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(ine�e
tive) straightforward fun
tional analyti
 means. Already in thepurely intuitionisti
 
ase, where the existen
e of e�e
tive bounds is im-pli
it, the metatheorems allow one to derive uniformities that may not beobvious at all from a given 
onstru
tive proofs. Finally, we illustrate ourmain metatheorem by an example from metri
 �xed point theory.1 Introdu
tionProof mining is the appli
ation of logi
al, or more pre
isely, proof theoreti
methods to the analysis of formal systems and proofs with the aim of extra
tingadditional information from (mathemati
al) proofs. E.g. one might want toextra
t from a proof that a 
ertain iteration sequen
e 
onverges an e�e
tive,
omputable modulus of 
onvergen
e and to establish the uniformity of su
h amodulus or even to state general a-priori 
onditions for the independen
e of anextra
ted modulus from 
ertain parameters.In the 
lassi
al 
ase, i.e. formalizations of mathemati
s based on 
lassi
al logi
,the goal of proof mining is to extra
t realizers and bounds - we will fo
us onthe extra
tion of bounds - from prima fa
ie ine�e
tive, non-
onstru
tive proofs.The te
hnique used to prove the existen
e of e�e
tive bounds and, if needed, to
arry out the extra
tion is based on an interpretation of 
lassi
al proofs via somenegative translation and (a suitable form of) G�odel's fun
tional interpretation,further 
ombined with majorization(see [8, 13℄). Whereas previously only theo-rems involving 
onstru
tively representable Polish spa
es 
ould be treated anduniformity in parameters was guaranteed only for the 
ase of 
ompa
t spa
es([8, 9℄) results in [13℄ due to the se
ond author allow one to treat 
lasses ofarbitrary metri
, hyperboli
, CAT(0) and normed linear spa
es X . Moreover,under very general 
onditions, uniformity in parameters ranging over metri
allybounded spa
es 
an be inferred a-priorily even in 
ases where this 
ould nothave been obtained by usual ine�e
tive fun
tional analyti
 methods. In [4℄,these results were re
ently generalized by the authors. Using a novel majoriza-tion te
hnique developed by the authors one obtains similar uniformities evenif the spa
e as a whole is not metri
ally bounded but only lo
al boundedness
onditions are imposed. However, both the raw material, 
lassi
al proofs, andthe te
hniques employed for the interpretation impose 
ertain restri
tions: One
an use at most weak extensionality in the proofs to be analyzed, as full exten-sionality 
an be shown to be too strong under fun
tional interpretation. In the
ontext of [13, 4℄ this is a severe restri
tion as it implies that not every obje
tfX!X of type X ! X 
an be viewed as a fun
tion f : X ! X:1 Also, asmany 
lassi
ally true theorems 
annot be given (a dire
t) 
omputational mean-ing (this in
ludes already �03-senten
es), the extra
tion of realizers and bounds
an be 
arried out at most for (
lassi
al) proofs of senten
es of the form 89Aqfwhere Aqf is quanti�er-free with some further restri
tions on the types of thequanti�ed variables.1As a 
onsequen
e of this, the appli
ations given in [13, 4℄ mainly 
on
ern 
lasses of fun
-tions, like nonexpansive fun
tions, for whi
h the extensionality 
an be dedu
ed dire
tly.2



In this paper, we 
onsider proof mining in the semi-intuitionisti
 
ase: intuition-isti
 analysis enri
hed with 
ertain non-
onstru
tive prin
iples. In the purelyintuitionisti
 setting bounds and realizers are impli
itly given. Nevertheless,even in the intuitionisti
 setting our results prove non-trivial 
onsequen
es: asin the 
lassi
al setting of [13, 4℄ we 
an now guarantee very strong uniformity re-sults (independen
e from parameters ranging over metri
ally bounded spa
es).Even in the presen
e of various highly ine�e
tive prin
iples (su
h as 
ompre-hension in all types for arbitrary negated or 9-free formulas and many others),most of the restri
tions needed in the fully 
lassi
al 
ase disappear in our semi-
onstru
tive setting: we 
an now use full extensionality and extra
t realizersand bounds from (semi-intuitionisti
) proofs of arbitrary formulas, with 
om-paratively modest restri
tions on the types of the quanti�ed variables.The te
hnique employed to establish these results for su
h semi-intuitionisti
systems is a monotone variant of Kreisel's modi�ed realizability interpreta-tion, so-
alled monotone modi�ed realizability. The metatheorem for the semi-intuitionisti
 
ase we present in this paper is to some extent based on resultsin [10℄, and the extensions presented here 
an be 
onsidered as the 
ounterpartto the extensions of [8℄ presented in [13, 4℄ for the 
lassi
al 
ase. We will fo
uson developing the semi-intuitionisti
 versions of the results [13℄ in detail. Theresults in [4℄ 
an be transferred to the semi-intuitionisti
 setting in a similar butte
hni
ally more 
ompli
ated way.As stated above, both in the 
lassi
al and the semi-intuitionisti
 
ase the metathe-orems allow one to derive new, strong uniformity results, by giving general, easyto 
he
k 
onditions under whi
h an extra
ted bound will be guaranteed to beindependent from 
ertain parameters - all of this without a
tually having to
arry out the extra
tion. For the independen
e of (e�e
tive) bounds from pa-rameters ranging over 
ompa
t spa
es su
h results are well known and have beentreated in [9, 10℄. For non-
ompa
t bounded metri
 or hyperboli
 spa
es thereare no general mathemati
al reasons why su
h uniformities should hold, and inmetri
 �xed point theory similar (ine�e
tive) uniformity results have hithertoonly been obtained in spe
ial 
ases by non-trivial fun
tional analyti
 te
hniques(see [13, 15℄ for dis
ussions of these points). Already in the 
ontext of fullyintuitionisti
 proofs one 
an derive new uniformities that may not be obviousfrom a given 
onstru
tive proof or a bound impli
it in the proof.We illustrate the various aspe
ts of the metatheorems by a very simple examplefrom metri
 �xed point theory: First we state the original ine�e
tive versionof Edelstein's �xed point theorem [3℄. The main part of Edelstein's �xed pointtheorem is of a too 
ompli
ated logi
al form (namely �03) to dire
tly allowthe extra
tion via the 
lassi
al metatheorems in [13, 4℄. Therefore in [16℄ ane�e
tive uniform bound for Edelstein's �xed point theorem was extra
ted bysplitting up Edelstein's proof into three lemmas, ea
h simple enough to allowthe extra
tion of an e�e
tive bound. We present a variant of Edelstein's �xedpoint theorem due to Rakot
h [21℄, the proof of whi
h is fully 
onstru
tive. Thispermits us to extra
t a uniform bound as guaranteed by the semi-intuitionisti
metatheorem. Finally, we 
ompare the results with a treatment of Edelstein's�xed point theorem in the setting of Bishop-style 
onstru
tive mathemati
s by3



Bridges, Julian, Ri
hman and Mines [2℄. Both the 
lassi
al and the intuitionisti
metatheorem a-priorily guarantee uniformities not stated in the 
onstru
tiveproof by Bridges et. al. The bound extra
ted from Rakot
h's 
onstru
tivizedproof, while superior to the bound extra
ted in [16℄, is identi
al to the boundimpli
it in [2℄.2 Formal systemsWe now des
ribe the 
lassi
al and intuitionisti
 formal systems in whi
h theextra
tion of bounds is 
arried out. For te
hni
al details see [13℄ and also [19℄.Let A! := WE-PA!+QF-AC+DC be the system of so-
alled weakly exten-sional 
lassi
al analysis based upon a �nite type extension WE-PA! of �rstorder Peano arithmeti
 PA, where QF-AC is the axiom s
hema of quanti�er-free 
hoi
e and DC is the axiom s
hema of dependent 
hoi
e in all types. LetA!i be de�ned as E-HA! +AC; where E-HA! denotes the intuitionisti
 ex-tensional 
ounterpart of WE-PA! and AC is the full axiom of 
hoi
e (detailsare given below).De�nition 2.1. The set T of all �nite types is de�ned indu
tively by the 
lauses(i) 0 2 T; (ii) �; � 2 T ) (�! �) 2 T:Obje
ts of type 0 denote natural numbers, obje
ts of type �! � are operationsmapping obje
ts of type � to obje
ts of type � . We only in
lude equality =0between obje
ts of type 0 as a primitive predi
ate. Equality between obje
ts ofhigher types s =� t is a de�ned notion:2s =� t :� 8x�11 ; : : : ; x�kk (s(x1; : : : ; xk) =0 t(x1; : : : ; xk));where � = �1 ! �2 ! : : : �k ! 0, i.e. higher type equality is de�ned asextensional equality. An operation F of type � ! � is 
alled extensional if itrespe
ts this extensional equality:8x�; y��x =� y ! F (x) =� F (y)�:Ideally, we would like to have an axiom stating the extensionality for all fun
-tionals, but in the 
lassi
al system A! full extensionality would be too strong forthe metatheorems we are aiming at and their appli
ations in fun
tional analysisto hold. Instead in A! we in
lude a weaker quanti�er-free extensionality ruledue to [25℄:QF-ER : A0 ! s =� tA0 ! r[s℄ =� r[t℄ ; where A0 is a quanti�er-free formula.The rule QF-ER allows one to derive the equality axioms for type-0 obje
tsx =0 y ! t[x℄ =� t[y℄2Here we write s(x1; : : : ; xk) for (: : : (sx1) : : : xk).4



