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(ine�etive) straightforward funtional analyti means. Already in thepurely intuitionisti ase, where the existene of e�etive bounds is im-pliit, the metatheorems allow one to derive uniformities that may not beobvious at all from a given onstrutive proofs. Finally, we illustrate ourmain metatheorem by an example from metri �xed point theory.1 IntrodutionProof mining is the appliation of logial, or more preisely, proof theoretimethods to the analysis of formal systems and proofs with the aim of extratingadditional information from (mathematial) proofs. E.g. one might want toextrat from a proof that a ertain iteration sequene onverges an e�etive,omputable modulus of onvergene and to establish the uniformity of suh amodulus or even to state general a-priori onditions for the independene of anextrated modulus from ertain parameters.In the lassial ase, i.e. formalizations of mathematis based on lassial logi,the goal of proof mining is to extrat realizers and bounds - we will fous onthe extration of bounds - from prima faie ine�etive, non-onstrutive proofs.The tehnique used to prove the existene of e�etive bounds and, if needed, toarry out the extration is based on an interpretation of lassial proofs via somenegative translation and (a suitable form of) G�odel's funtional interpretation,further ombined with majorization(see [8, 13℄). Whereas previously only theo-rems involving onstrutively representable Polish spaes ould be treated anduniformity in parameters was guaranteed only for the ase of ompat spaes([8, 9℄) results in [13℄ due to the seond author allow one to treat lasses ofarbitrary metri, hyperboli, CAT(0) and normed linear spaes X . Moreover,under very general onditions, uniformity in parameters ranging over metriallybounded spaes an be inferred a-priorily even in ases where this ould nothave been obtained by usual ine�etive funtional analyti methods. In [4℄,these results were reently generalized by the authors. Using a novel majoriza-tion tehnique developed by the authors one obtains similar uniformities evenif the spae as a whole is not metrially bounded but only loal boundednessonditions are imposed. However, both the raw material, lassial proofs, andthe tehniques employed for the interpretation impose ertain restritions: Onean use at most weak extensionality in the proofs to be analyzed, as full exten-sionality an be shown to be too strong under funtional interpretation. In theontext of [13, 4℄ this is a severe restrition as it implies that not every objetfX!X of type X ! X an be viewed as a funtion f : X ! X:1 Also, asmany lassially true theorems annot be given (a diret) omputational mean-ing (this inludes already �03-sentenes), the extration of realizers and boundsan be arried out at most for (lassial) proofs of sentenes of the form 89Aqfwhere Aqf is quanti�er-free with some further restritions on the types of thequanti�ed variables.1As a onsequene of this, the appliations given in [13, 4℄ mainly onern lasses of fun-tions, like nonexpansive funtions, for whih the extensionality an be dedued diretly.2



