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1 Introduction

Starting in [15] and then continued in [9, 17, 24] and [18], general logical metathe-
orems were developed that guarantee the extractability of highly uniform effective
bounds from proofs of theorems that hold for general classes of structures such as
metric, hyperbolic, CAT(0), normed or Hilbert spaces. To obtain uniformity e.g.
w.r.t. parameters that range over metrically bounded (but not compact) sets it is
crucial to exploit the fact that the proof to be analyzed does not use any separability
assumption on the underlying spaces (as e.g. the existence of uniform bounds for the
very statement of separability would yield the total boundedness of bounded metric
spaces, see [18] for a detailed discussion of this issue). In order to do so we developed
in [15] formal systems T ω[X, . . .] that treat such abstract spaces X as atoms added
to fragments T ω of full (though only weakly extensional) analysis Aω by adding a
new base type X for variables ranging over X and all the finite types built upon
N and X. The metatheorems developed in the aforementioned papers and the book
[18] were based on novel extensions of (monotone [12]) functional interpretation in
the sense of Gödel and Spector. These theorems made it possible to explain some
concrete proof unwindings that had been carried out in fixed point theory resulting in
unexpectedly uniform bounds (see e.g. [13, 14, 21]) and paved the way for many new
applications in fixed point theory, geodesic geometry, ergodic theory and topological
dynamics that were guaranteed to be possible by these proof theoretic results (see
e.g. [1, 3, 4, 7, 8, 16, 20, 23, 22]). For applications of related forms of ‘proof mining’
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in proof theory itself see Mints [25, 26].
Aω is a very strong formal system for analysis as it contains the full axiom schemas of
dependent and countable choice in all types and so full arithmetical comprehension
over numbers. While the latter feature makes it possible to formalize virtually all
proofs in ordinary analysis for separable spaces it is not clear a priori how much
e.g. of Hilbert space theory for (X, 〈·, ·〉) can be carried out in the absence of any
separability condition on X in Aω[X, 〈·, ·〉, C] (see [18] for the definition of this theory)
or even fragments T ω[X, 〈·, ·〉, C].

In this paper, we show that general orthogonal projection arguments, the Riesz rep-
resentation theorem and the weak sequential compactness of the unit ball in X can
be proved in such systems. As an application we show that a theorem of Browder [5]
(stating the convergence of a certain explicit iteration sequence) can be proved and
use this to obtain (by applying a metatheorem from [18]) a highly uniform effective
rate of metastability in the sense of Tao [29, 30] on that convergence.

All undefined notions and notations in this paper (including the representation of
real numbers by number theoretic functions f : N → N and the corresponding oper-
ations +R,−R, . . . and relations <R,≤R, . . . on these representatives) are understood
as in [18] on which this paper relies. We denote the type for the natural numbers
N := {0, 1, 2, . . .} (resp. for number theoretic functions f : N → N) by 0 (resp. 1).
Since all theories used in this paper are weakly extensional in the sense of [18] we
drop the prefix ‘WE-’ in their name and e.g. write PAω instead of WE-PAω.

2 Main results

Definition 2.1. A formula A(xX) ∈ L(T ω[X, ‖ · ‖, . . .]) (for some theory T ω in the
language of functionals of all finite types such as PAω) defines

1. a nonempty subset of X if

(a) ∀xX , yX (A(x) ∧ x =X y → A(y)),

(b) ∃xX A(x);

2. a nonempty convex subset of X if in addition to (a) and (b)

∀λ1, xX , yX (A(x) ∧ A(y) → A((1−R λ̃) ·X x +X λ̃ ·X y)),

where λ 7→ λ̃ is the construction for the representation of [0, 1] from [18](Definition
4.24);

3. a linear subspace of X if (a) and

A(0X) ∧ ∀α1, β1, xX , yX (A(x) ∧ A(y) → A(α ·X x +X β ·X y));
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4. a closed nonempty convex subset (resp. closed linear subspace) of X if in
addition to the conditions for nonempty convex subsets (resp. linear subspaces)
we have that

∀x0→X
(·)

(
∀n A(xn)∧∀m0, n0, k0 (m, n ≥ k → ‖xm−xn‖X ≤R 2−k) → A(C(x(·)))

)
.

