applyingthe functional �maxfx = max(f0; : : : ; fx) (de�nable in dHA!jn) to f and a�� 1 yields a y0 such that8x < a9y < y0A(x; y): Put y0 := �max(f; a�� 1) + 1.So in particular for n = 0 we have a universally closed instance~A :� 8a; b��8x < a9yA0(x; y; a; b)! 9y08x < a9y < y0A0(x; y; a; b)�;of �00-CP (where A0 is quanti�er-free and a0; b0; x0; y0 are all the free variables of A0(x; y; a; b))such that PAjn =̀ ~A. Using coding of pairs and bounded search (both available in PAjn), ~A can beexpressed as a sentence having the form8a0�8x09y0A0(x; y; a)! 9y0B0(y; a)�;where A0 and B0 both are quanti�er-free. Furthermore the instance of AC0;0ar needed to prove ~A indHA!jn+ AC0;0ar is 8a0�8x09y0A0(x; y; a)! 9f8xA0(x; fx; a)�:So we have the followingProposition 4 One can construct a sentence A :� 8a0�8x09y0A0(x; y; a) ! 9y0B0(y; a)� (A0; B0being quantifer-free formulas of HAjn) such thatdHA!jn+ AC0;0� -qf ` A; but PAjn =̀ A;where AC0;0� -qf is the restriction of AC0;0ar to quanti�er-free formulas without function param-eters. 4



Remark 5 Note that modi�ed-realizability interpretation yields that dHA!jn+ AC is conservativeover HAjn w.r.t. sentences having e.g. the form A :� 8a0�9x08y0A0(x; y; a)! 9y0B0(y; a)�.References[1] Beeson, M., Goodman's theorem and beyond. Paci�c J. Math. 84, pp. 1-16 (1979).[2] Beeson, M., Foundations of Constructive Mathematics. Springer Ergebnisse der Mathematikund ihrer Grenzgebiete 3. Folge, Band 6. Springer Berlin Heidelberg New York Tokyo 1985.[3] Feferman, S., Theories of �nite type related to mathematical practice. In: Barwise, J. (ed.),Handbook of Mathematical Logic, North{Holland, Amsterdam, pp. 913{972 (1977).[4] Goodman, N., The faithfulness of the interpretation of arithmetic in the theory of constructions.J. Symbolic Logic 38, pp.453-459 (1973).[5] Goodman, N., The theory of the G�odel functionals. J. Symbolic Logic 41, pp. 574-582 (1976).[6] Goodman, N., Relativized realizability in intuitionistic arithmetic of all �nite types. J. SymbolicLogic 43, pp. 23-44 (1978).[7] Mints, G.E., Finite investigations of trans�nite derivations. J. Soviet Math. 10, pp. 548-596(1978).[8] Parsons, C., On a number theoretic choice schema and its relation to induction. In: Intuitionismand proof theory, pp. 459-473. North-Holland, Amsterdam (1970).[9] Renardel de Lavalette, G.R., Extended bar induction in applicative theories. Ann. Pure AppliedLogic 50, 139-189 (1990).[10] Troelstra, A.S. (ed.) Metamathematical investigation of intuitionistic arithmetic and analysis.Springer Lecture Notes in Mathematics 344 (1973).[11] Troelstra, A.S., Realizability. ILLC Prepublication Series for Mathematical Logic and Founda-tions ML{92{09, 60 pp., Amsterdam (1992).
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