but not for obje
ts x; y of higher types (see [26℄, [6℄).In the intuitionisti
 system A!i we in
lude the mu
h stronger extensionalityaxiom: E� : 8z�; x�11 ; y�11 ; : : : ; x�kk ; y�kk ( k̂i=1(xi =�i yi)! zx =0 zy);for all types �.The systems A! and A!i are de�ned on top of many-sorted 
lassi
al, resp. intu-itionisti
, logi
 with 
onstants O0 (zero), S1 (su

essor), ��!�!��;� (proje
tors),�Æ;�;� (
ombinators of type (Æ ! � ! �) ! (Æ ! �) ! Æ ! �) and 
onstantsR� for simultaneous primitive re
ursion in all types.3 In addition to the de�ningequations for those 
onstants, A! and A!i 
ontain as non-logi
al axioms:1. Re
exivity, symmetry and transitivity axioms for =0,2. the axiom s
hema of 
omplete indu
tion:IA : A(0) ^ 8x0�A(x)! A(S(x))) ! 8x0A(x);where A(x) is an arbitrary formula of our language,3. in A! :� the quanti�er-free extensionality rule QF-ER� the quanti�er-free axiom of 
hoi
e s
hema in all types:QF-AC : 8x9yA0(x; y)! 9Y 8xA0(x; Y x);where A0 is quanti�er-free and x; y are tuples of variables of arbitrarytypes,� the axiom s
hema of dependent 
hoi
e DC:= fDC� : � 2 Tg:DC� : 8x0; y�9z�A(x; y; z)! 9f0!�8x0A(x; f(x); f(S(x)));where A is an arbitrary formula and � an arbitrary type.4. in A!i :� the axiom s
hema of extensionality E = fE� : � 2 Tg for all types �� the axiom s
hema of full 
hoi
e AC:= fAC�;� : �; � 2 Tg:AC�;� : 8x�9y�A(x; y)! 9Y �!�8xA(x; Y x):where A is an arbitrary formula.3It is well-known that simultaneous primitive re
ursion in all �nite types (whi
h de�nesprimitive re
ursively �nite tuples of fun
tionals rather than a single fun
tional only) 
an beredu
ed to ordinary primitive re
ursion in all �nite types over A!i (see [26℄(1.6.16)). However,in the extensions A!(i)[X; : : :℄ to be dis
ussed below this seems to require the addition of 
ertainprodu
t types so that we prefer to take simultaneous re
ursion as a primitive 
on
ept as in[13℄. 5



We next sket
h extensions of A! and A!i with an (non-empty) abstra
t metri
spa
e (X; d), resp. hyperboli
 spa
e or CAT(0) spa
e (X; d;W ); where for thesomewhat involved details we refer to [13℄:The basi
 idea is to axiomati
ally add an abstra
t metri
 or hyperboli
 spa
eas a kind of `Urelement' to the system. More formally, the theories A![X; d℄,A![X; d;W ℄ and A![X; d;W;CAT(0)℄ result from extending A! (and also IA, R,QF-AC, DC, QF-ER, . . . ) to the set TX of all �nite types over the two groundtypes 0 and X , and by adding 
onstants dX and { in the 
ase of A![X; d;W ℄ andA![X; d;W;CAT(0)℄ { WX representing d;W and suitable (purely universal)axioms to A!. Moreover, we add a 
onstant bX (of type 0) for an upper bound ofdX . Equality is de�ned extensionally over the base types 0 and X; where xX =XyX :� (dX (x; y) =IR 0IR). Analogously, the theories A!i [X; d℄, A!i [X; d;W ℄ andA!i [X; d;W;CAT(0)℄ result from an extension of A!i .Similarly, one de�nes the extensions A![X; k � k; C℄ and A!i [X; k � k; C℄ of A!and A!i with an abstra
t (non-trivial) normed linear spa
e (X; k �k) and a (non-empty) bounded 
onvex subset C � X (again we refer to [13℄ for details):The theories A![X; k � k; C℄ and A!i [X; k � k; C℄ result from extending A! andA!i to the set TX of all �nite types over the two ground types 0 and X , andby adding 
onstants for the ve
tor spa
e operations and k � k as well as forthe 
hara
teristi
 fun
tion of C and an upper bound bX on the norm of theelements of C with appropriate (purely universal) axioms to A! expressing theve
tor spa
e and norm axioms as well as the boundedness and 
onvexity of C:As before, equality is de�ned extensionally over the base types 0 and X:De�nition 2.2. Between fun
tionals x�; y� of type � = �1 ! : : : ! �k ! 0with �i 2 TX we de�ne a relation �� as follows:x �� y :� 8z� (x(z) �0 y(z)):For A!(i)[X; k � k; C℄ we extend �� to arbitrary types � 2 TX by de�ning for� = �1 ! : : :! �k ! X:x �� y :� 8z� (kx(z)kX �IR ky(z)kX):De�nition 2.3. Let X be a non-empty set. The full set-theoreti
 type stru
tureS!;X := hS�i�2TX over IN and X is de�ned byS0 := IN; SX := X; S�!� := SS�� :Here SS�� is the set of all set-theoreti
 fun
tions S� ! S�:We say that a senten
e of L(A! [X; d℄), holds in a nonempty bounded metri
spa
e (X; d) if it holds in the model4 ofA! [X; d℄ obtained by letting the variablesrange over the appropriate universes of the full set-theoreti
 type stru
ture S!;X4Stri
tly speaking, we would have to use the plural here as the interpretation of 
onstantbX is not uniquely determined. For details see [13℄.6



with the set X as the universe for the base type X , and the 
onstants of (X; d)interpreted by elements of the suitable universes as spe
i�ed in [13℄.Similarly for L(A! [X; d;W ℄), L(A! [X; d;W;CAT(0)℄) and L(A! [X; k � k; C℄),and for the languages formed over the 
orresponding intuitionisti
 systems.In the following (for � 2 TX) `8xC A(x)', `8f�!C A(f)', `8fX!C A(f)' and`8fC!C A(f)' abbreviate8xX(�C(xX ) =0 0! A(x));8f�!X�8y�(�C(f(y)) =0 0)! A(f)�;8fX!X�8yX(�C(f(y)) =0 0)! A(f)� and8fX!X�8xX(�C(x) =0 0! �C(f(x)) =0 0)! A( ~f)�;where ~f(x) = � f(x); if �C(x) =0 0
X ; otherwise:Analogously for the 
orresponding 9-quanti�ers with `^' instead of `!'. Thisextends to types of degree (1; X;C) and (X;C) de�ned below.De�nition 2.4. We say that a type � 2 TX has degree� 1 if � = 0! : : :! 0 (in
luding � = 0),� (0; X) if � = 0! : : :! 0! X (in
luding � = X),� (1; X) if it has the form �1 ! : : :! �k ! X (in
luding � = X), where �ihas degree 1 or (0; X),� (�; 0) if � = �1 ! : : : ! �k ! 0 (in
luding � = 0) for arbitrary types �i 2TX ,� (�; X) if � = �1 ! : : : ! �k ! X (in
luding � = X) for arbitrary types�i 2 TX .Types involving C do not belong to TX but are only used in 
onne
tion with theabbreviations mentioned above. We say that su
h a type has degree� (1; X;C) if it has the form �1 ! : : : ! �k ! C (in
luding � = C), where�i has degree 1 or �i = X or �i = C,� (X;C) if � = �1 ! : : : ! �k ! C (in
luding � = C) where �i 2 TX or�i = C.In [4℄, unbounded metri
, hyperboli
 and CAT(0) spa
es, as well as normedlinear spa
es with an unbounded 
onvex subset C are treated. The 
orrespond-ing 
lassi
al (and semi-intuitionisti
) theories are de�ned as above, ex
ept thatthe axiom stating the boundedness of the metri
 spa
e (X; d), resp. the 
onvexsubset C, is omitted. This is expressed by adding a `�b', i.e. by writing e.g.A![X; d℄�b, A![X; k � k; C℄�b and likewise for the unbounded variants of theother 
lassi
al and semi-intuitionisti
 theories des
ribed in this se
tion.7



