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Abstract

In [13], the second author obtained metatheorems for the extraction
of effective (uniform) bounds from classical, prima facie non-constructive
proofs in functional analysis. These metatheorems for the first time cover
general classes of structures like arbitrary metric, hyperbolic, CAT(0)
and normed linear spaces and guarantee the independence of the bounds
from parameters ranging over metrically bounded (not necessarily com-
pact!) spaces. Recently (in [4]), the authors obtained generalizations of
these metatheorems which allow one to prove similar uniformities even
for unbounded spaces as long as certain local boundedness conditions are
satisfied. The use of classical logic imposes some severe restrictions on the
formulas and proofs for which the extraction can be carried out. In this
paper we consider similar metatheorems for semi-intuitionistic proofs, i.e.
proofs in an intuitionistic setting enriched with certain non-constructive
principles. Contrary to the classical case, there are practically no re-
strictions on the logical complexity of theorems for which bounds can be
extracted. Again, our metatheorems guarantee very general uniformities,
even in cases where the existence of uniform bounds is not obtainable by
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(ineffective) straightforward functional analytic means. Already in the
purely intuitionistic case, where the existence of effective bounds is im-
plicit, the metatheorems allow one to derive uniformities that may not be
obvious at all from a given constructive proofs. Finally, we illustrate our
main metatheorem by an example from metric fixed point theory.

1 Introduction

Proof mining is the application of logical, or more precisely, proof theoretic
methods to the analysis of formal systems and proofs with the aim of extracting
additional information from (mathematical) proofs. E.g. one might want to
extract from a proof that a certain iteration sequence converges an effective,
computable modulus of convergence and to establish the uniformity of such a
modulus or even to state general a-priori conditions for the independence of an
extracted modulus from certain parameters.

In the classical case, i.e. formalizations of mathematics based on classical logic,
the goal of proof mining is to extract realizers and bounds - we will focus on
the extraction of bounds - from prima facie ineffective, non-constructive proofs.
The technique used to prove the existence of effective bounds and, if needed, to
carry out the extraction is based on an interpretation of classical proofs via some
negative translation and (a suitable form of) Godel’s functional interpretation,
further combined with majorization(see [8, 13]). Whereas previously only theo-
rems involving constructively representable Polish spaces could be treated and
uniformity in parameters was guaranteed only for the case of compact spaces
([8, 9]) results in [13] due to the second author allow one to treat classes of
arbitrary metric, hyperbolic, CAT(0) and normed linear spaces X. Moreover,
under very general conditions, uniformity in parameters ranging over metrically
bounded spaces can be inferred a-priorily even in cases where this could not
have been obtained by usual ineffective functional analytic methods. In [4],
these results were recently generalized by the authors. Using a novel majoriza-
tion technique developed by the authors one obtains similar uniformities even
if the space as a whole is not metrically bounded but only local boundedness
conditions are imposed. However, both the raw material, classical proofs, and
the techniques employed for the interpretation impose certain restrictions: One
can use at most weak extensionality in the proofs to be analyzed, as full exten-
sionality can be shown to be too strong under functional interpretation. In the
context of [13, 4] this is a severe restriction as it implies that not every object
fX7X of type X — X can be viewed as a function f : X — X.! Also, as
many classically true theorems cannot be given (a direct) computational mean-
ing (this includes already II3-sentences), the extraction of realizers and bounds
can be carried out at most for (classical) proofs of sentences of the form V3A4,¢
where A,¢ is quantifier-free with some further restrictions on the types of the
quantified variables.

L As a consequence of this, the applications given in [13, 4] mainly concern classes of func-
tions, like nonexpansive functions, for which the extensionality can be deduced directly.



In this paper, we consider proof mining in the semi-intuitionistic case: intuition-
istic analysis enriched with certain non-constructive principles. In the purely
intuitionistic setting bounds and realizers are implicitly given. Nevertheless,
even in the intuitionistic setting our results prove non-trivial consequences: as
in the classical setting of [13, 4] we can now guarantee very strong uniformity re-
sults (independence from parameters ranging over metrically bounded spaces).
Even in the presence of various highly ineffective principles (such as compre-
hension in all types for arbitrary negated or 3-free formulas and many others),
most of the restrictions needed in the fully classical case disappear in our semi-
constructive setting: we can now use full extensionality and extract realizers
and bounds from (semi-intuitionistic) proofs of arbitrary formulas, with com-
paratively modest restrictions on the types of the quantified variables.

The technique employed to establish these results for such semi-intuitionistic
systems is a monotone variant of Kreisel’s modified realizability interpreta-
tion, so-called monotone modified realizability. The metatheorem for the semi-
intuitionistic case we present in this paper is to some extent based on results
in [10], and the extensions presented here can be considered as the counterpart
to the extensions of [8] presented in [13, 4] for the classical case. We will focus
on developing the semi-intuitionistic versions of the results [13] in detail. The
results in [4] can be transferred to the semi-intuitionistic setting in a similar but
technically more complicated way.

As stated above, both in the classical and the semi-intuitionistic case the metathe-
orems allow one to derive new, strong uniformity results, by giving general, easy
to check conditions under which an extracted bound will be guaranteed to be
independent from certain parameters - all of this without actually having to
carry out the extraction. For the independence of (effective) bounds from pa-
rameters ranging over compact spaces such results are well known and have been
treated in [9, 10]. For non-compact bounded metric or hyperbolic spaces there
are no general mathematical reasons why such uniformities should hold, and in
metric fixed point theory similar (ineffective) uniformity results have hitherto
only been obtained in special cases by non-trivial functional analytic techniques
(see [13, 15] for discussions of these points). Already in the context of fully
intuitionistic proofs one can derive new uniformities that may not be obvious
from a given constructive proof or a bound implicit in the proof.

We illustrate the various aspects of the metatheorems by a very simple example
from metric fixed point theory: First we state the original ineffective version
of Edelstein’s fixed point theorem [3]. The main part of Edelstein’s fixed point
theorem is of a too complicated logical form (namely II3) to directly allow
the extraction via the classical metatheorems in [13, 4]. Therefore in [16] an
effective uniform bound for Edelstein’s fixed point theorem was extracted by
splitting up Edelstein’s proof into three lemmas, each simple enough to allow
the extraction of an effective bound. We present a variant of Edelstein’s fixed
point theorem due to Rakotch [21], the proof of which is fully constructive. This
permits us to extract a uniform bound as guaranteed by the semi-intuitionistic
metatheorem. Finally, we compare the results with a treatment of Edelstein’s
fixed point theorem in the setting of Bishop-style constructive mathematics by



Bridges, Julian, Richman and Mines [2]. Both the classical and the intuitionistic
metatheorem a-priorily guarantee uniformities not stated in the constructive
proof by Bridges et. al. The bound extracted from Rakotch’s constructivized
proof, while superior to the bound extracted in [16], is identical to the bound
implicit in [2].

2 Formal systems

We now describe the classical and intuitionistic formal systems in which the
extraction of bounds is carried out. For technical details see [13] and also [19].

Let AY := WE-PA“+QF-AC+DC be the system of so-called weakly exten-
sional classical analysis based upon a finite type extension WE-PA®“ of first
order Peano arithmetic PA, where QF-AC is the axiom schema of quantifier-
free choice and DC is the axiom schema of dependent choice in all types. Let
A% be defined as E-HA® + AC, where E-HA® denotes the intuitionistic ex-
tensional counterpart of WE-PA“ and AC is the full axiom of choice (details
are given below).

Definition 2.1. The set T of all finite types is defined inductively by the clauses
(1)0e T, (it) pr¢é T = (p—>71)€ T.