In this paper, we onsider proof mining in the semi-intuitionisti ase: intuition-isti analysis enrihed with ertain non-onstrutive priniples. In the purelyintuitionisti setting bounds and realizers are impliitly given. Nevertheless,even in the intuitionisti setting our results prove non-trivial onsequenes: asin the lassial setting of [13, 4℄ we an now guarantee very strong uniformity re-sults (independene from parameters ranging over metrially bounded spaes).Even in the presene of various highly ine�etive priniples (suh as ompre-hension in all types for arbitrary negated or 9-free formulas and many others),most of the restritions needed in the fully lassial ase disappear in our semi-onstrutive setting: we an now use full extensionality and extrat realizersand bounds from (semi-intuitionisti) proofs of arbitrary formulas, with om-paratively modest restritions on the types of the quanti�ed variables.The tehnique employed to establish these results for suh semi-intuitionistisystems is a monotone variant of Kreisel's modi�ed realizability interpreta-tion, so-alled monotone modi�ed realizability. The metatheorem for the semi-intuitionisti ase we present in this paper is to some extent based on resultsin [10℄, and the extensions presented here an be onsidered as the ounterpartto the extensions of [8℄ presented in [13, 4℄ for the lassial ase. We will fouson developing the semi-intuitionisti versions of the results [13℄ in detail. Theresults in [4℄ an be transferred to the semi-intuitionisti setting in a similar buttehnially more ompliated way.As stated above, both in the lassial and the semi-intuitionisti ase the metathe-orems allow one to derive new, strong uniformity results, by giving general, easyto hek onditions under whih an extrated bound will be guaranteed to beindependent from ertain parameters - all of this without atually having toarry out the extration. For the independene of (e�etive) bounds from pa-rameters ranging over ompat spaes suh results are well known and have beentreated in [9, 10℄. For non-ompat bounded metri or hyperboli spaes thereare no general mathematial reasons why suh uniformities should hold, and inmetri �xed point theory similar (ine�etive) uniformity results have hithertoonly been obtained in speial ases by non-trivial funtional analyti tehniques(see [13, 15℄ for disussions of these points). Already in the ontext of fullyintuitionisti proofs one an derive new uniformities that may not be obviousfrom a given onstrutive proof or a bound impliit in the proof.We illustrate the various aspets of the metatheorems by a very simple examplefrom metri �xed point theory: First we state the original ine�etive versionof Edelstein's �xed point theorem [3℄. The main part of Edelstein's �xed pointtheorem is of a too ompliated logial form (namely �03) to diretly allowthe extration via the lassial metatheorems in [13, 4℄. Therefore in [16℄ ane�etive uniform bound for Edelstein's �xed point theorem was extrated bysplitting up Edelstein's proof into three lemmas, eah simple enough to allowthe extration of an e�etive bound. We present a variant of Edelstein's �xedpoint theorem due to Rakoth [21℄, the proof of whih is fully onstrutive. Thispermits us to extrat a uniform bound as guaranteed by the semi-intuitionistimetatheorem. Finally, we ompare the results with a treatment of Edelstein's�xed point theorem in the setting of Bishop-style onstrutive mathematis by3



Bridges, Julian, Rihman and Mines [2℄. Both the lassial and the intuitionistimetatheorem a-priorily guarantee uniformities not stated in the onstrutiveproof by Bridges et. al. The bound extrated from Rakoth's onstrutivizedproof, while superior to the bound extrated in [16℄, is idential to the boundimpliit in [2℄.2 Formal systemsWe now desribe the lassial and intuitionisti formal systems in whih theextration of bounds is arried out. For tehnial details see [13℄ and also [19℄.Let A! := WE-PA!