
HIGHER ORDER REVERSE MATHEMATICSULRICH KOHLENBACHyx1. Introdution. Reverse mathematis as developed by H. Friedman,S. Simpson and others (see [17℄ for a omprehensive treatment) fouseson the language of seond order arithmeti `beause that language is theweakest one that is rih enough to express and develop the bulk of oremathematis' ([17℄, p.viii).However, as we have argued in [15℄, already the treatment of ontinuousfuntions f : X ! Y between Polish spaes X;Y not only requires aquite ompliated enoding. Even more importantly, the restrited lan-guage makes it neessary (already for X = ININ; Y = IN) to use a onstru-tively slightly enrihed de�nition of ontinuous funtions whose equivalenewith the usual de�nition annot be proved e.g. in the �nite type extensionE-PA!+QF-AC1;0 of (a variant with funtion variables instead of set vari-ables of) the seond order system RCA (i.e. RCA0 plus full indution,where RCA0 is the well-known base system used in reverse mathematis,see [17℄). Here QF-AC1;0 denotes the shema of quanti�er-free hoie fromfuntions to numbers. In fat, the enoding of ontinuous funtions usedin reverse mathematis amounts (for the spaes mentioned above) to therepresentation of suh funtions via an assoiate in the sense of Kleeneand Kreisel. This representation, however, entails impliitly a (ontinu-ous) modulus of pointwise ontinuity whih annot be shown (in the �nitetype extension of RCA mentioned above) to exist for a general ontinuousfuntional ' : ININ ! IN. Of ourse, in the presene of arithmetial om-prehension the di�erene between the enoding of ontinuous funtionalsand their diret treatment disappears. For funtions f : 2IN ! IN, alreadythe binary K�onig's lemma WKL suÆes for this but it is open whether thisholds e.g. in E-PA!+QF-AC1;0 (see [15℄ for all this).Thus already for those parts of analysis whih only deal with ontinuousfuntions, there are reasons to extend the ontext of reverse mathematis tothe language of arithmeti in all �nite types. This need beomes even moreyBRICS Basi Researh in Computer Siene, Centre of the Danish National Re-searh Foundation.Edited by Unknown 2000, Assoiation for Symboli Logi 1



2 ULRICH KOHLENBACHurgent if one onsiders priniples involving non-ontinuous funtions sinewhereas one an reason and quantify about ontinuous funtions in systemsbased on the language of RCA0 (though only using the onstrutively en-rihed representation mentioned above), one annot even talk about singledisontinuous funtions f : IR ! IR as objets (of ourse it is possible toformulate 89-dependenies `8x 2 IR9!y 2 IRA(x; y)' suh that the funtionf : IR ! IR whih is uniquely determined by this property is disontinu-ous. However, the existene of this funtion as an objet annot even beenstated in the language of seond order arithmeti).In systems formulated in the language of funtionals of all �nite types, how-ever, one an represent arbitrary (and hene in partiular ontinuous) fun-tions between Polish spaes in a rather diret way: the language ontainsvariables for arbitrary funtions f : ININ ! ININ and via the so-alled stan-dard representation of elements of Polish spaes X;Y by number theoretifuntions, arbitrary funtions f : X ! Y are diretly given as funtionals�1!1f : ININ ! ININ whih happen to be extensional w.r.t. =X and =Y ,where g1 =X h1 i� g; h represent the same element of X (similarly for Y ).The availability of variables for arbitrary (and not just ontinuous) fun-tions within the language allows for an extension of reverse mathematis.In this paper we indiate that there is in fat an interesting kind of re-verse mathematis for suh priniples whih naturally takes plae over aonservative �nite type extension of RCA0 as base system.1 As a naturalandidate we propose the system RCA!0 :=E-PRA!+QF-AC1;0, whereE-PRA! is Feferman's ([4℄,[1℄) restrition of E-PA! with quanti�er-freeindution and prediative primitive reursion only.2We will show that RCA!0 is onservative over RCA0 so that for prinipleswhih an be formalized already in RCA0 nothing is lost by using RCA!0as the base system.In this paper we show that the priniples whih relative to RCA!0 areequivalent to (92) :� 9'28f1�'(f) =0 0$ 9x0(fx =0 0)�1Here (and also two sentenes below) we again identify the oÆial formulation ofRCA0 (from [17℄) with its (inessential) variant with funtion variables instead of setvariables. As soon as we have de�ned that variant preisely in the next setion we willall it RCA20 and reserve the name RCA0 for the oÆial version. Note that Friedman'soriginal systems proposed in [6℄ also had funtion variables.2It is an easy exerise to show that RCA!0 proves the seond order axiom of �01-indution on whih RCA0 is based upon. `Prediative' here means that we have onlyprimitive reursion in the type 0 (but with parameters of arbitrary types). So for puretypes this orresponds to the primitive reursive funtionals in the sense of Kleene's ([9℄)shemata S1-S8.



