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Abstract

A pointwise version of the Howard–Bezem notion of hereditary majoriza-
tion is introduced which has various advantages, and its relation to the usual
notion of majorization is discussed. This pointwise majorization of primitive
recursive functionals (in the sense of Gödel’s T as well as Kleene/Feferman’s

P̂R) is applied to systems of intuitionistic and classical arithmetic (H and Hc)
in all finite types with full induction as well as to the corresponding systems

with restricted induction Ĥ|\ and Ĥ|\c.

1) H and Ĥ|\ are closed under a generalized fan–rule. For a restricted class

of formulae this also holds for Hc and Ĥ|\c .

2) We give a new and very perspicuous proof that for each Φ2 ∈ T (P̂R)

one can construct a functional Φ̃2 ∈ T (P̂R) such that Φ̃α is a modulus
of uniform continuity for Φ on

{β1|∀n(βn ≤ αn)}. Such a modulus can also be obtained by majorizing
any modulus of pointwise continuity for Φ.

3) The type structure M of all pointwise majorizable set–theoretical func-
tionals of finite type is used to give a short proof that quantifier–free
“choice” with uniqueness

(AC!)1,0–qf. is not provable within classical arithmetic in all finite types

plus comprehension (given by the schema (C)ρ : ∃y0ρ∀xρ(yx = 0 ↔
A(x)) for arbitrary A), dependent ω–choice and bounded choice. Fur-
thermore M separates several µ–operators.

.

1 Introduction

Howard (1973) introduced the notion “x∗ maj x” where x∗ and x are functionals

of a finite type ρ and showed that each primitive recursive functional Φρ (in the

sense of Gödel’s T ) can be majorized by a suitable primitive recursive functional
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Φ∗ρ . As an application he proved that no primitive recursive functional satisfies the
functional interpretation of the axiom of extensionality for objects of type 2 .
A variant of this notion with the property that each majorant majorizes itself was
defined in Bezem (1985) who called this notion “strong majorization”. Bezem proved
that the corresponding type structure Ms of all strongly majorizable set–theoretical
functionals of finite type is a model of Spector’s calculus T + BR of bar recursive
functionals, although Ms contains discontinuous functionals.
In this paper we first introduce a pointwise version maj of Bezem’s strong majoriza-
tion where x∗majρ0 x is defined by ∀n(x∗nmajρ xn) . The majorizable functionals

are the same for both notions since, for each x∗ which majorizes x in our sense,
one can compute, primitive recursively in x∗ , a strong majorant x̂ for x and
vice versa (2.14). In particular the type structure Ms and the corresponding type
structure M defined by pointwise majorization coincide. However the majorization
relations differ for ρ > 0 and our modification has several advantages:

1) For types ρ ≤ 2 , majρ can be described by the natural inequality relation

≥ρ (2.4,2.5). This allows mathematical applications some of which are given

below. More substantial ones will follow in subsequent papers.

2) The proof that M is a model for T +BR is technically simpler than Bezem’s

proof for Ms (see also the proof of 3.16 below).

3) The pointwise definition is extremely convenient for the purpose of generalizing
M to models M∞,σ of the calculi of bar recursive functionals of infinite type
T∞,σ + BR; these were introduced in Friedrich (1985) in order to carry out
the functional interpretation of higher classical analysis with analytical com-
prehension over objects of arbitrary type (via the game quantifier translation

developed in Friedrich (1984)).

The models M∞,σ will be constructed in a subsequent paper where 2) and 3) will
become apparent.
In this paper, we only utilize the first property of maj for applications.

Notation

The set T̃ of finite types is defined inductively:

1) 0 ∈ T̃ ,

2) ρ, τ ∈ T̃ ⇒ τ(ρ) ∈ T̃ .
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The subset P̃ ⊂ T̃ of pure types is given by

1) 0 ∈ P̃ ,

2) ρ ∈ P̃ ⇒ 0(ρ) ∈ P̃

Pure types are often denoted by natural numbers: 0(n) := n + 1. Intuitively each

object of type τ(ρ) is a mapping which assigns objects of type ρ to objects of type
τ .
In the following, we omit brackets that are uniquely determined, e.g. we write o(oo)

instead of o(o(o)).
E–HAω denotes the system of extensional intuitionistic arithmetic in all finite types
as defined in Troelstra (1973),1.6.12, where only equality between objects of type 0
is primitive and higher equality is inductively defined as
z =ρτ u :≡ ∀yτ (zy =ρ uy).

WE–HAω is obtained from E–HAω by replacing the extensionality axiom by a
quantifier–free rule of extensionality

ER–qf.
A0 → s =ρ t

A0 → r[s] =τ r[t]
,

where A0 is quantifier-free.
The corresponding systems with classical logic are denoted by E–PAω and WE–
PAω resp. The calculus T is defined to be the quantifier–free part of WE–HAω

(Troelstra (1973), 1.6.13.). The theories above all contain 00(zero), S00(successor),
constants Πρ,τ , Σδ,ρ,τ and recursor constants Rρ with the defining axioms Πρ,τx

ρyτ =ρ

xρ, Σδ,ρ,τxyz =τ xz(yz) (where x ∈ τρδ, y ∈ ρδ, z ∈ δ) and

 Rρ0yz =ρ y

Rρ(Sx
0)yz =ρ z(Rρxyz)x, where y ∈ ρ, z ∈ ρ0ρ .