Objects of type 0 denote natural numbers, objects of type p — T are operations
mapping objects of type p to objects of type 7. We only include equality =g
between objects of type 0 as a primitive predicate. Equality between objects of
higher types s =, t is a defined notion:?

s=pt: =V, (s(z, ... k) =0 t(z1, ..., 28),
where p = p1 = p2 = ...pr — 0, i.e. higher type equality is defined as
extensional equality. An operation F' of type p — 7 is called extensional if it
respects this extensional equality:

Yz, yf (z =, y = F(z) =, F(y)).

Ideally, we would like to have an axiom stating the extensionality for all func-
tionals, but in the classical system A% full extensionality would be too strong for
the metatheorems we are aiming at and their applications in functional analysis
to hold. Instead in A“ we include a weaker quantifier-free extensionality rule
due to [25]:

A0—>S=pt

QFER =

where Ag is a quantifier-free formula.

The rule QF-ER allows one to derive the equality axioms for type-0 objects

2 =0y - tfa] = tly]

2Here we write s(z1,...,2) for (... (s21)...21).



but not for objects z,y of higher types (see [26], [6]).
In the intuitionistic system AY we include the much stronger extensionality
axiom:

k

. pL P pr P _ _
Ep - vzpawllayllﬂ s 7wkkaykk(/\(wi —pi yl) — 2T =0 ZQ):
i=1

for all types p.

The systems A“ and AY are defined on top of many-sorted classical, resp. intu-
itionistic, logic with constants O° (zero), S' (successor), IT5)7=*# (projectors),
Y5,p,+ (combinators of type (6 = p = 7) = (§ = p) = 6 = 7) and constants
R, for simultaneous primitive recursion in all types.? In addition to the defining

equations for those constants, A and AY contain as non-logical axioms:
1. Reflexivity, symmetry and transitivity axioms for =g,
2. the axiom schema of complete induction:
IA : A(0) AVz®(A(z) — A(S(z))) — V2 A(x),
where A(x) is an arbitrary formula of our language,
3. in A¥:
e the quantifier-free extensionality rule QF-ER

e the quantifier-free axiom of choice schema in all types:
QF-AC : VzIyAo(z,y) — FYVzAo(z,Y 2),

where Ay is quantifier-free and z, y are tuples of variables of arbitrary
types,
e the axiom schema of dependent choice DC:= {DC? : p € T}:

DC? : Va®,yP 3P Az, y, 2) = IfO 7V Az, f(2), F(S(2))),
where A is an arbitrary formula and p an arbitrary type.
4. in AY:

e the axiom schema of extensionality E = {E, : p € T} for all types p
e the axiom schema of full choice AC:= {ACP" : p,7 € T}

ACPT o VzPAy  A(z,y) — Y P77 Vz A(z, V).

where A is an arbitrary formula.

3Tt is well-known that simultaneous primitive recursion in all finite types (which defines
primitive recursively finite tuples of functionals rather than a single functional only) can be
reduced to ordinary primitive recursion in all finite types over AY (see [26](1.6.16)). However,
in the extensions A‘("i) [X,...] to be discussed below this seems to require the addition of certain
product types so that we prefer to take simultaneous recursion as a primitive concept as in
[13].



We next sketch extensions of A and AY with an (non-empty) abstract metric
space (X, d), resp. hyperbolic space or CAT(0) space (X,d, W), where for the
somewhat involved details we refer to [13]:

The basic idea is to axiomatically add an abstract metric or hyperbolic space
as a kind of ‘Urelement’ to the system. More formally, the theories A“[X, d],
AY[X,d, W] and A“[X,d, W, CAT(0)] result from extending A“ (and also IA, R,
QF-AC, DC, QF-ER, ...) to the set TX of all finite types over the two ground
types 0 and X, and by adding constants dx and — in the case of A“[X,d, W] and
AY[X,d,W,CAT(0)] — Wx representing d,W and suitable (purely universal)
axioms to A“. Moreover, we add a constant bx (of type 0) for an upper bound of
dx. Equality is defined extensionally over the base types 0 and X, where 2% =x
yX := (dx(7,y) =r ORr). Analogously, the theories A¢[X,d], A¥[X,d, W] and
A¥[X,d, W,CAT(0)] result from an extension of AY.

Similarly, one defines the extensions A“[X, ] - ||,C] and AY[X,]| - ||, C] of A¥
and AY with an abstract (non-trivial) normed linear space (X, || -||) and a (non-
empty) bounded convex subset C' C X (again we refer to [13] for details):

The theories A“[X, ]| - ||,C] and A¥[X,]| - ||, C] result from extending A“ and
A? to the set TX of all finite types over the two ground types 0 and X, and
by adding constants for the vector space operations and || - || as well as for
the characteristic function of C' and an upper bound bx on the norm of the
elements of C' with appropriate (purely universal) axioms to A% expressing the
vector space and norm axioms as well as the boundedness and convexity of C.
As before, equality is defined extensionally over the base types 0 and X.

Definition 2.2. Between functionals z?,y” of type p =1 — ... > 7, = 0
with 7, € TX we define a relation <, as follows:

z <,y =V (2(2) <o y(2))-

For A7, [X,]] - ]I,C] we extend <, to arbitrary types p € TX by defining for
p=1 = ...> 1 > X:

<,y :=Y2(lz(2)llx <m lly(2)|lx)-

Definition 2.3. Let X be a non-empty set. The full set-theoretic type structure
SX = <Sp>p€TX over IN and X is defined by

So:=IN, Sx:=X, S;,,=5)".

Here Sf’ is the set of all set-theoretic functions S, — S,.

We say that a sentence of £(A“[X,d]), holds in a nonempty bounded metric
space (X, d) if it holds in the model* of A“[X, d] obtained by letting the variables
range over the appropriate universes of the full set-theoretic type structure S*»X

4Strictly speaking, we would have to use the plural here as the interpretation of constant
bx is not uniquely determined. For details see [13].



with the set X as the universe for the base type X, and the constants of (X, d)
interpreted by elements of the suitable universes as specified in [13].

Similarly for £(AY[X,d,W)), L(AY[X,d,W,CAT(0)]) and L(AY[X,]| - ||,C]),
and for the languages formed over the corresponding intuitionistic systems.

In the following (for p € TX) Vz© A(z)’, VfP~C A(f), VFX7C A(f) and
VfFO=C A(f) abbreviate

vz X (xo(zX) = 0 — A(z)),

VX (YyP (xe (f (1)) =0 0) = A(f)),

VX=X (VX (xe (F(y)) =0 0) = A(f)) and )
VX=X (VaX (xe(z) =0 0 = xo(f(z)) =0 0) = A(f)),

iy _ | f@), if xe(z) =00
where f(z) = { cx, otherwise.

Analogously for the corresponding 3-quantifiers with ‘A’ instead of ‘—’. This
extends to types of degree (1, X,C) and (X, C) defined below.

Definition 2.4. We say that a type p € TX has degree

e lifp=0—...—0 (including p=0),

(0,X)if p=0—... 50— X (including p=X),

(1,X) if it has the form 7 — ... = 7, = X (including p = X ), where 7;
has degree 1 or (0,X),

(,0)ifp=11— ... > 1 = 0 (including p = 0) for arbitrary types 7; €
TX,

X)ifp=m — ... > 1 = X (including p = X) for arbitrary types
T; € TX.

Types involving C' do not belong to TX but are only used in connection with the
abbreviations mentioned above. We say that such a type has degree

e (1,X,0C) if it has the form 71 — ... = 1, — C (including p = C'), where
7; has degree 1 or ; = X or 7, = C,

e (X,0)ifp=1 = ... > 1 = C (including p = C) where 7; € TX or
TiZO.

In [4], unbounded metric, hyperbolic and CAT(0) spaces, as well as normed
linear spaces with an unbounded convex subset C' are treated. The correspond-
ing classical (and semi-intuitionistic) theories are defined as above, except that
the axiom stating the boundedness of the metric space (X, d), resp. the convex
subset C, is omitted. This is expressed by adding a ‘—b’, i.e. by writing e.g.
AY[X, d]—p, AY[X,]] - ||,C]-p and likewise for the unbounded variants of the
other classical and semi-intuitionistic theories described in this section.



