HIGHER ORDER REVERSE MATHEMATICS

ULRICH KOHLENBACH'

§1. Introduction. Reverse mathematics as developed by H. Friedman,
S. Simpson and others (see [17] for a comprehensive treatment) focuses
on the language of second order arithmetic ‘because that language is the
weakest one that is rich enough to express and develop the bulk of core
mathematics’ ([17], p.viii).
However, as we have argued in [15], already the treatment of continuous
functions f : X — Y between Polish spaces X,Y not only requires a
quite complicated encoding. Even more importantly, the restricted lan-
guage makes it necessary (already for X = IN™, ¥ = IN) to use a construc-
tively slightly enriched definition of continuous functions whose equivalence
with the usual definition cannot be proved e.g. in the finite type extension
E-PA*®+QF-ACY0 of (a variant with function variables instead of set vari-
ables of) the second order system RCA (i.e. RCAy plus full induction,
where RCAj is the well-known base system used in reverse mathematics,
see [17]). Here QF-AC!0 denotes the schema of quantifier-free choice from
functions to numbers. In fact, the encoding of continuous functions used
in reverse mathematics amounts (for the spaces mentioned above) to the
representation of such functions via an associate in the sense of Kleene
and Kreisel. This representation, however, entails implicitly a (continu-
ous) modulus of pointwise continuity which cannot be shown (in the finite
type extension of RCA mentioned above) to exist for a general continuous
functional ¢ : NI — IN. Of course, in the presence of arithmetical com-
prehension the difference between the encoding of continuous functionals
and their direct treatment disappears. For functions f : 2 — IN, already
the binary Konig’s lemma WKL suffices for this but it is open whether this
holds e.g. in E-PA“+QF-ACO (see [15] for all this).

Thus already for those parts of analysis which only deal with continuous
functions, there are reasons to extend the context of reverse mathematics to
the language of arithmetic in all finite types. This need becomes even more
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urgent if one considers principles involving non-continuous functions since
whereas one can reason and quantify about continuous functions in systems
based on the language of RCAg (though only using the constructively en-
riched representation mentioned above), one cannot even talk about single
discontinuous functions f : IR — IR as objects (of course it is possible to
formulate V3-dependencies Vo € R3ly € R A(z,y)’ such that the function
f : IR = IR which is uniquely determined by this property is discontinu-
ous. However, the existence of this function as an object cannot even been
stated in the language of second order arithmetic).

In systems formulated in the language of functionals of all finite types, how-
ever, one can represent arbitrary (and hence in particular continuous) func-
tions between Polish spaces in a rather direct way: the language contains
variables for arbitrary functions f : NI — INN and via the so-called stan-
dard representation of elements of Polish spaces X,Y by number theoretic
functions, arbitrary functions f : X — Y are directly given as functionals
@}_’1 : NN 5 NN which happen to be extensional w.r.t. =x and =y,
where g! =x h' iff g, h represent the same element of X (similarly for V).

The availability of variables for arbitrary (and not just continuous) func-
tions within the language allows for an extension of reverse mathematics.
In this paper we indicate that there is in fact an interesting kind of re-
verse mathematics for such principles which naturally takes place over a
conservative finite type extension of RCAg as base system.! As a natural
candidate we propose the system RCAY :=E-PRA“+QF-AC!"? where
E-PRA"Y is Feferman’s ([4],[1]) restriction of E-PA“ with quantifier-free
induction and predicative primitive recursion only.?

We will show that RCA§ is conservative over RCAy so that for principles
which can be formalized already in RCAg nothing is lost by using RCA{
as the base system.

In this paper we show that the principles which relative to RCAY are
equivalent to

(F?) := V! ((p(f) =00 32°(fzr = 0))

Here (and also two sentences below) we again identify the official formulation of
RCA (from [17]) with its (inessential) variant with function variables instead of set
variables. As soon as we have defined that variant precisely in the next section we will
call it RCA% and reserve the name RCA for the official version. Note that Friedman’s
original systems proposed in [6] also had function variables.

21t is an easy exercise to show that RCAY proves the second order axiom of E?—
induction on which RCAj is based upon. ‘Predicative’ here means that we have only
primitive recursion in the type 0 (but with parameters of arbitrary types). So for pure
types this corresponds to the primitive recursive functionals in the sense of Kleene’s ([9])
schemata S1-S8.
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form a rich and very robust class. We conjecture that one gets further in-
teresting and robust classes by considering other functional existence prin-
ciples than (3?), like the existence of the Suslin operator ([1],[4])

(Suslin): IS*Vf! (S(f) =0 0 > IgVz(f(gz) =0 0))

This indicates that there is an interesting extension of the currently existing
kind of reverse mathematics to higher order statements.