If the constants Rρ are replaced by elementary recursor operators R̂ρ characterized

by  R̂ρ0yzv =0 yv

R̂ρ(Sx
0)yzv =0 z(R̂ρxyzv)xv,

where y, z as above and v = vρ11 ...v
ρk
k such that yv is of type 0, and if the schema

of full induction is replaced by the axiom of quantifier–free induction

3



(IA)–qf. ` ∀f 1(f0 = 0 ∧ ∀x(fx = 0→ f(Sx) = 0) −→ ∀x(fx = 0)),

then one obtains the restricted systems ̂E −HA
ω
|\, ̂WE −HA

ω
|\, with quantifier–

free part P̂R due to Feferman (1977) (The functionals of P̂R are essentially the

primitive recursive functionals in the sense of Kleene (1959)).

Each of the systems defined so far permit us to construct a term λx.t[x], for each

term tρ, such that (λx.t[x])(t′) =ρ t[t‘] (see Troelstra (1973), 1.6.8).

Furthermore we need the following schemata (A ∈ L(E −HAω) )

(AC)ρ,τ : ∀xρ∃yτA(x, y) −→ ∃Y τρ∀xρA(x, Y x) (choice),

(AC)ρ,τ–qf. ` ∀xρ∃yτA0(x, y) −→ ∃Y τρ∀xρA0(x, Y x),

where A0 ∈ L(E −HAω) is quantifier–free (quantifier–free choice),

(MP ω) : ∀x(A(x) ∨ ¬A(x)) ∧ ¬¬∃xA(x)→ ∃xA(x),

(Markov–principle)

(IP ω
0 ) : ∀x (A(x) ∨ ¬A(x)) ∧ (∀xA(x)→ ∃yB(y))→ ∃y(∀xA(x)→ B(y))

(independence–of–premiss schema). Here x denotes a finite tupel of variables.

“∀x ≤ρ y A” and “∃x ≤ρ y A” are used as abbreviations for “∀x(x ≤ρ y → A)”

and “∃x(x ≤ρ y ∧ A)” respectively. “∀x; x̃ ≤ρ sxA” stands for “∀x∀x̃ ≤ρ sxA”,

but “∀x, x̃ ≤ρ y A” stands for “∀x ≤ρ y∀x̃ ≤ρ y A”.

2 Basic definitions and results about maj

The results 2.1–2.14 can be proved within ̂WE −HA
ω
|\.

2.1 Definition (see Bezem (1985))

The relation x∗s−majρx ( x∗ strongly majorizes x) between functionals of type

ρ is defined inductively as follows:

 x∗ s−maj0 x :≡ x∗ ≥ x,

x∗ s−majρτ x :≡ ∀y∗, y (y∗ s−majτ y → x∗y∗ s−majρ x∗y, xy) .

4



(Here ≥ denotes the usual primitive recursively defined inequality relation for ob-

jects of type 0).

Our pointwise variant of s−maj is defined as follows

2.2 Definition

For x∗, x of type ρ, x∗ majρ x is given by



x∗ maj0 x :≡ x∗ ≥ x,

x∗ majρ0 x :≡ ∀n0 (x∗n majρ xn),

x∗ majρτ x :≡ ∀y∗, y (y∗ majτ y → x∗y∗ majρ x
∗y, xy)

(τ 6= 0)

“x∗ majρ x” is read as “x∗ pointwise strongly majorizes x”.

2.3 Remark

Howard’s definition of majorization results if the clause x∗y in 2.1 is deleted. As a
consequence of this clause in the definition of s−majρ and majρ, one has

1) x∗ s−majρ x −→ x∗ s−majρ x∗ (Bezem (1985)) and

2) x∗ majρ x −→ x∗ majρ x
∗ (induction on the type ρ).

2.4 Definition

For functionals of type ρ we define a natural inequality relation ≥ρ by

 x1 ≥0 x2 :≡ x1 ≥ x2,

x1 ≥ρτ x2 :≡ ∀yτ (x1y ≥ρ x2y); x1 ≤ρ x2 :≡ x2 ≥ρ x1.

The following lemma establishes the strong connection between majρ and ≥ρ:
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2.5 Lemma

1) ∀x∗, x (x∗ maj1 x ↔ x∗ ≥1 x), in particular ∀x1(xmaj1 x);

2) ∀x∗, x
(
x∗ maj2 x ↔ x∗ ≥2 x ∧ ∀y1, y2 (y1 ≤1 y2 → x∗y1 ≤0 x∗y2)

)
;

3) ∀x∗, x̃, x (x∗ majρ x̃ ∧ x̃ ≥ρ x → x∗ majρ x);

4) ∀z∗ρ , x̃ρτ , xρτ
(
∀yτ (z∗ majρ x̃y ∧ x̃y ≥ρ xy) → λyτ .z∗majρτx

)
(In 3,4 ρ, τ ∈ T̃ are arbitrary).