3 Extracting bounds from classical proofs

In this section we briefly restate material from [13] and [4].

Definition 3.1. A formula F is called a V-formula (resp. an 3-formula) if it
has the form F =Va2F,s(a) (resp. F = 3a2F;(a)) where Fyy does not contain
any quantifier and the types in o are of degree 1 or (1,X).

For metric, hyperbolic and CAT(0) spaces we have the following metatheorem:

Theorem 3.2 ([13]). 1. Let o,p be types of degree 1 and T be a type of de-
gree (1,X). Let s°77 be a closed term of A°[X,d] and By(z%,y", 2", u°)
(resp. C3(x%,y”,27,v°)) be a V-formula containing only z,y,z,u free
(resp. a 3-formula containing only x,y, z,v free).

If
VzoVy <, s(xz)Vz" (VuOBv(m,y,z,u) — EivOC’g(a:,y,z,v))

is provable in A¥[X,d], then one can extract a computable functional
®:S, x N — IN such that for all x € S; and all b € IN

Vy <, s(2)V2" [Vu < ®(,0) By(z,y, 2,u) = Fv < (z,b) C3(2,y, 2,v)]

holds in any (non-empty) metric space (X,d) whose metric is bounded by
b e IN.

2. For bounded hyperbolic spaces (X,d, W) statement 1. holds with
‘AY[X,d, W], (X,d, W) instead of ‘A¥[X,d],(X,d)".

3. If the premise is proved in ‘A“[X,d, W, CAT(0)]’, instead of ‘A“[X,d, W]’
then the conclusion holds in all b-bounded CAT(0)-spaces.

Instead of single variables x,y, z,u,v we may also have finite tuples of variables
z,y,2,u,v as long as the elements of the respective tuples satisfy the same type
restrictions as x,y,z,u,v. Moreover, instead of a single premise of the form
YuBy(x,y,z,u)’ we may have a finite conjunction of such premises.

One of the main aspects of this theorem is that the bound ®(z,b) does not
depend on y or z.
The proof in [13] is based on an extension of Spector’s[25] extension of Godel’s
functional interpretation to classical analysis A by bar recursive functionals
(i.e. recursion over well-founded trees) to A“[X,d], resp. AY[X,d, W] and
AY[X,d,W,CAT(0)], and a subsequent interpretation of these functionals in
an extension M“ X of the Howard-Bezem|[6, 1] strongly majorizable functionals
M to TX.
These extensions rest on the following observations:

1. As is the case with A“, the prime formulas of A“[X,d] are of the form

s =¢ t and hence decidable. Thus the soundness of negative transla-
tion and subsequent functional interpretation of the logical axioms and



rules and the defining equations for combinators 3, IT and the recursor R,
the rule QF-ER and the axiom schema QF-AC extend to the new set of
types T without any changes. Likewise the interpretation of the axiom
schema, of induction and the axiom schema of dependent choice extends
to TX using constants R, for simultaneous primitive recursion and B*

for simultaneous bar recursion in all types p,T € TX.
2. The functional interpretation of the negative translation of the new ax-

ioms of A¥[X,d], A¥[X,d, W] and A“[X,d, W, CAT(0)] are equivalent to
themselves as they are purely universal and don’t contain V.

3. Bezem’s[1] type structure of hereditarily strongly majorizable functionals
M extends easily to all types of TX, taking * majx = always true. The
realizer ¥ € M*“ X for a bound on u°,v° extracted by negative translation
and functional interpretation depends on X via an interpretation of the
constants of X. Using majorization we show that we can extract a bound
which only depends on X via an interpretation of bx by some integer
bound b on the metric d.

4. Since for the restricted types v of degree 1, (0, X) or (1, X) occurring in
VzoVy <, s(x)Vz" (VuOBV(x,y, zZ,u) = EIUOCg(:c,y,z,U))

M, = S, this bound holds in any nonempty b-bounded space (X, d), resp.
(X,d,W) and (X, d, W, CAT(0)).

For a detailed proof, see [13].

Definition 3.3. 1. Let (X,d) be a metric space. A function f: X — X is
called nonexpansive (short: ‘f n.e.’) if

Va,y € X (d(f (), f(y)) < d(z,y)).

2. ([7]) Let (X,d,W) be a hyperbolic space. A function f: X — X is called
directionally nonexpansive (short: ‘f d.n.e.’) if

Vz € XVy € seg(x, f(2))(d(f(2), f(y)) < d(=,y)),
where seg(x,y) = {W(z,y,\) : A € [0,1]}.
Definition 3.4. Let f: X — X, then Fiz(f):={z e X | z = f(z)}.

In [13], the following corollary of theorem 3.2 is derived, which is specially
tailored towards applications to metric fixed point theory:

Corollary 3.5 ([13]). 1. Let P (resp. K) be a A“-definable Polish space
(resp. compact Polish space), given in so-called standard representation,
and By(z',y, 2, f,u),C3(zt,yt, 2, f,v) be as in the previous theorem.

If AY[X,d, W] proves that

Vo € PVy € KV2X, fX7X( f n.e. AFiz(f)# 0 AVYu’By — F3°C3),



then there exists a computable functional ®17°7° (on representatives x :
IN — IN of elements of P) such that for all x € NN beN

Vy € KV2XVfX7X( f n.e. AVu < ®(z,b) By — Jv < ®(,b) C1)

holds in any (non-empty) hyperbolic space (X, d, W) whose metric is bounded
by b.

2. An analogous result holds if ‘f n.e.” is replaced by “f d.n.e’.

Note that in the corollary, the assumption Fiz(f) # () has disappeared in the
conclusion! For a discussion of this remarkable point see [13].

For normed linear spaces, the following metatheorem is proved in [13]:

Theorem 3.6 ([13]). Let o be a type of degree 1, p of degree 1 or (1,X)
and T of degree (1,X,C). Let s be a closed term of AY[X,]| - |,C] and
By(z%,y*, 27, u) (resp. C3(z?,y”,27,v°)) be aV-formula containing only z,y, z,u
free (resp. an 3-formula containing only x,y, z,v free).
If

VzoVy <, s(x)Vz" (VuoBv(x,y, zZ,u) = EIUOC’;.(:L',y,z,U))

is provable in AY[X, || - ||, C], then one can extract a computable functional ® :
Sy x IN = IN such that for all z € S, and all b € IN

Vy <, s(2)V2" [Vu < ®(z,0) By(z,y, 2,u) = Fv < B(z,b) C3(2,y, 2,v)]

holds in any non-trivial normed linear space (X, || - ||) and any non-empty b-
bounded convex subset C.

Instead of single variables and a single premise we may have tuples of variables
and a finite conjunction of such premises.

Remark 3.7. In [13], there are also corresponding theorems proved for uni-
formly convex normed spaces (X,|| - ||,n) with convezity modulus n (then the
bound ®(z,b,n) will additionally depend on the modulus n) and for inner prod-
uct spaces.

The proof in [13] is based on the same fundamental ideas as the proof of Theorem
3.2, the main difference being that the majorization relation on objects of type
X can no longer be treated as trivial as in the case of a bounded metric space.
Instead one defines the majorization relation s-maj for elements of type X to
be

z" smajx z:= [|z7]|x Zm [lz]lx-

Then one can prove, as before, the extractability of effective bounds, where the
main difficulty is to define suitable majorants for the constants and constructions
of A“[X, || - ||, C].

As shown in [4], using a novel majorization technique these metatheorems can
be generalized to unbounded metric spaces and normed linear spaces with un-
bounded convex subset C. The new majorization relation developed by the

10



authors is technically more complicated but allows one to derive similar uni-
formities from far more general conditions than the boundedness of the entire
metric space, resp. the convex subset C.

