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This paper studies the numerical strength of fragments I" of arithmetical comprehension, choice and
uniform boundedness relative to weak base systems, formulated in the language of all finite types,
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Abstract

In this paper the numerical strength of fragments of arithmetical comprehension, choice and
general uniform boundedness is studied systematically. These principles are investigated relative
to base systems 7, in all finite types which are suited to formalize substantial parts of analysis
but nevertheless have provably recursive function(al)s of low growth. We reduce the use of
instances of these principles in T,;”-proofs of a large class of formulas to the use of instances
of certain arithmetical principles thereby determining faithfully the arithmetical content of the
former. This is achieved using the method of elimination of Skolem functions for monotone
formulas which was introduced by the author in a previous paper.

As corollaries we obtain new conservation results for fragments of analysis over fragments of
arithmetic which strengthen known purely first-order conservation results.

We also characterize the provably recursive function(al)s of type < 2 of the extensions of 7’
based on these fragments of arithmetical comprehension, choice and uniform boundedness.

Introduction

which are suited to formalize substantial parts of analysis.

In a previous paper ([12]) we have introduced a hierarchy G,A“ of systems where the definable

functions correspond to the well-known Grzegorczyk hierarchy. These systems extended by the

schema of full quantifier-free choice

ACPT-of : Va3 Ao(w,y) — IY V2P Ag(z, V), AC-of := [ ) {AC"T-of },
p,T€T

*The author is indebted to an anonymous referee whose suggestions led to an improved presentation of the results.
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where Ay is a quantifier-free formula,' and various non-constructive analytical axioms A, having the
form
vad3y <, saVz"Ao(z,y, 2),

including a generalized version of the binary Koénig’s lemma WKL, allow to carry out a great deal
of classical analysis even for n = 2,3. The axioms A and AC-qf do not contribute to the growth of

extractable uniform bounds which in the particular case of GoA“ are polynomials (see [12],[14] and
in particular [10] for more information).

In contrast to this, fragments of arithmetical comprehension and choice as well as generalizations
of our principle of uniform ¥9-boundedness (from [12]) to more complex formulas do contribute
significantly to the arithmetical strength of the base systems. In [13] we developed a general method
to calibrate faithfully this contribution and applied it to instances of IT?-comprehension and II9-
choice. These results were then used in [15] to determine the arithmetical strength of single sequences

of instances of the Bolzano-Weierstraf theorem for bounded sequences in IR?, the Ascoli-lemma and
others.

In this paper we give a systematic treatment of the whole arithmetical hierarchy for comprehension,
choice and uniform boundedness and determine precisely their arithmetical strength as well as their

provably recursive function(al)s of type < 2. We also consider much more complex formulas to be
proved in these systems than we did in our previous papers.

In the following let us discuss now some of the difficulties one has to deal with in order to achieve
this goal and which indicate already the type of results one can expect. For simplicity we restrict

ourselves for the moment to the second-order system EA?4+ AC%%-qf instead of G,A“+ AC-qf +A
(which we actually are going to consider below).

EA? is an extension of Kalmar-elementary arithmetic (with number quantifiers) EA obtained by
adding n-ary function quantifiers (for every n > 1)2 and the schema of explicit definition of functions

ED: 3fvz(f(z) = t[z]),

where t is a number term of EA2 and z is a tuple of number variables. Furthermore EA? contains
the schema of quantifier-free induction for all quantifier-free formulas of EA? which may contain

function parameters. Finally EA? contains constants and their defining equations for all elementary
recursive functionals of type < 2.

In EA? the schema of quantifier-free induction can be expressed equivalently as a single axiom
QF-TA : Vf(f(0) =0AVz(f(z) =0— f(z') =0) = Va(f(z) =0)).

Analogously £9-TA is the induction axiom for Jyvy3 ...V @yl f(z,y) = 0 instead of fz = 0. In
first-order contexts this is replaced by a schema with Jy9vy9J .. .‘v’(d)yng (z,y) as induction formulas.

Let us consider furthermore the restriction of arithmetical choice to I19- (or equivalently to £3-)
formulas of £(EA?) which like QF-TA can be expressed as a single second-order axiom Vf TI9-AC(f),

IThroughout this paper Ag, Bo,Cp,... denote quantifier-free formulas. We allow bounded number quantifiers
Vr <p t, 3x <o t to occur in Ag, Bo, Cy,... since they can be expressed in a quantifier-free way using the bounded
search-functional pp from G, A“. T denotes the set of all finite types.

2Since coding of finite tuples of numbers is available in EA one can in fact restrict oneself to unary function
variables.



where?
MY-AC(f) := Va® (V23 OV2"(f(a, z,y, 2) = 0) — gV, 2(f(a,z, gz, 2) = 0)).

Now by iteration one easily verifies that EA2 4+ Vf II?-AC(f) proves already full arithmetical choice.
So in order to prevent the arithmetical hierarchy of choice principles from collapsing we restrict
ourselves to single instances of VfII)-AC(f) which later on are allowed however to depend on the
parameters of the theorem to be proved. For the moment we forbid completely the occurrence of
function parameters in I19-AC, i.e. we consider the schema

M9-AC™ : V23 A(z,y) — JgVz A(z, gx),

where A(z,y) is a II{-formula without function parameters.
As a starting point for the introduction into our general program let us consider now the following
question:

What arithmetical statements are provable in EA24+ AC%9-qf +T19-AC~?
A first observation is that TI9-AC~ proves I19-CA~, i.e.
3fVz(f(z) =0 ¢ A(z)),

where A(z) is a II9-formula without function parameters. Combined with the axiom QF-IA this
yields every function parameter-free instance of £9-TA. Hence the first-order system EA +X9-TA is
a subsystem of EA24+ AC%0-f +119-AC~.

What is the precise relationship between EA%2+ AC®%0-gf +119-AC~ and EA +X9-TA?
It will turn out that the former theory is conservative over the latter for some formulas, including
I19-sentences, but not for all formulas.

That EA%2+ AC%0-qgf cannot be conservative over EA +X7-TA without some restriction imposed on
the formulas follows from the following observation:

By applying the functional ®,.yfz = mgx(f(i)) to the function g in M-AC~ one obtains the

corresponding instance of the so-called (bounded) collection principle for I19-formulas
M9-CP : Vz < a3y A(z,y) = 32Ve < ady < 2z Az, y),

where A € II9.

So EA%Z+ AC%0_gf +T19-AC~ proves every function parameter-free instance of I10-CP, i.e. EA +119-
CP is a subsystem of EA2+ AC%0-qf +T17-AC .

It is well-known (see [19]) that there exists an instance A of II9-CP which is not provable in EA
+%9-TA. On the other hand EA +I19-CP is II13-conservative over EA +X9-IA by a result due to H.
Friedman and (implicitly) J.Paris/L.Kirby [18] (see e.g. [7] for details). The universal closure of the
instance A of II9-CP can be shown to be equivalent to a I13-sentence in EA +X¢-TA. Hence EA%+
ACY0gf +T19-AC™ is not I19-conservative over EA +X9-TA.

3The universal closure with respect to number parameters a® is superfluous for Vf H?—AC(f) since it can be
captured by the universal closure Vf. However below we consider single instances TI9-AC(€) of VfI19-AC(f) where it
does make a difference. Because of the closure w.r.t. arithmetical parameters a® a single instance I19-AC(¢) contains
a whole sequence of instances of H?—AC.



Here is another arithmetical use of I19-AC~ we can make relative to EAZ4+ AC%%-qf:

As mentioned above, I19-CA ™~ is a trivial consequence of IIY-AC~ (in the presence of classical logic).
Now combining M{-CA~ with AC%0-gf one can easily prove A3-CA~ and therefore every function
parameter-free instance of AJ-TA. Hence EA +AJ-TA is a subsystem of EA2+ AC%0-gf +119-AC~

as well even if the functional ®,,,, would not be included in EAZ.

So the arithmetical strength of II{-AC~ depends heavily on the second-order axioms, like QF-TA,
ACY0-gf and the characterizing axioms for functionals as ®.,.x, which are available in the context
in which I9-AC~ is considered.