Proof: 1) follows immediately from the definition of pointwise majorization

2)“→”: Assume x∗maj2x. By 1) we have ∀y1 (y maj1 y) and therefore ∀y1(x∗y ≥0

xy), i.e. x∗ ≥2 x. Let y1 ≤1 y2; then, again by 1), y2 maj1 y1 which implies
x∗y2 ≥ x∗y1.
“←”: Assume y∗maj1 y; then by 1) y∗ ≥1 y, and therefore, by the assumption,
x∗y∗ ≥0 x∗y. Again by the assumption one has x∗y ≥0 xy and hence x∗y∗ ≥0

x∗y, xy which implies x∗maj2 x.
3) This is proved by induction on the type.

4) Consider first the case τ 6= 0. Then from y∗majτ y it follows by 3) and 2.3.2
that

(λyτ .z∗)(y∗) = z∗majρ z
∗
(

= (λyτ .z∗)(y)
)
, xy ,i.e. λyτ .z∗majρτ x.

The case τ = 0 is treated analogously.

2.6 Remark

2.5.1,2.5.2 are not valid for Bezem’s or Howard’s notion of majorization. 3) and 4)
hold for their notions as well.

2.7 Notation

x∗ maj
ρ
x :≡

 x∗ =0 x if ρ = 0,

x∗ majρx otherwise.

2.8 Lemma

Let ρ = τρk...ρ1. Then
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x∗ majρ x ←→

∀y∗1, y1, ...y∗k, yk (
k∧
i=1

y∗i majρi
yi → x∗y∗1...y

∗
kmajτ x

∗y1...yk, xy1...yk ).

(This holds also for s−maj if maj
ρi

is replaced by s−majρi).

Proof: By induction on k using 2.3.

2.9 Definition

Let ρ = 0ρk...ρ1. Then Maxρ is defined by

Maxρ(x
ρ0) := λn0, yρ1 , ..., yρk .max(x0y1...yk, ..., xny1...yk),

where max(u01, ...u
0
n) is primitive recursively defined in the usual way.

2.10 Remark

One easily verifies that Maxρ can be defined in P̂R.

2.11 Notation

We abbreviate Maxρ(x
ρ0) by xM .

2.12 Lemma

For each ρ ∈ T̃ one has

x∗majρo x −→ ∀m0, n0 (m ≥ n→ x∗
M
mmajρ x

Mn, xn);

in particular Maxρ majρ0(ρ0) Maxρ.

Proof: Let ρ = 0ρk...ρ1, x
∗majρ0 x and y∗imajρi

yi (i = 1, ..., k). Using only

quantifier–free induction (IA)–qf. on m, one proves that

∀m
(
∀n ≤ m (x∗

M
my∗1...y

∗
k ≥0 x

Mny1...yk , xny1...yk)
)
.

By 2.8 and 2.3 this implies the lemma.

2.13 Definition

By MAX we denote the set of all terms of P̂R, which are constructed from only

O0, S00, Π, Σ and Maxρ.
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2.14 Proposition

For each ρ ∈ T̃ , there are effectively closed terms sρ and tρ ∈ MAX of type ρρ

such that

∀x∗, x
(
(x∗ s−majρ x → sρx

∗majρ sρx, x) ∧ (x∗majρ x → tρx
∗ s−majρ tρx, x)

)
.

Proof:

Induction on the type ρ : ρ = 0 : s0 := t0 := λx0.x.

ρ = δ0 : sδ0x
δ0 := λn0.sδ(xn), tδ0x

δ0 := λn0.tδ(x
Mn) :

(i) Assume x∗ s−majδ0 x. We show that sx∗majδ0 sx, x, i.e.

(∗) ∀n
(
(sx∗)nmajδ (sx)n, xn

)
. The assumption implies

∀n (x∗n s−majδ xn). The induction hypothesis applied to sδ yields (∗).
(ii) Assume x∗majδ0 x. We have to show: t(x∗) s−majδ0 t(x), x.
By 2.12, the assumption, and 2.3.2, one has

∀m0, n0 (m ≥ n −→ x∗
M
mmajδ x

∗Mn, xMn, xn)
and hence, by the induction hypothesis applied to tδ

∀m,n
(
m ≥ n → tδ(x

∗Mm) s−majδ tδ(x∗
M
n), tδ(x

Mn), xn
)
.

ρ = δτ (τ 6= 0)

sδτx
δτ := λyτ .sδ(x(tτy)),

tδτx
δτ := λyτ .tδ(x(sτy)).

(i) Assume x∗ s−majδτ x. We show that sx∗majδτ sx, x, i.e.

∀y∗, y (y∗majτ y −→ sx∗y∗majδ sx
∗y, sxy, xy) :

y∗majτy
ind.hypoth.−→ tτy

∗ s−majτ ty, y
assumpt.2.3.1−→

x∗(ty∗) s−majδ x∗(ty), x(ty), xy
ind.hypoth.−→

sδ(x
∗(ty∗))majδ sδ(x

∗(ty)), sδ(x(ty)), xy.

(ii) x∗majδτ x → tx∗ s−majδτ tx, x: The proof is similar to the proof of (i) above.

2.15 Proposition

1) Let tτ [xρ11 , ..., x
ρk
k ] ∈ T be a term whose free variables xi are all of type

ρi ≤ 1. Then one can effectively compute a term t∗
τ
[x1, ..., xk] ∈ T having at

most the free variables of t such that

WE −HAω ` ∀xρ1 , ..., xρk
(
t∗[x1, ..., xk]majτ t

∗[x1, ..., xk], t[x1, ..., xk]
)
.
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In particular, for each closed term tτ ∈ T , there exists a corresponding closed
term t∗τ ∈ T such that
WE −HAω ` t∗ majτ t

∗, t.