+QF-AC+DC be the system of so-alled weakly exten-sional lassial analysis based upon a �nite type extension WE-PA! of �rstorder Peano arithmeti PA, where QF-AC is the axiom shema of quanti�er-free hoie and DC is the axiom shema of dependent hoie in all types. LetA!i be de�ned as E-HA! +AC; where E-HA! denotes the intuitionisti ex-tensional ounterpart of WE-PA! and AC is the full axiom of hoie (detailsare given below).De�nition 2.1. The set T of all �nite types is de�ned indutively by the lauses(i) 0 2 T; (ii) �; � 2 T ) (�! �) 2 T:Objets of type 0 denote natural numbers, objets of type �! � are operationsmapping objets of type � to objets of type � . We only inlude equality =0between objets of type 0 as a primitive prediate. Equality between objets ofhigher types s =� t is a de�ned notion:2s =� t :� 8x�11 ; : : : ; x�kk (s(x1; : : : ; xk) =0 t(x1; : : : ; xk));where � = �1 ! �2 ! : : : �k ! 0, i.e. higher type equality is de�ned asextensional equality. An operation F of type � ! � is alled extensional if itrespets this extensional equality:8x�; y��x =� y ! F (x) =� F (y)�:Ideally, we would like to have an axiom stating the extensionality for all fun-tionals, but in the lassial system A! full extensionality would be too strong forthe metatheorems we are aiming at and their appliations in funtional analysisto hold. Instead in A! we inlude a weaker quanti�er-free extensionality ruledue to [25℄:QF-ER : A0 ! s =� tA0 ! r[s℄ =� r[t℄ ; where A0 is a quanti�er-free formula.The rule QF-ER allows one to derive the equality axioms for type-0 objetsx =0 y ! t[x℄ =� t[y℄2Here we write s(x1; : : : ; xk) for (: : : (sx1) : : : xk).4



but not for objets x; y of higher types (see [26℄, [6℄).In the intuitionisti system A!i we inlude the muh stronger extensionalityaxiom: E� : 8z�; x�11 ; y�11 ; : : : ; x�kk ; y�kk ( k̂i=1(xi =�i yi)! zx =0 zy);for all types �.The systems A! and A!i are de�ned on top of many-sorted lassial, resp. intu-itionisti, logi with onstants O0 (zero), S1 (suessor), ��!�!��;� (projetors),�Æ;�;� (ombinators of type (Æ ! � ! �) ! (Æ ! �) ! Æ ! �) and onstantsR� for simultaneous primitive reursion in all types.3 In addition to the de�ningequations for those onstants, A! and A!i ontain as non-logial axioms:1. Reexivity, symmetry and transitivity axioms for =0,2. the axiom shema of omplete indution:IA : A(0) ^ 8x0�A(x)! A(S(x))) ! 8x0A(x);where A(x) is an arbitrary formula of our language,3. in A! :� the quanti�er-free extensionality rule QF-ER� the quanti�er-free axiom of hoie shema in all types:QF-AC : 8x9yA0(x; y)! 9Y 8xA0(x; Y x);where A0 is quanti�er-free and x; y are tuples of variables of arbitrarytypes,� the axiom shema of dependent hoie DC:= fDC� : � 2 Tg:DC� : 8x0; y�9z�A(x; y; z)! 9f0!�8x0A(x; f(x); f(S(x)));where A is an arbitrary formula and � an arbitrary type.4. in A!i :� the axiom shema of extensionality E = fE� : � 2 Tg for all types �� the axiom shema of full hoie AC:= fAC�;� : �; � 2 Tg:AC�;� : 8x�9y�A(x; y)! 9Y �!�8xA(x; Y x):where A is an arbitrary formula.3It is well-known that simultaneous primitive reursion in all �nite types (whih de�nesprimitive reursively �nite tuples of funtionals rather than a single funtional only) an beredued to ordinary primitive reursion in all �nite types over A!i (see [26℄(1.6.16)). However,in the extensions A!(i)[X; : : :℄ to be disussed below this seems to require the addition of ertainprodut types so that we prefer to take simultaneous reursion as a primitive onept as in[13℄. 5