As a special corollary of the results of this paper it follows that EA?4+ AC®%-qf +1I)-AC~ is I}, ,-
conservative over EA +X9-TA, which implies the result of H. Friedman, J.Paris/L.Kirby. Furthermore
we show that EA?+ ACO-gf +I19-AC™ is conservative over EA +X9-TA w.r.t. monotone formulas

of arbitrary complexity. These results are sensitive to small changes of the base system EA?: E.g.
if we add the primitive recursive functional ®;; defined by

@, fg0:= g(0) @i fga' = f(x, Py fgx)

to EAZ, then the Ackermann-function becomes provably total in EA? + &+ AC%%-qf +17-AC~ and
the resulting system proves the consistency of EA +%9-TA: EA? + &,;,+ AC%%-qf proves the second-
order axiom of X{-induction. Combined with I19-CA~ one obtains every function parameter-free
instance of £9-TA. Hence EA +X9-TA (which is known to prove the totality of the Ackermann-function
as well as the consistency of EA +X9-TA) is a subsystem of EA? + &;,+ AC®9-qf +119-AC~.

Using a more involved argument one can show that already EA2 4+ ®;; + H?—AC_ proves the totality
of the Ackermann function (see chapter 12 of [10] for details on this).

So any proof of conservation of systems based on II3-AC™ over ¥9-TA has to take into account
carefully the structure of the functionals of type 2 which are definable in the given system.

Things become of course even more complicated for the systems G,A“ + AC-qf +A instead of EA2+4
ACY0_gf which we are treating in this paper.

Among other things we show that relative to base systems 7¥ := G,A“+ AC-qf (+A) the use of
AY, -CA(&1f) and IT)-AC(& f) in a proof of a formula Bo,(f) € II,, can be reduced to the use of

$0-1A.

This is true also for B,..(f) of arbitrary complexity in the arithmetical hierarchy if B,,.(f) is monotone
in the sense of definition 2.3 below.

We also show that the provably recursive function(al)s of type < 2 of G, A“+ AC-qf + WKL -I-A%H—

CA~ + IIP-AC~ are just the functionals of these types definable in Ty_1 (k > 1), where T}, is the
fragment of Godel’s T with recursion up to the type k only.

4Both aspects are not taken into account appropriately in [22] where Hg—CA* and Hg—AC* are studied systemat-
ically for the first time. As a consequence of this, theorems 5.8,5.13 and corollaries 5.9,5.14 in [22] are not correct as
stated (see [11] and in particular chapter 12 of [10] for a thorough investigation of this matter).



These results are used to prove new conservation results for EA +II9-CP over EA +X9-TA which
strengthen the Friedman-Paris-Kirby result.?

Finally we consider generalizations I19-UB~| of the principle of uniform X?-boundedness £{-UB~
which was studied in [12].% In [14] we showed that ¥9-UB~ proves already relative to GoA“+ AC-
gf many important analytical theorems (like Dini’s theorem, the attainment of the maximum for
f € C([0,1]%,IR), the sequential Heine-Borel property for [0, 1]%, the existence of an inverse function
for every strictly monotone function f € C[0,1] and others) but does not contribute to the growth

of extractable bounds, thereby guaranteeing the extractability of polynomial bounds when applied
in the context of GoA“+ AC-qgf.

Whereas the straightforward generalization of £9-UB~ to II9-formulas is inconsistent with GyA¥
already for k = 1, our restricted version II)-UB~| ( introduced in the present paper) is consistent.
In [15] we implicitly used (a special case of) II{-UB™ ) to prove the Bolzano-Weierstrafl principle and

the Ascoli-lemma and it were these proofs which were used to calibrate faithfully the arithmetical
strength of these principles.

We show that our results on fragments of arithmetical comprehension and choice mentioned above
remain valid if in addition to A, ;-CA(& f) ATIR-AC(&f) also IT)-UB™ MN&s f) is used in the proof

of Bar(f).

2 Monotone formulas and their Skolem normal forms

In this section we review some of the proof-theoretic tools from [13] on which the present paper is
based and also recall some of the basic concepts and definitions from [12].
The set T of all finite types is defined inductively by

(i) 0 € T and (i) p,7 € T = 7(p) € T.

Terms which denote a natural number have type 0. Elements of type 7(p) are functions which map

objects of type p to objects of type 7.
The set P C T of pure types is defined by

(1) 0 € P and (ii) p € P = 0(p) € P.

Brackets whose occurrences are uniquely determined are often omitted, e.g. we write 0(00) instead
of 0(0(0)). Furthermore we write for short 7p ...p1 instead of 7(pr)...(p1). Pure types can be
represented by natural numbers: 0(n) := n+1. The types 0,00,0(00),0(0(00)) ... are so represented
by 0,1,2,3.... For arbitrary types p € T the degree of p (for short deg(p) ) is defined by deg(0) := 0
and deg(7(p)) := max(deg(r),deg(p) + 1). For pure types the degree is just the number which
represents this type.

Description of the theories (E)-G, A“

5A proof-theoretic treatment of the Friedman-Paris-Kirby result was first given in [22]. However the proof in [22]
contains gap. See [1] for a correction of Sieg’s proof. Another proof-theoretic treatment can be found in [3].

6Whereas we generally use the superscript ‘—’ to denote the restriction S~ of a schema S to function parameter-free
instances of S, this superscript has a different meaning in the context of principles of uniform boundedness. Although

this might be troublesome we wish to stick to the notation for these principles from [12] where they were introduced.



Our theories 7% used in this paper are based on many—sorted classical logic formulated in the lan-
guage of all finite types plus the combinators II, ;, 3s, , - which allow the definition of A-abstraction.

T:# denotes the intuitionistic variant of 7.

The systems G,A“ (for all n > 1) are introduced in [12] to which we refer for details. G,A%
has as primitive relations =g, <q for objects of type 0, the constant 0°, functions ming, maxg, 5%
(successor), Ag,...,An,, where A; is the i—th branch of the Ackermann function (i.e. Ag(z,y) =
Y, Al(z,y) = x4y, As(z,y) =z -y, As(x,y) = 2¥,...), functionals of degree 2: ®y,...,d,, where
®, fr = maxo(f0,..., fz) and ®; is the iteration of A;_; on the f—values for i > 2, i.e. ®ofz =

> fi,®3fx = [] fi,.... We also have a bounded search functional u; and bounded predicative
i=0 i=0

recursion provided by recursor constants R, (where ‘predicative’ means that recursion is possible

only at the type 0 as in the case of the (unbounded) Kleene-Feferman recursors ﬁp). Moreover

G, A contains a quantifier-free rule of extensionality QF—ER.
In addition to the defining axioms for the constants of our theories all true sentences having the

form Vz* Ag(z), where A is quantifier—free and deg(p) < 2, are added as axioms. By ‘true’ we refer
to the full set—theoretic model S§“. In given proofs however only very special universal axioms will
be used which can be proved in suitable extensions of our theories. Nevertheless we include them
all as axioms in order to emphasize that (proofs of) universal sentences do not contribute to the
growth of extractable bounds. In particular this covers all instances of the schema of quantifier-free
induction (The main results in this paper are also valid for the variant of G,,A¥ where the universal
axioms are replaced by the schema of quantifier—free induction). The restriction deg(p) < 2 has a
technical reason discussed in [12].

GooA® = |J GnA“.

nelN

PA“ PA¥ are the extensions of G, A%, G, A¥ obtained by the addition of the schema of full induction
and all (impredicative) primitive recursive functionals in the sense of [5].
EfT(“;) denotes the theory which results from T(‘;’) when the quantifier—free rule of extensionality is

replaced by the axioms of extensionality (E)
YVl y?, 27 (x =, y = 22 =, 2y)

for all finite types (z =, y is defined as Vz{',..., 2" (z21 ... 2k =0 yz1 . ..2;) where p = O0pi....p1).
GnR* and T denote the sets of all closed terms of (E)-G,A{}) and (E)-PAf;. Ty is the subset of all

closed terms of 7' which contain the Gddel-recursors R, for p of degree < k only.

Definition 2.1 Between functionals of type p we define relations <, (‘less or equal’) and s—maj,

(‘strongly majorizes’) by induction on the type:

z1 <o x2 := (21 <o T2),

Ty <7p Tz = VYL (1Y <7 22Y);

T* s-maj, T :=zx* >p T,

T s-maj., T =Yy, yP(y* s-maj, y — x*y* s—maj, =7y, vy).