2) For tτ [x1, ..., xk] ∈ P̂R (MAX), 1) holds with t∗τ ∈ P̂R (MAX) provable in̂WE −HAω|\.

Proof:

1) We show that for each constant cτ ∈ T there exists a closed term c∗τ ∈ T such

that WE −HAω ` c∗ majτ c (Since xi majρi xi for ρi ≤ 1, and

t∗1 majρτ t1 ∧ t∗2 majτ t2 → t∗1t
∗
2 majρ t1t2, this implies the proposition).

It is trivial that 00maj0 00 and S maj00 S. By 2.8 Πρ,τ majρτρ Πρ,τ and for

ρ 6= 0 Σδ,ρ,τ maj Σδ,ρ,τ . Using 2.8 and 2.12 one shows that

Σ∗δ,0,τ := λx, y, z.(xz)M(yz)maj Σδ,0,τ .

Ad Rρ: (i) ρ 6= 0: By induction one easily shows that

∀x0 (Rρx maj Rρx) and therefore Rρ majRρ.

(ii) ρ = 0 : R∗0 := λx, y, z.R0xy(zM). By induction and 2.12 it follows that

∀x (R∗0x maj R0x).

2) Define R̂∗ρ := λx, y, z, v.R̂ρxy(zM)v.

Assume ρ = 0ρk...ρ1, y
∗maj y, z∗maj z and v∗imajρi

vi (1 ≤ i ≤ k): By (IA)–qf.

using 2.12 one shows

∀x (R̂∗ρxy
∗z∗v∗ ≥0 R̂∗ρxyzv, R̂ρxyzv). By 2.8 this yields R̂∗ρ majR̂ρ. It is clear that

R̂∗ρ ∈ P̂R, since λzρ0.zM ∈ P̂R (2.10).

For MAX the proposition follows from 2.12.

2.16 Definition

The extensional type structure M of all hereditarily pointwise strongly majorizable
set–theoretical functionals of finite type is defined as

M0 := ω, n maj0 m := n ≥ m ∧ n,m ∈ ω,

x∗ majρ0 x :≡ x∗, x ∈MM0
ρ ∧ ∀n (x∗n majρ xn),

x∗ majρτ x :≡ x∗, x ∈MMτ
ρ ∧ ∀y∗, y ∈Mτ (y∗ majτ y → x∗y∗ majρ x

∗y, xy)

(τ 6= 0)

Mρτ :=
{
x ∈MMτ

ρ

∣∣∣ ∃x∗ ∈MMτ
ρ : x∗ majρτ x

}
(ρ, τ ∈ T̃ ) .
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(Here MMτ
ρ denotes the set of all total set-theoretical mappings from Mτ into

Mρ) .

M :=
⋃
ρ∈T̃

Mρ.

2.17 Remark

x∗ majρ x → x ∈Mρ ∧ x∗ majρ x
∗ → x∗, x ∈Mρ (induction on ρ).

Similar to the proof of 2.15 one shows

2.18 Proposition

M |= T .

2.19 Remark

By the proof of 2.14 it is clear that M = Ms, where Ms is Bezem’s type structure,
which is based on s−maj instead of maj (see Bezem (1985)).

3 Applications

Let A(α, n) ∈ L(E −HAω) be a formula whose free variables are all of type 0, 1.
The usual fan–rule for systems such as H := E−HAω, WE−HAω in the literature
(see e.g. Troelstra (1974),(1977)) states that

(∗)

 H ` ∀α1∃n0A(α, n)⇒

H ` ∀β;α ≤1 β∃m0∀γ ≤1 β
(
γ(tMβ) =0 α(tMβ)→ A(γ,m)

)
,

where tM ∈ T is a suitable term, and γk denotes a primitive recursive coding for
(γ0, ..., γ(k − 1)) (see Troelstra (1973))

Since there are only finitely many initial sequents α(tMβ) a bound can be given

for the number m (depending only on β) and using closure of H under choice–rule
one can compute such a bound from a term t ∈ T :

(∗∗)H ` ∀β;α ≤1 β∃m ≤0 tβ∀γ ≤1 β
(
γ(tMβ) =0 α(tMβ)→ A(γ,m)

)
.
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Thus in particular, omitting the continuity part of (∗∗) , one concludes

H ` ∀β;α ≤1 β∃m ≤0 tβ A(α,m).

This boundedness property can be generalized from type 1 to arbitrary finite types
using 2.15:

3.1 Application (Generalized “FAN”–Rule)

1) Let H be E −HAω, WE −HAω or WE −HAω + (MP ω) + (IP ω
0 ) + AC

and A(x1, x̃ρ, yτ ) ∈ L(H) a formula with no other free variables then x1, x̃ρ

and yτ . Assume that τ ≤ 2 and that ρ ∈ T̃ is arbitrary; let sρ1 ∈ T be a
closed term. Then the following rule holds

H ` ∀x1; x̃ ≤ρ sx∃yτA(x, x̃, y) ⇒

∃a closed term tτ1 ∈ T such that

H ` ∀x1; x̃ ≤ρ sx∃y ≤τ tx A(x, x̃, y).

