
HIGHER ORDER REVERSE MATHEMATICSULRICH KOHLENBACHyx1. Introdu
tion. Reverse mathemati
s as developed by H. Friedman,S. Simpson and others (see [17℄ for a 
omprehensive treatment) fo
useson the language of se
ond order arithmeti
 `be
ause that language is theweakest one that is ri
h enough to express and develop the bulk of 
oremathemati
s' ([17℄, p.viii).However, as we have argued in [15℄, already the treatment of 
ontinuousfun
tions f : X ! Y between Polish spa
es X;Y not only requires aquite 
ompli
ated en
oding. Even more importantly, the restri
ted lan-guage makes it ne
essary (already for X = ININ; Y = IN) to use a 
onstru
-tively slightly enri
hed de�nition of 
ontinuous fun
tions whose equivalen
ewith the usual de�nition 
annot be proved e.g. in the �nite type extensionE-PA!+QF-AC1;0 of (a variant with fun
tion variables instead of set vari-ables of) the se
ond order system RCA (i.e. RCA0 plus full indu
tion,where RCA0 is the well-known base system used in reverse mathemati
s,see [17℄). Here QF-AC1;0 denotes the s
hema of quanti�er-free 
hoi
e fromfun
tions to numbers. In fa
t, the en
oding of 
ontinuous fun
tions usedin reverse mathemati
s amounts (for the spa
es mentioned above) to therepresentation of su
h fun
tions via an asso
iate in the sense of Kleeneand Kreisel. This representation, however, entails impli
itly a (
ontinu-ous) modulus of pointwise 
ontinuity whi
h 
annot be shown (in the �nitetype extension of RCA mentioned above) to exist for a general 
ontinuousfun
tional ' : ININ ! IN. Of 
ourse, in the presen
e of arithmeti
al 
om-prehension the di�eren
e between the en
oding of 
ontinuous fun
tionalsand their dire
t treatment disappears. For fun
tions f : 2IN ! IN, alreadythe binary K�onig's lemma WKL suÆ
es for this but it is open whether thisholds e.g. in E-PA!+QF-AC1;0 (see [15℄ for all this).Thus already for those parts of analysis whi
h only deal with 
ontinuousfun
tions, there are reasons to extend the 
ontext of reverse mathemati
s tothe language of arithmeti
 in all �nite types. This need be
omes even moreyBRICS Basi
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2 ULRICH KOHLENBACHurgent if one 
onsiders prin
iples involving non-
ontinuous fun
tions sin
ewhereas one 
an reason and quantify about 
ontinuous fun
tions in systemsbased on the language of RCA0 (though only using the 
onstru
tively en-ri
hed representation mentioned above), one 
annot even talk about singledis
ontinuous fun
tions f : IR ! IR as obje
ts (of 
ourse it is possible toformulate 89-dependen
ies `8x 2 IR9!y 2 IRA(x; y)' su
h that the fun
tionf : IR ! IR whi
h is uniquely determined by this property is dis
ontinu-ous. However, the existen
e of this fun
tion as an obje
t 
annot even beenstated in the language of se
ond order arithmeti
).In systems formulated in the language of fun
tionals of all �nite types, how-ever, one 
an represent arbitrary (and hen
e in parti
ular 
ontinuous) fun
-tions between Polish spa
es in a rather dire
t way: the language 
ontainsvariables for arbitrary fun
tions f : ININ ! ININ and via the so-
alled stan-dard representation of elements of Polish spa
es X;Y by number theoreti
fun
tions, arbitrary fun
tions f : X ! Y are dire
tly given as fun
tionals�1!1f : ININ ! ININ whi
h happen to be extensional w.r.t. =X and =Y ,where g1 =X h1 i� g; h represent the same element of X (similarly for Y ).The availability of variables for arbitrary (and not just 
ontinuous) fun
-tions within the language allows for an extension of reverse mathemati
s.In this paper we indi
ate that there is in fa
t an interesting kind of re-verse mathemati
s for su
h prin
iples whi
h naturally takes pla
e over a
onservative �nite type extension of RCA0 as base system.1 As a natural
andidate we propose the system RCA!0 :=E-PRA!+QF-AC1;0, whereE-PRA! is Feferman's ([4℄,[1℄) restri
tion of E-PA! with quanti�er-freeindu
tion and predi
ative primitive re
ursion only.2We will show that RCA!0 is 
onservative over RCA0 so that for prin
ipleswhi
h 
an be formalized already in RCA0 nothing is lost by using RCA!0as the base system.In this paper we show that the prin
iples whi
h relative to RCA!0 areequivalent to (92) :� 9'28f1�'(f) =0 0$ 9x0(fx =0 0)�1Here (and also two senten
es below) we again identify the oÆ
ial formulation ofRCA0 (from [17℄) with its (inessential) variant with fun
tion variables instead of setvariables. As soon as we have de�ned that variant pre
isely in the next se
tion we will
all it RCA20 and reserve the name RCA0 for the oÆ
ial version. Note that Friedman'soriginal systems proposed in [6℄ also had fun
tion variables.2It is an easy exer
ise to show that RCA!0 proves the se
ond order axiom of �01-indu
tion on whi
h RCA0 is based upon. `Predi
ative' here means that we have onlyprimitive re
ursion in the type 0 (but with parameters of arbitrary types). So for puretypes this 
orresponds to the primitive re
ursive fun
tionals in the sense of Kleene's ([9℄)s
hemata S1-S8.