HIGHER ORDER REVERSE MATHEMATICS 3form a rih and very robust lass. We onjeture that one gets further in-teresting and robust lasses by onsidering other funtional existene prin-iples than (92), like the existene of the Suslin operator ([1℄,[4℄)(Suslin): 9S28f1�S(f) =0 0$ 9g8x�f(gx) =0 0��This indiates that there is an interesting extension of the urrently existingkind of reverse mathematis to higher order statements.x2. Desription of the theory RCA!0 . The set T of all �nite typesis de�ned indutively by(i) 0 2 T and (ii) �; � 2 T) �! � 2 T:Terms whih denote a natural number have type 0. Elements of type �! �are funtions whih map objets of type � to objets of type � .The set P � T of pure types is de�ned by(i) 0 2 P and (ii) n 2 P) n+ 1 := n! 0 2 P:Brakets whose ourrenes are uniquely determined are often omitted.Also �1 ! : : : ! �k ! � stands for �1 ! (�2 : : : ! (�k ! �) : : : ): Forarbitrary types � 2 T the degree of � (for short deg(�) ) is de�ned bydeg(0) := 0 and deg(�! �) := max(deg(�);deg(�) + 1).The theory E-PRA! is based on many{sorted lassial logi formulatedin the language of all �nite types plus the ombinators ��;� ;�Æ;�;� whihallow the de�nition of �{abstration.Furthermore we inlude the axioms of extensionality(E) : 8x�; y�; z�!� (x =� y ! zx =� zy)for all �nite types (x =� y is de�ned as 8z�11 ; : : : ; z�kk (xz1 : : : zk =0 yz1 : : : zk)where � = �1 ! : : :! �k ! 0).In addition to the de�ning axioms for the ombinators, the Kleene reur-sor onstant R0, the equality axioms for type-0 equality and the suessoraxioms we have the shema of quanti�er-free indutionQF-IA: A0(0) ^ 8x�A0(x)! A0(x0)�! 8xA0(x);where A0 is quanti�er-free.This �nishes the desription of E-PRA!. The theory E-PA! is the exten-sion of E-PRA! obtained by the addition of the shema of full indutionand all (imprediative) primitive reursive funtionals in the sense of [7℄.The shema of quanti�er-free hoie for the types �; � is given byQF-AC�;� : 8x�9y�A0(x; y)! 9Y �!�8x�A0(x; Y x);QF-AC := S�;�2TfQF-AC�;�g;where A0 is quanti�er-free.



4 ULRICH KOHLENBACHThe theory RCA!0 is de�ned asRCA!0 :=E-PRA!+QF-AC1;0.In deviating slightly from the `oÆial' de�nition ofRCA0 with set variableswe de�ne a version with funtion variables as followsRCA20 :=E-PRA2+QF-AC0;0,where E-PRA2 denotes the seond order fragment of E-PRA! (see [13℄for details).The base systemRCA0 used in reverse mathematis an easily be seen as asubsystem of RCA20 by identifying sets with their harateristi funtions.The axiom shemata of �01-indution and �01-omprehension from RCA0are then easily derivable in RCA20 by QF-AC0;0 and { in the ase of �01-IA{ the primitive reursive funtional�it(0; y; f) :=0 y; �it(x+ 1; y; f) :=0 f(x;�it(x; y; f)):Conversely, RCA20 an be viewed as an inessential extension of RCA0by identifying funtions with their graphs. The only `extension' providedby RCA20 is the existene of primitive reursive type-2-funtionals (in thesense of Kleene) whih allow to de�ne a new funtion g := �(f) primitivereursively in a funtion f . However, this an be simulated in RCA0in the form 8f9gA�(f; g); where A�(f; g) expresses in terms of reursionequations that g = �(f).Notation: For � = �1 ! : : : ! �k ! 0, we de�ne 1� := �x�11 : : : x�kk :10,where 10 := S0:In the following we will need the de�nition of the binary (`weak') K�onig'slemma as given in [19℄:Definition 2.1 (Troelstra(74)).WKL:� 8f1�T1(f)! 9b �1 �k:18x0(f(bx) =0 0)�,where T1(f) :�8<: 8n0;m0(f(n �m) =0 0! fn =0 0)^8n0; x0(f(n � hxi) =0 0! x �0 1)^8x09n0(lth n =0 x ^ fn =0 0)(i.e. T1(f) asserts that f represents an in�nite 0,1{tree).x3. First steps towards reverse mathematis in higher types.In this setion we show that various analytial priniples are equivalent to(92) (over our base system RCA!0 ).The fat that the lass of these priniples is rather rih and robust is mainlydue to the following fats