2) Analogous for the corresponding restricted systems Ĥ|\ and P̂R instead of
H and T .

Proof:

1) Let H be E −HAω or WE −HAω and assume

H ` ∀x; x̃ ≤ρ sx∃yτA(x, x̃, y). Using mq–realizability (see Troelstra (1973)

3.4.2–3.4.5) one finds closed terms t1, ..., tn ∈ T such that

H ` ∀x, x̃
(
t1xx̃, ..., tnxx̃ mq (x̃ ≤ρ sx→ ∃yτA(x, x̃, y))

)
which implies

H ` ∀x, x̃
(
x̃ ≤ρ sx→ t1xx̃, ..., tnxx̃ mq ∃yτA(x, x̃, y)

)
since x̃ ≤ρ sx is purely universal. Therefore

(i) H ` ∀x; x̃ ≤ρ sxA(x, x̃, t1xx̃)
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by the definition of mq–realizability. By 2.15 we can construct closed terms
t∗1, s

∗ ∈ T such that

H ` t∗1 maj t1 ∧ s∗ maj s. Define t := λx.t∗1x(s∗x) if ρ > 0 and t :=

λx.(t∗1x)M(s∗x) otherwise. Using 2.5.1,2.5.3,2.8 and 2.12 it follows that

H ` ∀x; x̃ ≤ρ sx (tx majτ t1xx̃)

and therefore by 2.5.2

(ii) H ` ∀x; x̃ ≤ρ sx (tx ≥τ t1xx̃).

(i) and (ii) imply the conclusion.

Now let H be WE −HAω + (MP ω) + (IP ω
0 ) + AC and assume

H ` ∀x; x̃ ≤ρ sx∃yτ A(x, x̃, y)

By (IP ω
0 ) it follows that

H ` ∀x; x̃∃yτ (x̃ ≤ρ sx→ A(x, x̃, y)).

Using functional interpretation (Gdel (1958), Luckhardt (1973), Troelstra (1973)

3.5.10) one extracts a closed term tτρ11 ∈ T such that

H ` ∀x; x̃ ≤ρ sxA(x, x̃, t1xx̃),

since H ` F ↔ FD for every formula F ∈ L(H), where FD denotes the
functional interpretation of F .
Reasoning as before one proofs that

H ` ∀x; x̃ ≤ρ sx∃y ≤τ txA(x, x̃, y).

2) One has only to show the soundness of mq–realizability resp. functional inter-
pretation for the restricted systems. This is verified by an easy modification of

the corresponding proofs for H since relativ to Ĥ|\ the axiom (IA)–qf. is
equivalent to

∀f, x (f0 = 0 ∧ ∀y < x (fy = 0→ f(Sy) = 0) → fx = 0)

and hence to a purely universal sentence (since the bounded quantification can

be expressed in a quantifier–free form in Ĥ|\). Therefore it is mq–realized and

functional interpreted by itself (up to intuitionistic logical equivalence).
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3.2 Corollary to the proof of 3.1

1) The proof of 3.1 generalizes immediatly to the situation where one has tupels

x :≡ xδ11 , ..., x
δk
k (δi ≤ 1 for i = 1, ..., k), x̃ :≡ x̃ρ11 , ..., x̃

ρm
m , sρ1δk...δ11 , ..., sρmδk...δ1m

and
yτ11 , ..., y

τn
n (τi ≤ 2 for i = 1, ..., n) instead of x1, x̃ρ, sρ1, yτ . Thus


H ` ∀x; x̃1 ≤ s1x...∀x̃m ≤ smx∃yτ11 , ..., yτnn A(x, x̃, y1, ..., yn)

⇒ ∃ closed terms t1, ..., tn ∈ T such that

H ` ∀x; x̃1 ≤ s1x...∀x̃m ≤ smx∃y1 ≤τ1 t1x...∃yn ≤τn tnx A(x, x̃, y1, ..., yn).

The following results also generalize to finite tupels. For notational simplicity
we formulate them only for tupels of length 1.

2) If τ ∈ T̃ is arbitrary then 3.1 holds with “∃y(tx majτ y ∧ A)” instead of

“∃y ≤τ txA”. Furthermore, if one has “∃y2; ỹτA” (τ ∈ T̃ arbitrary) instead

of “∃y2A” then it is still possible to compute a bound for y: ∃y ≤2 tx; ỹτA.

In order to get a version of 3.1, which holds for classical arithmetic, we need the
following application of functional interpretation:

3.3 Lemma

1) Let sρδ ∈ T denote a closed term and let A0 ∈ L(WE−HAω) be a quantifier–

free formula whose free variables are xδ, x̃ρ and yτ where δ, ρ and τ are
arbitrary types. Then the following rule holds

WE − PAω + AC–qf. ` ∀xδ; x̃ ≤ρ sx∃yτ A0(x, x̃, y) ⇒

∃ a closed term Φτρδ ∈ T such that

WE −HAω ` ∀xδ; x̃ ≤ρ sxA0(x, x̃,Φxx̃).

Φ can be extracted from any given proof of the assumption with the use of
functional interpretation (combined with negative translation).

2) 1) holds also for ̂WE − PA
ω
|\, P̂R and ̂WE −HA

ω
|\ instead of WE −

PAω, T, WE −HAω.
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Proof:

1) Assume ρ = 0ρk...ρ1.