Remark 2.2 ‘s—maj’ is a variant of W.A. Howard’s relation ‘maj’ from [6] which is due to [2]. For
more details see [8].

Let A(a) be a formula of G,A“ (g are all free variables of A) and 3zVyAp(z,y, a) its Godel functional
interpretation (see e.g. [25] for details on Gddel’s functional interpretation). We say that a tuple of

closed terms ¢ realizes the monotone functional interpretation of A(a) if?
() 3z(t s-maj z AVa,y Ap(za,y,a))

(Monotone functional interpretation which directly extracts a tuple ¢ satisfying (x) from a proof of
A(a) was introduced in [9]. See also [12] for details.)

We next define what it means for a formula to be ‘monotone’. In order to motivate the somewhat
technical definition lets consider the simple case of a ¥9-formula A = JyVrAy(y, ). A is monotone

if
§>ynE <z (Ao(z,y) = Ao(#,9)).
Innermost existential quantifiers and outmost universal quantifiers are not supposed to be monotone.

Hence we get the following

Definition 2.3 ([13]) Let A € L(G,A¥) be a formula having the form
A =Vu'Vo <, tuIyoval .. Fydval3w A (u, v, y1, 21, . ., Yky Thy W),
where Aq is quantifier—free and contains only u,v,y,z,w free, t € GnR* and 7,7 are arbitrary finite
types.
1) A is called (arithmetically) monotone if
YulVo <, tuVe, E1, .o Ty Ty Y1, U1y - - - Yk Uk
k

Mon(A) := ( A (& <o xi AGi >0 yi) ANJwY Ag(u, v, 41,1, -+, Yky T, W)
i=1

- EIwVAO(u,v,gjl,il,...,gk,i:k,w)).

2) The Herbrand normal form A" of A is defined to be

AR = vYulve <, tuVhyY, o Ry, Ly W

AO(uaUaylahlyla tee 7yk7hky1 . -ykaw)a where pi = 0 (0) T (0)
N > N ”

i

~
H.
AH:

Remark 2.4 In definition 2.3 (and theorems 2.5,2.7 below) one may also have tuples Tw’ instead

of G’ in A where w = wi,...,w;" and v; is arbitrary. Also instead of Vu' we may have Yu
where w = uf', ... ug? with deg(p;) < 1 for 1 <i < q. In particular we can consider an innermost

ezistential number quantifier E|y2+1 as part of Jw and an outermost universal number quantifier V)

as part of Yu. So for Vz and Elyg+1 no monotonicity is required in definition 2.3.1).

"Here t s-maj £ means /\(tl s-maj ;).
i



Theorem 2.5 ([13]) Letn > 1 and ¥q,..., ¥, € G,RY. Then

k
GnA” + Mon(A) F VulVv <, tuVhy, ..., hk( A (h; monotone)

i=1
— 3y, <o Vyuh ... Ty <o \Izkuhawmgf) S A,

i
where (h; monotone) := Va1,..., %Y1, - - ,yi( A (x; >0 y;) = hiz >0 hiy).
j=1 -

Definition 2.6 (Bounded choice) »-AC:= | {(bfAC‘ip)} denotes the schema of bounded
§,pET

choice
(b-AC*") : ¥ZP(V2'3y <, Zx A(z,y, Z) — Y <,5 ZVzA(z,Y 1, Z)).

In general G,A“ F A does not imply G,A“ + A (see [13] for a detailed discussion of this phe-
nomenon), which is in contrast to the first-order case where the derivability of A follows from that
of A by Herbrand’s theorem (see [21]). If however A is monotone then this rule is valid also for

GrAY (but for very different reasons):

Theorem 2.7 ([13]) Let A be as in thm.2.5 and A be a set of sentences Vo®3Jy <, szV2"Go(z,y, 2)
where s is a closed term of G,A* and Go a quantifier-free formula, and let A’ denote the negative
translation® of A. Then the following rule holds:

GnA“+AC—qf + A+ A" A Mon(A) =
G A + A + A and
by monotone functional interpretation one can extract a tuple ¥ € G,R“ such that

G, AY + A F U satisfies the monotone functional interpretation of A’,

where A = {3Y <,5 sV2°,2"Go(z,Yx,2) : Va®Ty <, saVz"Go(w,y,2) € A}. (In particular the
second conclusion can be proved in G, AY + A+ b-AC).
The weakened conclusion G, A® + A+ Mon(A) - A follows already from G, A+ AC-gf +A+ AT 9

3 Making arithmetical comprehension monotone

In this section we consider the arithmetical content of instances II{-CA(éuv) of II)-CA which are

used in given proofs of sentences Vu'Vv <, tu B, (u,v) as discussed in the introduction.

Definition 3.1

9-CA(f) := 3g'Va° (92 =0 0 ¢ Yu2Tu$ ... IDu (f(x,u) =0 0)).1°

8Here we can use Gddel’s [4] translation or any other of the various negative translations. For a systematical
treatment of negative translations see [17].

9This last assertion is not stated in the formulation of the theorem in [13] but does follow immediately from its
proof.

10Whether one has here ‘Hug’ or ‘Vug’ depends of course on whether k is even or odd.



Remark 3.2 There is no need here to incorporate closure under number parameters in the definition
of TIY-CA(f), i.e. by defining

9-CA(f) := VI°3g'Va° (gz =0 0 <> Vud Tl ... 3Dl (f(I,2,u) =0 0)),

since the latter can be reduced to the former (relative to G, AY for n > 2) by coding I,z together and
applying comprehension without number parameters to this pair.

In order to be able to apply the method of elimination of Skolem functions for monotone formulas
from section 2 we follow this strategy:

Construct an arithmetical principle A,.(f) such that for suitable &;,& € G,R*:
1) GnAY F Mon(Yf Aar(f)),
2) GpAY+ACOOqf YV f(AS, (& f) — M-CA(f)) and
3) GnA® FVf(IR-CA(&f) = Aar(f))-

Because of 2) the use of I12-CA(¢uv) in a given proof of a monotone sentence Yu'Vv <, tu Bq,(u,v)
can be reduced to the use of A2 (¢/uv) (where ¢'uv := & (¢uv)) which in turn (by 1) and theorem
2.7) can be reduced to the use of A,-({'uv). Because of 3) nothing is lost by this reduction.

It will turn out that the correct principle A,,.(f) is a ‘monotone version’ II9-TND™"(f) of the

tertium-non-datur principle for II9-formulas.
Definition 3.3 In the following m := % if k is even (resp. m := 5L if k is odd).

1) The MY-tertium-non-datur aziom is given by the following formula (where f is a function

variable of appropriate type)'!
T0-TND(f) :=

vxo (Vy?zlz(l) v Vy?,lElsz(Vy?nH) (f(xa Y1,215-+ -5 Ym, Zm, (ym+1)) =0 0)

VEIU(I)VU? te Elu(r)nvvgn(au(r)n+1) (f(‘ra ULy Viyeeey Um,y Um,y (um+1)) # 0))7
2) We also need the following prenex normal form of I2-TND (f):
M9-TND (f)P" .=

m

Ve JufVy)30ve) .. Jul Vyd 320 Vol (Fuld, VY0, L)

(f(xaylazla sy Ymy Zm,y (ym+1)) =0 ov f(xaulavla vy Umy Um, (um+1)) # 0)7
8) The Skolem normal form of I2-TND (f)*" is given by

(Hg-TND ( f)pr)s =

Elhla B -ahma (hm+1)7gla . 'agmvxoay?av?a te 7y9n)U?n7 (ym+1)
(f(xaylagl(xayl)a v aymagm(‘rayla s Ym,y Uty - 7Um71)7 (ym+1)) =0 ov
f(m,hll',’l)l,. . '7hm(x7y17' oy Ym—1,01, - - .,'Um_l),’l)m, (hm+1($,y1,. - Ym, U1, - ,'Um))) # 0)

'Here and in the following the quantifiers Vy?‘n,-‘,—l’ Elu?‘n,-‘,-l are only present if k is odd.



Remark 3.4 For n > 2 we have coding of finite tuples (of fized length) available in G, A“. Hence
quantifier-blocks can be contracted to a single quantifier. Since in all of our results we assume that
(at least) n > 2, it is no restriction in the definition above to consider only single quantifiers.