§2. Description of the theory RCAY. The set T of all finite types
is defined inductively by

(1)0€e T and (i) p,Tr€e T=>p—>T17€T.

Terms which denote a natural number have type 0. Elements of type p — 7
are functions which map objects of type p to objects of type 7.
The set P C T of pure types is defined by

(()0ePand (i) neP=>n+1:=n—->0€P.

Brackets whose occurrences are uniquely determined are often omitted.
Also py = ... = pr — 7 stands for py = (p2... = (pr = 7)...). For
arbitrary types p € T the degree of p (for short deg(p) ) is defined by
deg(0) := 0 and deg(p — 7) := max(deg(7),deg(p) + 1).

The theory E-PRAY is based on many—sorted classical logic formulated
in the language of all finite types plus the combinators II, -, X5 , - which
allow the definition of A—abstraction.

Furthermore we include the axioms of extensionality

(E) : V2P y?, 2P 7" (x =, y = 2z =, 2y)
for all finite types (z =, y is defined as V27", ... , 2" (z21 ... 2 =0 Y21 ... 2k)
where p=p; = ... = pr — 0).
In addition to the defining axioms for the combinators, the Kleene recur-

sor constant Ry, the equality axioms for type-0 equality and the successor
axioms we have the schema of quantifier-free induction

QF-TIA: A (0) AV (Ag(z) = Ag(z')) — VzAo(z),

where Ag is quantifier-free.

This finishes the description of E-PRAY. The theory E-PAY is the exten-
sion of E-PRAY obtained by the addition of the schema of full induction
and all (impredicative) primitive recursive functionals in the sense of [7].

The schema of quantifier-free choice for the types p, T is given by

QF-ACPT : VaPIy™ Ag(z,y) — Y P77Vl Ag(z, V),
QF-AC := |J {QF-AC""},

p,TET
where Aq is quantifier-free.
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The theory RCAY is defined as
RCAY :=E-PRA“+QF-AC'0.

In deviating slightly from the ‘official’ definition of RCA( with set variables
we define a version with function variables as follows

RCA2 :=E-PRAZ+QF-AC%?,

where E-PRA? denotes the second order fragment of E-PRA% (see [13]
for details).

The base system RCAg used in reverse mathematics can easily be seen as a
subsystem of RCAJ by identifying sets with their characteristic functions.
The axiom schemata of X{-induction and A?-comprehension from RCA,
are then easily derivable in RCAZ by QF-AC%? and - in the case of X{-TIA
— the primitive recursive functional

®:+(0,y, ) =0 y, Ptz + 1,9, f) =0 fz,Put(2,y, f))-
Conversely, RCA3 can be viewed as an inessential extension of RCA,
by identifying functions with their graphs. The only ‘extension’ provided
by RCAZ is the existence of primitive recursive type-2-functionals (in the
sense of Kleene) which allow to define a new function g := ®(f) primitive
recursively in a function f. However, this can be simulated in RCA,
in the form Vf3gAs(f,g), where As(f, g) expresses in terms of recursion
equations that g = ®(f).

Notation: For p = p1 — ... = pp — 0, we define 17 := Xaf* ... 2{*.1°,
where 1° := S0.

In the following we will need the definition of the binary (‘weak’) Ko6nig’s
lemma as given in [19]:

DEFINITION 2.1 (Troelstra(74)).
WKL:= V1 (T(f) — 3b <1 Ak.1V20(f(bz) =0 0)),
where
VnO mP(f(n*m) =9 0 — fn = 0)
T(f) = { AVR, 20 (f(n+ (2)) =0 0 = <o 1)
AVZO3nO (Ith n =¢ z A fn =¢ 0)

(i.e. T®(f) asserts that f represents an infinite 0,1-tree).

§3. First steps towards reverse mathematics in higher types.
In this section we show that various analytical principles are equivalent to
(3%) (over our base system RCAY).

The fact that the class of these principles is rather rich and robust is mainly
due to the following facts
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1. agreat deal of non-continuous analysis can be done already in RCAg +
()

2. if a principle A implies the existence of a discontinuous function, then
one can use an argument known as Grilliot’s trick (see [8]) to derive
the existence of (3?).