3 Extra
ting bounds from 
lassi
al proofsIn this se
tion we brie
y restate material from [13℄ and [4℄.De�nition 3.1. A formula F is 
alled a 8-formula (resp. an 9-formula) if ithas the form F � 8a�Fqf (a) (resp. F � 9a�Fqf (a)) where Fqf does not 
ontainany quanti�er and the types in � are of degree 1 or (1; X).For metri
, hyperboli
 and CAT(0) spa
es we have the following metatheorem:Theorem 3.2 ([13℄). 1. Let �; � be types of degree 1 and � be a type of de-gree (1; X). Let s�!� be a 
losed term of A! [X; d℄ and B8(x� ; y�; z� ; u0)(resp. C9(x� ; y�; z� ; v0)) be a 8-formula 
ontaining only x; y; z; u free(resp. a 9-formula 
ontaining only x; y; z; v free).If 8x�8y �� s(x)8z��8u0B8(x; y; z; u)! 9v0C9(x; y; z; v)�is provable in A![X; d℄, then one 
an extra
t a 
omputable fun
tional� : S� � IN! IN su
h that for all x 2 S� and all b 2 IN8y �� s(x)8z��8u � �(x; b)B8(x; y; z; u)! 9v � �(x; b)C9(x; y; z; v)�holds in any (non-empty) metri
 spa
e (X; d) whose metri
 is bounded byb 2 IN.2. For bounded hyperboli
 spa
es (X; d;W ) statement 1. holds with`A! [X; d;W ℄, (X; d;W )' instead of `A! [X; d℄; (X; d)'.3. If the premise is proved in `A! [X; d;W;CAT(0)℄', instead of `A![X; d;W ℄',then the 
on
lusion holds in all b-bounded CAT(0)-spa
es.Instead of single variables x; y; z; u; v we may also have �nite tuples of variablesx; y; z; u; v as long as the elements of the respe
tive tuples satisfy the same typerestri
tions as x; y; z; u; v. Moreover, instead of a single premise of the form`8u0B8(x; y; z; u)' we may have a �nite 
onjun
tion of su
h premises.One of the main aspe
ts of this theorem is that the bound �(x; b) does notdepend on y or z:The proof in [13℄ is based on an extension of Spe
tor's[25℄ extension of G�odel'sfun
tional interpretation to 
lassi
al analysis A! by bar re
ursive fun
tionals(i.e. re
ursion over well-founded trees) to A![X; d℄, resp. A![X; d;W ℄ andA![X; d;W;CAT(0)℄, and a subsequent interpretation of these fun
tionals inan extensionM!;X of the Howard-Bezem[6, 1℄ strongly majorizable fun
tionalsM! to TX .These extensions rest on the following observations:1. As is the 
ase with A!, the prime formulas of A![X; d℄ are of the forms =0 t and hen
e de
idable. Thus the soundness of negative transla-tion and subsequent fun
tional interpretation of the logi
al axioms and8



rules and the de�ning equations for 
ombinators �;� and the re
ursor R,the rule QF-ER and the axiom s
hema QF-AC extend to the new set oftypes TX without any 
hanges. Likewise the interpretation of the axioms
hema of indu
tion and the axiom s
hema of dependent 
hoi
e extendsto TX using 
onstants R� for simultaneous primitive re
ursion and B�;�for simultaneous bar re
ursion in all types �; � 2 TX .2. The fun
tional interpretation of the negative translation of the new ax-ioms of A! [X; d℄;A![X; d;W ℄ and A! [X; d;W;CAT(0)℄ are equivalent tothemselves as they are purely universal and don't 
ontain _.3. Bezem's[1℄ type stru
ture of hereditarily strongly majorizable fun
tionalsM! extends easily to all types of TX , taking x� majX x always true. Therealizer 	 2M!;X for a bound on u0; v0 extra
ted by negative translationand fun
tional interpretation depends on X via an interpretation of the
onstants of X . Using majorization we show that we 
an extra
t a boundwhi
h only depends on X via an interpretation of bX by some integerbound b on the metri
 d.4. Sin
e for the restri
ted types 
 of degree 1, (0; X) or (1; X) o

urring in8x�8y �� s(x)8z��8u0B8(x; y; z; u)! 9v0C9(x; y; z; v)�M
 = S
 , this bound holds in any nonempty b-bounded spa
e (X; d), resp.(X; d;W ) and (X; d;W;CAT(0)).For a detailed proof, see [13℄.De�nition 3.3. 1. Let (X; d) be a metri
 spa
e. A fun
tion f : X ! X is
alled nonexpansive (short: `f n.e.') if8x; y 2 X�d(f(x); f(y)) � d(x; y)�:2. ([7℄) Let (X; d;W ) be a hyperboli
 spa
e. A fun
tion f : X ! X is 
alleddire
tionally nonexpansive (short: `f d.n.e.') if8x 2 X8y 2 seg(x; f(x))�d(f(x); f(y)) � d(x; y)�;where seg(x; y) := fW (x; y; �) : � 2 [0; 1℄g:De�nition 3.4. Let f : X ! X, then Fix(f) := fx 2 X j x = f(x)g.In [13℄, the following 
orollary of theorem 3.2 is derived, whi
h is spe
iallytailored towards appli
ations to metri
 �xed point theory:Corollary 3.5 ([13℄). 1. Let P (resp. K) be a A!-de�nable Polish spa
e(resp. 
ompa
t Polish spa
e), given in so-
alled standard representation,and B8(x1; y1; z; f; u); C9(x1; y1; z; f; v) be as in the previous theorem.If A! [X; d;W ℄ proves that8x 2 P8y 2 K8zX ; fX!X� f n.e. ^ Fix(f) 6= ; ^ 8u0B8 ! 9v0C9�;9



then there exists a 
omputable fun
tional �1!0!0 (on representatives x :IN! IN of elements of P ) su
h that for all x 2 ININ; b 2 IN8y 2 K8zX8fX!X� f n.e. ^ 8u � �(x; b)B8 ! 9v � �(x; b)C9�holds in any (non-empty) hyperboli
 spa
e (X; d;W ) whose metri
 is boundedby b.2. An analogous result holds if `f n.e.' is repla
ed by `f d.n.e'.Note that in the 
orollary, the assumption Fix(f) 6= ; has disappeared in the
on
lusion! For a dis
ussion of this remarkable point see [13℄.For normed linear spa
es, the following metatheorem is proved in [13℄:Theorem 3.6 ([13℄). Let � be a type of degree 1, � of degree 1 or (1; X)and � of degree (1; X;C). Let s�!� be a 
losed term of A![X; k � k; C℄ andB8(x� ; y�; z� ; u0) (resp. C9(x� ; y�; z� ; v0)) be a 8-formula 
ontaining only x; y; z; ufree (resp. an 9-formula 
ontaining only x; y; z; v free).If 8x�8y �� s(x)8z��8u0B8(x; y; z; u)! 9v0C9(x; y; z; v)�is provable in A![X; k � k; C℄, then one 
an extra
t a 
omputable fun
tional � :S� � IN! IN su
h that for all x 2 S� and all b 2 IN8y �� s(x)8z��8u � �(x; b)B8(x; y; z; u)! 9v � �(x; b)C9(x; y; z; v)�holds in any non-trivial normed linear spa
e (X; k � k) and any non-empty b-bounded 
onvex subset C.Instead of single variables and a single premise we may have tuples of variablesand a �nite 
onjun
tion of su
h premises.Remark 3.7. In [13℄, there are also 
orresponding theorems proved for uni-formly 
onvex normed spa
es (X; k � k; �) with 
onvexity modulus � (then thebound �(x; b; �) will additionally depend on the modulus �) and for inner prod-u
t spa
es.The proof in [13℄ is based on the same fundamental ideas as the proof of Theorem3.2, the main di�eren
e being that the majorization relation on obje
ts of typeX 
an no longer be treated as trivial as in the 
ase of a bounded metri
 spa
e.Instead one de�nes the majorization relation s-maj for elements of type X tobe x� s-majX x :� kx�kX �IR kxkX :Then one 
an prove, as before, the extra
tability of e�e
tive bounds, where themain diÆ
ulty is to de�ne suitable majorants for the 
onstants and 
onstru
tionsof A! [X; k � k; C℄.As shown in [4℄, using a novel majorization te
hnique these metatheorems 
anbe generalized to unbounded metri
 spa
es and normed linear spa
es with un-bounded 
onvex subset C. The new majorization relation developed by the10