Lemma 3.5 For every k € IN the following implication can be proved in Gy A¥:

V£ ((MO-TND (£)r")° — TY-CA (f)).

Proof:
For notational simplicity we confine ourselves to the case k = 4 which well shows the general pattern
of the proof for arbitrary k:

(IT9-TND(f)P")® yields the existence of functions g1, g2, h1, ho such that
(1) Va,y1,v1, 52 (f (2,1, 91 (2, 41), Y2, 92 (@, 91, y2,01)) = 0V Voo (f (2, haz, vi, bz, y1,01),02) # 0)).
(1) in turn yields

(2) Vz,y1,v1 (‘v’yﬁzgf(x,yl,gl(x,yl),y2,22) =0V Voo (f(z, hiz,v1, ha(z,y1,v1),v2) # 0)),

(3) V,y1,v1 (Vy2T322 f (2,91, 91 (2, 41), y2, 22) = OV JuaVoo(f (2, bz, v1, uz,v2) # 0)),
(4) V{I?,yl (vy?a'z?f(xaylagl(xay1)7y27z2) =0 v\V/'l)lElUQV'UQ(f(ZE,hlx,’Ul,’U,Q,’Ug) # 0))7

(5) Vo, y1 (21 VY232 f (7, y1, 21, Y2, 22) = OV Vo JuaVoo (f(z, him, v1, us, v2) # 0))

and finally
(6) Va (Vy1321Vy23za f (2, 41, 21, Y2, 22) = 0V VorFusVoa (f (2, by, v1, uz, v2) # 0)).

(1) applied to y; := hyz,v1 := g1(x, h1z),y2 := ha(z, iz, g1 (z, hi7)) gives

(x) :=
vxo (f(il',hll’,gl(x,hlx),hQ(iE,hlw,gl(x,hlx)),gg(x,hl{l?,hQ(iE,hlw,gl(m,hlm)),gl(w,hlw))) =0
VVus (f(a:,hla:,gl (z,hix), ha(z, hiz, g1(x, b)), v2) # 0))

We now show (+) :=

vxo (f(il/',hlw,gl(x,hlx),hg(w,hlw,gl(x,hlx)),gg(x,hl{l?,hg(w,hlw,gl(m,hlm)),gl(w,hlw))) =0
& V31 VY 3z (f(2,y1, 21, 42, 22) = 0))

(4) yields the claim of the lemma with

gz = ®xhih2g192 :=
f(z, iz, g1 (z, hiz), ha(z, b, g1 (z, hi2)), g2 (z, iz, ha (2, by, g1 (2, ha ), g1 (2, i @))).

Proof of (+):
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‘=" dxfhihagrgs = 0 implies
Voo (f (2, by, g1 (x, ha ), ho (2, hax, g1 (2, ha ), v2) # 0).
Hence by (2) (putting y; := hiz,v1 := g1(z, hiz))

Vyo3zo (f (z, hiw, g1 (x, @), Y2, 22) = 0)

and therefore
21 Vyo Tz (f (@, haz, 21, 92, 22) = 0),

i.e.
V1 Jus Voo (f(:n, hix,v1,us,v2) # 0).

By (6) this implies
Vy1321Vy2322(f($a Yi,21,Y2, ZQ) = 0)
‘" dxfhihagigs # 0 implies by (x)

Yo (f(z, haa, g1 (z, hix), ho (2, hiz, g1 (z, hiz)), v2) # 0)

and therefore
Fuo Vo (f(:n, hiz,g1(x, hix), uz,v2) # 0) ,

i.e.
_'Vy2E|Z2 (f(xa hlxagl (Q?, hlx)7y2az2) = 0)

By (4) this yields (putting y; := hiz)
Yo, Fus Voo (f(a:, hiz,v1,us,vs) # 0)

and therefore
Fuy Vo Jua Voo (f(z, u1,v1,us, v2) # 0),

which concludes the proof of (+) and hence of the lemma.
Definition 3.6 For a IT2-formula A(a) = V29329 ... El(d)ngo(g,xl,m, oo, xk) of GhAY (where a

are all free variables of A which may have arbitrary type) we define

fi(g) =Va932]. .. H(d)mQVa?l <2133y < 2o...ADF, < zrAo(a, T1, T, ..., Tk).

In the following we need a variant Mon* of Mon where monotonicity is required for all number
quantifiers (compare this with remark 2.4):

Definition 3.7 Let A(a) := V2930 .. . Va3 Ao(a, z1,y1, - -, Tk, yk).t> Then

MO’I’L*(A(Q)) = vxlailaylaﬂla"'7xk7ikaykagk
k

(A @ <omi NG >0 yi) A Ao(a, 1,41, -, Tk, Yk) = Ao(a, &1,91, .- Tey Ti)).

=1

Lemma 3.8 For A(a) as in the previous definition we have

GnAY F Mon™(A(a)).

12Here the quantifiers V:v? and Hyg may be empty (‘dummy’) quantifiers.
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Proof: Trivial.

The II9-collection principle is the schema
MY-CP : Vz <g ady®A(z,y) = F2°Va <o aFy <o 2 A(z,y),

for all I9-formulas A(z,y).

Convention 3.9 In I1Y-CP (and other aziom schemas which we will consider below) A(z,y) may
contain arbitrary parameters (besides x,y) of the language we consider. E.g. if we write G, A“ +112-
CP then instances of II9-CP may contain parameters of arbitrary type. In EA +113-CP however
(where EA denotes first-order elementary recursive arithmetic) instances of II3-CP of course contain
only number parameters.

I19-CP is equivalent over many systems (e.g. G,A“ for n > 3) to the axiom schema of finite choice
for MY-formulas
M)-FAC : Vz <o a3y A(z,y) = 32°V2 <o a A(x, (2).),

for all I-formulas A(z,y) (with the convention stated above).

In the presence of function variables as in G,A“ the schema II9-CP can be expressed as a single
second-order axiom VfII9-CP(f), where

vI°, a® (Va: <o aFyVulFu. .. H(d)ug (f(l, a,x,y,u) =o 0)

M-CP(f) :=
— 32z <o aTy <o 2VuiIu . .. El(d)ug (f(l, a,T,y,u) =g 0))

By incorporating the universal closure w.r.t. to arithmetical parameters VI°,a° in II9-CP(f), we
achieve that the universal closure of every instance of II)-CP which contains only number parameters
can be written as a sentence I19-CP(¢) in G,,A* where ¢ is a closed term (essentially the characteristic

function of the quantifier-free matrix of the II-formula A(z,y)) which will be of importance below.

The same is true for the principle of £9-induction ¥9-IA(f) which we need below:

VP(&@W@.”V“M&LHL&Q)ZOQA
Sp-TIA(S) = Va0 (Fudvul .. Dy (f(l,z,u) =0 0) = FudVul.. V(D9 (f(,2',u) =0 0))
— V20Judvad .. VDU (f(1, 2, 1) = 0))

Lemma 3.10 Let A(a), A(a) be as in definition 3.6. Then for suitable &1,...&, &1, ... ,fi € G,R”
the following holds:
1
GnAY F N\ ,-CP(&ia) — (A(a) — A(a))

i=1

and

l
GoA” E \ T _5-CP(éia) = (A(a) = Ala))

i=1

12



(Here and in the following we use the convention that 11-S is empty (i.e. = (0 =0) for an aziom
schema S if k <0).