HIGHER ORDER REVERSE MATHEMATICS 3form a ri
h and very robust 
lass. We 
onje
ture that one gets further in-teresting and robust 
lasses by 
onsidering other fun
tional existen
e prin-
iples than (92), like the existen
e of the Suslin operator ([1℄,[4℄)(Suslin): 9S28f1�S(f) =0 0$ 9g8x�f(gx) =0 0��This indi
ates that there is an interesting extension of the 
urrently existingkind of reverse mathemati
s to higher order statements.x2. Des
ription of the theory RCA!0 . The set T of all �nite typesis de�ned indu
tively by(i) 0 2 T and (ii) �; � 2 T) �! � 2 T:Terms whi
h denote a natural number have type 0. Elements of type �! �are fun
tions whi
h map obje
ts of type � to obje
ts of type � .The set P � T of pure types is de�ned by(i) 0 2 P and (ii) n 2 P) n+ 1 := n! 0 2 P:Bra
kets whose o

urren
es are uniquely determined are often omitted.Also �1 ! : : : ! �k ! � stands for �1 ! (�2 : : : ! (�k ! �) : : : ): Forarbitrary types � 2 T the degree of � (for short deg(�) ) is de�ned bydeg(0) := 0 and deg(�! �) := max(deg(�);deg(�) + 1).The theory E-PRA! is based on many{sorted 
lassi
al logi
 formulatedin the language of all �nite types plus the 
ombinators ��;� ;�Æ;�;� whi
hallow the de�nition of �{abstra
tion.Furthermore we in
lude the axioms of extensionality(E) : 8x�; y�; z�!� (x =� y ! zx =� zy)for all �nite types (x =� y is de�ned as 8z�11 ; : : : ; z�kk (xz1 : : : zk =0 yz1 : : : zk)where � = �1 ! : : :! �k ! 0).In addition to the de�ning axioms for the 
ombinators, the Kleene re
ur-sor 
onstant R0, the equality axioms for type-0 equality and the su

essoraxioms we have the s
hema of quanti�er-free indu
tionQF-IA: A0(0) ^ 8x�A0(x)! A0(x0)�! 8xA0(x);where A0 is quanti�er-free.This �nishes the des
ription of E-PRA!. The theory E-PA! is the exten-sion of E-PRA! obtained by the addition of the s
hema of full indu
tionand all (impredi
ative) primitive re
ursive fun
tionals in the sense of [7℄.The s
hema of quanti�er-free 
hoi
e for the types �; � is given byQF-AC�;� : 8x�9y�A0(x; y)! 9Y �!�8x�A0(x; Y x);QF-AC := S�;�2TfQF-AC�;�g;where A0 is quanti�er-free.



4 ULRICH KOHLENBACHThe theory RCA!0 is de�ned asRCA!0 :=E-PRA!+QF-AC1;0.In deviating slightly from the `oÆ
ial' de�nition ofRCA0 with set variableswe de�ne a version with fun
tion variables as followsRCA20 :=E-PRA2+QF-AC0;0,where E-PRA2 denotes the se
ond order fragment of E-PRA! (see [13℄for details).The base systemRCA0 used in reverse mathemati
s 
an easily be seen as asubsystem of RCA20 by identifying sets with their 
hara
teristi
 fun
tions.The axiom s
hemata of �01-indu
tion and �01-
omprehension from RCA0are then easily derivable in RCA20 by QF-AC0;0 and { in the 
ase of �01-IA{ the primitive re
ursive fun
tional�it(0; y; f) :=0 y; �it(x+ 1; y; f) :=0 f(x;�it(x; y; f)):Conversely, RCA20 
an be viewed as an inessential extension of RCA0by identifying fun
tions with their graphs. The only `extension' providedby RCA20 is the existen
e of primitive re
ursive type-2-fun
tionals (in thesense of Kleene) whi
h allow to de�ne a new fun
tion g := �(f) primitivere
ursively in a fun
tion f . However, this 
an be simulated in RCA0in the form 8f9gA�(f; g); where A�(f; g) expresses in terms of re
ursionequations that g = �(f).Notation: For � = �1 ! : : : ! �k ! 0, we de�ne 1� := �x�11 : : : x�kk :10,where 10 := S0:In the following we will need the de�nition of the binary (`weak') K�onig'slemma as given in [19℄:Definition 2.1 (Troelstra(74)).WKL:� 8f1�T1(f)! 9b �1 �k:18x0(f(bx) =0 0)�,where T1(f) :�8<: 8n0;m0(f(n �m) =0 0! fn =0 0)^8n0; x0(f(n � hxi) =0 0! x �0 1)^8x09n0(lth n =0 x ^ fn =0 0)(i.e. T1(f) asserts that f represents an in�nite 0,1{tree).x3. First steps towards reverse mathemati
s in higher types.In this se
tion we show that various analyti
al prin
iples are equivalent to(92) (over our base system RCA!0 ).The fa
t that the 
lass of these prin
iples is rather ri
h and robust is mainlydue to the following fa
ts