authors is te
hni
ally more 
ompli
ated but allows one to derive similar uni-formities from far more general 
onditions than the boundedness of the entiremetri
 spa
e, resp. the 
onvex subset C.Dis
ussion on extensionality: As mentioned above, one 
an only allow theweak extensionality rule instead of the full axiom of extensionality in the formalsystems based on 
lassi
al logi
. In order to reverse the double negations intro-du
ed by the negative translation, it is stri
tly ne
essary that the interpretationwe 
hoose to interpret 
lassi
al logi
 in parti
ular interprets the Markov prin-
iple. However, together with the Markov Prin
iple full extensionality would
ause severe problems, as it allows us, when 
ombined with fun
tional inter-pretation, to obtain witnesses for potential universal quanti�ers hidden in theextensionally de�ned equalities in the premise of impli
ations, e.g. in the ex-tensionality axiom itself.The extra
tion of witnesses, 
ombined with majorization, would thus transforman instan
e of the extensionality axiom into a statement about uniform 
onti-nuity. An axiom stating the extensionality of a single fun
tion 
onstant wouldallow us to prove its uniform 
ontinuity. E.g. the full extensionality axiom fortype-X equality would even allow us to prove (in the 
ontext of A![X; d℄) theequi
ontinuity of all fun
tions fX!X whi
h { of 
ourse { is not true in general(but does hold for the 
lass of nonexpansive mappings f : X ! X , whose fullextensionality follows in A![X; d℄).A similar problem with extensionality arises from the representation of a 
onvexsubset C of a normed linear spa
e via its 
hara
teristi
 fun
tion �C . Here wewould like the 
hara
teristi
 fun
tion to respe
t the extensional equality, i.e.x =X y ! �C(x) =0 �C(y):In the presen
e of fun
tional interpretation and majorization, this would notonly yield that points x 2 X 
lose to C behave similar to points in C, it wouldalso des
ribe a modulus for how 
lose to C you have to be to behave `suÆ
ientlysimilar'. Unless the subset C is topologi
ally very simple (e.g. a 
losed boundedball), su
h statements will in general not be 
orre
t.Therefore, we must restri
t the formal system to make unwanted or simply false
on
lusions, drawn from extensionality statements, impossible. In turn, whenit is ne
essary to employ an extensional equality in a proof, we 
annot simplyassume extensionality: every statement of extensionality that is used in a proofmust itself be expli
itly proved with the use of QF-ER or follow from uniform
ontinuity. For more details, see the dis
ussion of extensionality in se
tion 3 of[13℄.4 Extra
ting bounds from semi-
onstru
tive proofsThe metatheorems from [13℄ whi
h we brie
y dis
ussed in the previous se
tionallow one to extra
t bounds from proofs in fairly strong systems, namely ex-tensions of 
lassi
al analysis with an abstra
t metri
, hyperboli
, CAT(0) resp.11



normed linear spa
e. However, the fa
t that the formal systems were basedon 
lassi
al logi
 imposes severe restri
tions on the 
lass of formulas for whi
hextra
tion of bounds is possible.The �rst step in the extra
tion algorithm is to apply negative translation tothe 
lassi
al proof (of some formula F ), i.e. to translate it into an essentiallyintutionisti
 proof of the negative translation FN of F (whi
h may, however,use the Markov prin
iple to be dis
ussed below). This restri
ts the extra
tion ofbounds to 89A-formulas for whi
h the equivalen
e between the formula and itsnegative translation 
an be shown to hold under the Markov Prin
iple, namelythe 
lass of formulas 89Aqf , where Aqf is quanti�er-free (or purely existen-tial). In 
onsequen
e, the interpretation must interpret the Markov Prin
iple,as fun
tional interpretation indeed does. In general, su
h an equivalen
e 
anbe validated at most for 89Aqf -formulas, as already the formula 
lass �03 yields
ounterexamples to the existen
e of e�e
tive bounds in the form of e.g. thehalting problem.Se
ondly, the interpretation of the negative translation of the axiom of depen-dent 
hoi
e by bar re
ursive fun
tionals requires arguments whi
h hold only inthe model of hereditarily strongly majorizable fun
tionalsM!;X over the typesIN and X but not in the full set-theoreti
 model S!;X . In 
onsequen
e, for theextra
ted bounds to hold in S!;X , we must restri
t the types of the quanti�edvariables in the theorem to be proved to types of degree 1 or (1; X), as for thoselow types the proper in
lusions between these two models hold.We will see now that the intuitionisti
 
ounterpart of A! and its extensions tometri
, hyperboli
, CAT(0) and normed linear spa
es do not su�er from su
hrestri
tions (even when strong ine�e
tive prin
iples are added).In the 
lassi
al 
ase, an extension of G�odel's Diale
ti
a interpretation 
ombinedwith negative translation and majorization (monotone fun
tional interpretation)was used to obtain the results. In the intuitionisti
 setting we derive these re-sults from a monotone variant of Kreisel's modi�ed realizability interpretation(in short: mr-interpretation), the so-
alled monotone modi�ed realizability in-terpretation. Kreisel's mr-interpretation was introdu
ed in [17, 18℄ and studiedin great detail in [26, 27℄. The monotone mr-interpretation was introdu
ed in[10℄ and is studied in detail in [12℄.This interpretation has the following ni
e properties:1. As in the 
lassi
al 
ase, we 
an use the general metatheorem as a bla
kbox to prove (even qualitatively new) uniformity results without a
tuallyhaving to 
arry out the extra
tion.2. Contrary to 
lassi
al systems, we are no longer restri
ted to proofs of89Aqf -statements, but 
an allow 89A-statements for arbitrary A. Fur-thermore, the additional restri
tions on the quanti�ers stated in Theorem3.2 and Theorem 3.6 
an be signi�
antly relaxed.3. We may add large 
lasses of additional axioms �: whi
h in
lude highlyine�e
tive prin
iples su
h as full 
omprehension for arbitrary negated for-12



mulas (whi
h is not even allowed in the 
lassi
al 
ontext, where it wouldgive full 
omprehension for all formulas).The Markov Prin
iple in all �nite types is the prin
ipleM! : ::9xAqf (x)! 9xAqf (x);where Aqf is an arbitrary quanti�er-free formula and x is a tuple of variables ofarbitrary types (Aqf may 
ontain further free variables).As dis
ussed above, in the 
lassi
al 
ase it is stri
tly ne
essary that the inter-pretation we 
hoose interprets the Markov prin
iple, and this imposes 
ertainrestri
tions on the formal system. In the intuitionisti
 setting we 
an 
hoose notto in
lude the Markov Prin
iple. As a 
onsequen
e, when extending intuitionis-ti
 analysis with non-
onstru
tive prin
iples we have an a
tual 
hoi
e betweentwo main dire
tions in whi
h to extend the formal system: with or without theMarkov Prin
iple M!:Extending the system with the Markov Prin
iple would for
e us both to restri
textensionality to weak extensionality and to allow at most the independen
eof premise s
heme for purely universal formulas. However, we 
ould still {repla
ing the use of negative translation in the proofs of the main results in[13℄ by the reasoning used to prove theorem 3.18 in [10℄ (based on monotonefun
tional interpretation) { extra
t bounds for arbitrary formulas 89A, insteadof the restri
ted formula 
lass 89Aqf .We 
hoose instead to extend our formal system in the dire
tion without M!.Abandoning the Markov Prin
iple allows us to add full extensionality and 
om-prehension and independen
e of premise s
hemes for arbitrary negated formulas,as well as many other essentially non-
onstru
tive analyti
 or logi
al prin
iples(see also [10℄).Let 
omprehension for negated formulas be the prin
iple (also for tuples ofvariables y): CA�: : 9� ��!0 �x�:108y�(�(y) =0 0$ :A(y));where y = y�11 ; : : : ; y�kk is an arbitrary tuple of variables of arbitrary types, andlet the independen
e-of-premise prin
iple for negated formulas be:IP �: : (:A! 9y�B(y))! 9y�(:A! B(y)) (y =2 FV(A));where in both 
ases A;B are arbitrary formulas. The union of these prin
iplesover all types � of the underlying language are denoted by CA: and IP: where{ when working over the systems A!i [X; : : :℄ { we allow arbitrary types � 2 TX .De�nition 4.1. A formula A 2 A!i , resp. A 2 A!i [: : :℄, is 
alled 9-free (or`negative'), if A is built up from prime formulas by means of ^;!;: and 8only, i.e. A 
ontains neither 9 nor _. We denote 9-free formulas A by Aef .The prin
iples CAef and IPef are the prin
iples 
orresponding to CA: andIP:, where instead of :A we have an 9-free formula Aef .13