Proof: Induction on k: For k£ = 0,1 the lemma is trivial. So let k£ > 1.
k — k+ 1: Consider

Aa) = V29325 . .. Ei(d):ngﬂAo(g, T1, T2, Tpyr) € M.
By the induction hypothesis applied to the II9-formula
Vaodrs.. .‘v’(d)xk+1—|A0(g, Tlyere, Thi1)
we have instances I1 ,-CP(&a) (note that instances of II2 ,-CP can be considered as instance of

Y _,-CP as well) such that A II{_,-CP(&;a) implies (relative to G, A%

dxoVers. .. H(d)l‘k+1A0 s

E|$2\V/Q?3 [N H(d)l‘k+13{fg S :L‘QV:%S S I3 ... H(d){fk+1 S $k+1A0 (g, T, Cfg, N ,ik+1).
Hence
A(a)
< Vo des ... H(d)$k+13{fg <z5... H(d)ijrl < xk+1A0(g,x1,i2, . ,,’ik+1)
<~ V$1V£i'1 S 56131'2 AN El(d)a:k+135:2 S ro ... H(d)jk+1 S $k+1A0(Q, :i'l, CEQ, N i’k—i—l)

n®_ -cpP(ca)

(loic) V$13(L‘2Vf1 S $1E|/f2 S $2\V/Q?3 e H(d)l‘k+13{fg S Eg e H(d)ikarl S xk+1A0(g, i)
< Va1 dza Vi < rVes. .. a(d)l‘k+1 dZs <zT... Ei(d)i'kH < xk+1A0(g, i)

— Va:lEImg‘v’m3V5:1 S 5613564 e H(d)$k+13i’2 S T2 ... H(d)jk+1 S iEk—i—lAO(Q;i)-

In the same way as we shifted VZ; < x; over x5 we now move VZ; < x; over dz4, then permute
Vi, < x; with V5, move over x4 and so on until we obtain fi(g). This requires only Hg_3—instances
(or simpler ones) of CP which can be considered a fortiori as instances II2_,-CP((;a). Putting things

together we have shown that (relative to G,A%):

M ,-CP(Ea) A A\ TR ,-CP(6a) A A\ TR ,-CP(Ga) — (4(a) » A(w)

J
and
AR -CP(&a) A \ TR 5-CP(¢ja) = (Ala) = Ala)),
L J
which concludes the proof of the lemma.
Since in our main results we assume n > 2 or n > 3 for the level n of G,,A“ we also use for simplicity

G2AY in the following definition and lemmas although some of them can be carried out even in

G1AY.

13



Definition 3.11 (and lemma) For m € IN let ® € GoR* be such that

GQAW F \v/f(O)...(O)’wO’y?’ Z?a s 7y9n? Zgza (ym+1)
((Pfxylzl .. ymzm(ym+1) =0 0 ~ Vgl S 91351 S Z1 . Vﬂm S ymagm S Zm(v?jm+1 S ym+1)
(f(wagla 2155 Ymy Zm, (gm-l—l)) =0 0))

We denote ®f by f'.

Lemma 3.12 Let k > 1. There are (effectively) finitely many terms &,...,& € G2RY such that

l
A EVF(( \ TR -CPE& ) = (I2-CA(f) & T)-CA(f"))).

Proof: The lemma follows from lemma 3.10.

Definition 3.13 The ‘monotone’ tertium-non-datur is given by
M0-TND™"(f) :=
Va0 JudVy)3zPve) .. Ful, vyl 320 Vol (Fuld, VY0, 1 )VE <
(fl(jayla 1y Ymy Zm, (ym+1)) =0 0V fI(QINZ,’U/l,’Ul, s Um, Um, (U,m+1)) # 0)7
Lemma 3.14 1) GyA* - Vf((T)-TND™"(f))° — (M9-TND(f")7")°).
2) GuA“ F Y f (Mon® (II-TND™ " (f))).

Proof: 1) follows by putting 7 := z.
2) Follows immediately from the definition of II3-TND™°"(f).

Proposition 3.15 Gy A* - Vf((T0-TND™"(£))® — TO-CA(f")).
Proof: Lemmas 3.5 and 3.14.1.

Lemma 3.16 One can construct a £ € Go R such that

GoA“+ AC™C-gf -V f(IIY-CA(Ef) — TIR-CP(f)).

Proof:
Using I9-CA(¢f) for a suitable £ € GaRY one can reduce II-CP(f) to II)-CP which is provable in

GoA“+ ACOO_gf.

Proposition 3.17 For a suitable £ € GoR“ one has

Gy A“+ ACOO-gf Vf((ng-TN mon (e ) = Hg-oA(f)).

14



Proof: Induction on k: £ =0,1: easy. Let £ > 1 and lets assume that the proposition holds for all
m < k. II_,-CP(&; f) denote the instances of II9_,-collection from lemma 3.12 which are needed

to show
I)-CA(f) ¢ T-CA(f").

Let £ € GoR¥ be (using lemma 3.16) such that!3
(1)G2A%+ ACOO-qf + T19_,-CA(Ef) — (TIQ-CA(f) > TIY-CA(f")).
By the induction hypothesis we have
(2) GoA®+ ACOOgf FV f((ng,2_TNDm0”(£ £)° =m0 ,-CA( f))
for a suitable £ € GoR“. So by proposition 3.15
(3) GoA®+ACO0qf + (I2-TND™"(£))° A (9 ,-TND™™((£f)))° — MO-CA(f).

Introducing dummy quantifiers, (H%Q—TNDm"”(f(gf)))S can be reduced to (H%—TNDm"”(E*f))S
for a suitable £* € GoR“. Furthermore

(4) (TTQ-TND™"(h))® = (MY-TND™"(£))" A (TIQ-TND™"(g))°

for

Py 2) if 1 = 27
h(z,y,z) = I@p2)ite =22
9(2,y,2) ifx =22 + 1.

Hence
(5) (IG-TND™" (¢))° = (-TND™"()) " A (H3-TND™*" (&* ))*

for a suitable £ € GoR¥. By (3) and (5) we have
GoA®+ ACO0-f F (TI)-TND™"(¢£))® — MO-CA(f).
Lemma 3.18 Letk > 1 and A € X% . Then

G3 AY + 29-TA FV2'FuVE <o 2(VyPA(F,y) V Ii < u-A(F,1)).
Proof: Assume
(+) Yul3z < 2(3y—A(E,y) A Vi < uA(F, ).
We show by induction on n:

G(n,u,z)

(%) ‘v’nEIu,:Z‘(Ethi =n+1A /\ (&) # (2); A /\ ((#); <z) AVi<nIa < uﬁA((i)i,ﬂ)‘)

i,j<n i<n
i#j

!3Note that two instances I19-CA (&1 f) AII2-CA(€&2 f) can be coded together into one instance I12-CA (€3 f) in GoA“.
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(For n = z + 1 this obviously is contradictory and so —(+) is proved).

n = 0: (+) applied to u := 0 yields an zg < z such that A(zo,0) and Jyo—A(zo,yo). (*) is now
satisfied by taking Z := (zo), u := yo.

n — n+ 1: Let u,# be such that (x) is satisfied for n. By (4) there exists an z,; < x such that
Wnt17A(@Tnt1,Ynt1) and Vi < vA(zp41,4). By (%) we have Vi < n3a < u—A((%);,a). Hence
Vi < n((%); # Tpg1) and s0 U := max(u, Yn41), T := & * (Tn41) satisfy G(n + 1,4,7).

It remains to show that Ju, #G(n,u, %) is equivalent to a X9-formula:

Using 39 |-CP, 34 < u—A((%);, @) can be shown to be equivalent to a 1Y | -formula. Since £ ,-CP
follows from X9-TA, the whole proof can be carried out in GzA* + X9-TA.

In contrast to II9-TND(f) its monotone version IT1{-TND™"( f) does not hold logically. However it
can be proved using £9-induction. More precisely the following proposition holds:

Proposition 3.19 Let k > 1. There are finitely many instances $9-TA(&; f) such that

l
GuA” Vf(( N\ Z-TA(E ) — Hg-TNDmon(f)).

=1

Proof: By (the proof of) lemma 3.18 there are instances X0-IA(E; f) which prove (relatively to
G3A¥)

VoIuiVi < z(Vy1321 - . VYm32m (Womt 1) (F (Z 915 215 -« -, Yims Zms (Y1) = 0)
VAT < uVoy .. um V0 (Fm 1) (f (2, 8y 01, - - oy Uy Umy (Umt1)) 7 0))

and therefore by the definition of f’ (which makes
i < urVor .. Jum Y0 (Ftm41) (f (2, 8,01, - -+, Uy Um, (Umt1)) # 0) monotone w.r.t. 3i)

anulvj S Jf(VyﬁZl N vymazm(vym+1)(fl(ja Y1,215 3 Yms Zm, (ym+1)) = 0)
VYL - T Y0 (Tt 1) (F (&, w1, 01, - -y Uy Uy (Um1)) 7 0)),

which is equivalent to

VaFu Yy VE < 2321 (Y2 - - - VYm3zm (Vym1) (F'(Z, 915215 - -+ Y Zms (Yms1)) = 0)
VW1 e FU VU (Tt (' (B, 1,01, - o Uy Uy (Umg1)) 7 0))

(%)

By a suitable instance of II9_,-CP and the monotonicity of (xx) w.r.t. 321 one can ‘shift’ VZ < z
over Jz;. Now one continues in this way until one obtains II9-TND™°"( f) which needs only suitable
instances of II-CP with [ < k—1 which can be considered as instances of I19_,-CP. All the instances

of IIY_,-CP used follow from suitable instances of £9-TA.