Discussion on extensionality: As mentioned above, one can only allow the
weak extensionality rule instead of the full axiom of extensionality in the formal
systems based on classical logic. In order to reverse the double negations intro-
duced by the negative translation, it is strictly necessary that the interpretation
we choose to interpret classical logic in particular interprets the Markov prin-
ciple. However, together with the Markov Principle full extensionality would
cause severe problems, as it allows us, when combined with functional inter-
pretation, to obtain witnesses for potential universal quantifiers hidden in the
extensionally defined equalities in the premise of implications, e.g. in the ex-
tensionality axiom itself.

The extraction of witnesses, combined with majorization, would thus transform
an instance of the extensionality axiom into a statement about uniform conti-
nuity. An axiom stating the extensionality of a single function constant would
allow us to prove its uniform continuity. E.g. the full extensionality axiom for
type-X equality would even allow us to prove (in the context of A¥[X,d]) the
equicontinuity of all functions f¥ =% which — of course — is not true in general
(but does hold for the class of nonexpansive mappings f : X — X, whose full
extensionality follows in A“[X,d]).

A similar problem with extensionality arises from the representation of a convex
subset C' of a normed linear space via its characteristic function yco. Here we
would like the characteristic function to respect the extensional equality, i.e.

T=xy— xc(®) =0 xc ().

In the presence of functional interpretation and majorization, this would not
only yield that points z € X close to C' behave similar to points in C', it would
also describe a modulus for how close to C' you have to be to behave ‘sufficiently
similar’. Unless the subset C' is topologically very simple (e.g. a closed bounded
ball), such statements will in general not be correct.

Therefore, we must restrict the formal system to make unwanted or simply false
conclusions, drawn from extensionality statements, impossible. In turn, when
it is necessary to employ an extensional equality in a proof, we cannot simply
assume extensionality: every statement of extensionality that is used in a proof
must itself be explicitly proved with the use of QF-ER or follow from uniform
continuity. For more details, see the discussion of extensionality in section 3 of
[13].

4 Extracting bounds from semi-constructive proofs
The metatheorems from [13] which we briefly discussed in the previous section

allow one to extract bounds from proofs in fairly strong systems, namely ex-
tensions of classical analysis with an abstract metric, hyperbolic, CAT(0) resp.

11



normed linear space. However, the fact that the formal systems were based
on classical logic imposes severe restrictions on the class of formulas for which
extraction of bounds is possible.

The first step in the extraction algorithm is to apply negative translation to
the classical proof (of some formula F), i.e. to translate it into an essentially
intutionistic proof of the negative translation FV of F' (which may, however,
use the Markov principle to be discussed below). This restricts the extraction of
bounds to V3 A-formulas for which the equivalence between the formula and its
negative translation can be shown to hold under the Markov Principle, namely
the class of formulas V3A,r, where A,y is quantifier-free (or purely existen-
tial). In consequence, the interpretation must interpret the Markov Principle,
as functional interpretation indeed does. In general, such an equivalence can
be validated at most for V3A,-formulas, as already the formula class II3 yields
counterexamples to the existence of effective bounds in the form of e.g. the
halting problem.

Secondly, the interpretation of the negative translation of the axiom of depen-
dent choice by bar recursive functionals requires arguments which hold only in
the model of hereditarily strongly majorizable functionals M“X over the types
IN and X but not in the full set-theoretic model S¥>X. In consequence, for the
extracted bounds to hold in S“X, we must restrict the types of the quantified
variables in the theorem to be proved to types of degree 1 or (1, X), as for those
low types the proper inclusions between these two models hold.

We will see now that the intuitionistic counterpart of A“ and its extensions to
metric, hyperbolic, CAT(0) and normed linear spaces do not suffer from such
restrictions (even when strong ineffective principles are added).

In the classical case, an extension of Gddel’s Dialectica interpretation combined
with negative translation and majorization (monotone functional interpretation)
was used to obtain the results. In the intuitionistic setting we derive these re-
sults from a monotone variant of Kreisel’s modified realizability interpretation
(in short: mr-interpretation), the so-called monotone modified realizability in-
terpretation. Kreisel’s mr-interpretation was introduced in [17, 18] and studied
in great detail in [26, 27]. The monotone mr-interpretation was introduced in
[10] and is studied in detail in [12].

This interpretation has the following nice properties:

1. As in the classical case, we can use the general metatheorem as a black
box to prove (even qualitatively new) uniformity results without actually
having to carry out the extraction.

2. Contrary to classical systems, we are no longer restricted to proofs of
VA, ¢-statements, but can allow V3A-statements for arbitrary A. Fur-
thermore, the additional restrictions on the quantifiers stated in Theorem
3.2 and Theorem 3.6 can be significantly relaxed.

3. We may add large classes of additional axioms ', which include highly
ineffective principles such as full comprehension for arbitrary negated for-
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mulas (which is not even allowed in the classical context, where it would
give full comprehension for all formulas).

The Markov Principle in all finite types is the principle
M*¥ s =—JzAgp(z) — IzAgy(2),

where A, is an arbitrary quantifier-free formula and z is a tuple of variables of
arbitrary types (A,; may contain further free variables).

As discussed above, in the classical case it is strictly necessary that the inter-
pretation we choose interprets the Markov principle, and this imposes certain
restrictions on the formal system. In the intuitionistic setting we can choose not
to include the Markov Principle. As a consequence, when extending intuitionis-
tic analysis with non-constructive principles we have an actual choice between
two main directions in which to extend the formal system: with or without the
Markov Principle M“:

Extending the system with the Markov Principle would force us both to restrict
extensionality to weak extensionality and to allow at most the independence
of premise scheme for purely universal formulas. However, we could still —
replacing the use of negative translation in the proofs of the main results in
[13] by the reasoning used to prove theorem 3.18 in [10] (based on monotone
functional interpretation) — extract bounds for arbitrary formulas V34, instead
of the restricted formula class V3dA4,;.

We choose instead to extend our formal system in the direction without MY.
Abandoning the Markov Principle allows us to add full extensionality and com-
prehension and independence of premise schemes for arbitrary negated formulas,
as well as many other essentially non-constructive analytic or logical principles
(see also [10]).

Let comprehension for negated formulas be the principle (also for tuples of
variables y):

CAZ 38 <, 0 A2 10WY2(B(y) =0 0 > —A(y)),

where y = y{*,...,y," is an arbitrary tuple of variables of arbitrary types, and
let the independence-of-premise principle for negated formulas be:

TIPS (A =y B(y)) = (-4 = B(y)) (y ¢ FV(4)),

where in both cases A, B are arbitrary formulas. The union of these principles
over all types p of the underlying language are denoted by C'A_, and I P-, where
— when working over the systems A¥[X,...] - we allow arbitrary types p € T~.

Definition 4.1. A formula A € AY, resp. A € A¥[...], is called 3-free (or
‘negative’), if A is built up from prime formulas by means of A,—,— and V
only, i.e. A contains neither 3 nor V. We denote 3-free formulas A by A.¢.

The principles CA.y and IP.; are the principles corresponding to C'A- and
IP.,, where instead of =A we have an 3-free formula A..
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We next recall Kreisel’s mr-interpretation and Bezem’s[1] notion of strong ma-
jorizability, which is an extension of Howard’s [6] notion of majorizability, for all
types TX. Combining these allows us to define the monotone mr-interpretation.
For each formula A(a), where g are the free variables of A, Kreisel’s mr-
interpretation defines, by induction on the logical structure of A, a correspond-
ing formula ‘z mr A’ (in words: z modified realizes A), where z is a (possibly
empty) tuple of variables, which do not occur free in A. From a proof of A
Kreisel’s mr-interpretation extracts a tuple of closed terms ¢ s.t. Va(ta mr A(a))-
For details see e.g. [26, 27].