Here C is the operator from [18] that maps each fast converging Cauchy sequence
in X to its limit thereby expressing the completeness of X.

We say that A defines provably in some theory T whose language is contained in
L(PAω[X, ‖ · ‖]) resp. of L(PAω[X, ‖ · ‖, C]) any of the concepts above if the corre-
sponding formulas are provable in T . In fact, instead of PAω this definition can also
be applied to any fragment (or extension) as long as the ingredients to formulate the
respective formulas above are contained in the language.

Remark 2.2. Definition 2.1.1 resp. 2.1.2 can also be applied to formulas in
L(PAω[X, d]) resp. L(PAω[X, d, W ]), where PAω[X, d] (resp. PAω[X, d, W ]) is the
extension of PAω by an abstract metric (resp. hyperbolic) space X (see [18] for
details).

Convention on notation: From now on we will adopt a more informal notation
and e.g. write ‖ · ‖, k ∈ N, λ ∈ R, x ∈ X and αx + βy instead of ‖ · ‖X , k0, λ1, xX

and α ·X x +X β ·X y and only use (partially) the latter when the precise logical form
matters.

Proposition 2.3. 1. PAω[X, ‖ · ‖] proves that for every nonempty subset S ⊆ X
given by a formula A as in the definition above (using ∃y ∈ S . . . , resp. ∀y ∈
S . . . , as shorthand for ∃yX (A(y) ∧ . . .) resp. ∀yX (A(y) → . . .)) the following
holds:

∀k ∈ N∀x ∈ X∃y ∈ S∀z ∈ S (‖x− y‖ < ‖x− z‖+ 2−k). (1)

(PAω+AC0,0)[X, ‖ · ‖] proves that d := inf
z∈S

{‖x− z‖} exists.

2. Aω[X, 〈·, ·〉, C] proves that for every closed nonempty convex subset C given by
a formula A the following holds:

∀x ∈ X∃!y ∈ C∀z ∈ C (‖x− y‖ ≤ ‖x− z‖). (2)

In particular, d := inf
z∈C

{‖x− z‖} not only exists but is attained by some y ∈ C.

The result holds a-fortiori for closed linear subspaces of X that are given by a
formula A.

Proof: 1. Suppose that (1) fails for some k ∈ N, x ∈ X i.e.

∀y ∈ S∃z ∈ S (‖x− y‖ ≥ ‖x− z‖+ 2−k). (3)
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Let ŷ ∈ S. Then by induction on n ∈ N one shows that for every n there exists a
sequence, i.e. a function f 0→X , such that

f(0) =X ŷ ∧ ∀i ≤ n(f(i) ∈ S) ∧ ∀i < n (‖x− f(i)‖ ≥ ‖x− f(i + 1)‖+ 2−k). (4)

Now let n > ‖x− ŷ‖ · 2k. Then there exists a function f 0→X such that

‖x− ŷ‖ = ‖x− f(0)‖ ≥ ‖x− f(n)‖+ n · 2−k > ‖x− f(n)‖+ ‖x− ŷ‖,

which is a contradiction.
The last claim of ‘1.’ follows from the fact that for every k ∈ N there exists a rational
number r encoded by, say, m such that r is a 2−k−1 rational approximation to ‖x−y‖,
where y is from (1) for k +1. Now AC0,0 gives a fast converging Cauchy sequence (rk)
(encoded by (mk)) that represents d.
2. Let x ∈ X and ŷ ∈ C. Applying to (1) countable choice AC0,X yields a sequence
(yk) in C with

∀k ∈ N∀z ∈ C (‖x− yk‖ < ‖x− z‖+ 2−k). (5)

It is not hard to verify that for uniformly convex normed spaces with modulus of
convexity η : (0, 2] → (0, 1] the function

Φ(ε) :=
ε

4
· η(ε/(D + 1)),

where ‖x− ŷ‖ ≤ D ∈ N, is a so-called modulus of uniqueness for the projection, i.e.