HIGHER ORDER REVERSE MATHEMATICS 51. a great deal of non-ontinuous analysis an be done already inRCA!0+(92)2. if a priniple A implies the existene of a disontinuous funtion, thenone an use an argument known as Grilliot's trik (see [8℄) to derivethe existene of (92).We �rst show that nothing is lost by working relative to the base systemRCA!0 instead of RCA20:Proposition 3.1. RCA!0 is a onservative extension of RCA20.Proof: Loally, one an show in RCA20 that the type struture ECF ofall extensional hereditarily ontinuous funtionals (see [18℄ for the tehnialde�nition) forms a model of RCA!0 , i.e.(1) RCA!0 ` A) RCA20 ` [A℄ECF:Together with the fat that(2) RCA20 ` 8f1(�(f) =0 [�℄ECF(f))for all ordinary primitive reursive funtionals �2 of type 2 (i.e. the fun-tionals de�nable in RCA20) this yields the onservation result.(1) is proved similarly to (and in fat easier than) the orresponding resultfor E-HA!+QF-AC from [18℄(2.6.20). In partiular, no indution beyond�01-IA is needed. aAs a orollary of proposition 3.1 we get that the �nite type extensionsRCA!0+WKL and RCA!0 + �01-CA et. of the seond order systemsWKL0 and ACA0 used in reverse mathematis are onservative over theirseond order part.However, we are now in the position to state onservation results whihould not even been expressed with seond order systems:Theorem 3.2 ([4℄). RCA!0 +(92) is onservative over �rst order Peanoarithmeti PA.Definition 3.3. 1. For k0; f1 we de�ne( limn!1 f(n) =0 k) :� 9n8m > n(f(m) =0 k):2. For g1; g0!1(�) we de�ne( limn!1 gn =1 g) :� 8k9n8m > n�gm(k) =0 g(k)�:3. A funtional �2 is everywhere sequentially ontinuous if8g1;8g0!1(�) � limn!1 gn =1 g ! limn!1�(gn) =0 �(g)�:



6 ULRICH KOHLENBACH4. A funtional �1!1 is everywhere sequentially ontinuous if8g1;8g0!1(�) � limn!1 gn =1 g ! limn!1�(gn) =1 �(g)�:Lemma 3.4. RCA!0 proves that the existene of a not everywhere se-quentially ontinuous funtional �1!1 implies the existene of a not every-where sequentially ontinuous funtional 	2.Proof: De�ne ~�(f; k) := �(f)(k):3 If �f:~�(f; k) is everywhere sequen-tially ontinuous for all �xed k then � is everywhere sequentially ontinu-ous. So if � is not everywhere sequentially ontinuous there must exist ak suh that 	 := �f:~�(f; k) is not everywhere sequentially ontinuous. aDefinition 3.5. A funtional �1!1 is alled everywhere "-Æ-ontinuousif 8g1; k09n08h1(gn =0 hn! (�g)k =0 (�h)k):Proposition 3.6. 1. RCA!0 proves that �1!1 is everywhere sequen-tially ontinuous i� � is everywhere "-Æ-ontinuous.2. RCA!0+QF-AC0;1 proves8�1!1; g1(� sequentially ontinuous in g $ � "-Æ-ontinuous in g):Proof: 1) We reason in RCA!0 . It is trivial that "-Æ-ontinuity impliessequential ontinuity. For the onverse, let �1!1 be everywhere sequentiallyontinuous and assume that there exists a point g1 at whih � is not "-Æ-ontinuous, i.e. for some k08n09h1(gn =0 hn ^ (�g)k 6= (�h)k):By the global sequential ontinuity of � this implies8n09i0(gn =0 (�j:(i)j)n ^ (�g)k 6= (�(�j:(i)j))k);where we refer again to the sequene oding as e.g. arried out in [18℄, i.e.�j:(i)j denotes the funtion whih ontinues the �nite sequene enoded byi with 0's. By QF-AC0;0 this yields9�18n0(gn =0 (�j:(�n)j )n ^ (�g)k 6= (�(�j:(�n)j ))k):Hene with gn := �j:(�n)j we have8n(gn = gnn ^ (�g)k 6= (�gn)k);i.e. � is not sequential ontinuous in g in ontradition to its assumedglobal sequential ontinuity.2) is proved similarly noting that the only use of global sequential ontinuityof � made was to replae `9h' by `9i'. In the presene of QF-AC0;1, however,we an keep `9h' and form diretly the required sequene gn. a3Here �k denotes the sequene ode of (�(0); : : : ; �(k � 1)) (see e.g. [18℄).