We first show that nothing is lost by working relative to the base system
RCAY instead of RCA3:

PROPOSITION 3.1. RCAY is a conservative extension of RCAZ.

Proof: Locally, one can show in RCAZ2 that the type structure ECF of
all extensional hereditarily continuous functionals (see [18] for the technical
definition) forms a model of RCAY), i.e.

(1) RCAY F A = RCAZ | [Algcr.
Together with the fact that
(2) RCAG -V (®(f) =0 [®lecr(f))

for all ordinary primitive recursive functionals ®2 of type 2 (i.e. the func-
tionals definable in RCAZ2) this yields the conservation result.

(1) is proved similarly to (and in fact easier than) the corresponding result
for E-HA“+QF-AC from [18](2.6.20). In particular, no induction beyond
YI-TA is needed. -

As a corollary of proposition 3.1 we get that the finite type extensions
RCA%+WKL and RCAY + MY -CA etc. of the second order systems
WKL, and ACA, used in reverse mathematics are conservative over their
second order part.

However, we are now in the position to state conservation results which
could not even been expressed with second order systems:

THEOREM 3.2 ([4]). RCAY +(3%) is conservative over first order Peano
arithmetic PA.

DEFINITION 3.3. 1. For k°, f! we define
(nILH;O fn) =0 k) := InVm > n(f(m) =¢ k).
2. For gl,g?fl we define
(lim g, =1 g) := VkIn¥m > n(Gm(k) =0 (k).

3. A functional ®2 is everywhere sequentially continuous if

V9", gy ( limgn =19 = lim ®(gn) =0 ¥(9))-
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4. A functional ®'71 is everywhere sequentially continuous if
1y, 010 s _ . _
Vg, Vo) ( lim gn =19 = lim ®(gn) =1 &(g))-

LEMMA 3.4. RCAY proves that the ezistence of a not everywhere se-
quentially continuous functional 171 implies the existence of a not every-
where sequentially continuous functional U2,

Proof: Define &(f,k) := ®(f)(k).> If \f.®(f, k) is everywhere sequen-
tially continuous for all fixed k then ® is everywhere sequentially continu-
ous. So if ® is not everywhere sequentially continuous there must exist a
k such that ¥ := /\f.<i>(f, k) is not everywhere sequentially continuous. -

DEFINITION 3.5. A functional ®' 7' is called everywhere e-6-continuous
if
Yo', k°3nOVh! (gn =¢ hn — (Dg)k =¢ (Ph)E).

PROPOSITION 3.6. 1. RCAY proves that ®17! is everywhere sequen-

tially continuous iff ® is everywhere e-6-continuous.
2. RCAS+QF-AC%! proves

Ve~ o' (® sequentially continuous in g <+ ® e-6-continuous in g).
Proof: 1) We reason in RCAY. It is trivial that e-d-continuity implies
sequential continuity. For the converse, let ®!~! be everywhere sequentially

continuous and assume that there exists a point ¢g' at which & is not e-4-
continuous, i.e. for some k°

VYnO3n! (Gn = hn A (Bg)k # (Bh)k).
By the global sequential continuity of ® this implies
vn°3i° (gn =0 (A.(i);)n A (Dg)k # ((N5.(1);))k),
where we refer again to the sequence coding as e.g. carried out in [18], i.e.
Aj.(7); denotes the function which continues the finite sequence encoded by
i with 0’s. By QF-AC®? this yields
3a'Vn®(gn =o (Vj-am);)n A (Fg)k # @(j-(an),)k).

Hence with g,, := Aj.(an); we have

Vn(gn = gun A (9)k # (2gn)k),
i.e. @ is not sequential continuous in g in contradiction to its assumed
global sequential continuity.
2) is proved similarly noting that the only use of global sequential continuity
of ® made was to replace ‘b’ by ‘Ji’. In the presence of QF-AC"!, however,
we can keep ‘dh’ and form directly the required sequence g,.

3Here @k denotes the sequence code of (a(0),...,a(k — 1)) (see e.g. [18]).
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The following result essentially is the observation that a recursion theoretic
argument known as ‘Grilliot’s trick’ can be carried out in RCAJ:

PROPOSITION 3.7. Relative to RCAY the following principles are equiv-
alent:

L (@),

2. there exists a functional ® which is not everywhere sequentially con-
tinuous.

3. there exists a functional ®' 71 which is not everywhere sequentially
continuous.