We next re
all Kreisel's mr-interpretation and Bezem's[1℄ notion of strong ma-jorizability, whi
h is an extension of Howard's [6℄ notion of majorizability, for alltypes TX . Combining these allows us to de�ne the monotone mr-interpretation.For ea
h formula A(a), where a are the free variables of A, Kreisel's mr-interpretation de�nes, by indu
tion on the logi
al stru
ture of A, a 
orrespond-ing formula `x mr A' (in words: x modi�ed realizes A), where x is a (possiblyempty) tuple of variables, whi
h do not o

ur free in A. From a proof of AKreisel's mr-interpretation extra
ts a tuple of 
losed terms t s.t. 8a(ta mr A(a)).For details see e.g. [26, 27℄.Remark 4.2. 1. For every 9-free formula A we have (x mr A) � A with xthe empty tuple.2. (x mr A) is always an 9-free formula.De�nition 4.3 ([13℄, extending [6, 1℄). The strong majorizability relations-maj is de�ned as follows:� x� s-maj0 x :� x� � x� x� s-majX x :� (0 =0 0) in A!(i)[X; d; : : :℄,� x� s-majX x :� kx�kX �IR kxkX in A!(i)[X; k � k; : : :℄,� x� s-maj�!� x :� 8y�; y(y� s-maj� y ! x�y� s-maj� x�y; xy)De�nition 4.4 ([10℄). A tuple of 
losed terms t� satis�es the monotone mr-interpretation of A(a) if9z(t� s-maj z ^ 8a(za mr A(a))We brie
y re
all some properties of the mr-interpretation. As we have the fullaxiom of 
hoi
e AC in A!i , resp. A!i [: : :℄, one shows:Proposition 4.5 (Troelstra[26℄).A!i + IPef ` A$ 9x(x mr A)Similarly for A!i [: : :℄ + IPef .Proof. By indu
tion on the logi
al stru
ture of A.Corollary 4.6. 1. For every formula A 2 A!i we 
an 
onstru
t an 9-freeformula Bef s.t. A!i + IPef ` :A$ Bef :Similarly for A!i [: : :℄.2. For every 9-free formula Aef 2 A!i we have that A!i ` Aef $ ::Aef .Similarly for A!i [: : :℄.3. Over A!i we have IPef $ IP: and CAef $ CA:. Similarly for A!i [: : :℄.14



Proof. 1. By Proposition 4.5 we haveA!i + IPef ` :A$ 8y((y mr A)! ?);where 8y((y mr A)! ?) is 9-free, as (y mr A) is 9-free.2. This equivalen
e is provable intuitionisti
ally in the 
ontext of de
idableprime formulas.3. A!i + IPef ` IP: follows from `1.', and A!i + CAef ` CA: follows from thefa
t that A!i + CAef ` IPef and `1.'. The 
onverse impli
ations follow from`2.'.In the following, we will omit mentioning IP: and IPef , as they follow from the
orresponding 
omprehension s
hemes CA: and CAef (and the de
idability of=0).Dis
ussion of extensionality, 
ontinued: As mentioned above, in the 
on-text of fun
tional interpretation full extensionality is mu
h too strong, as itwould allow us to derive (when 
ombined with the generalized majorizabilityfrom [13℄) statements e.g. about uniform 
ontinuity whi
h are not true in gen-eral. In the 
ontext of (monotone) modi�ed realizability full extensionality isharmless. Extensionally de�ned equalities in the premise of impli
ations, e.g. ininstan
es of the extensionality axiom, as indeed instan
es of the extensionalityaxiom as a whole, are 9-free and thus realized by the empty tuple.Informally speaking, fun
tional interpretation is `too eager', seeking to extra
tevery possible and hen
e some unwanted bounds. In 
ontrast, modi�ed realiz-ability is `lazy enough' to only extra
t bounds where this is expli
itly asked for,namely from positive existential statements. Where fun
tional interpretationextra
ts bounds on universal premises in an impli
ation, modi�ed realizabilityleaves them alone. In pra
ti
e, this allows us to remove the requirement toexpli
itly prove every extensional equality used in the proof and instead to sim-ply assume it as a premise, leading to a more natural, intuitive treatment ofextensionality.We 
an prove the following theorem, 
orresponding to Theorem 3.2 in the 
las-si
al setting:Theorem 4.7. 1. Let � be a type of degree 1, let � be a type of degree (�; 0)and let � be a type of degree (�; X). Let s�!� be a 
losed term of A!i [X; d℄and let A (resp. B) be an arbitrary formula with only x; y; z; n (resp.x; y; z) free. Let �: be a set of senten
es of the form 8u�(C ! 9v ��tu9w
:D) with t�!� be a 
losed term of A!i [X; d℄, the type � 2 TXarbitrary, the type � of degree (�; 0) and 
 of degree (�; X). IfA!i [X; d℄ + CA: + �: ` 8x�8y �� s(x)8z� (:B ! 9n0A);then one 
an extra
t a primitive re
ursive (in the sense of G�odel) fun
-tional � : S� � IN! IN su
h that for all b 2 IN8x�8y �� s(x)8z�9n � �(x; b)(:B ! A)15



holds in any (non-empty) metri
 spa
e (X; d) whose metri
 is bounded byb 2 IN and whi
h satis�es �:.52. For bounded hyperboli
 spa
es (X; d;W ); `1.' holds with Ai[X; d;W ℄; (X; d;W )instead of A!i [X; d℄; (X; d).3. If the premise is proved in A!i [X; d;W;CAT(0)℄ instead of A!i [X; d;W ℄then the 
on
lusion holds in all nonempty b-bounded CAT(0) spa
es satis-fying �::As in the 
lassi
al 
ase, instead of single variables and single premises we mayalso have tuples of variables and a �nite 
onjun
tion of premises.Proof. Sin
e prime formulas inA!i [X; d℄+CA:+�: are de
idable, it follows fromCorollary 4.6 that this theory is equivalent to the theory A!i [X; d℄+CAef+�0ef ,where �0ef is the set of senten
es whi
h results from �: by repla
ing in ea
hS 2 �: the negated formula :D by the 9-free formula Def from Corollary 4.6whi
h is equivalent to :D. For the subsystem of A!i [X; d℄ + CAef + �0ef notinvolving (X; d), i.e. restri
ted to the types T, the theorem is proved in [10℄ byestablishing that this theory has a monotone mr-interpretation in its 
lassi
al
ounterpart (for a somewhat more restri
ted set �0ef even in itself) by terms inG�odel's T ((although we use mr rather than mr-with-truth we do not have torestri
t the formulas A;C to �1 as in [10℄(thm.3.10) sin
e in the presen
e of AC(and hen
e in S!) we 
an use proposition 4.5 to infer these formulas ba
k fromtheir mr-interpretations).To extend the proof to the full theory A!i [X; d℄+CAef +�0ef , i.e. now involvingthe full range of types TX , we observe the following:1. By arguments similar to those used in the 
lassi
al 
ase (see [13℄) thesoundness of the monotone mr-interpretation of the logi
al axioms andrules, the de�ning equations for 
ombinators �;� and the re
ursors R,axiom s
hemes E;AC and the axiom s
hema of indu
tion extends to thetypes TX without any 
hanges.2. The additional axioms of A!i [X; d℄ are purely universal and do not 
ontain_, and hen
e have a trivial monotone mr-interpretation by the emptytuple.3. The additional 9-quanti�ers ranging over variables of type degree (�; X),both in the 
on
lusion and in senten
es of the set �0ef , 
an easily be ma-jorized using appropriate 
onstant 0X fun
tionals as shown in [13℄.4. The monotone mr-interpretation extra
ts a realizer  2 S!;X dependingonly on a suitable interpretation of the 
onstants of A!i [X; d℄: The ma-jorization relation extends to TX as de�ned above and given a 
losed term5Here bX is understood to be interpreted by b.16



 of A!i [X; d℄ we 
an 
onstru
t as in [13℄ a majorant  �, by indu
tion onthe term stru
ture of  su
h thatS!;X j=  � s-maj  : � does not involve dX and whi
h depends on (X; d) only via the inter-pretation of the 
onstant bX by a bound b 2 IN on the metri
 d and onthe interpretation of 0X by some arbitrary element of X . Using the samete
hniques as in the 
lassi
al 
ase ([13℄) one 
an eliminate the latter de-penden
y and 
onstru
t from  � a fun
tional � 2 S0!(�!0) whi
h is givenby a 
losed term of A!i (i.e. a primitive re
ursive fun
tional in the senseof G�odel) s.t.S!;X j= 8x�8y �� s(x)8z�9n � �(x; b)(:B ! A(x; y; z; n)):Sin
e, again by 
orollary 4.6, :B is equivalent to an existential free formulait is does not in any way 
ontribute to the extra
ted term. For A!i [X; d;W ℄and A!i [X; d;W;CAT(0)℄ the arguments are similar. In all three 
ases the �nalextra
ted fun
tional � is primitive re
ursive in the sense of G�odel, i.e. � isgiven by a 
losed term in G�odel's T .In a similar way, one 
an prove semi-intuitionisti
 
ounterparts to the general-ized metatheorems presented in [4℄.We �rst show the following 
orollary, 
orresponding to Corollary 3.5 in the
lassi
al 
ase:Corollary 4.8. 1. Let P (resp. K) be a A!i -de�nable Polish spa
e (resp.
ompa
t Polish spa
e) and let A;B and �: be as in the previous theorem.If A!i [X; d;W ℄ + CA: + �: proves that8x 2 P8y 2 K8zX ; fX!X(:B ! 9n0A)then there exists a primitive re
ursive fun
tional �1!0!0 (on representa-tives x : IN! IN of elements of P) su
h that for all x 2 ININ; b 2 IN8y 2 K8zX ; fX!X9n � �(x; b)(:B ! A)holds in any (non-empty) hyperboli
 spa
e (X; d;W ) whose metri
 is boundedby b and whi
h satis�es �::2. The result also holds for A!i [X; d℄; (X; d).Proof. The details of the proof are similar to the 
lassi
al 
ase, i.e. by Theorem4.7 we 
an extra
t a primitive re
ursive bound �(x; b) on n whi
h holds in allspa
es (X; d;W ), resp. (X; d), whose metri
 is bounded by b.In [4℄ a re�ned version of 
orollary 3.5 is established whi
h states that if theassumption is proved in A![X; d;W ℄�b (i.e. without the use of the axiom statingthe boundedness of d) that then the 
on
lusion holds in arbitrary (not ne
essary17