HIGHER ORDER REVERSE MATHEMATICS 51. a great deal of non-
ontinuous analysis 
an be done already inRCA!0+(92)2. if a prin
iple A implies the existen
e of a dis
ontinuous fun
tion, thenone 
an use an argument known as Grilliot's tri
k (see [8℄) to derivethe existen
e of (92).We �rst show that nothing is lost by working relative to the base systemRCA!0 instead of RCA20:Proposition 3.1. RCA!0 is a 
onservative extension of RCA20.Proof: Lo
ally, one 
an show in RCA20 that the type stru
ture ECF ofall extensional hereditarily 
ontinuous fun
tionals (see [18℄ for the te
hni
alde�nition) forms a model of RCA!0 , i.e.(1) RCA!0 ` A) RCA20 ` [A℄ECF:Together with the fa
t that(2) RCA20 ` 8f1(�(f) =0 [�℄ECF(f))for all ordinary primitive re
ursive fun
tionals �2 of type 2 (i.e. the fun
-tionals de�nable in RCA20) this yields the 
onservation result.(1) is proved similarly to (and in fa
t easier than) the 
orresponding resultfor E-HA!+QF-AC from [18℄(2.6.20). In parti
ular, no indu
tion beyond�01-IA is needed. aAs a 
orollary of proposition 3.1 we get that the �nite type extensionsRCA!0+WKL and RCA!0 + �01-CA et
. of the se
ond order systemsWKL0 and ACA0 used in reverse mathemati
s are 
onservative over theirse
ond order part.However, we are now in the position to state 
onservation results whi
h
ould not even been expressed with se
ond order systems:Theorem 3.2 ([4℄). RCA!0 +(92) is 
onservative over �rst order Peanoarithmeti
 PA.Definition 3.3. 1. For k0; f1 we de�ne( limn!1 f(n) =0 k) :� 9n8m > n(f(m) =0 k):2. For g1; g0!1(�) we de�ne( limn!1 gn =1 g) :� 8k9n8m > n�gm(k) =0 g(k)�:3. A fun
tional �2 is everywhere sequentially 
ontinuous if8g1;8g0!1(�) � limn!1 gn =1 g ! limn!1�(gn) =0 �(g)�:



6 ULRICH KOHLENBACH4. A fun
tional �1!1 is everywhere sequentially 
ontinuous if8g1;8g0!1(�) � limn!1 gn =1 g ! limn!1�(gn) =1 �(g)�:Lemma 3.4. RCA!0 proves that the existen
e of a not everywhere se-quentially 
ontinuous fun
tional �1!1 implies the existen
e of a not every-where sequentially 
ontinuous fun
tional 	2.Proof: De�ne ~�(f; k) := �(f)(k):3 If �f:~�(f; k) is everywhere sequen-tially 
ontinuous for all �xed k then � is everywhere sequentially 
ontinu-ous. So if � is not everywhere sequentially 
ontinuous there must exist ak su
h that 	 := �f:~�(f; k) is not everywhere sequentially 
ontinuous. aDefinition 3.5. A fun
tional �1!1 is 
alled everywhere "-Æ-
ontinuousif 8g1; k09n08h1(gn =0 hn! (�g)k =0 (�h)k):Proposition 3.6. 1. RCA!0 proves that �1!1 is everywhere sequen-tially 
ontinuous i� � is everywhere "-Æ-
ontinuous.2. RCA!0+QF-AC0;1 proves8�1!1; g1(� sequentially 
ontinuous in g $ � "-Æ-
ontinuous in g):Proof: 1) We reason in RCA!0 . It is trivial that "-Æ-
ontinuity impliessequential 
ontinuity. For the 
onverse, let �1!1 be everywhere sequentially
ontinuous and assume that there exists a point g1 at whi
h � is not "-Æ-
ontinuous, i.e. for some k08n09h1(gn =0 hn ^ (�g)k 6= (�h)k):By the global sequential 
ontinuity of � this implies8n09i0(gn =0 (�j:(i)j)n ^ (�g)k 6= (�(�j:(i)j))k);where we refer again to the sequen
e 
oding as e.g. 
arried out in [18℄, i.e.�j:(i)j denotes the fun
tion whi
h 
ontinues the �nite sequen
e en
oded byi with 0's. By QF-AC0;0 this yields9�18n0(gn =0 (�j:(�n)j )n ^ (�g)k 6= (�(�j:(�n)j ))k):Hen
e with gn := �j:(�n)j we have8n(gn = gnn ^ (�g)k 6= (�gn)k);i.e. � is not sequential 
ontinuous in g in 
ontradi
tion to its assumedglobal sequential 
ontinuity.2) is proved similarly noting that the only use of global sequential 
ontinuityof � made was to repla
e `9h' by `9i'. In the presen
e of QF-AC0;1, however,we 
an keep `9h' and form dire
tly the required sequen
e gn. a3Here �k denotes the sequen
e 
ode of (�(0); : : : ; �(k � 1)) (see e.g. [18℄).



HIGHER ORDER REVERSE MATHEMATICS 7The following result essentially is the observation that a re
ursion theoreti
argument known as `Grilliot's tri
k' 
an be 
arried out in RCA!0 :Proposition 3.7. Relative to RCA!0 the following prin
iples are equiv-alent:1. (92),2. there exists a fun
tional �2 whi
h is not everywhere sequentially 
on-tinuous.3. there exists a fun
tional �1!1 whi
h is not everywhere sequentially
ontinuous.4. there exists a fun
tional �1!1 whi
h is not everywhere "-Æ-
ontinuous.Proof: 1:! 2: and 2:! 3: are obvious. 3:! 2: follows from lemma 3.4.The equivalen
e of 3. and 4. follows from proposition 3.6. So it remains toshow that 2:! 1:2: implies the existen
e of �2; g0!1(�) ; g1 su
h that8n9m�gm(n) = g(n) ^ �(gm) 6= �(g)�:With QF-AC0;0 this yields9h18n�gh(n)(n) = g(n) ^ �(gh(n)) 6= �(g)�:So with ~gn(k) := gh(n+1)(k) and ~�(f) := � 1; if �(f) 6= �(g)0; otherwise we get8n8i � n(~gn(i) = g(i)) ^ 8n;m�~�(~gn) = ~�(~gm) 6= ~�(g)�:We are now in the position to apply Grilliot's tri
k as in the proof ofprop.3.4 in [14℄. For 
ompleteness we repeat that short argument here:In RCA!0 we 
an de�ne a fun
tional �(f1; ~g0!1(�) ; i0) su
h that�(f; ~g(�); i) = � ~gj(i); for the least j < i su
h that f(j) > 0 if it exists~gi(i); otherwise:Using 8j8i � j(~gj(i) = ~gi(i)) and 8i(~gi(i) = g(i)) one gets(1) 9j�f(j) > 0�! �(f; ~g(�)) =1 ~gj for the least su
h jand (2) 8j�f(j) = 0�! �(f; ~g(�)) =1 g:Hen
e by the extensionality axiom for type-2-fun
tionals we obtain8j�f(j) = 0�$ ~�(�(f; ~g(�))) = ~�(g):Thus ' := �f1:sg(j~�(�(sg Æ f; ~g(�))) � ~�(g)j), where sg(x) := 0 for x 6= 0and sg(x) := 1 otherwise, satis�es (92). aDefinition 3.8.1. (�2) :� 9�28f1�9x0(fx = 0)! f(�f) = 0� (see [4℄),