4. there exists a functional ®' 71 which is not everywhere e-6-continuous.

Proof: 1. — 2. and 2. — 3. are obvious. 3. — 2. follows from lemma 3.4.
The equivalence of 3. and 4. follows from proposition 3.6. So it remains to
show that 2. — 1.

2. implies the existence of <I>2,g(()_)_>1,g1 such that
Vn3Im (gm(n) = g(n) A ®(gm) # 2(g))-
With QF-AC®? this yields

3N (Ghn) (n) = (1) A @(gn(n)) # (9))-
o . 1, if P
So with gn (k) := gn(nt1)(k) and &(f) := { 0 Othéfvzizée 9
ViV < (G (i) = 9(i)) AR, m(®(Gn) = B(Gm) # 2(9))-
We are now in the position to apply Grilliot’s trick as in the proof of

prop.3.4 in [14]. For completeness we repeat that short argument here:
In RCAY we can define a functional £(f*, g?yl, i%) such that

we get

(o) = { gZ((Z)): iiflgl;ii?st j < i such that f(j) > 0 if it exists
Using VjVi < j(g;(i) = §i(2)) and Vi(g;(i) = g(i)) one gets
(1) 35 (f(j) > 0) = &(f,3() =1 §; for the least such j
and
(2) Vi(f(5) = 0) = &(f,90) =1 9.

Hence by the extensionality axiom for type-2-functionals we obtain

Vi(f(5) =0) & ®(E(f,3() = (9).

Thus ¢ := Af' 3G(|®(£(57 © [, () — ®(9)]), where 5g(z) = 0 for & # 0
and 3g(x) := 1 otherwise, satisfies (3).

DEFINITION 3.8.
L (42) = 3u2Yf (30 (fz = 0) — f(uf) = 0) (see [4]),
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2. The uniform weak Konig’s lemma UWKL is the principle
UWKL := 3&' 'V (T (f) = V2 (F((2f)z) =0)) ([14]).

PROPOSITION 3.9 ([14]). Relative to RCAY the following principles are
pairwise equivalent:

() ()

(i) (p7),
(iii)) UWKL.

REMARK 3.10. In addition to WKL and UWKL one can also consider
an intermediate ‘weak’ uniform version of WKL which asserts for every
given sequence (frn)neN of infinite binary trees the existence of a sequence

(bn)nen of infinite paths by, of f,,. This version however is implied already
by WKL (relative to RCAY ).

We now sketch the representation of real numbers and functions f :
IR — IR but only to the very limited extent needed here (for more details
see [2],[10] and [12]. A systematic treatment of a general theory of rep-
resentations can be found in [21]). Rational numbers are represented as
codes j(n,m) of pairs (n,m) of natural numbers n, m. j(n,m) represents

the rational number —2—, if n is even,

m+1? 41
and the negative rational — —2=, if n is odd.
m—+1

Here j is the surjective pairing function j(z,y) := 1 ((z+y)?+3z+y). On
the codes of @, i.e. on IN, we have an equivalence relation by

Jimi Jinz

— P) _ P)
Cjemai+ 1 joma +1

and analogously in the remaining cases, where § = ¢ is defined to hold iff

ad =g cb (for bd > 0).

On IN one easily defines functions | - |q,+q, —q, @ :q@,maxg,ming €

RCAY and (quantifier—free) relations <q, <q which represent the corre-

sponding functions and relations on Q. We sometimes omit the index @

if this does not cause any confusion. We write (g) to denote the canonical

code of ¢ € Q).

We next want to represent real numbers as Cauchy sequences of rational

number with rate of convergence 27". Using the encoding of rational num-

bers by natural numbers, such a Cauchy sequence is given by a function f'

satisfying

(%) Van,ﬁl(m,m >n—|f(m) —q f(M)| <q (2_”)).
(%) is implied by
(x%) V(| f(n) —q f(n+1)| <@ 27"71))

if jin1, jine both are even

ny =q@ n2:
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and conversely for any f satisfying (%), f(n) := f(n+1) satisfies (). That

is why we can use the more convenient condition (*%) on our representing

sequences instead of (). To achieve that any function f! can be viewed

as a representative of (a uniquely determined) real number we use the

construction

f(n), if Yk <n(|f (k) —q f(k+ Do <q (27"71)),

f(n):=<{ f(k) for the least k < n s.t. |f(k) —q f(k +1)] >q (27F71),
otherwise.