We next sketh extensions of A! and A!i with an (non-empty) abstrat metrispae (X; d), resp. hyperboli spae or CAT(0) spae (X; d;W ); where for thesomewhat involved details we refer to [13℄:The basi idea is to axiomatially add an abstrat metri or hyperboli spaeas a kind of `Urelement' to the system. More formally, the theories A![X; d℄,A![X; d;W ℄ and A![X; d;W;CAT(0)℄ result from extending A! (and also IA, R,QF-AC, DC, QF-ER, . . . ) to the set TX of all �nite types over the two groundtypes 0 and X , and by adding onstants dX and { in the ase of A![X; d;W ℄ andA![X; d;W;CAT(0)℄ { WX representing d;W and suitable (purely universal)axioms to A!. Moreover, we add a onstant bX (of type 0) for an upper bound ofdX . Equality is de�ned extensionally over the base types 0 and X; where xX =XyX :� (dX (x; y) =IR 0IR). Analogously, the theories A!i [X; d℄, A!i [X; d;W ℄ andA!i [X; d;W;CAT(0)℄ result from an extension of A!i .Similarly, one de�nes the extensions A![X; k � k; C℄ and A!i [X; k � k; C℄ of A!and A!i with an abstrat (non-trivial) normed linear spae (X; k �k) and a (non-empty) bounded onvex subset C � X (again we refer to [13℄ for details):The theories A![X; k � k; C℄ and A!i [X; k � k; C℄ result from extending A! andA!i to the set TX of all �nite types over the two ground types 0 and X , andby adding onstants for the vetor spae operations and k � k as well as forthe harateristi funtion of C and an upper bound bX on the norm of theelements of C with appropriate (purely universal) axioms to A! expressing thevetor spae and norm axioms as well as the boundedness and onvexity of C:As before, equality is de�ned extensionally over the base types 0 and X:De�nition 2.2. Between funtionals x�; y� of type � = �1 ! : : : ! �k ! 0with �i 2 TX we de�ne a relation �� as follows:x �� y :� 8z� (x(z) �0 y(z)):For A!(i)[X; k � k; C℄ we extend �� to arbitrary types � 2 TX by de�ning for� = �1 ! : : :! �k ! X:x �� y :� 8z� (kx(z)kX �IR ky(z)kX):De�nition 2.3. Let X be a non-empty set. The full set-theoreti type strutureS!;X := hS�i�2TX over IN and X is de�ned byS0 := IN; SX := X; S�!� := SS�� :Here SS�� is the set of all set-theoreti funtions S� ! S�:We say that a sentene of L(A! [X; d℄), holds in a nonempty bounded metrispae (X; d) if it holds in the model4 ofA! [X; d℄ obtained by letting the variablesrange over the appropriate universes of the full set-theoreti type struture S!;X4Stritly speaking, we would have to use the plural here as the interpretation of onstantbX is not uniquely determined. For details see [13℄.6



with the set X as the universe for the base type X , and the onstants of (X; d)interpreted by elements of the suitable universes as spei�ed in [13℄.Similarly for L(A! [X; d;W ℄), L(A! [X; d;W;CAT(0)℄) and L(A! [X; k � k; C℄),and for the languages formed over the orresponding intuitionisti systems.In the following (for � 2 TX) `8xC A(x)', `8f�!C A(f)', `8fX!C A(f)' and`8fC!C A(f)' abbreviate8xX(�C(xX ) =0 0! A(x));8f�!X�8y�(�C(f(y)) =0 0)! A(f)�;8fX!X�8yX(�C(f(y)) =0 0)! A(f)� and8fX!X�8xX(�C(x) =0 0! �C(f(x)) =0 0)! A( ~f)�;where ~f(x) = � f(x); if �C(x) =0 0X ; otherwise:Analogously for the orresponding 9-quanti�ers with `^' instead of `!'. Thisextends to types of degree (1; X;C) and (X;C) de�ned below.De�nition 2.4. We say that a type � 2 TX has degree� 1 if � = 0! : : :! 0 (inluding � = 0),� (0; X) if � = 0! : : :! 0! X (inluding � = X),� (1; X) if it has the form �1 ! : : :! �k ! X (inluding � = X), where �ihas degree 1 or (0; X),� (�; 0) if � = �1 ! : : : ! �k ! 0 (inluding � = 0) for arbitrary types �i 2TX ,� (�; X) if � = �1 ! : : : ! �k ! X (inluding � = X) for arbitrary types�i 2 TX .Types involving C do not belong to TX but are only used in onnetion with theabbreviations mentioned above. We say that suh a type has degree� (1; X;C) if it has the form �1 ! : : : ! �k ! C (inluding � = C), where�i has degree 1 or �i = X or �i = C,� (X;C) if � = �1 ! : : : ! �k ! C (inluding � = C) where �i 2 TX or�i = C.In [4℄, unbounded metri, hyperboli and CAT(0) spaes, as well as normedlinear spaes with an unbounded onvex subset C are treated. The orrespond-ing lassial (and semi-intuitionisti) theories are de�ned as above, exept thatthe axiom stating the boundedness of the metri spae (X; d), resp. the onvexsubset C, is omitted. This is expressed by adding a `�b', i.e. by writing e.g.A![X; d℄�b, A![X; k � k; C℄�b and likewise for the unbounded variants of theother lassial and semi-intuitionisti theories desribed in this setion.7