HIGHER ORDER REVERSE MATHEMATICS 7The following result essentially is the observation that a reursion theoretiargument known as `Grilliot's trik' an be arried out in RCA!0 :Proposition 3.7. Relative to RCA!0 the following priniples are equiv-alent:1. (92),2. there exists a funtional �2 whih is not everywhere sequentially on-tinuous.3. there exists a funtional �1!1 whih is not everywhere sequentiallyontinuous.4. there exists a funtional �1!1 whih is not everywhere "-Æ-ontinuous.Proof: 1:! 2: and 2:! 3: are obvious. 3:! 2: follows from lemma 3.4.The equivalene of 3. and 4. follows from proposition 3.6. So it remains toshow that 2:! 1:2: implies the existene of �2; g0!1(�) ; g1 suh that8n9m�gm(n) = g(n) ^ �(gm) 6= �(g)�:With QF-AC0;0 this yields9h18n�gh(n)(n) = g(n) ^ �(gh(n)) 6= �(g)�:So with ~gn(k) := gh(n+1)(k) and ~�(f) := � 1; if �(f) 6= �(g)0; otherwise we get8n8i � n(~gn(i) = g(i)) ^ 8n;m�~�(~gn) = ~�(~gm) 6= ~�(g)�:We are now in the position to apply Grilliot's trik as in the proof ofprop.3.4 in [14℄. For ompleteness we repeat that short argument here:In RCA!0 we an de�ne a funtional �(f1; ~g0!1(�) ; i0) suh that�(f; ~g(�); i) = � ~gj(i); for the least j < i suh that f(j) > 0 if it exists~gi(i); otherwise:Using 8j8i � j(~gj(i) = ~gi(i)) and 8i(~gi(i) = g(i)) one gets(1) 9j�f(j) > 0�! �(f; ~g(�)) =1 ~gj for the least suh jand (2) 8j�f(j) = 0�! �(f; ~g(�)) =1 g:Hene by the extensionality axiom for type-2-funtionals we obtain8j�f(j) = 0�$ ~�(�(f; ~g(�))) = ~�(g):Thus ' := �f1:sg(j~�(�(sg Æ f; ~g(�))) � ~�(g)j), where sg(x) := 0 for x 6= 0and sg(x) := 1 otherwise, satis�es (92). aDefinition 3.8.1. (�2) :� 9�28f1�9x0(fx = 0)! f(�f) = 0� (see [4℄),



8 ULRICH KOHLENBACH2. The uniform weak K�onig's lemma UWKL is the prinipleUWKL :� 9�1!18f1(T1(f)! 8x0�f((�f)x) = 0)� ([14℄).Proposition 3.9 ([14℄). Relative to RCA!0 the following priniples arepairwise equivalent:(i) (92);(ii) (�2);(iii) UWKL.Remark 3.10. In addition to WKL and UWKL one an also onsideran intermediate `weak' uniform version of WKL whih asserts for everygiven sequene (fn)n2IN of in�nite binary trees the existene of a sequene(bn)n2IN of in�nite paths bn of fn. This version however is implied alreadyby WKL (relative to RCA!0 ).We now sketh the representation of real numbers and funtions f :IR ! IR but only to the very limited extent needed here (for more detailssee [2℄,[10℄ and [12℄. A systemati treatment of a general theory of rep-resentations an be found in [21℄). Rational numbers are represented asodes j(n;m) of pairs (n;m) of natural numbers n;m. j(n;m) representsthe rational number n2m+1 ; if n is even,and the negative rational � n+12m+1 ; if n is odd:Here j is the surjetive pairing funtion j(x; y) := 12�(x+y)2+3x+y�. Onthe odes of Q, i.e. on IN, we have an equivalene relation byn1 =Q n2 :� j1n12j2n1 + 1 = j1n22j2n2 + 1 if j1n1; j1n2 both are evenand analogously in the remaining ases, where ab = d is de�ned to hold i�ad =0 b (for bd > 0).On IN one easily de�nes