∀ε ∈ (0, 1), z1, z2 ∈ C
( 2∧

i=1

(∀z ∈ C(‖x− zi‖ ≤ ‖x− z‖+ Φ(ε)) → ‖z1 − z2‖ ≤ ε
)

(6)

(see e.g. proposition 17.4 in [18] for – a stronger version of – this).
In the case of a Hilbert space it is well-known that (for the best modulus η)

η(ε) = 1−
√

1− ε2/4 ≥ ε2/8 (ε ∈ (0, 2]).

Now define

Ψ(k) := min l

[
2−l ≤ 2−3k

32(D + 1)2

]
.

Then – using (5) and (6) – (yΨ(k))k is a Cauchy sequence with Cauchy rate 2−k. Hence
by the completeness axiom (C) of Aω[X, 〈·, ·〉, C] the limit y exists in X and – by the
condition that A defines a closed convex subset C – also in C. It is now easy to verify
that

‖x− y‖ ≤ ‖x− z‖ for all z ∈ C.

The uniqueness of y immediately follows from (6). �

Remark 2.4. Proposition 2.3.2 also holds for the theory Aω[X, ‖·‖, η, C] of uniformly
convex Banach spaces with a modulus of uniform convexity η.
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The standard proof that, in the case where X is a Hilbert space and L a closed linear
subspace, x−y for the point y as in proposition 2.3.2 is orthogonal to L goes through
in our formal context without problems. In fact, we have the following quantitative
version:

Proposition 2.5. P̂A
ω
|\[X, 〈·, ·〉] proves the following: if L is a linear subspace given

by a formula A, then{
∀ε > 0∀K ≥ 1∀x ∈ X ∀y, z ∈ L(

‖z‖ ≤ K ∧ ‖x− y‖2 ≤ ‖x− (y + αz)‖2 + ε2

K2 → |〈x− y, z〉| ≤ ε
)
,

where

α :=
〈x− y, z〉

max
((

ε/(2 max(‖x‖, ‖y‖, 1))
)2

, ‖z‖2
) .

In particular:

∀x ∈ X∀y ∈ L (∀z ∈ L (‖x− y‖ ≤ ‖x− z‖) → ∀z ∈ L(〈x− y, z〉 = 0)).

Proof: Case 1:
‖z‖2 ≤

(
ε/(2 max(‖x‖, ‖y‖, 1))

)2
.

Then
‖z‖ ≤ ε

2 max(‖x‖, ‖y‖, 1)

and so
|〈x− y, z〉| ≤ |〈x, z〉|+ |〈y, z〉| ≤ ‖x‖ · ‖z‖+ ‖y‖ · ‖z‖ ≤ ε.

Case 2:
‖z‖2 >

(
ε/(2 max(‖x‖, ‖y‖, 1))

)2
.

Then

α =
〈x− y, z〉
‖z‖2

.

Hence

‖x− y‖2 ≤ ‖x− (y + αz)‖2 + ε2

K2 = 〈(x− y)− αz, (x− y)− αz〉+ ε2

K2 =

‖x− y‖2 − 2α〈x− y, z〉+ α2‖z‖2 + ε2

K2 =

‖x− y‖2 − 2 〈x−y,z〉2
‖z‖2 + 〈x−y,z〉2

‖z‖2 + ε2

K2 .

Thus
〈x− y, z〉2

‖z‖2
≤ ε2

K2

and so (using that ‖z‖ ≤ K)
〈x− y, z〉2 ≤ ε2.