Remark 4.2. 1. For every I-free formula A we have (x mr A) = A with z
the empty tuple.

2. (z mr A) is always an I-free formula.

Definition 4.3 ([13], extending [6, 1]). The strong majorizability relation
s-maj is defined as follows:

e ¥ ssmaj, r:=z* >z
e z* ssmajy x:= (0 =0 0) in A?;)[X,d,...],
o z* S—man T = ||€17*||X Z]R. ||ZL'||X in A[(dl) [X7 || : ||7 s ']’

*

e z* smaj, , T :=Vy*,y(y* smaj, y > r*y* s-maj, z*y,zy)

Definition 4.4 ([10]). A tuple of closed terms t* satisfies the monotone mr-
interpretation of A(a) if

Jz(t* s-maj z AVa(za mr A(a))

We briefly recall some properties of the mr-interpretation. As we have the full
axiom of choice AC in AY¥, resp. A¥[...], one shows:

Proposition 4.5 (Troelstra[26]).
AY + 1P, - A z(z mr A)
Similarly for AY[...] + IP.y.
Proof. By induction on the logical structure of A. O

Corollary 4.6. 1. For every formula A € AY we can construct an 3-free
formula By s.t.
A[f + 1Py F-A <« B.y.

Similarly for AY[...].

2. For every 3-free formula A.y € AY we have that AY = Agp < ——Aey.
Similarly for AY[...].

3. Over A?Y we have IP,; <> IP., and CA.; <> CA_. Similarly for AY[..].
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Proof. 1. By Proposition 4.5 we have
Af + TP =A< Vy((y mr A) = 1),

where Vy((y mr A) — 1) is I-free, as (y mr A) is I-free.

2. This equivalence is provable intuitionistically in the context of decidable
prime formulas.

3. AY + IP.; F IP- follows from ‘1., and AY + C'A.y - C'A- follows from the
fact that AY + CA.y - 1P,y and ‘1.”. The converse implications follow from
2., O

In the following, we will omit mentioning I P~ and I P,¢, as they follow from the
corresponding comprehension schemes C A, and CA.; (and the decidability of
=0)-

Discussion of extensionality, continued: As mentioned above, in the con-
text of functional interpretation full extensionality is much too strong, as it
would allow us to derive (when combined with the generalized majorizability
from [13]) statements e.g. about uniform continuity which are not true in gen-
eral. In the context of (monotone) modified realizability full extensionality is
harmless. Extensionally defined equalities in the premise of implications, e.g. in
instances of the extensionality axiom, as indeed instances of the extensionality
axiom as a whole, are 3-free and thus realized by the empty tuple.

Informally speaking, functional interpretation is ‘too eager’, seeking to extract
every possible and hence some unwanted bounds. In contrast, modified realiz-
ability is ‘lazy enough’ to only extract bounds where this is explicitly asked for,
namely from positive existential statements. Where functional interpretation
extracts bounds on universal premises in an implication, modified realizability
leaves them alone. In practice, this allows us to remove the requirement to
explicitly prove every extensional equality used in the proof and instead to sim-
ply assume it as a premise, leading to a more natural, intuitive treatment of
extensionality.

We can prove the following theorem, corresponding to Theorem 3.2 in the clas-
sical setting:

Theorem 4.7. 1. Let o be a type of degree 1, let p be a type of degree (-,0)
and let T be a type of degree (-, X). Let s°F be a closed term of AY[X,d]
and let A (resp. B) be an arbitrary formula with only z,y,z,n (resp.
x,y,z) free. Let T'-, be a set of sentences of the form Yu®*(C — Jv <g
tuFw =D) with t*75 be a closed term of AY[X,d], the type a € TX
arbitrary, the type B of degree (-,0) and v of degree (-, X). If

AY[X,d] + CA- + T FVz'Vy <, s(x)Vz" (=B — In° A),

then one can extract a primitive recursive (in the sense of Gddel) func-
tional ® : S; x IN = IN such that for all b € IN

VeoVy <, s(x)Vz"3In < ®(z,b)(—B — A)
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holds in any (non-empty) metric space (X,d) whose metric is bounded by
b € IN and which satisfies ['-.?

2. For bounded hyperbolic spaces (X,d, W), ‘1.” holds with A;|X,d, W], (X,d, W)

instead of AY[X,d],(X,d).

3. If the premise is proved in AY[X,d,W,CAT(0)] instead of AY[X,d, W]
then the conclusion holds in all nonempty b-bounded CAT(0) spaces satis-
fying T'_..

As in the classical case, instead of single variables and single premises we may
also have tuples of variables and a finite conjunction of premises.

Proof. Since prime formulas in AY[X, d]4+CA_+T -, are decidable, it follows from
Corollary 4.6 that this theory is equivalent to the theory AY[X,d]+CAcp+T;,
where I, s is the set of sentences which results from I', by replacing in each
S € I'-, the negated formula =D by the 3-free formula D,y from Corollary 4.6
which is equivalent to —=D. For the subsystem of A¥[X,d] + CA.y + I‘;f not
involving (X, d), i.e. restricted to the types T, the theorem is proved in [10] by
establishing that this theory has a monotone mr-interpretation in its classical
counterpart (for a somewhat more restricted set I', ; even in itself) by terms in
Godel’s T ((although we use mr rather than mr-with-truth we do not have to
restrict the formulas A, C' to I'; as in [10](thm.3.10) since in the presence of AC
(and hence in §¥) we can use proposition 4.5 to infer these formulas back from
their mr-interpretations).

To extend the proof to the full theory A% [X,d]+CA.s+ Fgf, i.e. now involving
the full range of types T, we observe the following:

1. By arguments similar to those used in the classical case (see [13]) the
soundness of the monotone mr-interpretation of the logical axioms and
rules, the defining equations for combinators ¥, II and the recursors R,
axiom schemes F, AC and the axiom schema of induction extends to the
types TX without any changes.

2. The additional axioms of A% [X, d] are purely universal and do not contain
V, and hence have a trivial monotone mr-interpretation by the empty
tuple.

3. The additional 3-quantifiers ranging over variables of type degree (-, X),
both in the conclusion and in sentences of the set I'/ o can easily be ma-
jorized using appropriate constant Ox functionals as shown in [13].

4. The monotone mr-interpretation extracts a realizer ¢y € S“>X depending
only on a suitable interpretation of the constants of AY[X,d]: The ma-
jorization relation extends to TX as defined above and given a closed term

5Here by is understood to be interpreted by b.
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¥ of AY[X,d] we can construct as in [13] a majorant ¢*, by induction on
the term structure of ¢ such that

S X = 4p* s-maj 4.

1* does not involve dx and which depends on (X,d) only via the inter-
pretation of the constant bx by a bound b € IN on the metric d and on
the interpretation of Ox by some arbitrary element of X. Using the same
techniques as in the classical case ([13]) one can eliminate the latter de-
pendency and construct from ¢* a functional ® € Sy_, ;) which is given
by a closed term of A¥ (i.e. a primitive recursive functional in the sense
of Godel) s.t.

S X =V VY <, s(x)V2"In < ®(2,0)(-B — A(z,y,2,n)).

Since, again by corollary 4.6, =B is equivalent to an existential free formula
it is does not in any way contribute to the extracted term. For AY[X,d, W]
and AY[X,d, W, CAT(0)] the arguments are similar. In all three cases the final
extracted functional ® is primitive recursive in the sense of Gédel, i.e. @ is
given by a closed term in Goédel’s T'. O

In a similar way, one can prove semi-intuitionistic counterparts to the general-
ized metatheorems presented in [4].

