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Abstract

Goodman’s theorem states that intuitionistic arithmetic in all finite types plus full choice,
HA“+ AC, is conservative over first-order intuitionistic arithmetic HA. We show that this
result does not extend to various subsystems of HA“, HA with restricted induction.

1 Introduction

Let E-HA® denote the system of extensional intuitionistic arithmetic and HAY its ‘neutral’ variant
as defined in [10]).! E-PA“ and PA“ are the corresponding theories with classical logic. PA (resp.
HA) is first-order Peano arithmetic (resp. its intuitionistic version) with all primitive recursive
functions. T denotes the set of finite types.

The schema AC of full choice is given by |J AC*7T, where

pyTET
ACP™ : Var3yT A(z,y) — IV TPVeP Az, Vi)
and A is an arbitrary formula of L(HAY).
We also consider a restricted (arithmetical) form of AC:
AC0 w2030 Az, y) — FfPOV20 Az, f2),
where A contains only quantifiers of type 0 (but maybe parameters of arbitrary type).

By the rule of choice we mean

Va Iy A(z,y)

A :
CR Jy T (OVzr A(z,Y x)

INote that both theories contain only equality of type 0 as a primitive relation symbol.



for all p,7 and all formulas A of L(HA¥).

Classically we have the following well-known situation:
(E-)PA” + AC = (E-)PA” + ACR

has the strength of full simple type theory.?

Furthermore, even PA“+ AC2%? is not II{-conservative over PA“: PA“+ ACY? proves the consis-

tency of Peano arithmetic® whereas PA“ is conservative over PA.

These facts are in sharp contrast to the intuitionistic case where — in particular — the following is
known:

1) (E-)HAY is closed under ACR.

2) (E-)HA“+ AC is conservative over (E-)HAY for all formulas A which are implied (relative
to (E-)HAY) by their modified-realizability interpretation.

3) E-HA“+ AC is conservative over HA.*

1) and 2) are proved e.g. in [10],[11] using the ‘modified-realizability-with-truth’ resp. the ‘modified-
realizability’ interpretation.

3) for HA® instead of E-HAY is due to [4],[5] (a different proof is given in [7]). The generalization to
E-HAY was established by Beeson in [1],[2] (using [6] and solving a problem stated by H. Friedman)
who refers to 3) for HAY as ‘Goodman’s theorem’ (see also [9] for an even stronger result).

Let us switch now to the subsystems, (E-)PA“ |\, (E-)HA” |\ of (E-)PA“, (E-)HA" where the full

schema of induction is replaced by the schema of quantifier—free induction
QF-IA : Ag(0) AV2® (Ao(z) — Ao(z")) — VP Ag(z),

where Ag is a quantifier-free formula, and instead of the constants of (E-)HA“ we only have 0°
and symbols for every primitive recursive function plus their defining equations (but no higher type
functional constants). If we add to (E-)PA“ |, (E-)HAY| the combinators I, ; and X5, , (from

HAY) as well as the predicative Kleene recursors ﬁp (and — in the case of HA“ ) — also a functional
allowing definition by cases which is redundant in E-HA¥ ) we obtain the systems, (E-)l/);\&w[\,

(E-)Iﬁw M due to Feferman (see [3]).
PA), HA) are the restrictions of PA, HA with quantifier-free induction only.

Since both the modified-realizability interpretation with and without truth hold for (E-)ITIKW[\ one
easily obtains the results 1),2) above also for this restricted system. In this note we observe that 3)

fails for HA” M (and even for HA¥|\) and HA| instead of (E-)HA“ and HA.

2Every instance of AC is derivable in PA“+ ACR and ACR is a derivable rule in (E-)PA“+ AC.

SPA“ 4+ ACS’T0 proves the schema of arithmetical comprehension (with arbitrary parameters) and therefore is a
finite type extension of (a function variable version of) the second-order system (I1%,-CA) which is known to prove
the consistency of PA (see e.g. [3](5.5.2)).

4HA can be considered as a subsystem of E-HAY either by switching to a definitorial extension of E-HA®
by adding all primitive recursive functions or modulo a suitable bi-unique mapping A which translates HA into a
subsystem of E-HAY, see [10] (1.6.9) for the latter.