Hence |〈x− y, z〉| ≤ ε. �
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A particularly relevant instance of proposition 2.3 (needed below to reduce the general
case of weak compactness to the separable case) is the following one where we project
to a closed linear subspace

L := LinR{xn : n ∈ N}

generated from a sequence (xn) in X. Clearly, L can (provably in Aω[X, 〈·, ·〉, C]) be
represented by a formula AL, namely

AL(x) :≡

{
∃f 1 ((ϕ(k, f, (xn)))k is a Cauchy sequence in LQ with Cauchy rate 2−k

∧x =X lim
k→∞

ϕ(k, f, (xn))),

where
LQ :=

⋃
n∈N

{r0x0 + . . . + rnxn : (r0, . . . , rn) ∈ Qn+1},

ϕ(k, f, (xn)) :=

lth(f(k))−1∑
i=0

q(f(k))i
·X xi

and (qn)n∈N is some primitive recursive standard enumeration of Q (we identify qn

with its canonical embedding into R).
In this case it is, however, easier to work directly with the countable dense subset
LQ ⊂ L :

Proposition 2.6. Aω[X, 〈·, ·〉, C] proves the following: for every sequence (xn) in X
and every x ∈ X there exists the projection of x to the closed linear subspace

L := LinR{xn : n ∈ N}

generated from {xn : n ∈ N}, i.e.

∀x ∈ X∃!y ∈ L∀z ∈ L (‖x− y‖ ≤ ‖x− z‖).

Moreover, instead of the full axiom schema DC of dependent choice (or full countable
choice combined with higher induction) the proof only needs (for given x and (xn))
a fixed instance of Π0

1-AC as well as Σ0
1-induction (that alone suffices to prove the

approximate version 2.3.1 in this case) and hence can be carried out, in particular,

in T ω[X, 〈·, ·〉, C], where T ω := P̂A
ω
|\ + AC0,0

ar .

Proof: Since LQ is dense in L we can represent elements of L as Cauchy sequences
w.r.t. ‖ · ‖ of elements in LQ with Cauchy rate 2−k. Let (yk)k∈N some primitive
recursive (in (xn)) standard enumeration of LQ.
The existence of an ε-projection of x to L (in the sense of proposition 2.3.1) can then
equivalently be formulated as

∀xX , k0∃n0∀m0 (‖x− yn‖ ≤ ‖x− ym‖+ 2−k)

which can be proved by Σ0
1-IA.

We then use Π0
1-AC to form a sequence (yf(k))k∈N of 2−k-projections and finish the

proof as in the case of proposition 2.3.2. �
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Definition 2.7. A formula AL(xX , y1) in L(T ω[X, . . .]) is said to represent a bounded
linear functional L : X → R of a normed space X if

∃C0∀xX ∃y1
(
AL(x, y) ∧ |y|R ≤R (C)R ·R ‖x‖X

)
, (7)

∀xX∀y1, y1
2

(
AL(x, y1) → (A(x, y2) ↔ y1 =R y2))

)
, (8)

∀α1
1, α

1
2, y

1
1, y

1
2 ∀xX

1 , xX
2

{ (
AL(x1, y1) ∧ AL(x2, y2) →

AL(α1 ·X x1 +X α2 ·X x2, α1 ·R y1 +R α2 ·R y2)
)
.

(9)

In the following we write, more informally, ‘C · ‖x‖’ instead of ‘(C)R ·R ‖x‖X ’ etc.

Proposition 2.8. Provably in P̂A
ω
|\[X, ‖ · ‖], every formula AL that represents a

bounded linear functional L : X → R satisfies

1. x1 =X x2 ∧ y1 =R y2 ∧ AL(x1, y1) → AL(x2, y2),

2. AL(x1, y1) ∧ AL(x2, y2) → |y1 −R y2| ≤R C · ‖x1 − x2‖, where C is as in (7).

Proof: 1. Let C by as in (7) and assume x1 =X x2, y1 =R y2 and AL(x1, y1). By (7)
we get ∃ŷ1AL(x2, ŷ) and so by (9) AL(x1 −X x2, y1 −R ŷ). Again by (7) we get the
existence of a ỹ1 such that

AL(x1 −X x2, ỹ) ∧ |ỹ| ≤R C · ‖x1 −X x2‖ =R 0.

Hence ỹ =R 0 and so, by (8), y1 − ŷ =R 0, i.e. ŷ =R y1 =R y2. Again by (8) this gives
AL(x2, y2).
2. Let C be as in (7) and assume AL(x1, y1) and AL(x2, y2).
Then by (9) AL(x1 −X x2, y1 −R y2). From (7) we get

∃y1 (AL(x1 −X x2, y) ∧ |y| ≤R C · ‖x1 −X x2‖).