bounded) hyperboli
 spa
es as long as b � d(x; f(x)). This also holds (thoughwith `Fix(f) 6= ;' dropped) for fun
tions whi
h are not nonexpansive but onlyhave a bounding fun
tion 
 : IN! IN su
h that8k0; ~zX(d(z; ~z) � k ! d(z; f(~z)) � 
(k))for some zX ; where then the bound depends on 
: This 
orollary has a semi-intuitionisti
 
ounterpart analogous to the previous results:Corollary 4.9. 1. Let P (resp. K) be a A!i -de�nable Polish spa
e (resp.
ompa
t Polish spa
e) and let A and B be as before but not 
ontaining the
onstant 0X . If A!i [X; d;W ℄�b + CA: proves that8x 2 P8y 2 K8zX ; fX!X ;
1(8k0; ~zX(dX(z; ~z) �IR (k)IR ! dX(z; f(~z)) �IR (
(k))IR) ^ :B ! 9n0A)then there exists a primitive re
ursive fun
tional �1!1!0 (on representa-tives x : IN! IN of elements of P) su
h that for all x;
 2 ININ8y 2 K8zX ; fX!X ;
19n � �(x;
)(8k0; ~zX(dX (z; ~z) �IR (k)IR ! dX(z; f(~z)) �IR (
(k))IR) ^ :B ! A)holds in any (non-empty) hyperboli
 spa
e (X; d;W ).2. The result also holds for A!i [X; d℄�b; (X; d).Even if `z' does not o

ur in B;A we need the assumption on f;
 to hold forsome z in X:Note, that the boundedness of (X; d) and the bound b as a parameter havebeen repla
ed by a far more general 
ondition on f and the parameter 
 in theunbounded 
ase. Still, the extra
ted bound � may display similar uniformities,i.e. independen
e of z; f and the underlying spa
e (X; d). As an example, fornonexpansive fun
tions f and the additional premise d(z; f(z)) � b we obtain
(n) := n + b. This yields an e�e
tive bound � depending only on x and b,where b is not a bound on the whole spa
e, but only on d(z; f(z)).Remark 4.10. As in the 
lassi
al 
ase, we 
an add in 
orollary 4.8 additionalassumptions about the fun
tion f , if of suitable logi
al form, to the premise. Inthe 
lassi
al 
ase we added the assumption `f n.e.' and `Fix(f) 6= ;' to thepremise of the impli
ation. Both assumptions 
an also be added in the semi-intuitionisti
 
ase. The 
ondition `f n.e.' is purely universal and hen
e isequivalent to its double negation. The statement `Fix(f) 6= ;' 
an be writtenas 9uXC8, where C8 is purely universal and so again equivalent to its doublenegation. Thus, �rst pulling out the existential quanti�er from the premise9uXC8 as a universal quanti�er just as 8zX, we 
an extra
t a bound � thatdoes not depend on u and does not depend on any of the negated premises norC8. Shifting the quanti�er 9u ba
k in we get the result.In the 
lassi
al 
ase the premise `f n.e.' ensures that a given f indeed behaveslike a fun
tion, i.e. is needed to prove the extensionality of f , as the weak18



extensionality rule QF-ER is not strong enough to ensure this. The weakerassumption `f d.n.e' does not imply extensionality. This is the reason whyin appli
ation 3.16 of [13℄ one 
arefully had to observe that QF-ER was infa
t suÆ
ient to formalize the proof in question. Likewise the 
-
ondition inCorollary 4.9 does not imply extensionality. In the semi-intuitionisti
 
ase,where we have full extensionality in
luded as an axiom this does not 
ause anydiÆ
ulties.The bene�t of adding `Fix(f) 6= ;' was that FI would weaken that assumption to`f has approximate �xed points', whi
h for nonexpansive and even dire
tionallynonexpansive selfmappings of a bounded hyperboli
 spa
e is always true (see [5℄and [15℄) whereas, in general, `Fix(f) 6= ;' is not. In the semi-intuitionisti

ase `Fix(f) 6= ;' will not disappear from the premise, as monotone modi�edrealizability does not weaken universal premises su
h as dX(x; f(x)) =IR 0IR:For normed linear spa
es we prove the following semi-intuitionisti
 
ounterpartto Theorem 3.6:Theorem 4.11. 1. Let � be a type of degree 1, � be an arbitrary type inTX and let � be a type of degree (X;C). Let s�!� be a 
losed termof Ai[X; k � k; C℄ and let A (resp. B) be an arbitrary formula with onlyx; y; z; n (resp. x; y; z) free. Let �: be a set of senten
es of the form8u�(C ! 9v �� tu9w
:D) where t�!� is a 
losed term of A!i [X; k�k; C℄,the types �; � 2 TX are arbitrary and 
 is of degree (X;C). IfA!i [X; k � k; C℄ + CA: + �: ` 8x�8y �� s(x)8z�(:B ! 9n0A);then one 
an extra
t a primitive re
ursive (in the sense of G�odel) fun
-tional � : S� � IN! IN su
h that for all b 2 IN8x�8y �� s(x)8z�9n � �(x; b)(:B ! A)holds in any nontrivial normed linear spa
e (X; k � k) and any b-bounded
onvex subset C whi
h satisfy �::Instead of single variables and single premises we may also have tuples of vari-ables and a �nite 
onjun
tion of premises.The proof is based on arguments similar to the proof of Theorem 3.6, resp.the variations due to the 
hange of setting from 
lassi
al to semi-intuitionisti
dis
ussed in the proof of Theorem 4.7. The variables of degree (X;C) in thesenten
es A 2 �: 
an again easily be majorized by a suitable interpretationof the 
onstant bX by a bound b on the norm of the elements of the 
onvexsubset C. As before, the generalized metatheorems for normed linear spa
es in[4℄ 
an be transferred to the semi-intuitionisti
 setting in a similar way, yieldingsimilar uniform bounds. However, for (unbounded) 
onvex subsets C we needthe additional premise k
Xk; kxk � b and the 
-
ondition is written as8xC(kxkX �IR (n)IR ! kf(x)kX �IR (
(n))IR):19



Remark 4.12. In the 
lassi
al 
ase the 
onstru
tion of majorants d�X resp.k � k�X depends on the interpretation of dX resp. k � kX in the model SX;! via anine�e
tive operator ()Æ, whi
h from a (representative of a) real number sele
ts a
anoni
al representative of that real number. As an operator of type 1! 1; ()Æis primitive re
ursive inE2(f1) :=0 � 0; if 8x0(f(x) =0 0)1; if :8x0(f(x) =0 0):Sin
e the fun
tional interpretation of the de�ning axioms of (E2) would re-quire non-majorizable fun
tionals (although E2 itselfs is trivially majorizable)one must not in
lude the operator ()Æ to A![X; : : :℄. This 
auses no problemsas ()o only is involved in the interpretation of the theory in the model S!;X .Subsequently the ine�e
tive ()o operator 
an be majorized e�e
tively!In the semi-
onstru
tive 
ase we 
ould a
tually add the ()Æ operator via E2 tothe theory, as monotone modi�ed realizability leaves the de�ning axioms of theE2 untou
hed, and 
arry out part of the argument regarding the ()Æ operator inthe theory itself rather than in the model. The existen
e of E2 a
tually followsfrom CAef and hen
e from CA::5 Appli
ation to Metri
 Fixed Point TheoryTo illustrate the various aspe
ts of Theorem 4.7 we 
onsider three di�erentproofs of (variants of) Edelstein's Fixed Point Theorem: �rst a re�nement ofthe original proof by Edelstein[3℄ developed in [16℄, next an alternative, 
on-stru
tive proof by Rakot
h[21℄ and �nally a more re
ent proof 
arried out inthe framework of Bishop-style 
onstru
tive mathemati
s by Bridges, Julian,Ri
hman and Mines[2℄. Though 
ompletely elementary, if not trivial, from afun
tional analyti
 point of view, this example serves well to demonstrate thevarious logi
al aspe
ts of proof mining using the metatheorems presented inthe previous se
tions. For re
ent non-trivial appli
ations of proof mining see[11, 14, 15℄.In [22℄, Rhoades presents a survey and 
omparison of a large number of di�erentnotions of 
ontra
tivity, 
ompiled from the literature on metri
 �xed point the-ory, for whi
h �xed points theorems have been proven. Many of these notions of
ontra
tivity and the a

ompanying proofs of �xed point theorems are far morete
hni
al than the example presented in this se
tion. Further surveys on notionsof 
ontra
tivity 
an be found in [23, 20℄. We intend to treat su
h more general�xed point theorems based upon the more 
ompli
ated notions of 
ontra
tivitydis
ussed in these survey arti
les in a subsequent paper.Edelstein de�nes 
ontra
tive (self-)mappings as follows:De�nition 5.1 (Edelstein[3℄). A self-mapping f of a metri
 spa
e (X; d) is
ontra
tive if for all x; y 2 X: x 6= y ! d(f(x); f(y)) < d(x; y).Edelstein's Fixed Point Theorem is: 20