3 Extrating bounds from lassial proofsIn this setion we briey restate material from [13℄ and [4℄.De�nition 3.1. A formula F is alled a 8-formula (resp. an 9-formula) if ithas the form F � 8a�Fqf (a) (resp. F � 9a�Fqf (a)) where Fqf does not ontainany quanti�er and the types in � are of degree 1 or (1; X).For metri, hyperboli and CAT(0) spaes we have the following metatheorem:Theorem 3.2 ([13℄). 1. Let �; � be types of degree 1 and � be a type of de-gree (1; X). Let s�!� be a losed term of A! [X; d℄ and B8(x� ; y�; z� ; u0)(resp. C9(x� ; y�; z� ; v0)) be a 8-formula ontaining only x; y; z; u free(resp. a 9-formula ontaining only x; y; z; v free).If 8x�8y �� s(x)8z��8u0B8(x; y; z; u)! 9v0C9(x; y; z; v)�is provable in A![X; d℄, then one an extrat a omputable funtional� : S� � IN! IN suh that for all x 2 S� and all b 2 IN8y �� s(x)8z��8u � �(x; b)B8(x; y; z; u)! 9v � �(x; b)C9(x; y; z; v)�holds in any (non-empty) metri spae (X; d) whose metri is bounded byb 2 IN.2. For bounded hyperboli spaes (X; d;W ) statement 1. holds with`A! [X; d;W ℄, (X; d;W )' instead of `A! [X; d℄; (X; d)'.3. If the premise is proved in `A! [X; d;W;CAT(0)℄', instead of `A![X; d;W ℄',then the onlusion holds in all b-bounded CAT(0)-spaes.Instead of single variables x; y; z; u; v we may also have �nite tuples of variablesx; y; z; u; v as long as the elements of the respetive tuples satisfy the same typerestritions as x; y; z; u; v. Moreover, instead of a single premise of the form`8u0B8(x; y; z; u)' we may have a �nite onjuntion of suh premises.One of the main aspets of this theorem is that the bound �(x; b) does notdepend on y or z:The proof in [13℄ is based on an extension of Spetor's[25℄ extension of G�odel'sfuntional interpretation to lassial analysis A! by bar reursive funtionals(i.e. reursion over well-founded trees) to A![X; d℄, resp. A![X; d;W ℄ andA![X; d;W;CAT(0)℄, and a subsequent interpretation of these funtionals inan extensionM!;X of the Howard-Bezem[6, 1℄ strongly majorizable funtionalsM! to TX .These extensions rest on the following observations:1. As is the ase with A!, the prime formulas of A![X; d℄ are of the forms =0 t and hene deidable. Thus the soundness of negative transla-tion and subsequent funtional interpretation of the logial axioms and8



rules and the de�ning equations for ombinators �;� and the reursor R,the rule QF-ER and the axiom shema QF-AC extend to the new set oftypes TX without any hanges. Likewise the interpretation of the axiomshema of indution and the axiom shema of dependent hoie extendsto TX using onstants R� for simultaneous primitive reursion and B�;�for simultaneous bar reursion in all types �; � 2 TX .2. The funtional interpretation of the negative translation of the new ax-ioms of A! [X; d℄;A![X; d;W ℄ and A! [X; d;W;CAT(0)℄ are equivalent tothemselves as they are purely universal and don't ontain _.3. Bezem's[1℄ type struture of hereditarily strongly majorizable funtionalsM! extends easily to all types of TX , taking x� majX x always true. Therealizer 	 2M!;X for a bound on u0; v0 extrated by negative translationand funtional interpretation depends on X via an interpretation of theonstants of X . Using majorization we show that we an extrat a boundwhih only depends on X via an interpretation of bX by some integerbound b on the metri d.4. Sine for the restrited types  of degree 1, (0; X) or (1; X) ourring in8x�8y �� s(x)8z��8u0B8(x; y; z; u)! 