Corollary 3.20 G3A“ -V f(II9-CA(¢f) — TIY-TND™"(f)) for a suitable £ € G3R.
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4 Conservation results for II{-AC(f) and A}-CA(f,g)

We are now ready to determine the arithmetical content of instances II{-CA(fuv) and even II9-
AC(&uv) and AY, | -CA(&uw) in proofs of monotone sentences (and without monotonicity assumption
if the logical complexity is restricted). It turns out that this content is given by certain instances of
I9-TND™e".

Definition 4.1

VIO (V20 3yOvul Tl . .. 3Dl (£(1, 2, y,u) = 0)

M)-AC(f) :=
— AgtvaeOvaudFul ... 3 Dud (£(1, 2, gz, u) =0 0))

VIO (‘v’xo([‘v’u[l)ﬂug DU (1, z,u) =0 0) &
AY-CA(f,9) := VoY .. VD (g(1,z,v) =0 0)])
— 3n1Va0 (hx =0 0 ¢ Yuy Jus . .. IDug (F(1, 2,1) =o 0)))
AY-CA(f) := AY-CA(j} f,ja f) for the projection functions ji € GyR“.
Lemma 4.2 Let k € IN. Then for suitable &, & € GoR¥:
1) God“+ ACOO-gf bV (II2-CA(E f) — TO-AC(S)).

2) GoA“+ AC™O-qf FVf(TI-CA(&f) — AL, ,-CA(f)).

Proof: Obvious.
Below we also need a certain ‘non-standard’ axiom F'~

F~ =82 5 O3y, <) y¥k, 2", n° (N (2i <o yki) > k(Z;m) <o Bk(yok)),

i<on

where, for 2%, (z;m)(k°) :=, zk, if k <o n and := 07, otherwise.

F~ does not hold in the full set-theoretic type-structure but can be eliminated from proofs of
monotone sentences in our theories. This axiom was introduced and studied in [12] and implies the
principle of uniform ¥%-boundedness which was mentioned in the introduction and which will be
generalized in section 5 below.

Proposition 4.3 Let n > 2, k > 0 and B := Yu'Vo <, tu3aV0?. .. EIa?Vb?EIw"BO be a sentence in
L(G,A%), where By is quantifier-free and t € G,R*. Let &,& € G, RY (of suitable types) and A
a set of sentences having the form Va%3y <, sa¥z"Aqy (Ao quantifier-free, s € G,R*). Then for a
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suitable £ € G, R* the following holds:

/

If
GoA® + At AC-gf -
Vu'o <; tu(AY -CA(&uv) ATI-AC(Luv) — FadVEY ... FafVb)Tw By)
q then
GnAY + A+ Mon(B) F Yu'Vo <, tu(I1)-TND™™ (uv) — FafVhy ... JaPVb)TFw By)
and in particular

Grmax(3,n)A” + Z0-TA + A 4+ Mon(B) F Yu'Vv <, tu3af¥b? . .. 3adV603w By.

\

In the assumption of the rule the theory G, A + A+ AC-qf can be strengthened to'*
(GnAY + A+ AC-gf ) ® F~. Then in the first conclusion G, A“ must be replaced by Gpax(3,n)A”.

Proof: By lemma 4.2, proposition 3.17 and the fact that two instances of I19-CA can be coded
together into a single instance of I19-CA, there is a £ € G, R such that

GoAY+ ACYOgf +Vu'Ve <, tu((H%—TNDmO"(guv))S =AY, -CA(&uv) AIY-AC(Luv).
So the assumption of the rule implies
(1) GA“+ AC-of + A FVu'vo <, tu((H%—TNDmO"(fuv))S — JadVhY ... Ja)Vb) 3w By).
By lemma 3.14.2) the prenexation'®
AP" = VYol <, tuIzeVuy Iy Yz Jog .. Fa by .. Tw? (TNDS’O”(Euv) — BO)

0f16
A= Vu'vo <; tu(TI-TND™" (§uv) — FafVh} . .. Ja)Vb)Fw" By)

is monotone if B is:
GrAY F Mon(B) — Mon(AP").

Now (1) implies

GuA“+ ACqf + A - (4r7)7

and therefore using theorem 2.7
GnAY + A + Mon(B) F A" ie.

GnA“ + A 4+ Mon(B) F A.

The second part of the claim in the proposition now follows from proposition 3.19.

4 Here ® means that F'~ must not be used in the proof of the premise of an application of the quantifier—free rule
of extensionality QF-ER. G, A“ satisfies the deduction theorem w.r.t & but not w.r.t +.

15Note that AP" is not completely in prenex normal form because of the universal quantifiers hidden in v <, tu.
However it has the form required in theorem 2.7 used below.

I6TNDg**™ denotes the quantifier-free matrix of (some prenex normal form of) II2-TND™™,
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The proof above can be combined with the elimination procedure for F~ given in [12](thm.4.21)
yielding the claim about adding F~.

The following corollary in particular states (for A = @, ¥ = 0 and Vv < tu’ non-existent) that the
provably recursive function (al)s of type < 2 of fixed instances of A +1-CA and I9-AC (relative to
the base system Goo,A“+ AC-qf) are definable in the fragment T}, of Godel’s T

Corollary 4.4 Let k> 1,7 <2 and &,& € G,R¥. Then the following rule holds

GooA¥ + A+ AC-qf F Vu'Vu <, tu (A, -CA(&uv) AIY-AC(&uv) — Fw By (u, v, w))
= 3P € T}._1 such that
PAY + A+ VulVo <, tudw <., du By(u,v,w).

Again we may strengthen the theory in the assumption of the rule above by ®F~.

Proof: The corollary follows from proposition 4.3 by observing that the condition
Mon(Yu'Vv <, tudw” By) is empty and using the fact that G, A“ + A 4+ ¥9-TA has a monotone

functional interpretation as developed in [9] (via negative translation) in PAY + A by terms €
Tr—1. The latter follows from the proof that the negative translation of £9-TA has a functional
interpretation in Tj_; (provable in (a subsystem of) PA¥) as given in [20] and the fact that every
(closed) term of Tj—_; can be majorized (in the sense of definition 2.1) by a suitable term in Tj_q
which follows from Howard’s proof of this fact for full 7' as given in [6].

Corollary 4.5 Let n > 3 and A be a I1] -sentence.

If B-G A+ AC'O-qf +A},,-CA™ + IY-AC"+ WKL + A
then G, A“ + X0-TA + Mon(A) + A.

Proof:
Using the deduction theorem for E-G, A%, the fact that E-G3A“+ ACY0-qf +F~ proves WKL (see

[12]) and the existence of characteristic terms € G, R¥ for quantifier-free formulas of E-G,,A“ the
assumption implies

I
E-G,AY+AC Y Oqf + F~ I—/\ AV, -CA(&)) /\ (I2-AC(E;))

i=1

for certain terms &;, éj € G,R¥ (corresponding to the universal closures of the instances of AgH—CA*
and II9-AC~ used in the proof).
For suitable &, € € G,R* we have

l
GnAY F AR, -CA(E) = /\ (A%41-CA(%))
i=1

19



and

7
GnA“ F TIP-AC(€ /\HOACfJ

Together with elimination of extensionality (see e.g. [17]) we obtain
(GpA“+ ACHO-qf) @ F~ - AY,-CA(&) ATIZ-AC(E) — A
The conclusion now follows from proposition 4.3.

Lemma 4.6 Let Vu'Vv <, tu A(u,v) be a sentence with A(u,v) € £ ,,. Then one can construct a

sentence YulVv <, tuA(u,v) with A(u,v) € £9_, such that
1) G,A“ + Mon(Vu'vv <, tuA(u,v)),

2) GnA¥ +Vu'Vo <; tu( /l\ 9 ,-CP(&uwv) — (A(u,v) = A(u,v))),

i=1
] - -
3) G, A“ FVu'Vu <, tu( A TY_;-CP(&uv) = (A(u,v) = A(u,v))),
i=1

where gi,éj € G,R” are suitable terms.