Theorem 5.2 (Edelstein[3℄). Let (X; d) be a 
omplete metri
 spa
e, let f bea 
ontra
tive self-mapping on X and suppose that for some x 2 X the sequen
effn(x)g has a 
onvergent subsequen
e ffni(x)g: Then � = limn!1 fn(x) existsand is a unique �xed point of f .For a 
ompa
t spa
e (X; d) the sequen
e ffn(x)g always has a 
onvergent sub-sequen
e, and thus ffn(x)g always 
onverges to a unique �xed point. We arenow interested in obtaining a 
omputable (Cau
hy) modulus Æ for the sequen
effn(x)g s.t. 8m;n > N : d(fm(x); fn(x)) < " for N := Æ("): In addition to", we must prima fa
ie expe
t the rate of 
onvergen
e Æ to also depend on x,the spa
e (X; d), the fun
tion f and a modulus of 
ontra
tivity for f , if su
ha modulus exists. In an intuitionisti
 setting the meaning of the impli
ationexpressing the 
ontra
tivity of f is to give a pro
edure to transform a witness of`d(x; y) > 0' into a witness of `d(f(x); f(y)) < d(x; y)'. Proving (or assuming)
ontra
tivity of f in an intuitionisti
 setting yields a fun
tion that dependingon x; y and an ", by whi
h d(x; y) is larger than 0, produ
es an � by whi
hd(f(x); f(y)) is smaller than d(x; y). Su
h a fun
tion, if uniform with regard tox; y 2 X , is none other than a modulus of 
ontra
tivity.Remark 5.3. On 
ompa
t metri
 spa
es or, more generally, on bounded metri
spa
es, monotone fun
tional interpretation and monotone modi�ed realizabilityautomati
ally strengthen the general notion of 
ontra
tivity to uniform 
ontra
-tivity, i.e. the existen
e of a modulus of 
ontra
tivity. As we will see, the notionof uniform 
ontra
tivity is suÆ
ient even on unbounded metri
 spa
es to guar-antee the 
onvergen
e of ffn(x)g to a unique �xed point and to state an e�e
tiverate of 
onvergen
e.In [21℄ Rakot
h 
onsiders fun
tions with a multipli
ative modulus of 
ontra
tiv-ity � s.t. 8x; y 2 X : d(x; y) > "! d(f(x); f(y)) � �(") � d(x; y)where 0 � �(") < 1 for all " > 0.6 Note that the existen
e of su
h a modulus �is a uniform version of Edelstein's notion of 
ontra
tivity as � does not dependon x; y but only on ":Rakot
h's multipli
ative modulus of 
ontra
tivity � is only one possible inter-pretation of witnessing the 
ontra
tive inequality. From the point of view oflogi
, to witness an inequality s < t one has to produ
e an " > 0 s.t. s+ " < t.This leads to a additive modulus of 
ontra
tivity � s.t.8x; y 2 X : d(x; y) > "! d(f(x); f(y)) + �(") � d(x; y)It is easy to see that a modulus � 
an always be de�ned given a modulus �:�(") := (1� �(")) � "6A
tually Rakot
h requires � to be monotoni
ally de
reasing and to satisfy x 6= y !d(f(x); f(y)) � �(d(x; y)) � d(x; y) instead. In the proof only the above property is needed,whi
h follows from Rakot
h's requirements. 21



To de�ne a modulus � in terms of a modulus � we have to assume that themetri
 d on X is bounded and de�ne:�(") := 1� �(")bAs Rakot
h has shown (see below) the existen
e of a modulus of 
ontra
tivity �implies that the iteration sequen
e ffn(x)g is bounded. From this he 
on
ludesthat even without assuming the boundedness of X the sequen
e ffn(x)g isCau
hy (and hen
e 
onverges to a unique �xed point of f).7 As we will see,by 4.9 this yields the existen
e of a uniform Cau
hy modulus whi
h is largelyindependent from the starting point x and the fun
tion f but only depends onthe modulus �; a bound b on d(x; f(x)) and the error ".It should be noted that it is stri
tly ne
essary for the modulus � to be uni-form with regard to x; y 2 X , as otherwise a fun
tion, although 
ontra
tive,might not have a �xed point. Edelstein's non-uniform notion of 
ontra
tivityx 6= y ! d(f(x); f(y)) < d(x; y) is in general only suÆ
ient to prove the exis-ten
e of a �xed point in 
ompa
t spa
es, where that notion is equivalent to theexisten
e of uniform moduli � and �. In most other 
ases the equivalen
e fails.As a 
ounterexample, 
onsider the self-mapping f(x) := x + 1x of the interval[1;1). It is easy to see that the fun
tion f is 
ontra
tive in the sense of Edel-stein. Trivially, the fun
tion f has no �xed point. One, furthermore, proves byindu
tion that for all n � 1:1 + nXi=1 1i � fn(1) � n+ 1Sin
e P1i=1 1i = 1, the iteration sequen
e ffn(1)g is unbounded. So by theaforementioned result of Rakot
h, f does not have a modulus of 
ontra
tivity �(as 
an be also seen dire
tly). Counterexamples even in the 
ase of boundedmetri
 spa
es8 are dis
ussed in [24℄.Using a multipli
ative modulus �, Rakot
h proves the following variant of Edel-stein's Fixed Point Theorem:Theorem 5.4 (Rakot
h [21℄). Let (X; d) be a 
omplete metri
 spa
e andlet f be a 
ontra
tive self-mapping on X with modulus of 
ontra
tivity �, then� = limn!1 fn(x) exists and is a unique �xed point of f .Remark 5.5. Whereas Edelstein's theorem requires the existen
e of a 
onver-gent subsequen
e of ffn(x)g, whi
h is guaranteed in general only for 
ompa
tX; Rakot
h's theorem avoids this by imposing a stronger uniform 
ontra
tivityon f (whi
h, however, follows from the usual one in the 
ompa
t 
ase).7With a somewhat di�erent proof one 
an also show this based on an additive modulus �instead of � although to derive the existen
e of a global modulus � from � seems to requirethe boundedness of (X; d). However, as Rakot
h's proof shows, the 
ontra
tvity is (for givenx) used only on points of the form fn(x) and on those (by the boundedness of ffn(x)g) one
an de�ne a modulus � from �:8In fa
t even in the 
ase of the 
losed unit ball of the Bana
h spa
e 
0.22



The key step in the proof is to establish the following:Lemma 5.6. Let (X; d) be a metri
 spa
e and let f be a 
ontra
tive self-mappingon X with modulus of 
ontra
tivity �, then the iteration sequen
e ffn(x)g is aCau
hy sequen
e.We now expe
t that our metatheorems allow us to extra
t from a proof ofLemma 5.6 a Cau
hy modulus Æ; in fa
t it suÆ
es to extra
t a bound on themodulus, as su
h a bound trivially also is a realizer for the modulus. Contrary toRakot
h's proof, Edelstein's original proof is a 
lassi
al proof and sin
e express-ing that the sequen
e ffn(x)g is a Cau
hy sequen
e requires a �03-statement,the metatheorem for the 
lassi
al 
ase 
annot be applied dire
tly to extra
t aCau
hy modulus from Edelstein's proof.In [16℄, Kohlenba
h and Oliva use a tri
k to extra
t a bound from Edelstein'snon-
onstru
tive proof: The proof of Edelstein's Fixed point theorem 
an besplit up into three lemmas. Ea
h of these lemmas is of a suitable logi
al form toallow extra
tion of a bound, and 
ombining these bounds, the following modulusof 
onvergen
e (towards the unique �xed point) for f a self-map on a 
ompa
tspa
e K is extra
ted9:Æ(�; b; ") = � log((1� �(")) "2 )� log blog�((1� �(")) "2 ) �+ 1where � is the modulus of 
ontra
tivity for f , and b is a bound on the diameterof K. In a