9v0C9(x; y; z; v)�M = S , this bound holds in any nonempty b-bounded spae (X; d), resp.(X; d;W ) and (X; d;W;CAT(0)).For a detailed proof, see [13℄.De�nition 3.3. 1. Let (X; d) be a metri spae. A funtion f : X ! X isalled nonexpansive (short: `f n.e.') if8x; y 2 X�d(f(x); f(y)) � d(x; y)�:2. ([7℄) Let (X; d;W ) be a hyperboli spae. A funtion f : X ! X is alleddiretionally nonexpansive (short: `f d.n.e.') if8x 2 X8y 2 seg(x; f(x))�d(f(x); f(y)) � d(x; y)�;where seg(x; y) := fW (x; y; �) : � 2 [0; 1℄g:De�nition 3.4. Let f : X ! X, then Fix(f) := fx 2 X j x = f(x)g.In [13℄, the following orollary of theorem 3.2 is derived, whih is speiallytailored towards appliations to metri �xed point theory:Corollary 3.5 ([13℄). 1. Let P (resp. K) be a A!-de�nable Polish spae(resp. ompat Polish spae), given in so-alled standard representation,and B8(x1; y1; z; f; u); C9(x1; y1; z; f; v) be as in the previous theorem.If A! [X; d;W ℄ proves that8x 2 P8y 2 K8zX ; fX!X� f n.e. ^ Fix(f) 6= ; ^ 8u0B8 ! 9v0C9�;9



then there exists a omputable funtional �1!0!0 (on representatives x :IN! IN of elements of P ) suh that for all x 2 ININ; b 2 IN8y 2 K8zX8fX!X� f n.e. ^ 8u � �(x; b)B8 ! 9v � �(x; b)C9�holds in any (non-empty) hyperboli spae (X; d;W ) whose metri is boundedby b.2. An analogous result holds if `f n.e.' is replaed by `f d.n.e'.Note that in the orollary, the assumption Fix(f) 6= ; has disappeared in theonlusion! For a disussion of this remarkable point see [13℄.For normed linear spaes, the following metatheorem is proved in [13℄:Theorem 3.6 ([13℄). Let � be a type of degree 1, � of degree 1 or (1; X)and � of degree (1; X;C). Let s�!� be a losed term of A![X; k � k; C℄ andB8(x� ; y�; z� ; u0) (resp. C9(x� ; y�; z� ; v0)) be a 8-formula ontaining only x; y; z; ufree (resp. an 9-formula ontaining only x; y; z; v free).If 8x�8y �� s(x)8z��8u0B8(x; y; z; u)! 9v0C9(x; y; z; v)�is provable in A![X; k � k; C℄, then one an extrat a omputable funtional � :S� � IN! IN suh that for all x 2 S� and all b 2 IN8y �� s(x)8z��8u � �(x; b)B8(x; y; z; u)! 9v � �(x; b)C9(x; y; z; v)�holds in any non-trivial normed linear spae (X; k � k) and any non-empty b-bounded onvex subset C.Instead of single variables and a single premise we may have tuples of variablesand a �nite onjuntion of suh premises.Remark 3.7. In [13℄, there are also orresponding theorems proved for uni-formly onvex normed spaes (X; k � k; �) with onvexity modulus � (then thebound �(x; b; �) will additionally depend on the modulus �) and for inner prod-ut spaes.The proof in [13℄ is based on the same fundamental ideas as the proof of Theorem3.2, the main di�erene being that the majorization relation on objets of typeX an no longer be treated as trivial as in the ase of a bounded metri spae.Instead one de�nes the majorization relation s-maj for elements of type X tobe x� s-majX x :� kx�kX �IR kxkX :Then one an prove, as before, the extratability of e�etive bounds, where themain diÆulty is to de�ne suitable majorants for the onstants and onstrutionsof A! [X; k � k; C℄.As shown in [4℄, using a novel majorization tehnique these metatheorems anbe generalized to unbounded metri spaes and normed linear spaes with un-bounded onvex subset C. The new majorization relation developed by the10