We first show the following corollary, corresponding to Corollary 3.5 in the
classical case:

Corollary 4.8. 1. Let P (resp. K) be a AY-definable Polish space (resp.
compact Polish space) and let A, B and '~ be as in the previous theorem.
If AY[X,d, W]+ CA- + T, proves that

Vz € PVy € KV2X, fX7X (=B — 3n’A)

then there ewists a primitive recursive functional ®'=92° (on representa-
tives x : IN = IN of elements of P) such that for all x € NN bheN

Yy € KV2X, fX7X3n < &(2,b)(~B — A)

holds in any (non-empty) hyperbolic space (X, d, W) whose metric is bounded
by b and which satisfies T'—.

2. The result also holds for AY[X,d],(X,d).

Proof. The details of the proof are similar to the classical case, i.e. by Theorem
4.7 we can extract a primitive recursive bound ®(x,b) on n which holds in all
spaces (X,d, W), resp. (X,d), whose metric is bounded by b. O

In [4] a refined version of corollary 3.5 is established which states that if the
assumption is proved in A“[X,d, W]_; (i.e. without the use of the axiom stating
the boundedness of d) that then the conclusion holds in arbitrary (not necessary
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bounded) hyperbolic spaces as long as b > d(z, f(x)). This also holds (though
with ‘Fiz(f) # (" dropped) for functions which are not nonexpansive but only
have a bounding function €2 : IN — IN such that

VK, 2X(d(2,2) < k= d(2, f(2)) < Q(k))

for some 2%, where then the bound depends on Q. This corollary has a semi-
intuitionistic counterpart analogous to the previous results:

Corollary 4.9. 1. Let P (resp. K) be a AY-definable Polish space (resp.
compact Polish space) and let A and B be as before but not containing the
constant Ox . If AY[X,d,W]_y + CA-, proves that

Vo € PVy € KVzX, X=X ot
(VR 3% (dx (2, 2) <k (K)m — dx (2, F(3)) <m (Q(K))m) A ~B — In0A)

then there exists a primitive recursive functional ®'=17° (on representa-
tives x : IN — IN of elements of P) such that for all x,Q € N

Vy € KV2X, fX=2X Ql3n < &(z,Q)
(VR0 2% (dx (2,2) <m (K)m — dx (2, F(3)) <m (QE))m) A B — A)

holds in any (non-empty) hyperbolic space (X,d, W).

2. The result also holds for AY[X,d]_y, (X, d).
Even if 2’ does not occur in B, A we need the assumption on f,Q to hold for
some z in X.

Note, that the boundedness of (X,d) and the bound b as a parameter have
been replaced by a far more general condition on f and the parameter 2 in the
unbounded case. Still, the extracted bound ® may display similar uniformities,
i.e. independence of z, f and the underlying space (X,d). As an example, for
nonexpansive functions f and the additional premise d(z, f(z)) < b we obtain
Q(n) := n + b. This yields an effective bound ® depending only on z and b,
where b is not a bound on the whole space, but only on d(z, f(z)).

Remark 4.10. As in the classical case, we can add in corollary 4.8 additional
assumptions about the function f, if of suitable logical form, to the premise. In
the classical case we added the assumption ‘f n.e.’ and ‘Fiz(f) # 0’ to the
premise of the implication. Both assumptions can also be added in the semi-
intuitionistic case. The condition ‘f n.e.” is purely universal and hence is
equivalent to its double negation. The statement ‘Fixz(f) # 0’ can be written
as X Cy, where Cy is purely universal and so again equivalent to its double
negation. Thus, first pulling out the existential quantifier from the premise
JuXCy as a universal quantifier just as VzX, we can extract a bound ® that
does not depend on u and does not depend on any of the negated premises nor
Cvy. Shifting the quantifier u back in we get the result.

In the classical case the premise ‘f n.e.” ensures that a given f indeed behaves
like a function, i.e. is needed to prove the extensionality of f, as the weak
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extensionality rule QF-ER is not strong enough to ensure this. The weaker
assumption ‘f d.n.e’ does not imply extensionality. This is the reason why
in application 3.16 of [13] one carefully had to observe that QF-ER was in
fact sufficient to formalize the proof in question. Likewise the Q-condition in
Corollary 4.9 does not imply extensionality. In the semi-intuitionistic case,
where we have full extensionality included as an axiom this does not cause any
difficulties.

The benefit of adding ‘Fix(f) # 0’ was that FI would weaken that assumption to
‘f has approzximate fized points’, which for nonexpansive and even directionally
nonezpansive selfmappings of a bounded hyperbolic space is always true (see [5]
and [15]) whereas, in general, ‘Fix(f) # 0’ is not. In the semi-intuitionistic
case ‘Fix(f) # 0 will not disappear from the premise, as monotone modified
realizability does not weaken universal premises such as dx (x, f(x)) =g OR.

For normed linear spaces we prove the following semi-intuitionistic counterpart
to Theorem 3.6:

Theorem 4.11. 1. Let o be a type of degree 1, p be an arbitrary type in
TX and let 7 be a type of degree (X,C). Let s°° be a closed term
of Ai[X,]| - ||,C] and let A (resp. B) be an arbitrary formula with only
x,y,z,n (resp. w,y,z) free. Let T be a set of sentences of the form
Yu®(C' — Fv <g tuIw?=D) where t*77 is a closed term of AY[X, ||-||, C],
the types a, 3 € TX are arbitrary and ~y is of degree (X,C). If

AYIX |1, + CAL + T4 FVaoVy <, s(z)V2" (=B — In’A),

then one can extract a primitive recursive (in the sense of Gadel) func-
tional ® : Sy x IN = IN such that for all b € IN

VzoVy <, s(x)Vz"3In < ®(z,b)(—-B — A)

holds in any nontrivial normed linear space (X, || - ||) and any b-bounded
convex subset C' which satisfy T',.

Instead of single variables and single premises we may also have tuples of vari-
ables and a finite conjunction of premises.

The proof is based on arguments similar to the proof of Theorem 3.6, resp.
the variations due to the change of setting from classical to semi-intuitionistic
discussed in the proof of Theorem 4.7. The variables of degree (X,C) in the
sentences A € ', can again easily be majorized by a suitable interpretation
of the constant bx by a bound b on the norm of the elements of the convex
subset C'. As before, the generalized metatheorems for normed linear spaces in
[4] can be transferred to the semi-intuitionistic setting in a similar way, yielding
similar uniform bounds. However, for (unbounded) convex subsets C' we need
the additional premise ||ex||, ||z]|| < b and the Q-condition is written as

vz (lzllx < (Mr = [1f(@)llx <k (2n)R).
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Remark 4.12. In the classical case the construction of majorants d% resp.
| |I% depends on the interpretation of dx resp. ||-||x in the model S** via an
ineffective operator ()o, which from a (representative of a) real number selects a
canonical representative of that real number. As an operator of type 1 — 1, (),
18 primitive recursive in

20 p1y . 0, ifoO(f(x) =0 0)
E°(f )'—0{ 1 if =¥aO(f(x) =0 0).

Since the functional interpretation of the defining azioms of (E?) would re-
quire mnon-magorizable functionals (although E? itselfs is trivially majorizable)
one must not include the operator ()o to A“[X,...]. This causes no problems
as (), only is involved in the interpretation of the theory in the model S¥-X.
Subsequently the ineffective (), operator can be majorized effectively!

In the semi-constructive case we could actually add the ()o operator via E? to
the theory, as monotone modified realizability leaves the defining axioms of the
E? untouched, and carry out part of the argument regarding the (), operator in
the theory itself rather than in the model. The existence of E* actually follows
from CA.¢ and hence from CA-,.

5 Application to Metric Fixed Point Theory

To illustrate the various aspects of Theorem 4.7 we consider three different
proofs of (variants of) Edelstein’s Fixed Point Theorem: first a refinement of
the original proof by Edelstein[3] developed in [16], next an alternative, con-
structive proof by Rakotch[21] and finally a more recent proof carried out in
the framework of Bishop-style constructive mathematics by Bridges, Julian,
Richman and Mines[2]. Though completely elementary, if not trivial, from a
functional analytic point of view, this example serves well to demonstrate the
various logical aspects of proof mining using the metatheorems presented in
the previous sections. For recent non-trivial applications of proof mining see
[11, 14, 15].