Proof: Lemmas 3.8,3.10.

Corollary 4.7 Let n > 3, Vu'Vv <, tu A(u,v) be a sentence in G, A“ with A(u,v) € 9 |,
t € GpRY and &,& € G, R” of suitable types. Then the following rule holds:

If GoAY + A+ AC-qf FVu'Vo <, tu(AY, | -CA (&uv) ATIY-AC (&uv) — A(u,v))
then G, A“ + X9-TA + A FVulVo <, tu A(u,v).

We may strengthen the theory in the assumption of the rule above by F~.

Proof:
Let A be as in lemma 4.6. T19_,-CP(&uv) follows from a corresponding instance TI9_,-AC(&uv)

of TI? ,-AC which can be considered as an instance M9-AC(&uv) of T9-AC. All these instances

9-AC(&uwv) (i = 1,...,1) can be combined with II?-AC(&uv) into a single instance 2-AC(&uw).
Hence the assumption of the corollary yields

GnA® + A4+ AC-qf F Vu'Vo <, tu(AY, -CA (&uv) A TI9-AC (&uv) = A(u,v)).

The conclusion now follows from proposition 4.3, lemma, 4.6 and the fact that
G,AY + X0-TA + 119 _,-CP.

Corollary 4.8 For n > 3, E-G,A“+ AC"-¢f +A} -CA~ + II}-AC™ + WKL is conservative

w.r.t. II)  ,-sentences over G, AY + X0-TA™.

Proof: The corollary follows from the proofs of corollary 4.5 and corollary 4.7.
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Remark 4.9 Corollary 4.8 is optimal in the following sense. For every k there is a sentence A €
IT) 5 such that

G3AY +TI%-AC™ F A, but G3A“ + Z0-TA £ A.
Proof: There is a first-order instance A (i.e. without parameters of types > 0) of II?-FAC which
does not follow from X9-TA relative to e.g. G3A“ (see [19]). It is clear that G3A“ + II9-AC™ + A.
Since the universal closure of A can be shown to be equivalent to a II? yg-sentence in Gz A + $OTA-
(and hence in G3A¥ +TI3-AC™), the claim follows.

Corollary 4.10 Let Yu'Vv <. tu A(u,v) be a sentence with A(u,v) € X9 ,. Then for n > 3 the
following rule holds:

If GoAY + A+ AC-¢f FVu'Vo <, tu(AY, | -CA (&uv) ATI-AC (&uv) — A(u,v))

then G, A +T12-CP + AFVulVo <, tu A(u,v).
We may strengthen the theory in the assumption of the rule above by ®F .

Proof: The corollary follows analogously to the proof of corollary 4.7 using lemma 4.6 for k + 1
instead of k and the well-known fact (see e.g. [19]) that G,,A“ + I12-CP + X0-TA.

Corollary 4.11 For n > 3, B-G,A“+ AC'*-¢f —l—AgH—CA_ + 9-AC™ + WKL is conservative
w.r.t. II)  ,-sentences over G, A¥ + II)-CP~.
Proof: The corollary follows from corollary 4.10 analogously to the proof of corollary 4.8.

Let EA be Kalmar-elementary arithmetic EA (with number quantifiers) and let us consider the
variant G,A“ of G,AY where the arbitrary true universal axioms 9) from its definition in [12] are
replaced by the schema of quantifier-free induction (with arbitrary parameters)!” only. The results
above also hold for G, A¥ since no other universal axioms from 9) were used. EA can be considered
as a subsystem of G3A“ and the latter is conservative over the former. Hence we obtain the following
corollaries for EA:

Corollary 4.12 Let A be an arbitrary sentence of EA. Then the following rule holds:
EA+T0-CP FA = EA+X0-TA+ Mon(A) - A.
In particular we have the following
Corollary 4.13 Let A, A be sentences from EA such that
1) EA +19-CPF A — A,
2) BA+X0-IAF A — A and
3) EA +30-TA + Mon(A).
Then EA +113-CP = A implies EA +X9-1A + A.

Combined with lemma 4.6 we finally obtain

Corollary 4.14 (Paris-Kirby [18], H. Friedman)
EA +110-CP is 11, -conservative over EA +X{-TA.

170r equivalently the second-order axiom of quantifier-free induction.
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5 Generalized principles of uniform boundedness and their
arithmetical content

In the following we define a generalization of the principle of uniform X9-boundedness £9-UB~ which
was studied in [12],[14],[15]:

vyt (VEOVz < yk32° A(z,y,k, 2) — I VEC, 21, n®

i<gmn

»0-UB™ :=

where A = 31°Ay(1) is a purely existential formula.

¥9-UB~ follows from F~ relative to G,A“+ ACH0-f (for n > 2).

In GoA¥ 4+ %9-UB~ and hence in GoA¥ + F~+ACH%—f one can give very short and perspicuous
proofs of various important analytical theorems like

e Every pointwise continuous function f : [0,1]? — TR is uniformly continuous
e The attainment of the maximum value of f € C([0,1]¢,IR) on [0, 1]*

The sequential form of the Heine-Borel covering property for [0, 1]¢

Dini’s theorem
e The existence of a uniformly continuous inverse function for every strictly increasing continuous

function f :[0,1] —» IR.

Since F'~ does not contribute to the growth of extractable bounds one can extract polynomial bounds
from proofs in GoA“ 4+ X9-UB~+ AC-¢f.

Whereas the straightforward generalization of £9-UB~ to I12-formulas is not consistent with G,A%
(see [15]), the following restricted form is (although it does — like ¢-UB~ - not hold in the full
set-theoretic type structure):

Definition 5.1 Let p = 0(0)(0)(1(0))(1), k > 0.

V@r, yl0) g0 (VEOVz <y yk32"A(g, ®(2,y,k, 2), k, 2,a) —

2-UB™ \Mg) :=
IN'VEV <y ykVI03z <o xk A(g, ®((2,1),y, k, 2), k, 2,a)),

where A(g,v°,k°,2°,a%) := Va93ug ... 3Dl (g(v, k, 2, a,u) =0 0) € IIY.
Remark 5.2 G,A“ - 1I)-UB™|\(t) — £9-UB~, where t € G1R* such that t(v,k,z,a) =o v.

In [15] we have shown that every single (sequence of) instance(s) of the Bolzano-Weierstraf} principle
for bounded sequences in IR? and of the Ascoli-lemma (in the sense of [23]) follows from suitable

instances of II%-UB~| and used this to calibrate precisely the contribution of such instances to

the growth of extractable bounds. This indicates the mathematical relevance of our generalized
principles of uniform boundedness.

22



Proposition 5.3 Letn > 2,k > 0. For suitable £ € G, R* we have
Go A+ ACYY-¢f = F~ +10I,-CA(Eg) — I -UB™ Mg),
where g is a free (function) variable.

Proof:
For a suitable ¢ € GoR¥, I19-CA(£g) yields the existence of a function h such that

Vol k0,29, a° (hvkza =00 ¢ A(g,v,k, 2z, a)),
where A is as in definition 5.1. Using h, the assumption of II2-UB~](g) can be expressed as
VEOYz <y yk3z2° (h(@(m,y, k,z),k,z,a) = 0).
By ¥9-UB~, which follows from F~ and AC!0-¢f relative to G, A% (see [12]), this yields
IX'VEOVZ < ykVI°3z <o xk(R(®((7,1),y,k, 2), k, 2,a) =0 0)

and hence _
IX'VEOVYE <y ykVI3z <o xk A(g, ®((7,1),y,k,2), k, 2, a).

Using proposition 5.3 we can strengthen proposition 4.3 and corollary 4.4 to

Theorem 5.4 Let n > 3, k > 0 and B := Yu'Vu <, tuTalVh! ... 3aV0)Iw? By be a sentence in
L(GrA?), where By is quantifier-free and t € Go,R”. Let &1,&,&3 € GnRY (of suitable types) and
A a set of sentences having the form Yx®3Jy <, saxV¥z"Ag (Ao quantifier-free, s € Go,R*). Then for
a suitable ¢ € G, R” the following holds:

/

If

GnAY + A+ AC-qf +
Vu'Vo <; tu(AY, | -CA(&uv) ATIY-AC(Suv) AT -UB™ M&uv) — FafVb . .. 3afVb)Iw) By)
then

GnAY + A+ Mon(B) FYu'Vu <, tu(II9-TND™™ (uv) — a0 ... JadVb?Fw By)

and in particular

GnA® + $0-TA + A + Mon(B) F Yu'Vu <, tu3aVh) ... 3adVb) 3w By.