2 Results

Proposition 1 Let A € L(PA) be such that PA = A. Then one can construct a sentence A €
L(PA) such that A < A holds by classical logic and HA“ M- AC%0 - A.

Proof:
Let A be such that PA + A. By negative translation (F ~ F') it follows that HA F A’. So there
exists a finite set G1,..., G}, of instances of the schema of induction IA in HA (more precisely G;

is the universal closure of the corresponding instance) such that
k
HAM- A\ Gi— A

i=1

Let @i(x,g) be the induction formula belonging to G; (x being the induction variable and a the
(number) parameters of the induction formula), i.e.

G = Va(Gi(0,a) AVz(Gi(z,a) » Gi(2',a)) — VaGi(z,a)).

Define
G =Vr,ady(y =0 0 ¢ Gi(x,0a))

and consider the formula

A

k
/\ G'z — A’
i=1

With classical logic (and 0 # S0) we have A < A’ & A.
Using AC%? applied to G one shows

HAY|) + ACY% +G; = 3fVz,a(fra =0 0 & Gi(x,a)).

QF-IA applied to Ag(z) := (fza =0 0) now yields G;. Hence

k k
HA“)+ ACY)® H N Gi—» \Gi
i=1

=1

and therefore
k

HA“)+ ACY? + N\ Gi— A

i=1

Hence A satisfies the claim of the proposition.

Corollary 2 For every n € IN one can construct a sentence A € L(HA)) (involving only 0, S, +, -
and logic) such that

HA“) + ACY° - A, but PA) + X0-TA #A.



Proof:
It is well-known (see e.g. [8]) that for every n € IN there exists an arithmetical sentence A (involving

only 0, S, +, - and logic) such that PA F A (and even PA} + X0 | -TA I A), but PA| + X0-TA f A.
The corollary now follows from the proposition above.

Corollary 3 (E-)HAY |+ AC?° is not conservative over HA|. In particular, Goodman’s theorem
fails for HA® N, HA| and therefore also for HA” N, HA.

For HA”" | instead of HA“ | and without the restriction to the language {0, S, +,-} but with A €
L(HA)), the proof of proposition 1 is even more easy:
It is well-known (see [8]) that for every n € IN there is an instance

A= (‘v’x < adyA(z,y) — JyoVr < ady < ygA(x,y)),

where 4 € II°

n?

of the so-called ‘collection principle for IY-formulas’ II%-CP (A containing only
number parameters) such that
PA) + X0-TA HA.
However HA” |+ AC%0 I A:
AC%9 applied to VzIy(z < a — A(x,y)) yields a function f such that Vz < aA(z, fr). Applying

the functional @, fr = max(f0,..., fz) (definable in HA" M to f and a =1 yields a yg such that
Vo < ady < yoA(z,y): Put yo := ®Pmax(f,a=1) + 1.
So in particular for n = 0 we have a universally closed instance

A = va'al_)((vm < aEyAO(xayaa'al_)) - Eyovm < aay < ?JOAO(%Z/,G’Q)),

of TI2-CP (where A is quantifier-free and a®,b°,2°,y° are all the free variables of Ag(z,y,a,b
0

such that PAM A. Using coding of pairs and bounded search (both available in PA|), A can be
expressed as a sentence having the form

\v/a[) (vaElyOAO (l‘, Y, a) - ElyOBO (y7 a))a
where Ay and By both are quantifier-free. Furthermore the instance of AC% needed to prove A in
HA )+ AC?0 is
Va® (V2°3y° Ao (2, y,a) — IfVzAo(z, fz,a)).
So we have the following
Proposition 4 One can construct a sentence A := Va°(V2°3y° Ao (z,y,a) = Jy°Bo(y,a)) (Ao, Bo
being quantifer-free formulas of HA)) such that

HA )+ AC*%-¢f - A, but PAMY A,

where AC%O—qf is the restriction of AC%? to quantifier-free formulas without function param-

eters.



Remark 5 Note that modified-realizability interpretation yields that ITI\AW[\-I- AC is conservative
over HA| w.r.t. sentences having e.g. the form A :=Va®(32°Vy°Ao(z,y,a) — Jy°By(y,a)).
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