falways satisfies (xx) and if already f satisfies (#*) then f = f So in

particular le f
On the representatives of reals, i.e. on the number theoretic functions
fi, f}, we can define an equivalence relation =

fi=r fo = ¥n(fi(n+1) —q fo(n+1)| <g (27),

which holds iff f; and fy represent the same real number. Similarly one
defines relations <R and <R. Note that =r,<gr€ I} while <gre 9.
The usual arithmetical operations +r, —r etc. can easily be defined as
functionals (definable in RCAY) on the representation of the real numbers.
Functions F : IR — IR are represented as functionals ®! ! which satisfy

Vi fo(fi =R f2 = ®(f1) =m (f)).

In a similar but technically somewhat more involved way one can also
represent more general Polish spaces X,Y by INY and functions F: X » Y
as functionals ®' ! respecting the corresponding equivalence relations =x
and =y (for details see e.g. [10]).

LEMMA 3.11. RCA§ proves

L Yfi, faon(fi(n +2) =0 fo(n +2) = [fi —w fo| <m (277)).
2. vfl foi)l (Vn(|fn ]Rf| <R (277172)) N

37 FON(F =m £ AY(Fn = fu A Fuln) =0 F(0)))).
Proof: 1. follows from
Fin+2) =0 Fo(n+2) = fi(n+2) = foln +2)
and
f —r M f(n+ 1) <m 277,

Falk+3), for k>n
2. Defi = Ak.f(k + 3), ~
efine f f( + {fk+3 for k < n.

It is clear that
f=n f AVR(Fa(n) =0 f(n)).
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It remains to show that Vn(f, =g f,). This easily follows from the fact

that f, satisfies (%) (so that f, =1 fn for all n). Thus we have to show
the latter. The only problematic case is |fn(n — 1) —q fa(n)| < (277) (for
n > 1) which we establish as follows (using the assumption Vn(|f,—r f| <m

(27"2)):
|fa(n = 1) =@ fa(m)| =q |f(n+2) —q fa(n+3)|
<o 1f(n+2) —q faln +2)| + [fa(n +2) —q Fa(n +3)|
<m M. f(n +2) —m fl+ |f 1 fal + | fo —m e Fo(n + 2)]

+fn(n+2) —q fu(n +3)|
<R (2—n—2 + 2—n—2 + 2—n—2 + 2—n—3> <Q <2—n>

PRrROPOSITION 3.12. The following principles are pairwise equivalent rel-
ative to RCAY:

L (),
2. the function F : R — R determined by
_J 0, forzx<pr 0
Fz) = { 1, forx >R 0
exists,

3. there ezists a function F : R — IR which is not everywhere sequen-
tially continuous,

4. there exists a function F : IR — IR which is not everywhere £--
continuous.

Proof: 1. — 2. and 2. — 3. are obvious. The equivalence of 3. and 4.
follows similarly to proposition 3.6.1 using that <gr€ .
It remains to show that 3. — 1. Let F : R — IR,z € IR and (z,) be a
sequence in IR such that

Tn = A =(F(z,) = F(x)),
where ‘=’ indicates convergence in the sense of IR. Then
AVEIn (|2, —m 2| <mr (2 F) A |F(2,) —w F2)] >r (277)).
Since <r€ XY, we can apply QF-AC%? to obtain
39k (|79 —w 2| <m (27F) A F(200)) —w Fl2)] >r (277)).
Lemma 3.11.2 applied to f := w4 yields fr, f with
f=r x AVE(fi =r 2y A fr(k) =0 F(K)).

F is given by some functional ®'~!. Using the extensionality of ® w.r.t.
=R we get

VE(|18(fx) —m ()] >m (27))
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and hence by lemma 3.11.1

Vk(®(fr) (I +2) # 8(f) (1 +2)).
So put together we have shown that

AVE(fr (k) =o f(k) A @(fr) (I +2) # (/)1 +2)).
Hence ®'7! is not everywhere sequentially continuous (in the sense of
definition 3.3.4). By proposition 3.7 this implies (3%). -

REMARK 3.13. Whereas the equivalence of global sequential continuity
and global e-6-continuity of f : R — IR is provable in RCAY along the
lines of proposition 3.6.1 (see also [20](7.2.9)), the use of QF-AC®! is
unavoidable (but also sufficient even for general Polish spaces X,Y, see
[15]) to prove the pointwise (‘local’) equivalence. In fact, as shown in [5],
the pointwise equivalence of sequential and e-0-continuity for f : IR — IR
is independent from ZF.