(8) now yields that y1 −R y2 =R y and so |y1 −R y2| ≤R C · ‖x1 −X x2‖. �

Proposition 2.9. Aω[X, 〈·, ·〉, C] proves the Riesz representation theorem in the fol-
lowing schematic form: if a formula A(xX , y1) in L(Aω[X, 〈·, ·〉, C]) represents a
bounded linear functional L : X → R, then there exists a point vX such that

L(x) =R 〈v, x〉 for all xX .

Proof: We can follow essentially the standard textbook proof:
Case 1: L ≡ 0, i.e. ∀xX , y1 (AL(x, y) → y =R 0) (or – equivalently – ∀xX ∃y1 (AL(x, y)∧
y =R 0)). Then take v := 0X .
Case 2: ∃xX

0 (|L(x0)| >R 0), i.e. ∃xX
0 ∃y1 (AL(x0, y) ∧ |y| >R 0). Reasoning in

Aω[X, 〈·, ·〉, C] one easily shows that Kern(L) := {x ∈ X : L(x) =R 0} is a closed
linear subspace of X that is given by the formula

AKern(L)(x) :≡ ∀y1 (AL(x, y) → y =R 0).
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By proposition 2.3.2 there exists a (unique) point w ∈ Kern(L) such that

‖x0 − w‖ = dist(x0, Kern(L)).

Now consider v0 := x0 − w. Then |L(v0)| =R |L(x0)| >R 0 and so ‖v0‖ >R 0 by (7).
By proposition 2.5 we have

∀z ∈ Kern(L) (〈v0, z〉 =R 0).

Define v1 := v0

‖v0‖ . Then again 〈v1, z〉 =R 0 for all z ∈ Kern(L). Now put a := L(v1)

and, finally, v := a ·X v1. Using that L
(
L(x) ·X v1 −X L(v1) ·X x

)
=R 0 we obtain

0 =R 〈v1, L(x) ·X v1 −X L(v1) ·X x〉 =R L(x)−R a · 〈v1, x〉,

i.e.
L(x) =R 〈a ·X v1, x〉 =R 〈v, x〉

for all x ∈ X. �

Remark 2.10. 1. Definition 2.7 can be relativized to xX being taken from a closed
linear subspace L of X that is given via a formula AL in the sense of definition
2.1.4. In this sense the previous proposition also applies to linear functionals
L : L → R.

2. In the following we will need the Riesz representation theorem for bounded
linear functionals L : L → R on separable closed linear subspaces of X of the
form

L := LinR{xn : n ∈ N},

where (xn) is a sequence in X.
In the case of separable Banach spaces it has been shown in [2] that the Riesz
representation theorem can be proved from arithmetical comprehension over the
weak base system RCA0 used in reverse mathematics (see [28]). With the same
proof we can establish the Riesz representation theorem for spaces of the form
L above and bounded linear operators L : L → R that are given directly as a

functional (rather than a representing formula) in (P̂A
ω
|\ + AC0,0

ar )[X, 〈·, ·〉, C].
Here the crucial observation is that if (yk) is dense in L (e.g. some standard
enumeration of LQ) and y ∈ Kern(L) with L(y) = 1 (for Kern(L) = {0}
things are trivial),1 then the sequence defined by wk := yk−L(yk) ·y is dense in
Kern(L) (see [2], p.168) so that one can reason as in the proof of proposition
2.6 with wn instead of yn.

1Correction (also to published version) 14.09.2010: replace the last phrase by ‘y ∈ X with
L(y) = 1 (for Kern(L) = X things are trivial)’
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Theorem 2.11. Let T ω := P̂A
ω
|\+ AC0,0

ar . Then T ω[X, 〈·, ·〉, C] proves that the closed
unit ball B1(0) in X is weakly sequentially compact, i.e. that for every sequence (xn)
in B1(0) there exists a point v ∈ B1(0) and a subsequence (xnk

)k of (xn) such 〈xnk
, w〉

converges to 〈v, w〉 for a every w ∈ X.
Instead of B1(0) and with T ω := PAω + AC0,0

ar one may have any bounded closed
convex subset C ⊂ X that is given by a formula of L(T ω[X, 〈·, ·〉, C]).