8 ULRICH KOHLENBACH2. The uniform weak K�onig's lemma UWKL is the prin
ipleUWKL :� 9�1!18f1(T1(f)! 8x0�f((�f)x) = 0)� ([14℄).Proposition 3.9 ([14℄). Relative to RCA!0 the following prin
iples arepairwise equivalent:(i) (92);(ii) (�2);(iii) UWKL.Remark 3.10. In addition to WKL and UWKL one 
an also 
onsideran intermediate `weak' uniform version of WKL whi
h asserts for everygiven sequen
e (fn)n2IN of in�nite binary trees the existen
e of a sequen
e(bn)n2IN of in�nite paths bn of fn. This version however is implied alreadyby WKL (relative to RCA!0 ).We now sket
h the representation of real numbers and fun
tions f :IR ! IR but only to the very limited extent needed here (for more detailssee [2℄,[10℄ and [12℄. A systemati
 treatment of a general theory of rep-resentations 
an be found in [21℄). Rational numbers are represented as
odes j(n;m) of pairs (n;m) of natural numbers n;m. j(n;m) representsthe rational number n2m+1 ; if n is even,and the negative rational � n+12m+1 ; if n is odd:Here j is the surje
tive pairing fun
tion j(x; y) := 12�(x+y)2+3x+y�. Onthe 
odes of Q, i.e. on IN, we have an equivalen
e relation byn1 =Q n2 :� j1n12j2n1 + 1 = j1n22j2n2 + 1 if j1n1; j1n2 both are evenand analogously in the remaining 
ases, where ab = 
d is de�ned to hold i�ad =0 
b (for bd > 0).On IN one easily de�nes fun
tions j � jQ ;+Q ;�Q ; �Q :Q ;maxQ ;minQ 2RCA!0 and (quanti�er{free) relations <Q ;�Q whi
h represent the 
orre-sponding fun
tions and relations on Q. We sometimes omit the index Qif this does not 
ause any 
onfusion. We write hqi to denote the 
anoni
al
ode of q 2 Q.We next want to represent real numbers as Cau
hy sequen
es of rationalnumber with rate of 
onvergen
e 2�n. Using the en
oding of rational num-bers by natural numbers, su
h a Cau
hy sequen
e is given by a fun
tion f1satisfying (�) 8n8m; ~m�m; ~m � n! jf(m)�Q f( ~m)j <Q h2�ni�:(�) is implied by(��) 8n�jf(n)�Q f(n+ 1)j <Q h2�n�1i�



HIGHER ORDER REVERSE MATHEMATICS 9and 
onversely for any f satisfying (�), ~f(n) := f(n+1) satis�es (��). Thatis why we 
an use the more 
onvenient 
ondition (��) on our representingsequen
es instead of (�). To a
hieve that any fun
tion f1 
an be viewedas a representative of (a uniquely determined) real number we use the
onstru
tionbf(n) := 8<: f(n); if 8k < n(jf(k)�Q f(k + 1)jQ <Q h2�k�1i);f(k) for the least k < n s.t. jf(k)�Q f(k + 1)j �Q h2�k�1i,otherwise.bf always satis�es (��) and if already f satis�es (��) then f =1 bf . So inparti
ular bbf =1 bf .On the representatives of reals, i.e. on the number theoreti
 fun
tionsf11 ; f12 , we 
an de�ne an equivalen
e relation =IRf1 =IR f2 :� 8n� bf1(n+ 1)�Q bf2(n+ 1)j <Q h2�ni�;whi
h holds i� f1 and f2 represent the same real number. Similarly onede�nes relations �IR and <IR. Note that =IR;�IR2 �01 while <IR2 �01.The usual arithmeti
al operations +IR;�IR et
. 
an easily be de�ned asfun
tionals (de�nable in RCA!0 ) on the representation of the real numbers.Fun
tions F : IR! IR are represented as fun
tionals �1!1 whi
h satisfy8f1; f2�f1 =IR f2 ! �(f1) =IR �(f2)�:In a similar but te
hni
ally somewhat more involved way one 
an alsorepresent more general Polish spa
esX;Y by ININ and fun
tions F : X ! Yas fun
tionals �1!1 respe
ting the 
orresponding equivalen
e relations =Xand =Y (for details see e.g. [10℄).Lemma 3.11. RCA!0 proves1. 8f1; f2; n�f1(n+ 2) =0 f2(n+ 2)! jf1 �IR f2j <IR h2�ni�:2. 8f1; f0!1(�) �8n(jfn �IR f j <IR h2�n�2i)!9 ~f1; ~f0!1(�) ( ~f =IR f ^ 8n( ~fn =IR fn ^ ~fn(n) =0 ~f(n)))�:Proof: 1. follows fromf1(n+ 2) =0 f2(n+ 2)! bf1(n+ 2) =0 bf2(n+ 2)and jf �IR �k: bf(n+ 1)j <IR h2�n�1i:2. De�ne ~f := �k: bf(k + 3); ~fn(k) := ( bfn(k + 3); for k � nbf(k + 3); for k < n.It is 
lear that ~f =IR f ^ 8n� ~fn(n) =0 ~f(n)�:



10 ULRICH KOHLENBACHIt remains to show that 8n( ~fn =IR fn). This easily follows from the fa
tthat ~fn satis�es (��) (so that b~fn =1 ~fn for all n). Thus we have to showthe latter. The only problemati
 
ase is j ~fn(n� 1)�Q ~fn(n)j < h2�ni (forn � 1) whi
h we establish as follows (using the assumption 8n(jfn�IRf j <IRh2�n�2i)):j ~fn(n� 1)�Q ~fn(n)j =Q j bf(n+ 2)�Q bfn(n+ 3)j�Q j bf(n+ 2)�Q bfn(n+ 2)j+ j bfn(n+ 2)�Q bfn(n+ 3)j�IR j�k: bf(n+ 2)�IR f j+ jf �IR fnj+ jfn �IR �k: bfn(n+ 2)j+j bfn(n+ 2)�Q bfn(n+ 3)j<IR h2�n�2 + 2�n�2 + 2�n�2 + 2�n�3i <Q h2�ni:a Proposition 3.12. The following prin
iples are pairwise equivalent rel-ative to RCA!0 :1. (92),2. the fun
tion F : IR! IR determined byF (x) := � 0; for x �IR 01; for x >IR 0exists,3. there exists a fun
tion F : IR ! IR whi
h is not everywhere sequen-tially 
ontinuous,4. there exists a fun
tion F : IR ! IR whi
h is not everywhere "-Æ-
ontinuous.Proof: 1: ! 2: and 2: ! 3: are obvious. The equivalen
e of 3. and 4.follows similarly to proposition 3.6.1 using that <IR2 �01:It remains to show that 3: ! 1: Let F : IR ! IR; x 2 IR and (xn) be asequen
e in IR su
h thatxn ! x ^ :(F (xn)! F (x));where `!' indi
ates 
onvergen
e in the sense of IR. Then9l8k9n�jxn �IR xj <IR h2�ki ^ jF (xn)�IR F (x)j >IR h2�li�:Sin
e <IR2 �01, we 
an apply QF-AC0;0 to obtain9l9g8k�jxg(k) �IR xj <IR h2�k�3i ^ jF (xg(k))�IR F (x)j >IR h2�li�:Lemma 3.11.2 applied to fk := xg(k) yields ~fk; ~f with~f =IR x ^ 8k� ~fk =IR xg(k) ^ ~fk(k) =0 ~f(k)�:F is given by some fun
tional �1!1. Using the extensionality of � w.r.t.=IR we get 8k�j�( ~fk)�IR �( ~f)j >IR h2�li�



HIGHER ORDER REVERSE MATHEMATICS 11and hen
e by lemma 3.11.18k��( ~fk)(l + 2) 6= �( ~f)(l + 2)�:So put together we have shown that9l8k� ~fk(k) =0 ~f(k) ^ �( ~fk)(l + 2) 6= �( ~f)(l + 2)�:Hen
e �1!1 is not everywhere sequentially 
ontinuous (in the sense ofde�nition 3.3.4). By proposition 3.7 this implies (92). aRemark 3.13. Whereas the equivalen
e of global sequential 
ontinuityand global "-Æ-
ontinuity of f : IR ! IR is provable in RCA!0 along thelines of proposition 3.6.1 (see also [20℄(7.2.9)), the use of QF-AC0;1 isunavoidable (but also suÆ
ient even for general Polish spa
es X;Y , see[15℄) to prove the pointwise (`lo
al') equivalen
e. In fa
t, as shown in [5℄,the pointwise equivalen
e of sequential and "-Æ-
ontinuity for f : IR ! IRis independent from ZF.Notation: C denotes the spa
e of all fun
tions f 2 C[0; 1℄ with f(0) �0 ^ f(1) � 0:We now 
onsider uniform versions of the following prin
iples:1. the intermediate value theorem:8f 2 C9x 2 [0; 1℄(f(x) =IR 0);2. the attainment of the maximum prin
iple:8f 2 C([0; 1℄d)9x 2 [0; 1℄d8y 2 [0; 1℄d�f(x) �IR f(y)�;3. Brouwer's �xed point theorem:8f 2 C([0; 1℄d; [0; 1℄d)9x 2 [0; 1℄d(f(x) =IRd x):These prin
iples di�er in strength: whereas 2. and 3. imply (already for
ontinuous fun
tions as de�ned in reverse mathemati
s) WKL, 1.
an beproved in RCA!0 (see [17℄). In fa
t, there is also some di�eren
e between2. and 3., sin
e 2. implies even in the 
ase d = 1 WKL whereas 3. isprovable in RCA0 for d = 1 but implies WKL for d � 2 (see [16℄).In 
ontrast to this, the uniform versions of 1.-3. are all equivalent to (92)(independently of whether e.g. f 2 C[0; 1℄ is given as a type-2 fun
tional,with a 
ode in the sense of reverse mathemati
s, or even with a modulusof uniform 
ontinuity).Proposition 3.14. The following prin
iples are pairwise equivalent rel-ative to RCA!0 :1. (92);2. 9F : C ! [0; 1℄8f 2 C �f(F (f)) =IR 0�;3. the restri
tion of 2. to Lips
hitz4 
ontinuous fun
tions with � = 1,4. 9F : C([0; 1℄d)! [0; 1℄d8f 2 C([0; 1℄d)8y 2 [0; 1℄d�f(F (f)) �IR f(y)�;4E.g. with respe
t to the Eu
lidean norm.