funtions j � jQ ;+Q ;�Q ; �Q :Q ;maxQ ;minQ 2RCA!0 and (quanti�er{free) relations <Q ;�Q whih represent the orre-sponding funtions and relations on Q. We sometimes omit the index Qif this does not ause any onfusion. We write hqi to denote the anonialode of q 2 Q.We next want to represent real numbers as Cauhy sequenes of rationalnumber with rate of onvergene 2�n. Using the enoding of rational num-bers by natural numbers, suh a Cauhy sequene is given by a funtion f1satisfying (�) 8n8m; ~m�m; ~m � n! jf(m)�Q f( ~m)j <Q h2�ni�:(�) is implied by(��) 8n�jf(n)�Q f(n+ 1)j <Q h2�n�1i�



HIGHER ORDER REVERSE MATHEMATICS 9and onversely for any f satisfying (�), ~f(n) := f(n+1) satis�es (��). Thatis why we an use the more onvenient ondition (��) on our representingsequenes instead of (�). To ahieve that any funtion f1 an be viewedas a representative of (a uniquely determined) real number we use theonstrutionbf(n) := 8<: f(n); if 8k < n(jf(k)�Q f(k + 1)jQ <Q h2�k�1i);f(k) for the least k < n s.t. jf(k)�Q f(k + 1)j �Q h2�k�1i,otherwise.bf always satis�es (��) and if already f satis�es (��) then f =1 bf . So inpartiular bbf =1 bf .On the representatives of reals, i.e. on the number theoreti funtionsf11 ; f12 , we an de�ne an equivalene relation =IRf1 =IR f2 :� 8n� bf1(n+ 1)�Q bf2(n+ 1)j <Q h2�ni�;whih holds i� f1 and f2 represent the same real number. Similarly onede�nes relations �IR and <IR. Note that =IR;�IR2 �01 while <IR2 �01.The usual arithmetial operations +IR;�IR et. an easily be de�ned asfuntionals (de�nable in RCA!0 ) on the representation of the real numbers.Funtions F : IR! IR are represented as funtionals �1!1 whih satisfy8f1; f2�f1 =IR f2 ! �(f1) =IR �(f2)�:In a similar but tehnially somewhat more involved way one an alsorepresent more general Polish spaesX;Y by ININ and funtions F : X ! Yas funtionals �1!1 respeting the orresponding equivalene relations =Xand =Y (for details see e.g. [10℄).Lemma 3.11. RCA!0 proves1. 8f1; f2; n�f1(n+ 2) =0 f2(n+ 2)! jf1 �IR f2j <IR h2�ni�:2. 8f1; f0!1(�) �8n(jfn �IR f j <IR h2�n�2i)!9 ~f1; ~f0!1(�) ( ~f =IR f ^ 8n( ~fn =IR fn ^ ~fn(n) =0 ~f(n)))�:Proof: 1. follows fromf1(n+ 2) =0 f2(n+ 2)! bf1(n+ 2) =0 bf2(n+ 2)and jf �IR �k: bf(n+ 1)j <IR h2�n�1i:2. De�ne ~f := �k: bf(k + 3); ~fn(k) := ( bfn(k + 3); for k � nbf(k + 3); for k < n.It is lear that ~f =IR f ^ 8n� ~fn(n) =0 ~f(n)�:



10 ULRICH KOHLENBACHIt remains to show that 8n( ~fn =IR fn). This easily follows from the fatthat ~fn satis�es (��) (so that b~fn =1 ~fn for all n). Thus we have to showthe latter. The only problemati ase is j ~fn(n� 1)�Q ~fn(n)j < h2�ni (forn � 1) whih we establish as follows (using the assumption 8n(jfn�IRf j <IRh2�n�2i)):j ~fn(n� 1)�Q ~fn(n)j =Q j bf(n+ 2)�Q bfn(n+ 3)j�Q j bf(n+ 2)�Q bfn(n+ 2)j+ j bfn(n+ 2)�Q bfn(n+ 3)j�IR j�k: bf(n+ 2)�IR f j+ jf �IR fnj+ jfn �IR �k: bfn(n+ 2)j+j bfn(n+ 2)�Q bfn(n+ 3)j<IR h2�n�2 + 2�n�2 + 2�n�2 + 2�n�3i <Q h2�ni:a Proposition 3.12. The following priniples are pairwise equivalent rel-ative to RCA!0 :1. (92),2. the funtion F : IR! IR determined byF (x) := � 0; for x �IR 01; for x >IR 0exists,3. there exists a funtion F : IR ! IR whih is not everywhere sequen-tially ontinuous,4. there exists a funtion F : IR ! IR whih is not everywhere "-Æ-ontinuous.Proof: 1: ! 