Proof: Let (xn) be a sequence in B1(0). Consider again the separable closed linear
subspace of X

L := LinR{xn : n ∈ N}
and the countable dense subset

LQ :=
⋃
n∈N

{r0x0 + . . . + rnxn : (r0, . . . , rn) ∈ Qn+1}

given by some primitive recursive (in (xn)) standard enumeration (yk). A bounded
linear functional L : L → R can be recovered from its restriction to LQ, i.e. from
L− : N → R defined by L−(k) := L(yk). In this way we can represent such functionals
that are bounded by 1 as points z = (an)n in

∏
n∈N

[−‖yn‖, ‖yn‖] that satisfy

(∗) yk =X r1 ·X yi +X r2 ·X yj → ak =R r1ai +R r2aj

for all i, j, k ∈ N and r1, r2 ∈ Q (see [6]).
Using arithmetical comprehension we can show in ACA0 (see [6] or [28]) and hence in
T ω that

∏
n∈N

[−‖yn‖, ‖yn‖] as well as its subset of points satisfying (∗) is sequentially

compact, i.e. that every sequence in this space has a convergent subsequence w.r.t. the
product metric on

∏
n∈N

[−‖yn‖, ‖yn‖] (the functional interpretation of this fact can be

realized by functionals involving only primitive recursion at type 0 and bar recursion
of lowest type B0,1; see [27] for an explicit construction of the solution functionals).
We now consider the following sequence (Ln) linear functionals L → R that are all
bounded by 1 :

Ln(x) := 〈xn, x〉.
Let (L−

n ) be the corresponding sequence of points in
∏
n∈N

[−‖yn‖, ‖yn‖] that satisfy (∗)

and (L−
nk

) a convergent subsequence with limit L−. Clearly, L− also represents a linear
functional L : L → R that is bounded by 1.
By the Riesz representation theorem applied to L (instead of X) L is represented by

an element v ∈ L (provably in (P̂A
ω
|\ + AC0,0

ar )[X, 〈·, ·〉, C] by remark 2.10.2) i.e.

∀w ∈ L (L(w) =R 〈v, w〉).

Hence (for all w ∈ L)

〈xnk
, w〉 =R Lnk

(w)
k→∞−→ L(w) =R 〈v, w〉.
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Now let x ∈ X and apply proposition 2.6 to get the (by proposition 2.5 orthogonal)
projection xL ∈ L of x onto L. Then

〈xnk
, x〉 =R 〈xnk

, xL〉 and 〈v, x〉 =R 〈v, xL〉.

Hence
〈xnk

, x〉 k→∞−→ 〈v, x〉.

It is easy to see in P̂A
ω
|\[X, 〈·, ·〉] that ‖v‖ ≤ 1 : Suppose that ‖v‖ = 1 + ε for some

ε > 0. Then
〈xnk

, v〉 k→∞−→ 〈v, v〉 = (1 + ε)2 ≥ 1 + 2ε,

whereas 〈xnk
, v〉 ≤ ‖xnk

‖ · ‖v‖ ≤ 1 + ε for all k ∈ N which is a contradiction.
If instead of B1(0) one has a bounded closed convex subset C ⊂ X given by a formula
of the language, then one can argue essentially as above with some K satisfying K ≥
‖x‖ for all x ∈ C replacing 1 and

∏
n∈N

[−‖yn‖, ‖yn‖] replaced by
∏
n∈N

[−K ·‖yn‖, K ·‖yn‖]

However, to show that v ∈ C is somewhat more involved. Usually one applies a
Hahn-Banach separation theorem here to show that closed convex sets are weakly
closed but in our situation there is a more elementary proof of this fact via Mazur’s
theorem which implies that there is a sequence (zn) of finite convex combinations
of {xnk