12 ULRICH KOHLENBACH5. the restri
tion of 4. to Lips
hitz 
ontinuous fun
tions with � = 1,6. 9F : C([0; 1℄d; [0; 1℄d) ! [0; 1℄d8f 2 C([0; 1℄d; [0; 1℄d)�f(F (f)) =IRdF (f)�:7. the restri
tion of 6. to Lips
hitz 
ontinuous fun
tions with � = 1.Proof: It is a routine veri�
ation, that 2.-7. 
an be proved withinRCA!0 +(92) by inspe
ting the proofs of the non-uniform versions of thesetheorems. This holds true even if f 2 C[0; 1℄ (and similarly f 2 C([0; 1℄d)and f 2 C([0; 1℄d; [0; 1℄d)) is given just as a fun
tional of type 1! 1 whi
hhappens to be "-Æ-
ontinuous w.r.t. the usual topologies of [0; 1℄d and IR,but without any witness information for this 
ontinuity. We sket
h this for4. and d = 1: Let rn be a suitable enumeration of all rational numbers in[0; 1℄ and de�ne5g(n) := 8<: �i � 2n � 1[8k0; l09j0�rj 2 [ i2n ; i+12n ℄ ^ f(rj) �IR f(rk)� 2�l�℄;if existent00; otherwise.Note that g is (Kleene-)primitive re
ursively de�nable in (92) and (a fun
-tional representing) f sin
e the property `[: : : ℄' is arithmeti
al. In RCA!0 +(92) one easily shows that the 
ase `otherwise' 
annot o

ur. Moreover, us-ing the 
ontinuity of f it follows that (g(n)=2n)n2IN is a Cau
hy sequen
ewith rate of 
onvergen
e 2�n whi
h 
onverges to the least x 2 [0; 1℄ su
hthat f(x) = supy2[0;1℄ f(y):We now prove that any of 2.-7. implies (92). It is 
lear that it suÆ
esto 
onsider the 
ase of Lips
hitz 
ontinuous fun
tions. We show this nowfor 3. (for 5. and 7. the proofs are very similar): Let f0 : [0; 1℄ ! IRbe the 
onstant-0-fun
tion f0(x) := 0. C is the spa
e of all Lips
hitz
ontinuous fun
tions f 2 C[0; 1℄ with Lips
hitz 
onstant � = 1 satisfyingf(0) � 0; f(1) � 0, and F : C ! [0; 1℄ is a fun
tion that satis�es 3.Case 1: F (f0) 2 [0; 12 ℄: For y 2 [0; 1℄, de�ne fy : [0; 1℄ ! IR by fy(x) :=yx� y: fy 2 C and fy(0) � 0; fy(1) � 0 for all y 2 [0; 1℄: Moreover,8y 2 (0; 1℄8x 2 [0; 1℄�fy(x) =IR 0$ x =IR 1�:Hen
e 8y 2 (0; 1℄�F (fy) =IR 1�:De�ne g : [0; 1℄! IR by g(y) := F (fy): Then g(0) = F (f0) 2 [0; 12 ℄ and8y 2 (0; 1℄�g(y) = F (fy) = 1�:Hen
e, bg : IR ! IR; bg(y) := g(minIR(1;maxIR(0; y))) is not sequentially
ontinuous at y := 0:Case 2: F (f0) 2 [ 12 ; 1℄: Analogously to 
ase 1 but with fy(x) := yx:5For notational simpli
ity we write here i2n and 2�l instead of their 
odes.
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ase we have 
onstru
ted (Kleene-)primitive re
ursively in F afun
tion g : IR! IR whi
h is not everywhere sequential 
ontinuous. Hen
e,proposition 3.12 yields the existen
e of (92). aAbove we saw that 
ertain prin
iples whi
h in their non-uniform versionare di�erent with respe
t to the set existen
e axioms needed to prove themare equivalent in their uniform formulation. We now indi
ate that alsothe opposite phenomenon 
an o