2: and 2: ! 3: are obvious. The equivalene of 3. and 4.follows similarly to proposition 3.6.1 using that <IR2 �01:It remains to show that 3: ! 1: Let F : IR ! IR; x 2 IR and (xn) be asequene in IR suh thatxn ! x ^ :(F (xn)! F (x));where `!' indiates onvergene in the sense of IR. Then9l8k9n�jxn �IR xj <IR h2�ki ^ jF (xn)�IR F (x)j >IR h2�li�:Sine <IR2 �01, we an apply QF-AC0;0 to obtain9l9g8k�jxg(k) �IR xj <IR h2�k�3i ^ jF (xg(k))�IR F (x)j >IR h2�li�:Lemma 3.11.2 applied to fk := xg(k) yields ~fk; ~f with~f =IR x ^ 8k� ~fk =IR xg(k) ^ ~fk(k) =0 ~f(k)�:F is given by some funtional �1!1. Using the extensionality of � w.r.t.=IR we get 8k�j�( ~fk)�IR �( ~f)j >IR h2�li�



HIGHER ORDER REVERSE MATHEMATICS 11and hene by lemma 3.11.18k��( ~fk)(l + 2) 6= �( ~f)(l + 2)�:So put together we have shown that9l8k� ~fk(k) =0 ~f(k) ^ �( ~fk)(l + 2) 6= �( ~f)(l + 2)�:Hene �1!1 is not everywhere sequentially ontinuous (in the sense ofde�nition 3.3.4). By proposition 3.7 this implies (92). aRemark 3.13. Whereas the equivalene of global sequential ontinuityand global "-Æ-ontinuity of f : IR ! IR is provable in RCA!0 along thelines of proposition 3.6.1 (see also [20℄(7.2.9)), the use of QF-AC0;1 isunavoidable (but also suÆient even for general Polish spaes X;Y , see[15℄) to prove the pointwise (`loal') equivalene. In fat, as shown in [5℄,the pointwise equivalene of sequential and "-Æ-ontinuity for f : IR ! IRis independent from ZF.Notation: C denotes the spae of all funtions f 2 C[0; 1℄ with f(0) �0 ^ f(1) � 0:We now onsider uniform versions of the following priniples:1. the intermediate value theorem:8f 2 C9x 2 [0; 1℄(f(x) =IR 0);2. the attainment of the maximum priniple:8f 2 C([0; 1℄d)9x 2 [0; 1℄d8y 2 [0; 1℄d�f(x) �IR f(y)�;3. Brouwer's �xed point theorem:8f 2 C([0; 1℄d; [0; 1℄d)9x 2 [0; 1℄d(f(x) =IRd x):These priniples di�er in strength: whereas 2. and 3. imply (already forontinuous funtions as de�ned in reverse mathematis) WKL, 1.an beproved in RCA!0 (see [17℄). In fat, there is also some di�erene between2. and 3., sine 2. implies even in the ase d = 1 WKL whereas 3. isprovable in RCA0 for d = 1 but implies WKL for d � 2 (see [16℄).In ontrast to this, the uniform versions of 1.-3. are all equivalent to (92)(independently of whether e.g. f 2 C[0; 1℄ is given as a type-2 funtional,with a ode in the sense of reverse mathematis, or even with a modulusof uniform ontinuity).Proposition 3.14. The following priniples are pairwise equivalent rel-ative to RCA!0 :1. (92);2. 9F : C ! [0; 1℄8f 2 C �f(F (f)) =IR 0�;3. the restrition of 2. to Lipshitz4 ontinuous funtions with � = 1,4. 9F : C([0; 1℄d)! [0; 1℄d8f 2 C([0; 1℄d)8y 2 [0; 1℄d�f(F (f)) �IR f(y)�;4E.g. with respet to the Eulidean norm.