WE − PAω + AC–qf. ` ∀xδ; x̃ ≤ρ sx∃yτ A0(x, x̃, y)
≤ρ–def. 2.4

=⇒

WE − PAω + AC–qf. ` ∀xδ; x̃ρ∃vρ11 , ..., v
ρk
k , y (x̃v ≤0 sxv → A0(x, x̃, y)).

Using functional interpretation (combined with negative translation), one ex-
tracts a closed term Φ ∈ T such that

WE −HAω ` ∀x; x̃∃v1, ..., vk (x̃v ≤0 sxv → A0(x, x̃,Φxx̃).

By intuitionistic logic this implies the lemma.

2) Analogous.

3.4 Corollary

1) Let A0(x, x̃, y) ∈ L(WE − PAω) be a quantifier–free formula with the free

variables x1, x̃ρ, yτ . Assume that τ ≤ 2 and that sρ1 ∈ T is a closed term.
Then the following rule holds

WE − PAω + AC–qf. ` ∀x1; x̃ ≤ρ sx∃yτ A0(x, x̃, y) ⇒

∃ a closed term tτ1 ∈ T such that

WE −HAω ` ∀x1; x̃ ≤ρ sx∃y ≤τ txA0(x, x̃, y).

2) Analogous for ̂WE − PA
ω
|\, P̂R and ̂WE −HA

ω
|\ instead of WE−PAω, T

and WE −HAω.

Proof: Analogous to the proof of 3.1 using 3.3 instead of mq–realizability.

As a second application of majorization (which is in fact an application of 3.4) we
show how one can extract a primitive recursive modulus of uniform continuity for a

closed term t2 ∈ T (P̂R) from extensionality proofs for t. We first recall a standard

proof of the extensionality of t2 from Troelstra (1973):
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Define xρ1 ≈ρ x
ρ
2 by x1 ≈0 x2 :≡ (x1 =0 x2),

x1 ≈ρτ x2 :≡ ∀yτ1 , yτ2 (y1 ≈τ y2 → x1y1 ≈ρ x2y2)

(Troelstra (1973),2.7.2).
One easily shows that for any tρ ∈ T built up from constants, type 1 and type 0
variables

WE −HAω ` t ≈ρ t (W.A. Howard, Troelstra (1973),2.7.3))

and ̂WE −HA
ω
|\ ` t ≈ρ t if t ∈ P̂R.

As a corollary one gets:

3.5 Lemma

1) (Troelstra (1973),2.7.4 (ii)): Let t2 ∈ T be a term whose free variables are of
type 0 and 1. Then

WE −HAω ` ∀α1, β1
(
∀n(αn =0 βn)→ tα =0 tβ

)
.

2) 1) holds also for ̂WE −HA
ω
|\ instead of WE −HAω if t ∈ P̂R.

3.6 Application

Let t ∈ T (P̂R) be as in 3.5. From any given proof of the extensionality of t one

can extract a modulus t2M ∈ T (P̂R) of uniform continuity for t, i.e.

WE −HAω ` ∀γ1;α, β ≤1 γ
(
α(tMγ) =0 β(tMγ)→ tα =0 tβ)

( ̂WE −HA
ω
|\ ` (...)

)
.

The free variables of tM are among the free variables of t.

Proof: Assume that

WE −HAω ` ∀γ;α, β ≤1 γ
(
∀n(αn =0 βn)→ tα =0 tβ

)
.
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By 3.4 and 3.2.1 one can extract a term Φ ∈ T (whose free variables are among the

free variables of t) such that

WE −HAω ` ∀γ;α, β ≤1 γ
(
∀n ≤0 Φγ(αn =0 βn)→ tα =0 tβ

)
.

Therefore tMγ := 1 + Φγ fulfils the claim.

Analogous for t ∈ P̂R and ̂WE −HA
ω
|\ instead of WE −HAω.

It should be noted that the above proof of the existence of a primitive recursive

modulus of uniform continuity (provable in WE − HAω or ̂WE −HA
ω
|\) does

not make any reference to (the formalization of) reduction sequences or to the com-
putability of t.

Another way to get a modulus of uniform continuity for t2 which gives a slightly

stronger result is to majorize a modulus of pointwise continuity t̃2 for t i.e.

(+) WE −HAω ` ∀α1, β1
(
α(t̃α) =0 β(t̃α)→ tα =0 tβ

)
.

The existence of such a t̃ ∈ T for t ∈ T is proved e.g. in Troelstra (1973) or

Schwichtenberg (1973). Troelstra’s proof can be modified to yield the corresponding

result for t ∈ P̂R with t̃ ∈ P̂R provable in ̂WE −HA
ω
|\ (see Kohlenbach (1990)).

3.7 Application

1) Let t2 ∈ T be a term whose free variables are all of type 0,1 and t̃2 ∈ T be a

modulus of pointwise continuity for t (in the sense of (+)) whose free variables

are among those of t. Then for any t̃∗ ∈ T such that WE−HAω ` t̃∗maj2 t̃
the following holds

WE −HAω ` ∀γ1, α1, β1
(
∀n < t̃∗γ(αn = βn ≤ γn)→ tα =0 tβ

)
.

(By 2.15 such a t̃∗ whose free variables are among those of t̃ can be con-

structed).

2) 1) holds also with P̂R, ̂WE −HA
ω
|\ instead of T, WE −HAω.