ur: 
onsider again the attainment of themaximum prin
iple (for simpli
ity only for dimension 1)(a) 8f 2 C[0; 1℄9x 2 [0; 1℄8y 2 [0; 1℄�f(x) �IR f(y)�and also the existen
e of the supremum(b) 8f 2 C[0; 1℄9y 2 IR�y =IR supx2[0;1℄ f(x)�:From ordinary reverse mathemati
s it is well-known that both prin
iplesare equivalent to WKL (relative to RCA0 and using the en
oding of su
hfun
tions as pointwise 
ontinuous fun
tions as in [17℄, i.e. without a modu-lus of uniform 
ontinuity). We saw above that the uniform version of (a) isequivalent to (92) (independently of whether f is assumed to be uniformly
ontinuous or even given with a modulus of uniform 
ontinuity or not).Let's 
onsider the uniform version of (b). The status now depends on therepresentation: it is easy to de�ne a fun
tional in RCA!0 whi
h 
omputesthe supremum of f uniformly in f and a modulus of uniform 
ontinuity off . If, however, f is just given as a pointwise 
ontinuous fun
tion one hasto 
ompute a modulus of uniform 
ontinuity �rst. This 
an be a
hieveduniformly in f (given as a fun
tional '1!1 whi
h is extensional w.r.t. =IR)by the following so-
alled fan fun
tional(MUC): 9
38'28f1; f2 �1 1�f1(
(')) =0 f2(
(')) ! '(f1) =0 '(f2)�:(MUC) is in
onsistent with (92) but 
onsistent relative to RCA!0 . More-over, adapting the proof of theorem 2.6.6 in [18℄ one 
an showProposition 3.15. RCA!0+MUC is 
onservative over RCA20+WKL(and hen
e �02-
onservative over PRA).Sin
e the uniform version of (b) (for pointwise 
ontinuous fun
tions)6
an be proved in RCA!0+MUC it is proof-theoreti
ally weaker than theuniform version of (a).This di�eren
e in strength for the uniform versions is due to the fa
t that6A
tually, MUC even suÆ
es to prove this for arbitrary fun
tions f : IR ! IR. Wedon't know whether the (
lassi
ally valid) restri
tion of MUC to pointwise 
ontinuousfun
tionals '2 suÆ
es to prove the uniform version of (b). The problem is, that thepointwise 
ontinuity of f : IR! IR does not imply that a fun
tional '1!1 representingf is pointwise 
ontinuous in the sense of the Baire spa
e.
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an be proved intuitionisti
ally from the 
ontraposition of WKL (i.e.`every �nite binary tree is bounded', whi
h is a form of the so-
alled fanprin
iple), whereas (a) uses essentially 
lassi
al logi
. This use of 
lassi
allogi
 results in a dis
ontinuity on the uniform level and hen
e the deriv-ability of 92. Thus we have another reason for investigating higher orderreverse mathemati
s: di�eren
es between prin
iple whi
h are only visiblein an intuitionisti
 setting be
ome visible 
lassi
ally on the higher orderuniform versions of these prin
iples.Final Comments:1. The equivalen
e results established in this paper also hold for the sub-system RCA!�0 :=E-G3A!+QF-AC1;0 of RCA!0 with elementaryre
ursive fun
tionals only (i.e. E-G3A! only 
ontains 0; S;+; �; expand bounded predi
ative re
ursion). The absen
e of �it blo
ks thederivability of �01-IA and, in fa
t, RCA!�0 (whi
h is a higher or-der extension of the system RCA�0 from [17℄) is �02-
onservative overKalmar-elementary arithmeti
 EA.2. The results in this paper depend 
ru
ially on the fa
t that our systemRCA!0 
ontains full extensionality (for type-2-obje
ts). In [14℄ wehave shown that in a setting where (E) is repla
ed by Spe
tor's weakquanti�er-free rule of extensionality e.g. UWKL is as weak as WKL.3. One 
ould argue to use instead of systems based on a �xed systemof �nite types more 
exible systems like Feferman's systems of ex-pli
it mathemati
s are appropriate subsystems of (
lassi
al versionsof) Martin-L�of type theories. However, in neither of these settingshas been formulated a natural equivalent to the systemWKL0, i.e. asystem with the same mathemati
al strength then WKL0 but whi
hat the same time allows a �nitisti
 redu
tion to primitive re
ursivearithmeti
PRA. The problem here seems to be that these frameworkstreat a prin
iple likeWKL automati
ally in its uniform version UWKLwhi
h, however, is (in an extensional setting) proof-theoreti
ally asstrong as (92) as we saw above. In our view it is one of the mostinteresting out
omes of reverse mathemati
s that large parts of math-emati
s 
an be 
arried out in a PRA-redu
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