Notation: C denotes the space of all functions f € C[0, 1] with f(0) <
OA f(1) >0.

We now consider uniform versions of the following principles:

1. the intermediate value theorem:
Vfe CIz e[0,1)(f(z) =r 0),

2. the attainment of the maximum principle:

Vf € C([0,1])3z € [0,1]"vy € [0,1](f(z) > f(y)),

3. Brouwer’s fixed point theorem:

Vfe C([07 1]d7 [07 l]d)al‘ € [07 l]d(f(‘r) ~R4 1‘)

These principles differ in strength: whereas 2. and 3. imply (already for

continuous functions as defined in reverse mathematics) WKL, 1.can be
proved in RCAY (see [17]). In fact, there is also some difference between
2. and 3., since 2. implies even in the case d = 1 WKL whereas 3. is
provable in RCAy for d = 1 but implies WKL for d > 2 (see [16]).
In contrast to this, the uniform versions of 1.-3. are all equivalent to (%)
(independently of whether e.g. f € C[0,1] is given as a type-2 functional,
with a code in the sense of reverse mathematics, or even with a modulus
of uniform continuity).

ProprosITION 3.14. The following principles are pairwise equivalent rel-
ative to RCAY:

1. (3%,
L 3F T - [0,1vf € T(F(F(f) =m 0),
the restriction of 2. to Lipschit?* continuous functions with A = 1,

- 3F:C([0,1]%) = [0, 1]V f € C([0,1])V¥y € [0, 1 (f(F(f) 2r (1)),

ISR

4F.g. with respect to the Euclidean norm.
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5. the restriction of 4. to Lipschitz continuous functions with A =1,
6. 3F : C([Oa 1]d7 [07 ]-]d) - [07 ]-]dvf € C([07 l]da [07 ]-]d) (f(F(f)) ~R4
F(f)).

7. the restriction of 6. to Lipschitz continuous functions with A\ = 1.

Proof: It is a routine verification, that 2.-7. can be proved within
RCAY + (3?) by inspecting the proofs of the non-uniform versions of these
theorems. This holds true even if f € C[0,1] (and similarly f € C([0,1]¢)
and f € C([0,1]%,[0,1]%)) is given just as a functional of type 1 — 1 which
happens to be e-d-continuous w.r.t. the usual topologies of [0,1]? and IR,
but without any witness information for this continuity. We sketch this for
4. and d = 1: Let r,, be a suitable enumeration of all rational numbers in
[0,1] and define®

pi <27 — 1V, 19350 (r; € [k, S A f(rj) >m F(re) —271)],
g(n) :== if existent

0°, otherwise.

Note that g is (Kleene-)primitive recursively definable in (3%) and (a func-
tional representing) f since the property [...]" is arithmetical. In RCAY +
(3%) one easily shows that the case ‘otherwise’ cannot occur. Moreover, us-
ing the continuity of f it follows that (g(n)/2"),en is a Cauchy sequence
with rate of convergence 27" which converges to the least z € [0, 1] such
that f(z) = SUPyelo,1] f(y).

We now prove that any of 2.-7. implies (32). It is clear that it suffices
to consider the case of Lipschitz continuous functions. We show this now
for 3. (for 5. and 7. the proofs are very similar): Let fp : [0,1] — R
be the constant-O-function fo(x) := 0. C is the space of all Lipschitz
continuous functions f € C[0,1] with Lipschitz constant A = 1 satisfying
f(0) <0,f(1) >0,and F: C — [0,1] is a function that satisfies 3.

Case 1: F(fy) € [0,3]. For y € [0,1], define f, : [0,1] = R by f,(z) :=
yr —y. fy € C and f,(0) <0, f,(1) > 0 for all y € [0,1]. Moreover,

vy € (0,1]Vz € [0,1](fy(2) =R 0 4> = =R 1).
Hence
Yy € (0,1](F(fy) =r 1).
Define g : [0,1] = R by g(y) := F(f,). Then g(0) = F(fo) € [0,1] and
vy € (0,1](9(y) = F(fy) = 1).
Hence, g : R — IR,g(y) := g(ming (1, maxg(0,y))) is not sequentially

continuous at y := 0.
Case 2: F(fo) € [$,1]. Analogously to case 1 but with f,(z) := yz.