ordan
e with Theorem 3.2, the same bound also holds if we repla
ethe 
ompa
t spa
e K by a (more general) b-bounded metri
 spa
e. Note thatthe Cau
hy modulus Æ is uniform with regard to x 2 X and the fun
tion f .The treatment of (the 
lassi
al proof of) Edelstein's �xed point theorem in [16℄via monotone fun
tional interpretation generalizes Edelstein's result to boundedmetri
 spa
es, where using the strengthening of 
ontra
tivity to uniform 
on-tra
tivity a Cau
hy modulus for the sequen
e ffn(x)g is extra
ted. Togetherwith the observation that only the boundedness of the iteration sequen
e isneeded and not the boundedness of the whole spa
e, the analysis of Edelstein's
lassi
al, non-
onstru
tive proof yields essentially the same result as Rakot
h'stheorem. However, with regard to the numeri
al quality of the modulus one 
ando better: As mentioned Rakot
h's proof is fully 
onstru
tive, and one easilysees that the 
onstru
tive proof 
an be formalized in A!i [X; d℄�b. Thus, with-out the tedious work of splitting up Edelstein's proof, the metatheorem for thesemi-intuitionisti
 
ase guarantees that we 
an extra
t an e�e
tive bound on themodulus of 
onvergen
e or, without having to 
arry out the extra
tion, proveuniformities for the modulus of 
onvergen
e.In A!i [X; d℄�b we 
an express the fa
t that fX!X represents a 
ontra
tive fun
-tion with modulus �1 (of type degree 1), in short: `f 
ontr. �', as8k08xX ; yX(dX (x; y) �IR 2�k ! dX(f(x); f(y)) �IR (1� 2��(k)) �IR dX(x; y))9Originally in [16℄ an additive modulus of 
ontra
tivity � is 
onsidered. The extra
tedmodulus of 
onvergen
e is then Æ(�; b; ") = � b� �(")2�( �(")2 )�+ 1.23



Thus in the formal system A!i [X; d℄�b one 
an express Lemma 5.6 as:Lemma 5.7. A!i [X; d℄�b proves8fX!X8xX8�18k0(f 
ontr. �! 9N08m;n �0 N dX(fm(x); fn(x)) �IR 2�k):To see that Rakot
h's proof 
an be formalized in A!i [X; d℄�b, one notes that theproof 
onsists of two main parts: �rst it is shown that for any starting point xthe sequen
e ffn(x)g is bounded and that the bound depends only on � and(a bound b on) d(x; f(x)). Given a starting point x, the fun
tion f and anarbitrary � > 0, Rakot
h shows that one 
an bound d(x; fn(x)) for all n by10d(x; fn(x)) � b0(�; b) = max(�; 2 � b1� �(�) );where b � d(x; f(x)):Then using this bound and the 
ontra
tivity of f it is shown that ffn(x)g is aCau
hy sequen
e and hen
e 
onverges to a unique �xed point.Appli
ation 5.8. Corollary 4.9 a-priorily guarantees that there exists a boundÆ(�; b; ") on N that holds for all metri
 spa
es (X; d), all fun
tions f with modu-lus of 
ontra
tivity � and all x 2 X s.t. d(x; f(x)) � b. Moreover, by Corollary4.9 we 
an extra
t an e�e
tive bound Æ(�; b; ") from Rakot
h's 
onstru
tive proof,and sin
e a bound on N also is a realizer, this gives us the following Cau
hymodulus (and hen
e modulus of 
onvergen
e towards the unique �xed point):Æ(�; b; ") = l log "�log b0(�;b)log�(") m whereb0(�; b) = max(�; 2�b1��(�) ) with b � d(x; f(x)) and � > 0 arbitrary :Proof. Sin
e the relation �IR 
an be expressed as a �01-predi
ate, the premise `f
ontr. �' is 9-free, where � is an element of the Baire spa
e X = ININ:Moreover,by the 
omment after 
orollary 4.9, we 
an take 
(n) := n+ b sin
e f a-fortioriis nonexpansive. The 
on
lusion, the Cau
hy property of the sequen
e ffn(x)gis of the form 898, but 
ontrary to the 
lassi
al 
ase there are no restri
tionson the logi
al form, so that we 
an extra
t an e�e
tive uniform bound Æ(�; b; ")on 9N , i.e. an e�e
tive uniform Cau
hy modulus for (fn(x)).The existen
e of the Cau
hy modulus Æ, with the des
ribed uniformities, isguaranteed by the semi-intuitionisti
 metatheorem, even without analyzing theproof. For the a
tual \extra
tion" of a bound Æ(�; b; "), we brie
y sket
h therelevant, se
ond part of Rakot
h's proof:Let p 2 IN be given, then by de�nition (we 
an assume d(xk ; xk+p) > 0):d(xk+1; xk+p+1) � �(d(xk ; xk+p)) � d(xk ; xk+p):10Here for 
onvenien
e we ta
itly move ba
k to the more usual version of � as a fun
tionIR�+ ! (0; 1): 24



Now taking the produ
t from k = 0 to n� 1 we getd(xn; xn+p) � d(x0; xp) � n�1Yk=0 �(d(xk ; xk+p)):Sin
e we assumed d(x; f(x)) � b and hen
e b0(�; b) is a bound on d(x0; xp), weget d(xn; xn+p) � b0(�; b) � n�1Yk=0 �(d(xk ; xk+p)):If already d(xk ; xk+p) < " for some 0 � k � n�1 we would be done, so assumingd(xk ; xk+p) � " for all k = 0; : : : ; n� 1 and by8x; y 2 X : d(x; y) � "! d(f(x); f(y)) � �(") � d(x; y)we get that d(xn; xn+p) � b0(�; b) � (�("))n:Then solving the inequality b0(�; b) � (�("))n � " with regard to n yields thefollowing Cau
hy modulus:Æ(�; b; ") = � log "� log b0(�; b)log�(") �where throughout b0(�; b) is as des
ribed above.As mentioned above, extra
ting a bound from the 
lassi
al proof of Edelstein'stheorem was only possible by breaking up the proof into a 
ouple of lemmas,ea
h of suitable form to extra
t a bound, using the metatheorem for the 
lassi
al
ase. Compared to the bound extra
ted from the Edelstein's proof the boundfrom Rakot
h's 
onstru
tive proof - guaranteed a-priorily by the metatheoremto exist and to be uniform on x 2 X and f - is both (synta
ti
ally) simpler andbetter. Naturally, in many 
ases �nding a 
onstru
tive proof for a 
lassi
allytrue theorem may be far less trivial than in the 
ase of Rakot
h's variant ofEdelstein's theorem and, in general, many 
lassi
ally true theorems may nothave a 
onstru
tive proof at all. However, as this example demonstrates, 
on-sidering a 
onstru
tive proof may yield signi�
antly simpler and better boundsthan in the 
lassi
al 
ase and may give fully uniform bounds from theorems hav-ing a logi
al form more 
omplex than 89, where the 
lassi
al metatheorem ingeneral fails, su
h as for example the Cau
hy property of an iteration sequen
e.Moreover, monotone fun
tional interpretation or monotone modi�ed realizabil-ity may automati
ally lead to the ne
essary strengthenings of the mathemati
alnotions involved, as e.g. strengthening the notion of 
ontra
tivity to uniform
ontra
tivity.Finally, even for proofs that are developed in a fully 
onstru
tive setting, themetatheorem for the semi-
onstru
tive 
ase may reveal new uniformities not25



present in, or immediately obvious from, the theorem and proof under 
on-sideration. In [2℄ Bridges et al. treat Edelstein's �xed point theorem in theframework of Bishop-style 
onstru
tive mathemati
s. A fun
tion f that is 
on-tra
tive in the sense of Rakot
h is denoted by the 
on
ept of `f is an almostuniform 
ontra
tion'. The following theorem is proved:Theorem 5.9 ([2℄). Let f : X ! X be an almost uniform 
ontra
tion on a
omplete metri
 spa
e X. Then1. f has a unique �xed point � in X; and2. the sequen
e ffn(x)g 
onverges to � uniformly on ea
h bounded subset ofX.This theorem largely 
orresponds to Rakot
h's theorem dis
ussed above, butonly the uniformity with regard to x 2 X is stated, not the uniformity withregard to f or the bounded subset. Both uniformities follow already a-priorilyfrom the existen
e of a (
onstru
tive) proof for Rakot
h's theorem by meansof our metatheorem. Also a modulus of 
onvergen
e is not expli
itly stated,though both the uniformities and the e�e
tive modulus 
an be seen to be im-pli
it in the proof. An analysis of the 
onstru
tive proof in [2℄ easily yields anexpli
it modulus of 
onvergen
e, whi
h is identi
al to the bound extra
ted fromRakot
h's 
onstru
tive proof.Corre
tions to [13℄:1) P. 96, line -7: `k0 = max k[: : :℄' must be `k0 = max k � 2(n+2)[: : :℄'2) P.116: in the def. of B, x should be a single fun
tional x rather than a tuple.3) P. 117 (line 7 and last line of 4.4) add: `the veri�
ation of the fun
tionalinterpretation does not need QF-AC (whi
h is trivially interpreted)'.4) P.118 (4.7), p.122 (line 6):repla
e A![: : :℄+(BR) by A![: : :℄+(BR)nfQF-ACg.5) P.121, line 20 and footnote 26: `
losed terms of A!+(BR)'.Referen
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