In [22], Rhoades presents a survey and comparison of a large number of different
notions of contractivity, compiled from the literature on metric fixed point the-
ory, for which fixed points theorems have been proven. Many of these notions of
contractivity and the accompanying proofs of fixed point theorems are far more
technical than the example presented in this section. Further surveys on notions
of contractivity can be found in [23, 20]. We intend to treat such more general
fixed point theorems based upon the more complicated notions of contractivity
discussed in these survey articles in a subsequent paper.

Edelstein defines contractive (self-)mappings as follows:

Definition 5.1 (Edelstein[3]). A self-mapping f of a metric space (X,d) is
contractive if for all z,y € X: v £y — d(f(x), f(y)) < d(z,y).

Edelstein’s Fixed Point Theorem is:
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Theorem 5.2 (Edelstein[3]). Let (X,d) be a complete metric space, let f be

a contractive self-mapping on X and suppose that for some x € X the sequence

{f™(z)} has a convergent subsequence {f™ (x)}. Then & = lim f™(z) exists
n—oo

and is a unique fized point of f.

For a compact space (X, d) the sequence {f"(x)} always has a convergent sub-
sequence, and thus {f"(z)} always converges to a unique fixed point. We are
now interested in obtaining a computable (Cauchy) modulus ¢ for the sequence
{f™(z)} st. Ym,n > N : d(f™(z), f"(z)) < € for N := §(e). In addition to
€, we must prima facie expect the rate of convergence § to also depend on =z,
the space (X,d), the function f and a modulus of contractivity for f, if such
a modulus exists. In an intuitionistic setting the meaning of the implication
expressing the contractivity of f is to give a procedure to transform a witness of
‘d(z,y) > 0’ into a witness of ‘d(f(z), f(y)) < d(z,y)’. Proving (or assuming)
contractivity of f in an intuitionistic setting yields a function that depending
on z,y and an ¢, by which d(z,y) is larger than 0, produces an n by which
d(f(z), f(y)) is smaller than d(z,y). Such a function, if uniform with regard to
z,y € X, is none other than a modulus of contractivity.

Remark 5.3. On compact metric spaces or, more generally, on bounded metric
spaces, monotone functional interpretation and monotone modified realizability
automatically strengthen the general notion of contractivity to uniform contrac-
tivity, i.e. the existence of a modulus of contractivity. As we will see, the notion
of uniform contractivity is sufficient even on unbounded metric spaces to guar-
antee the convergence of {f™(z)} to a unique fixed point and to state an effective
rate of convergence.

In [21] Rakotch considers functions with a multiplicative modulus of contractiv-
ity a s.t.

Ve,y € X :d(z,y) >e = d(f(x), f(y)) < ale) -d(z,y)

where 0 < a(e) < 1 for all € > 0.° Note that the existence of such a modulus «
is a uniform version of Edelstein’s notion of contractivity as o does not depend
on z,y but only on €.

Rakotch’s multiplicative modulus of contractivity « is only one possible inter-
pretation of witnessing the contractive inequality. From the point of view of
logic, to witness an inequality s < ¢ one has to produce an £ > 0 s.t. s+¢ < t.
This leads to a additive modulus of contractivity n s.t.

Vo,y € X td(z,y) > e — d(f(z), f(y)) +n(e) < d(z,y)

It is easy to see that a modulus 7 can always be defined given a modulus a:

n(e) == (1-ale)) ¢

6 Actually Rakotch requires o to be monotonically decreasing and to satisfy = # y —
d(f(z), f(y)) < a(d(z,y)) - d(z,y) instead. In the proof only the above property is needed,
which follows from Rakotch’s requirements.
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To define a modulus « in terms of a modulus 1 we have to assume that the
metric d on X is bounded and define:

As Rakotch has shown (see below) the existence of a modulus of contractivity «
implies that the iteration sequence {f"(z)} is bounded. From this he concludes
that even without assuming the boundedness of X the sequence {f™(z)} is
Cauchy (and hence converges to a unique fixed point of f).” As we will see,
by 4.9 this yields the existence of a uniform Cauchy modulus which is largely
independent from the starting point  and the function f but only depends on
the modulus «, a bound b on d(z, f(z)) and the error e.

It should be noted that it is strictly necessary for the modulus « to be uni-
form with regard to z,y € X, as otherwise a function, although contractive,
might not have a fixed point. Edelstein’s non-uniform notion of contractivity
x £y — d(f(z), f(y)) < d(z,y) is in general only sufficient to prove the exis-
tence of a fixed point in compact spaces, where that notion is equivalent to the
existence of uniform moduli @ and 7. In most other cases the equivalence fails.
As a counterexample, consider the self-mapping f(z) := = + % of the interval
[1,00). It is easy to see that the function f is contractive in the sense of Edel-
stein. Trivially, the function f has no fixed point. One, furthermore, proves by
induction that for all n > 1:

n
1
1+Z?§f”(1)§n+1
i=1

Since ) i, + = oo, the iteration sequence {f™(1)} is unbounded. So by the
aforementioned result of Rakotch, f does not have a modulus of contractivity a
(as can be also seen directly). Counterexamples even in the case of bounded

metric spaces® are discussed in [24].

Using a multiplicative modulus «, Rakotch proves the following variant of Edel-
stein’s Fixed Point Theorem:

Theorem 5.4 (Rakotch [21]). Let (X,d) be a complete metric space and
let f be a contractive self-mapping on X with modulus of contractivity o, then
&= lim f™(x) exists and is a unique fixed point of f.

n— o0

Remark 5.5. Whereas Edelstein’s theorem requires the ezistence of a conver-
gent subsequence of {f™(x)}, which is guaranteed in general only for compact
X, Rakotch’s theorem avoids this by imposing a stronger uniform contractivity
on f (which, however, follows from the usual one in the compact case).

"With a somewhat different proof one can also show this based on an additive modulus n
instead of « although to derive the existence of a global modulus a from n seems to require
the boundedness of (X, d). However, as Rakotch’s proof shows, the contractvity is (for given
x) used only on points of the form f™(z) and on those (by the boundedness of {f™(z)}) one
can define a modulus a from 7.

8In fact even in the case of the closed unit ball of the Banach space co.
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The key step in the proof is to establish the following:

Lemma 5.6. Let (X, d) be a metric space and let f be a contractive self-mapping
on X with modulus of contractivity c, then the iteration sequence {f™(x)} is a
Cauchy sequence.

We now expect that our metatheorems allow us to extract from a proof of
Lemma 5.6 a Cauchy modulus §; in fact it suffices to extract a bound on the
modulus, as such a bound trivially also is a realizer for the modulus. Contrary to
Rakotch’s proof, Edelstein’s original proof is a classical proof and since express-
ing that the sequence {f"(z)} is a Cauchy sequence requires a II3-statement,
the metatheorem for the classical case cannot be applied directly to extract a
Cauchy modulus from Edelstein’s proof.