Proof: Assume that t, t̃, t̃∗ fulfil the assumptions. By 2.5.1 it follows that

WE −HAω ` ∀γ;α ≤1 γ(t̃∗γ ≥0 t̃α)
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and hence by t̃–definition

(++) WE −HAω ` ∀γ;α ≤1 γ; β1
(
α(t̃∗γ) =0 β(t̃∗γ)→ tα =0 tβ

)
.

Now we assume that ∀n < t̃∗γ(αn = βn ≤ γn) and define

α̂ := α(t̃∗γ) ∗ λk.γ(k + t̃∗γ), where

(αk ∗ δ)(n) :=

 αn if n < k,

δ(n− k) otherwise.

Clearly α̂ ≤ γ and α̂(t̃∗γ) = α(t̃∗γ) = β(t̃∗γ). Therefore (++) applied twice (to

α̂, α and α̂, β) yields tα̂ =0 tα and tα̂ =0 tβ.
An analogous proof can be given for the case where T and WE−HAω are replaced

by P̂R and ̂WE −HA
ω
|\.

As a corollary to 3.6 or 3.7 one can derive the closure of the systems H, Ĥ|\ under

the usual fan–rule (*). 3.7 allows a slight strengthening of (*):

3.8 Corollary

1) (See also Troelstra (1977), 3.6 Remarks (ii)) Let H be WE − HAω or

E −HAω and A(α1, n0) ∈ L(WE −HAω) be a formula whose free variables
are all of type 0,1. Then the following rule holds
H ` ∀α∃n0A(α, n) =⇒

∃ terms t2M , t
∗2 ∈ T whose free var. are among those of A0 without α, n such that

H ` ∀β1;α ≤1 β∃n ≤0 t
∗β∀γ1

(
γ(tMβ) =0 α(tMβ)→ A(γ, n)

)
.

2) 1) holds also for Ĥ|\ and P̂R instead of H and T .

Proof:

1) Assume H ` ∀α∃n0A(α, n). As in the proof of 3.1 one constructs a term t ∈ T
whose free variables are among those of A without α, n such that

H ` ∀αA(α, tα). Let t̃∗ be as in 3.7 and t∗ ∈ T satisfy the condition

H ` t∗ maj t. Then the corollary holds with tM := t̃∗ and t∗.

2) is proved analogously.

We conclude this paper with two applications of the type structure M:
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3.9 Notation

1) Natural numbers n are coded into higher types as follows:

n0 := n, nρτ := λxτ .nρ.

2)

(yρ0, n0)(k) :=

 yk if k < n,

Oρ otherwise;

(yn ∗ 1ρ0)(k) :=

 yk if k < n,

1ρ otherwise.

3.10 Definition

By the principle of bounded choice we mean the schema

(b− AC)ρ,τ : ∀Zτρ
(
∀xρ∃y ≤τ ZxA(x, y, Z)→ ∃Y ≤τρ Z∀xA(x, Y x, Z)

)
.

Further notations are

(DC)ρ : ∀xρ∃yρA(x, y)→ ∀xρ∃zρ0
(
z0 =ρ x ∧ ∀z01A(zz1, z(z1 + 1))

)
(dependent ω–choice),

(C)ρ : ∃y0ρ∀xρ (yx =0 0↔ A(x)) (comprehension).

b− AC :=
⋃

ρ,τ∈T̃

{(b− AC)ρ,τ} , DC :=
⋃
ρ∈T̃

{(DC)ρ} , C :=
⋃
ρ∈T̃

{(C)ρ} .

T := E − PAω + C. The theory T is a formalization of simple type theory in the
language of functionals of finite type without choice (see also Luckhardt (1975)).

(AC!)1,0–qf. ` ∀x1∃!y0A0(x, y)→ ∃Y 01∀xA0(x, Y x).
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3.11 Lemma

1) WE −HAω + AC ` b− AC,

2) WE − PAω + b− AC ` C.

Proof: 1) is trivial.

2) WE − PAω ` ∀xρ∃n ≤ 1(n =0 0↔ A(x))⇒
WE − PAω + (b− AC)ρ,0 ` ∃Y ≤0ρ λv

ρ.1∀xρ(Y x = 0↔ A(x)).

3.12 Application

1) M |= T + b− AC +DC,

2) M|=/(AC!)1,0–qf.,

3) T + b− AC +DC /̀(AC!)1,0–qf.

Proof: 1) By 2.18 M is a model of E − PAω.

We show M |= b− AC: Assume Z ∈M and

∀x ∈ Mρ∃y ∈ Mτ

(
y ≤τ Zx ∧ [A]M(x, y)

)
. Using choice on the meta–level it follows

that

∃Y ∈MMρ
τ ∀x ∈Mρ

(
Y x ≤τ Zx ∧ [A]M(x, Y x)

)
.

Z ∈Mτρ ⇒ ∃Z∗ ∈Mτρ : Z∗maj Z
Y≤Z
=⇒ Z∗maj Y ∈Mτρ.

M |= DC holds since MM0
ρ = Mρ0 (By DC on the meta–level).