: k ∈ N} which strongly converges to v. Since, by the convexity of C, we
have that zn ∈ C for all n ∈ N, the closedness of C yields that v ∈ C. The proof of
Mazur’s theorem for Hilbert spaces, as given e.g. in [11], can easily be formalized in
(PAω+AC0,0

ar )[X, 〈·, ·〉, C]. �

Theorem 2.12 (F. Browder [5]). Let X be a Hilbert space and U : X → X be a
nonexpansive mapping. Assume that there exists a nonempty bounded closed convex
subset C ⊂ X such that U maps C into itself. For v0 ∈ C and t ∈ (0, 1) let Ut(x) :=
tU(x)+ (1− t)v0 and ut be the unique fixed point of this strict contraction. Then (ut)
converges strongly to a fixed point p ∈ C of U as t → 1.

Remark 2.13. The theorem by Browder states, furthermore, that p is the unique
fixed point of U in C that is closest to v0.

Proposition 2.14. Browder’s proof of his theorem above can, for closed bounded
convex subsets C that are given by a formula AC in the sense of definition 2.1.4, be
proved in Aω[X, 〈·, ·〉, C] (under the assumption that U has a fixed point).

Proof: We just sketch how to formalize the proof here (a detailed explicit logical
analysis of the proof – together with an extraction of χ in proposition 2.16 below –
has to be devoted to another paper): we first note that the fact that we may use only
the weak form of extensionality is no problem as nonexpansive mappings U trivially
are extensional. The proof of Browder’s theorem first proceeds (‘lemma 1’) by forming
the projection u0 of v0 onto the (nonempty) set F of all fixed points of U in C. It
is an easy consequence of the uniform convexity of X that F is convex. Moreover,
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F obviously is closed and given by the formula AF (uX) :≡ (AC(uX) ∧ U(u) =X u).
Hence we can apply proposition 2.3.2 to establish the existence of u0 ∈ F.
A second – perfectly elementary – ‘lemma 2’ shows that every weak limit of an
approximate fixed point sequence is a fixed point of U. The proof is then concluded
by showing that for any sequence (kj)j∈N with kj → 1 one can find a subsequence of
(ukj

) converging strongly to u0 (in this proof it is used that (ukj
) always possesses

a weakly convergent subsequence whose weak limit v ∈ C by ‘lemma 2’ even is in
F ). With theorem 2.11 in place, it is easily verified that the (nontrivial but – modulo
the weak compactness – elementary) proof of this formalizes in our formal framework
which we skip here. Thus it only remains to formalize the proof that the latter fact
implies that ut tends to u0 for t → 1. Let (kj) be a sequence with limj→∞ kj = 1 and
assume that for some ε > 0

∀n∃j > n (‖ukj
− u0‖ >R ε).

Then Σ0
1-AC0,0 (and hence QF-AC0,0) yields a function g such that

∀n (g(n) > n ∧ ‖ukg(n)
− u0‖ >R ε).

Then kg(n)
n→∞→ 1, but (ukg(n)

)n does not contain a subsequence that converges to u0.
�

Remark 2.15. From a well-known theorem of Browder-Göhde-Kirk it follows that
U always has fixed points. However, for our application of the logical metatheorem
(corollary 6.8 in [9]) below we do not have to consider the proof of this theorem
but only the proof relative to the assumption of a fixed point. In fact, the logical
metatheorem we will use below allows one to convert this proof into a new one which
only uses the (trivial) existence of approximate fixed points so that the need to use
the Browder-Göhde-Kirk theorem disappears altogether.