12 ULRICH KOHLENBACH5. the restrition of 4. to Lipshitz ontinuous funtions with � = 1,6. 9F : C([0; 1℄d; [0; 1℄d) ! [0; 1℄d8f 2 C([0; 1℄d; [0; 1℄d)�f(F (f)) =IRdF (f)�:7. the restrition of 6. to Lipshitz ontinuous funtions with � = 1.Proof: It is a routine veri�ation, that 2.-7. an be proved withinRCA!0 +(92) by inspeting the proofs of the non-uniform versions of thesetheorems. This holds true even if f 2 C[0; 1℄ (and similarly f 2 C([0; 1℄d)and f 2 C([0; 1℄d; [0; 1℄d)) is given just as a funtional of type 1! 1 whihhappens to be "-Æ-ontinuous w.r.t. the usual topologies of [0; 1℄d and IR,but without any witness information for this ontinuity. We sketh this for4. and d = 1: Let rn be a suitable enumeration of all rational numbers in[0; 1℄ and de�ne5g(n) := 8<: �i � 2n � 1[8k0; l09j0�rj 2 [ i2n ; i+12n ℄ ^ f(rj) �IR f(rk)� 2�l�℄;if existent00; otherwise.Note that g is (Kleene-)primitive reursively de�nable in (92) and (a fun-tional representing) f sine the property `[: : : ℄' is arithmetial. In RCA!0 +(92) one easily shows that the ase `otherwise' annot our. Moreover, us-ing the ontinuity of f it follows that (g(n)=2n)n2IN is a Cauhy sequenewith rate of onvergene 2�n whih onverges to the least x 2 [0; 1℄ suhthat f(x) = supy2[0;1℄ f(y):We now prove that any of 2.-7. implies (92). It is lear that it suÆesto onsider the ase of Lipshitz ontinuous funtions. We show this nowfor 3. (for 5. and 7. the proofs are very similar): Let f0 : [0; 1℄ ! IRbe the onstant-0-funtion f0(x) := 0. C is the spae of all Lipshitzontinuous funtions f 2 C[0; 1℄ with Lipshitz onstant � = 1 satisfyingf(0) � 0; f(1) � 0, and F : C ! [0; 1℄ is a funtion that satis�es 3.Case 1: F (f0) 2 [0; 12 ℄: For y 2 [0; 1℄, de�ne fy : [0; 1℄ ! IR by fy(x) :=yx� y: fy 2 C and fy(0) � 0; fy(1) � 0 for all y 2 [0; 1℄: Moreover,8y 2 (0; 1℄8x 2 [0; 1℄�fy(x) =IR 0$ x =IR 1�:Hene 8y 2 (0; 1℄�F (fy) =IR 1�:De�ne g : [0; 1℄! IR by g(y) := F (fy): Then g(0) = F (f0) 2 [0; 12 ℄ and8y 2 (0; 1℄�g(y) = F (fy) = 1�:Hene, bg : IR ! IR; bg(y) := g(minIR(1;maxIR(0; y))) is not sequentiallyontinuous at y := 0:Case 2: F (f0) 2 [ 12 ; 1℄: Analogously to ase 1 but with fy(x) := yx:5For notational simpliity we write here i2n and 2�l instead of their odes.