5For notational simplicity we write here 2% and 2~ instead of their codes.
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In both case we have constructed (Kleene-)primitive recursively in F' a
function g : IR — IR which is not everywhere sequential continuous. Hence,
proposition 3.12 yields the existence of (32). -

Above we saw that certain principles which in their non-uniform version
are different with respect to the set existence axioms needed to prove them
are equivalent in their uniform formulation. We now indicate that also
the opposite phenomenon can occur: consider again the attainment of the
maximum principle (for simplicity only for dimension 1)

(a) Vf € C[0,1]3z € [0,1]vy € [0,1](f(2) >r f(y))
and also the existence of the supremum

(b) VfeCl0,1]3y € R(y =r sup f(z)).
z€[0,1]

From ordinary reverse mathematics it is well-known that both principles
are equivalent to WKL (relative to RCAg and using the encoding of such
functions as pointwise continuous functions as in [17], i.e. without a modu-
lus of uniform continuity). We saw above that the uniform version of (a) is
equivalent to (3%) (independently of whether f is assumed to be uniformly
continuous or even given with a modulus of uniform continuity or not).
Let’s consider the uniform version of (b). The status now depends on the
representation: it is easy to define a functional in RCAY which computes
the supremum of f uniformly in f and a modulus of uniform continuity of
f- If, however, f is just given as a pointwise continuous function one has
to compute a modulus of uniform continuity first. This can be achieved
uniformly in f (given as a functional ¢*~! which is extensional w.r.t. =)
by the following so-called fan functional

(MUC): 3PV V1, fo <1 1(F1(Qp) =0 L2(Qp)) = (1) =0 ¢(f2)).

(MUCQ) is inconsistent with (3%) but consistent relative to RCAg. More-
over, adapting the proof of theorem 2.6.6 in [18] one can show

PROPOSITION 3.15. RCAY+MUC is conservative over RCAZ+WKL
(and hence TI9-conservative over PRA).

Since the uniform version of (b) (for pointwise continuous functions)®

can be proved in RCAY+MUC it is proof-theoretically weaker than the
uniform version of (a).
This difference in strength for the uniform versions is due to the fact that

6 Actually, MUC even suffices to prove this for arbitrary functions f : IR — IR. We
don’t know whether the (classically valid) restriction of MUC to pointwise continuous
functionals (2 suffices to prove the uniform version of (b). The problem is, that the
pointwise continuity of f : IR — IR does not imply that a functional ¢!~ representing
f is pointwise continuous in the sense of the Baire space.
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(b) can be proved intuitionistically from the contraposition of WKL (i.e.
‘every finite binary tree is bounded’, which is a form of the so-called fan
principle), whereas (a) uses essentially classical logic. This use of classical
logic results in a discontinuity on the uniform level and hence the deriv-
ability of 32. Thus we have another reason for investigating higher order
reverse mathematics: differences between principle which are only visible
in an intuitionistic setting become visible classically on the higher order
uniform versions of these principles.

Final Comments:

1. The equivalence results established in this paper also hold for the sub-
system RCAY  :=E-G3A“+QF-AC!"0 of RCAY with elementary
recursive functionals only (i.e. E-G3A¥ only contains 0,5, +, -, exp
and bounded predicative recursion). The absence of ®; blocks the
derivability of ¥?-TA and, in fact, RCAB”* (which is a higher or-
der extension of the system RCA} from [17]) is II3-conservative over
Kalmar-elementary arithmetic EA.

2. The results in this paper depend crucially on the fact that our system
RCAY contains full extensionality (for type-2-objects). In [14] we
have shown that in a setting where (E) is replaced by Spector’s weak
quantifier-free rule of extensionality e.g. UWKL is as weak as WKL.

3. One could argue to use instead of systems based on a fixed system
of finite types more flexible systems like Feferman’s systems of ex-
plicit mathematics are appropriate subsystems of (classical versions
of) Martin-Lof type theories. However, in neither of these settings
has been formulated a natural equivalent to the system WKLy, i.e. a
system with the same mathematical strength then WKL, but which
at the same time allows a finitistic reduction to primitive recursive
arithmetic PRA. The problem here seems to be that these frameworks
treat a principle like WKL automatically in its uniform version UWKL
which, however, is (in an extensional setting) proof-theoretically as
strong as (3%) as we saw above. In our view it is one of the most
interesting outcomes of reverse mathematics that large parts of math-
ematics can be carried out in a PRA-reducible system like WKLy.
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