Theorem 2.16. Under the assumptions of theorem 2.12 with C := B1(0) there exists
a computable functional χ : N × NN → N (that is independent from X,U and v0 ∈
B1(0)) such that

∀k ∈ N∀g : N → N∃n ≤ χ(k, g)∀i, j ∈ [n; n + g(n)] (‖xi − xj‖ < 2−k),

where xi := uti with ti := 1− 1
i+1

and [n; n + m] := {n, n + 1, . . . , n + m}.
Similarly, for any sequence (tn) in (0, 1) that converges towards 1 where then the
bound depends also on a (majorant of) rate of metastability of that convergence

∀n ∈ N ∀g ∈ NN ∀i ∈ [χ(g, n); χ(g, n) + g(χ(g, n))] (|1− ti| ≤
1

n + 1
)

and a function h : N → N such that ∀n ∈ N (tn ≤ 1− 1
h(n)+1

).
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Proof: We first note that xi can be explicitly defined as a functional in v0, U and i
in the language of Aω[X, 〈·, ·〉, C] using the Picard iteration of U and the completion
operator C.
By proposition 2.14 we have

Aω[X, 〈·, ·〉, C] `
{
∀v0 ∈ B1(0) ∀U : X → X ∀k ∈ N (U n.e. ∧ U(B1(0)) ⊆ B1(0)
∧Fix(U) 6= ∅ → ∃n ∈ N ∀m ∈ N (‖xn − xm‖ <R 2−k))

and hence

Aω[X, 〈·, ·〉, C] `{
∀v0 ∈ B1(0) ∀U : X → X ∀k ∈ N ∀g : N → N (U n.e. ∧ U(B1(0)) ⊆ B1(0)
∧Fix(U) 6= ∅ → ∃n ∈ N ∀i, j ∈ [n; n + g(n)] (‖xi − xj‖ <R 2−k)),

where
∀i, j ∈ [n; n + g(n)] (‖xi − xj‖ < 2−k)

is equivalent to a Σ0
1-formula over already T ω[X, 〈·, ·〉] with

T ω := P̂A
ω
|\ + QF-AC0,0

since only the bounded collection principle for Σ0
1-formulas is needed.

We note that the condition ‘U(B1(0)) ⊆ B1(0)’ can be written as a ∀-formula

∀xX (‖U(x̌)‖ ≤R 1), where x̌ := x
max(1,‖x‖) .

The claim of the theorem now follows immediately from corollary 6.8 in [9] (together
with the treatment of completeness conditions from [18], pages 433-434). Here one
takes v0 in place of z and C is being treated trivially as the whole space X (i.e. by
adding a universal axiom ∀xX (χC(xX) =0 0)), where cX := 0X , so that we can take
b := 2. �

Remark 2.17. Since (as discussed already in remark 2.15) the above proof does not
use anymore the existence of a fixed point of U, it can be used in itself as an alternative
proof of the existence of a fixed point: since (xn) satisfies the no-counterexample
version of the Cauchy property it is a Cauchy sequence and its limit clearly must be
a fixed point of U.

Remark 2.18. An issue to be devoted to further research is whether the closed
convex set C can be treated completely abstract (via a characteristic function as in
corollary 6.8 from [9]) which would mean that (in contrast to closed convex sets given
by a formula in the sense of definition 2.1.4) one is allowed to use only a quantifier-free
rule of extensionality

A0 → s =X t ∧ s ∈ C

A0 → t ∈ C
(A0 quantifier-free)

rather than the full extensionality condition from definition 2.1.1.(a). If the rule
suffices one could extract an effective bound χ that would not depend on C except
for some norm upper bound on M ≥ ‖v‖ for all v ∈ C.
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Comments added in proof: Subsequent work ([19]) that we have carried out after
the present paper was finished sheds new light on the logical status of Browder’s proof
as well as the theorem as such:

1. As a final result of the actual logical analysis of Browder’s proof, the use of
weak compactness in the end disappears and the extraction process yields even
a primitive recursive (in the sense of Kleene) bound on the metastable version
of Browder’s theorem (see [19] for a discussion of this phenomenon). In fact, the
extraction works for arbitrary bounded closed convex subsets C ⊂ X (instead
of B1(0)) and the bound depends on C only via an upper bound on the diameter
of C.

2. A different proof of Browder’s theorem that avoids already weak compactness
from the beginning can be obtained from Halpern [10]. The – much simpler –
logical analysis of this proof again yields a primitive recursive rate of metasta-
bility (see again [19]).
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