2) Assume M |= (AC)1,0–qf. By (C)00 let v ∈M be such that

(i) ∃z0(x00z = 0)⇔ vx = 0 for all x00. (AC)1,0–qf. applied to ∀x00∃z0(vx = 0⇒
xz = 0) yields

(ii) ∃y ∈ M0(00)∀x00[vx = 0 ⇒ x(yx) = 0]. Since y ∈ M0(00) there exists a

y∗ ∈M0(00) such that y∗ maj0(00) y. From (i) and (ii) it follows that

∀m ∈ ω(y(1,m) ≥ m). On the other hand one has 100 maj00 1,m and therefore

y∗100 ≥ y(1,m) ≥ m for all m, which is a contradiction. (AC!)1,0–qf. implies

(AC)1,0–qf. (relative to WE − PAω): Replace A0(x, y) by A′0(x, y) :≡ A0(x, y) ∧
∀ỹ < y

(
¬A0(x, ỹ)

)
(A′0 can also be expressed in a quantifier–free form in WE − PAω). Therefore 2)
follows.
3) follows immediatly from 1) and 2).
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3.13 Remark

In the context of set theory in a language with set variables instead of functional vari-

ables where functionals are identified with their graphs, (AC!)1,0 is provable from
the schema of comprehension formulated as the existence of the comprehending set
(instead of its characteristic functional). In Feferman/Levy (1963) it is shown that
dependent choice is not provable within ZF . This result uses P.Cohen’s method of
forcing.

As a final application, we show how M seperates different µ–operators:

3.14 Definition

ρµsx
0(ρ0)yρ0 :=

 min n[x(y, n) < n] if ∃n(x(y, n) < n)

undefined otherwise ,

ρµ1x
0(ρ0)yρ0 :=

 min n[x(y, n) =0 xy] if ∃n(x(y, n) =0 xy),

undefined otherwise ,

ρµ2x
0(ρ0)yρ0 :=

 min n[x(y, n) =0 x(yn ∗ 1)] if ∃n(x(y, n) =0 x(yn ∗ 1)),

undefined otherwise .

3.15 Remark

The subscript s in the definition of ρµs refers to Spector since x(y, n) < n is the

bar condition in his schema of bar recursion; see Spector (1962).

3.16 Application

ρµs ∈M, but ρµ1,
ρµ2 6∈ M for each ρ ∈ T̃ .

Proof: ρµsxy is defined for all x ∈M0(ρ0), y ∈Mρ0:

By M–definition and 2.17 there exists x∗ ∈ M0(ρ0), y
∗ ∈ Mρ0 such that x∗ maj x

and y∗ majy. Since ∀n ∈ ω(y∗ majρ0 y, n) it follows that x∗y∗ ≥ x(y, n) for all

n ∈ ω and hence x(y, n0) < n0 for n0 := x∗y∗ + 1 (see also Bezem (1985)).
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We now show that ρµsmaj µs: Assume again that x∗ ∈M0(ρ0), y
∗ ∈Mρ0 such that

x∗maj x, y∗maj y. Then y∗, nmajρ0 y, n since majρ0 is pointwise defined (!) and

therefore x∗(y∗, n) ≥ x(y, n) for all n.
One concludes that ρµsx

∗y∗ ≥ ρµsxy and therefore ρµs maj
ρµs ∈M.

On the other hand, λxρ.µix1ρ0 6∈MMρ

0 ⊃M0ρ for i=1,2:

Assume ρ = 0ρk...ρ1 and x ∈MMρ

0 be defined by

xy :=

 0 if ∃n ∈ ω(ynOρ1 ...Oρk =0 0),

1 otherwise,

for y ∈ Mρ0. Clearly x ∈ M0(ρ0) since 10(ρ0) maj x, and x1ρ0 =0 x(1n ∗ 1) =0 1

but x(1ρ0, n) =0 0 for all n ∈ ω. Therefore ρµ1x1ρ0 and ρµ2x1ρ0 are undefined,
but M contains only total functionals.

3.17 Corollary
ρµ1 and ρµ2 are not definable within WE −HAω + µs where WE −HAω + µs
denotes the enlargement of WE −HAω by new constants τµs together with the
defining axioms

x(y, µsxy) < µsxy and x(y, n) < n→ µsxy ≤ n (x0(τ0), yτ0) for all types τ .

3.18 Remark

In Kohlenbach (1990) it is proved that ρµs,
ρ µi are definable in WE −HAω +τ µj

where i, j = 1, 2 and ρ, τ ∈ T̃ arbitrary.

3.19 Proposition

There is no set-theoretic functional Φ0(0(00)) which majorizes λx0(00).0µ1x100 ( =

λx0(00).0µ2x100) on all primitive recursive arguments x0(00) (on which 0µ1 and
0µ2 are always defined!). In particular 0µ1,t 6∈ M where

0µ1,tx
0(00)y00 :=

 min n[x(y, n) =0 xy] if ∃n(x(y, n) =0 xy),

00 otherwise.
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Proof: Assume that Φmaj0(0(00)) λx.
0µ1x100 on prim. rec. arguments.

Define

z0(00)n x00 :=

 0 if xn = 0,

1 otherwise.

zn is primitive recursive in n (in the sense of P̂R) and 10(00)maj zn for all n ∈ ω.

Therefore Φ10(00) ≥ 0µ1zn100 for all n ∈ ω. On the other hand, one has

limn→∞
0µ1zn1 =∞ since µ1zn1 = n+ 1 which is a contradiction.
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