HIGHER ORDER REVERSE MATHEMATICS 13In both ase we have onstruted (Kleene-)primitive reursively in F afuntion g : IR! IR whih is not everywhere sequential ontinuous. Hene,proposition 3.12 yields the existene of (92). aAbove we saw that ertain priniples whih in their non-uniform versionare di�erent with respet to the set existene axioms needed to prove themare equivalent in their uniform formulation. We now indiate that alsothe opposite phenomenon an our: onsider again the attainment of themaximum priniple (for simpliity only for dimension 1)(a) 8f 2 C[0; 1℄9x 2 [0; 1℄8y 2 [0; 1℄�f(x) �IR f(y)�and also the existene of the supremum(b) 8f 2 C[0; 1℄9y 2 IR�y =IR supx2[0;1℄ f(x)�:From ordinary reverse mathematis it is well-known that both priniplesare equivalent to WKL (relative to RCA0 and using the enoding of suhfuntions as pointwise ontinuous funtions as in [17℄, i.e. without a modu-lus of uniform ontinuity). We saw above that the uniform version of (a) isequivalent to (92) (independently of whether f is assumed to be uniformlyontinuous or even given with a modulus of uniform ontinuity or not).Let's onsider the uniform version of (b). The status now depends on therepresentation: it is easy to de�ne a funtional in RCA!0 whih omputesthe supremum of f uniformly in f and a modulus of uniform ontinuity off . If, however, f is just given as a pointwise ontinuous funtion one hasto ompute a modulus of uniform ontinuity �rst. This an be ahieveduniformly in f (given as a funtional '1!1 whih is extensional w.r.t. =IR)by the following so-alled fan funtional(MUC): 9
38'28f1; f2 �1 1�f1(
(')) =0 f2(
(')) ! '(f1) =0 '(f2)�:(MUC) is inonsistent with (92) but onsistent relative to RCA!0 . More-over, adapting the proof of theorem 2.6.6 in [18℄ one an showProposition 3.15. RCA!0+MUC is onservative over RCA20+WKL(and hene �02-onservative over PRA).Sine the uniform version of (b) (for pointwise ontinuous funtions)6an be proved in RCA!0+MUC it is proof-theoretially weaker than theuniform version of (a).This di�erene in strength for the uniform versions is due to the fat that6Atually, MUC even suÆes to prove this for arbitrary funtions f : IR ! IR. Wedon't know whether the (lassially valid) restrition of MUC to pointwise ontinuousfuntionals '2 suÆes to prove the uniform version of (b). The problem is, that thepointwise ontinuity of f : IR! IR does not imply that a funtional '1!1 representingf is pointwise ontinuous in the sense of the Baire spae.



14 ULRICH KOHLENBACH(b) an be proved intuitionistially from the ontraposition of WKL (i.e.`every �nite binary tree is bounded', whih is a form of the so-alled fanpriniple), whereas (a) uses essentially lassial logi. This use of lassiallogi results in a disontinuity on the uniform level and hene the deriv-ability of 92. Thus we have another reason for investigating higher orderreverse mathematis: di�erenes between priniple whih are only visiblein an intuitionisti setting beome visible lassially on the higher orderuniform versions of these priniples.Final Comments:1. The equivalene results established in this paper also hold for the sub-system RCA!�0 :=E-G3A!+QF-AC1;0 of RCA!0 with elementaryreursive funtionals only (i.e. E-G3A! only ontains 0; S;+; �; expand bounded prediative reursion). The absene of �it bloks thederivability of �01-IA and, in fat, RCA!�0 (whih is a higher or-der extension of the system RCA�0 from [17℄) is �02-onservative overKalmar-elementary arithmeti EA.2. The results in this paper depend ruially on the fat that our systemRCA!0 ontains full extensionality (for type-2-objets). In [14℄ wehave shown that in a setting where (E) is replaed by Spetor's weakquanti�er-free rule of extensionality e.g. UWKL is as weak as WKL.3. One ould argue to use instead of systems based on a �xed systemof �nite types more exible systems like Feferman's systems of ex-pliit mathematis are appropriate subsystems of (lassial versionsof) Martin-L�of type theories. However, in neither of these settingshas been formulated a natural equivalent to the systemWKL0, i.e. asystem with the same mathematial strength then WKL0 but whihat the same time allows a �nitisti redution to primitive reursivearithmetiPRA. The problem here seems to be that these frameworkstreat a priniple likeWKL automatially in its uniform version UWKLwhih, however, is (in an extensional setting) proof-theoretially asstrong as (92) as we saw above. In our view it is one of the mostinteresting outomes of reverse mathematis that large parts of math-ematis an be arried out in a PRA-reduible system like WKL0.REFERENCES[1℄ Avigad, J., Feferman, S., G�odel's funtional (`Dialetia') interpretation. In: [3℄,pp. 337-405 (1998).[2℄ Beeson, M.J., Foundations of Construtive Mathematis. Springer Ergebnisse derMathematik und ihrer Grenzgebiete 3.Folge, Bd.6., Berlin Heidelberg New York Tokyo1985.[3℄ Buss, S.R. (editor), Handbook of Proof Theory. Studies in Logi and the Founda-tions of Mathematis Vol 137, Elsevier, vii+811 pp. (1998).
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