In [16], Kohlenbach and Oliva use a trick to extract a bound from Edelstein’s
non-constructive proof: The proof of Edelstein’s Fixed point theorem can be
split up into three lemmas. Each of these lemmas is of a suitable logical form to
allow extraction of a bound, and combining these bounds, the following modulus
of convergence (towards the unique fixed point) for f a self-map on a compact
space K is extracted?:

dahe) = |

log((1 —a(e))5) —logb
loga((1 — a(e)) 1 “

where « is the modulus of contractivity for f, and b is a bound on the diameter
of K. In accordance with Theorem 3.2, the same bound also holds if we replace
the compact space K by a (more general) b-bounded metric space. Note that
the Cauchy modulus ¢ is uniform with regard to z € X and the function f.
The treatment of (the classical proof of) Edelstein’s fixed point theorem in [16]
via monotone functional interpretation generalizes Edelstein’s result to bounded
metric spaces, where using the strengthening of contractivity to uniform con-
tractivity a Cauchy modulus for the sequence {f™(z)} is extracted. Together
with the observation that only the boundedness of the iteration sequence is
needed and not the boundedness of the whole space, the analysis of Edelstein’s
classical, non-constructive proof yields essentially the same result as Rakotch’s
theorem. However, with regard to the numerical quality of the modulus one can
do better: As mentioned Rakotch’s proof is fully constructive, and one easily
sees that the constructive proof can be formalized in A¥[X,d]_;. Thus, with-
out the tedious work of splitting up Edelstein’s proof, the metatheorem for the
semi-intuitionistic case guarantees that we can extract an effective bound on the
modulus of convergence or, without having to carry out the extraction, prove
uniformities for the modulus of convergence.

In A¥[X, d]—, we can express the fact that fX =% represents a contractive func-
tion with modulus a! (of type degree 1), in short: ‘f contr. a’, as

VEOV2 X,y (dx (2, ) >r 2% = dx (f(2), f()) <m (1 —27°W)) g dx(2,7))

9Qriginally in [16] an additive modulus of contractivity n is considered. The extracted

_n()
modulus of convergence is then §(n, b,e) = P(n(;"))] + 1.
(5
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Thus in the formal system AY[X, d]_ one can express Lemma 5.6 as:

Lemma 5.7. A¥[X,d]|_; proves
VXX XYalVEO (f contr. a — ANOVm,n >¢ N dx (f™(z), f*(z)) <m 27").

To see that Rakotch’s proof can be formalized in AY[X, d]_;, one notes that the
proof consists of two main parts: first it is shown that for any starting point x
the sequence {f"(x)} is bounded and that the bound depends only on « and
(a bound b on) d(z, f(z)). Given a starting point z, the function f and an
arbitrary p > 0, Rakotch shows that one can bound d(z, f*(z)) for all n by'°

2-b

d(a, " (@)) < ¥(a,b) = max(p, g—

)

where b > d(z, f(x)).

Then using this bound and the contractivity of f it is shown that {f™(z)} is a
Cauchy sequence and hence converges to a unique fixed point.

Application 5.8. Corollary 4.9 a-priorily guarantees that there exists a bound
d(a, b, e) on N that holds for all metric spaces (X,d), all functions f with modu-
lus of contractivity o and all z € X s.t. d(z, f(z)) < b. Moreover, by Corollary
4.9 we can extract an effective bound §(c, b, €) from Rakotch’s constructive proof,
and since a bound on N also is a realizer, this gives us the following Cauchy
modulus (and hence modulus of convergence towards the unique fized point):

d(a,b,e) = {710“1*01;5("6)(“”’)1 where

b (e, b) = max(p, ﬁ”(p)) with b > d(z, f(z)) and p > 0 arbitrary .

Proof. Since the relation <R can be expressed as a I1{-predicate, the premise ‘f
contr. «’ is I-free, where « is an element of the Baire space X = INN. Moreover,
by the comment after corollary 4.9, we can take Q(n) := n + b since f a-fortiori
is nonexpansive. The conclusion, the Cauchy property of the sequence {f"(z)}
is of the form V3V, but contrary to the classical case there are no restrictions
on the logical form, so that we can extract an effective uniform bound §(«, b, €)
on 3N, i.e. an effective uniform Cauchy modulus for (f™(z)).

The existence of the Cauchy modulus §, with the described uniformities, is
guaranteed by the semi-intuitionistic metatheorem, even without analyzing the
proof. For the actual “extraction” of a bound d0(a, b, ), we briefly sketch the
relevant, second part of Rakotch’s proof:

Let p € IN be given, then by definition (we can assume d(xy, Zrtp,) > 0):

d(Tpr1, Thipr1) < a(d(Tg, Thyp)) - d(Th, Thoap)-

10Here for convenience we tacitly move back to the more usual version of a as a function
R — (0,1).
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Now taking the product from k£ =0 to n — 1 we get

n—1

d(@n, Tntp) < dzo,p) - [] eld(@r zasy):
k=0

Since we assumed d(z, f(z)) < b and hence b'(«, b) is a bound on d(zg,zp), we
get

n—1

(@, Tnip) <V'(,b) - [] aldl@n, wrsyp))-
k=0

If already d(z, zg+p) < € for some 0 < k < n—1 we would be done, so assuming
d(zy, zp4p) > eforall k=0,...,n—1 and by
Vo,y € X 1d(z,y) > e = d(f(z), f(y) <ale) - d(z,y)

we get that
A0, Taty) < V(,h) - ()"

Then solving the inequality b'(«,b) - (a(e))® < e with regard to n yields the
following Cauchy modulus:

S(ab ) = Pogs —logb (a,b)"

log a(e)

where throughout b'(«, b) is as described above. O

As mentioned above, extracting a bound from the classical proof of Edelstein’s
theorem was only possible by breaking up the proof into a couple of lemmas,
each of suitable form to extract a bound, using the metatheorem for the classical
case. Compared to the bound extracted from the Edelstein’s proof the bound
from Rakotch’s constructive proof - guaranteed a-priorily by the metatheorem
to exist and to be uniform on z € X and f - is both (syntactically) simpler and
better. Naturally, in many cases finding a constructive proof for a classically
true theorem may be far less trivial than in the case of Rakotch’s variant of
Edelstein’s theorem and, in general, many classically true theorems may not
have a constructive proof at all. However, as this example demonstrates, con-
sidering a constructive proof may yield significantly simpler and better bounds
than in the classical case and may give fully uniform bounds from theorems hav-
ing a logical form more complex than V3, where the classical metatheorem in
general fails, such as for example the Cauchy property of an iteration sequence.
Moreover, monotone functional interpretation or monotone modified realizabil-
ity may automatically lead to the necessary strengthenings of the mathematical
notions involved, as e.g. strengthening the notion of contractivity to uniform
contractivity.

Finally, even for proofs that are developed in a fully constructive setting, the
metatheorem for the semi-constructive case may reveal new uniformities not
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present in, or immediately obvious from, the theorem and proof under con-
sideration. In [2] Bridges et al. treat Edelstein’s fixed point theorem in the
framework of Bishop-style constructive mathematics. A function f that is con-
tractive in the sense of Rakotch is denoted by the concept of ‘f is an almost
uniform contraction’. The following theorem is proved:

Theorem 5.9 ([2]). Let f : X — X be an almost uniform contraction on a
complete metric space X. Then

1. f has a unique fixed point & in X; and

2. the sequence {f™(x)} converges to & uniformly on each bounded subset of
X.

This theorem largely corresponds to Rakotch’s theorem discussed above, but
only the uniformity with regard to z € X is stated, not the uniformity with
regard to f or the bounded subset. Both uniformities follow already a-priorily
from the existence of a (constructive) proof for Rakotch’s theorem by means
of our metatheorem. Also a modulus of convergence is not explicitly stated,
though both the uniformities and the effective modulus can be seen to be im-
plicit in the proof. An analysis of the constructive proof in [2] easily yields an
explicit modulus of convergence, which is identical to the bound extracted from
Rakotch’s constructive proof.

Corrections to [13]:

1) P. 96, line -7: ‘ko = max k[...]’ must be ‘ky = maxk < 202F2)[..]

2) P.116: in the def. of B, z should be a single functional z rather than a tuple.
3) P. 117 (line 7 and last line of 4.4) add: ‘the verification of the functional
interpretation does not need QF-AC (which is trivially interpreted)’.

4) P.118 (4.7), p.122 (line 6):replace A“[. . ]+(BR) by A“[.. ]+(BR)\{QF-AC}.
5) P.121, line 20 and footnote 26: ‘closed terms of A“+(BR)’.
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