\

In the assumption of the rule the theory G,AY + A+ AC-qf can be strengthened to
(GpAY + A+ AC-¢f ) F~.

The following corollary implies (for A = (), v = 0 and Vv < tu’ being a dummy quantifier) that
the provably recursive function(al)s of type < 2 of fixed instances of II9-UB~) (relative to the base
system G, A“+ AC-qf) are definable in the fragment Tj_1 of Godel’s T':
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Corollary 5.5 Let k> 1,7 <2 and &1,&2,& € G,R”. Then the following rule holds

G AY + A+ AC-qf -
Vulvo <; tu(AY, -CA(&uv) ATIY-AC(&uv) AR -UB™ Mésuv) — Jw? Bo(u, v, w))

= 3P € T._1 such that

PAY + A FVu'Vo <, tudw <y ®u By(u,v,w).
Again we may strengthen the theory in the assumption of the rule above by ®F .
We now show that I19-CA(f) in fact is implied by suitable instances of I13-UB~ )
Proposition 5.6 Let n > 2,k > 1. For suitable &1,...,& € GoRY we have

1
Gad F \ TO-UB~N&:f) — TO-CA(f),
i=1
where [ is a free (function) variable.
Proof: Induction on k. k = 1: TI9-CA(f) is logically equivalent to
(1) 39 <4 l‘v’xo,yOElzo((gx =00 = f(z,y) =0 0) A (f(z,2) =0 0 = gz = 0))
and hence to
(2) =g <y 132°,5°V2"=((g2 =0 0 = f(2,y) =0 0) A (f(x,2) =0 0 = gz =0 0)).

For a suitable £, € GoRY, TI9-UB™|\(& f) yields the equivalence of (2) and

(3) =3n°Vg <y 13x,y < nV2°=((g92 =0 0 = f(z,y) =0 0) A (f(z,2) =0 0 = gz = 0))
ie.

(4) Vn"3g <4 V2 < n((gz =0 0 = Vy < nf(z,y) =0 0) A (V2(f(2,2) =0 0) = gz =0 0)).

Define

{ 0 if ¥y < n(f(z,y) = 0)
gz =

19 otherwise.

Let k> 1. ks k+1:
1Y, ,-CA(f) is equivalent to

» dg <4 1Va:0,y05|z0((ga: =0 0 — JudVul.. VDU (f(z,y,u) =0 0))A
*
(Fudvul.. VDU (f(2,2,u) =0 0) = gz = 0))
By induction hypothesis there exists an instance II3-UB~M& f) (which can be considered as an
instance IT) -UB~ N, f)) which implies (relative to G,A*) II)-CA(f) and hence the existence of

an h such that
Vz,a(h(z,a) = 0 ¢ JuiVu, .. N Du(f(z,a,1) = 0)).
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By 119, ,-UB~ (& f) (for a suitable £3) applied to the negation of (), Iy, ;-CA(f) is equivalent to
(ev) Yndg <; 1Vz < n((gw =0 0 = Vy < nJudvul ...V Dul f(z,y,u) =0 0)A
K%
(V2FudVal .. .V Du f(z,2,u) =0 = gz = 0)),
which is satisfied by

{ 0° if Vy < n(h(z,y) = 0)
gr =

19 otherwise.
Corollary 5.7 Forn > 2,k > 1 the following holds:
1) G, A - VgIl?-UB~Mg) — VgII%-CA().
2) GnA* +Ygl{-UB~|\(g) <> VgII2-UB~\N§).

Proof: 1) By proposition 5.6 VgII{-UB~|\(g) implies VfII9-CA(f) and hence VfII2-CA(f) (by iter-
ation).
2) follows from 1) and the proof of proposition 5.3.

Let By,1 be the type-O-bar recursor constant of equality rank 1, i.e. By, is characterized by the
axioms

(BRo.) 22 (y',n%) < n — Boizzuny =1 zny
0,1) -
z(y,m) > n — Bozzuny =; u(/\DO. Bo,1zzun' (g, 7 * D))ny,

where u is of type 1(1)(0)(1(0)) and
yk, if k <n

@m*D)(k°) =0 D, ifk=n

0°, otherwise.
Definition 5.8 The schema of dependent choice of type O for arithmetical formulas is given by
9 -(DC?) := Va3  A(z, y) — V232" (20 =¢ z AV2)A(221,2(21))),
where A € TI2, with arbitrary parameters.

Proposition 5.9 Letn > 3,k > 1, By(u,v,w) be a quantifier-free formula of G, A* containing only
u,v,w free, t™t € GoR*,v < 2. Then the following rule holds:

GnA¥ + A+ AC-gf - VgII2-UB~Mg) — Vu'Vv <, tuTw” By (u, v, w)
= 3% € G,R”[Bo,1] such that
GnA” + A + (BRo,1) + I% -(DC°) - VulVo <, tudw <., ®u By(u,v,w).
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® can be written as a closed term ® of T (i.e. it is a primitive recursive functional in the sense of
Gdédel) such that PAY + BRy, - ® =, .
Moreover if 6,n < 2 and p < 1 for the types in A and if S¥ |E A and 7 < 1, then

S¥ | Yu'Vo <, tuTw <, ®u By(u,v,w).
Proof: By proposition 5.3 and corollary 5.7 one has
G,AY+ ACHO-f +VgT9-CA(g) F F~ — VgI-UB™|N§).
Hence the assumption of the rule to be proved yields
G, AY + A+ AC-of +VgTII%-CA(g) F F~ = Yu'Vu <, tudw” By(u, v, w).

From the work of Spector [24] it follows that G,A“+ AC-qf +VgI19-CA(g) has (via negative trans-
lation) a Godel functional interpretation in G,A¥ + (BRg,1) by terms € G,R“[Bg1]. In [2] it is
shown that the type structure M* of the so-called strongly majorizable functionals forms a model
of full bar recursion. From the proof of this fact (restricted to type-0O-bar recursion) one obtains the
construction of a term Bg; € G,R“[Bo,1] such that

GnAY + (BRg) + % -(DC°) - Bj | s-maj By |,

where ‘s-maj’ is the corresponding syntactic notion of strong majorization as defined in definition
2.1. Therefore the proof of the fact that (the negative translation of) G,A“+ AC-qf +A has
a monotone functional interpretation (in the sense of [9]) in G,A¥ by terms in G,R¥ (see [12])
extends to G,AY + A+ AC-qf +VgIIY-CA(g) yielding a monotone functional interpretation (via
negative translation) in G,A“ + A + (BRog 1) + % -(DC®) by terms in G,R“[Bg,]. This has the
consequence that as in the case of G,AY + A+ AC-qf (see the proof of theorem 4.21 in [12]) we
can eliminate F'~ from the proof of YuVv < tu3w By and extract a uniform bound ® on ‘Jw’ which
now of course is only in G, R“[Bg ] (instead of G,R¥) and its verification can be carried out in

GnA® + A + (BRo;1) + % -(DCO).

By [16] (proposition 4.2) it follows (since deg(y1) = 2) that ® can be written as a primitive recursive
functional ® such that PA¥ + BRy, - ® =1 ®.

The final claim follows using again the model M%“. Since My = So, My = Sy and My C S,, the
assumption S* = A implies M* |= A and therefore (since M* |= b-AC, see [8]) M = A. From
[2] it follows that M = PA“ + BRg,; + 1% -(DC?). Therefore

MY EVu'Ve <, tudw <, du By(u, v, w),
and hence (since 7 < 1, v < 2)
S¥ | YulVo <, tuTw <, ®u Bo(u,v,w).

Corollary 5.10 The provably recursive function(al)s of type < 2 of YglIS-UB~|\g) (relative to
G.A“+ AC-qf) are definable in T.

Remark 5.11 Because of corollary 5.7.1), PA is a subsystem of Gn,A“+AC-qfVgIl2-UB~|\(g).
Hence corollary 5.10 is optimal.
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