authors is tehnially more ompliated but allows one to derive similar uni-formities from far more general onditions than the boundedness of the entiremetri spae, resp. the onvex subset C.Disussion on extensionality: As mentioned above, one an only allow theweak extensionality rule instead of the full axiom of extensionality in the formalsystems based on lassial logi. In order to reverse the double negations intro-dued by the negative translation, it is stritly neessary that the interpretationwe hoose to interpret lassial logi in partiular interprets the Markov prin-iple. However, together with the Markov Priniple full extensionality wouldause severe problems, as it allows us, when ombined with funtional inter-pretation, to obtain witnesses for potential universal quanti�ers hidden in theextensionally de�ned equalities in the premise of impliations, e.g. in the ex-tensionality axiom itself.The extration of witnesses, ombined with majorization, would thus transforman instane of the extensionality axiom into a statement about uniform onti-nuity. An axiom stating the extensionality of a single funtion onstant wouldallow us to prove its uniform ontinuity. E.g. the full extensionality axiom fortype-X equality would even allow us to prove (in the ontext of A![X; d℄) theequiontinuity of all funtions fX!X whih { of ourse { is not true in general(but does hold for the lass of nonexpansive mappings f : X ! X , whose fullextensionality follows in A![X; d℄).A similar problem with extensionality arises from the representation of a onvexsubset C of a normed linear spae via its harateristi funtion �C . Here wewould like the harateristi funtion to respet the extensional equality, i.e.x =X y ! �C(x) =0 �C(y):In the presene of funtional interpretation and majorization, this would notonly yield that points x 2 X lose to C behave similar to points in C, it wouldalso desribe a modulus for how lose to C you have to be to behave `suÆientlysimilar'. Unless the subset C is topologially very simple (e.g. a losed boundedball), suh statements will in general not be orret.Therefore, we must restrit the formal system to make unwanted or simply falseonlusions, drawn from extensionality statements, impossible. In turn, whenit is neessary to employ an extensional equality in a proof, we annot simplyassume extensionality: every statement of extensionality that is used in a proofmust itself be expliitly proved with the use of QF-ER or follow from uniformontinuity. For more details, see the disussion of extensionality in setion 3 of[13℄.4 Extrating bounds from semi-onstrutive proofsThe metatheorems from [13℄ whih we briey disussed in the previous setionallow one to extrat bounds from proofs in fairly strong systems, namely ex-tensions of lassial analysis with an abstrat metri, hyperboli, CAT(0) resp.11



normed linear spae. However, the fat that the formal systems were basedon lassial logi imposes severe restritions on the lass of formulas for whihextration of bounds is possible.The �rst step in the extration algorithm is to apply negative translation tothe lassial proof (of some formula F ), i.e. to translate it into an essentiallyintutionisti proof of the negative translation FN of F (whih may, however,use the Markov priniple to be disussed below). This restrits the extration ofbounds to 89A-formulas for whih the equivalene between the formula and itsnegative translation an be shown to hold under the Markov Priniple, namelythe lass of formulas 89Aqf , where Aqf is quanti�er-free (or purely existen-tial). In onsequene, the interpretation must interpret the Markov Priniple,as funtional interpretation indeed does. In general, suh an equivalene anbe validated at most for 89Aqf -formulas, as already the formula lass �03 yieldsounterexamples to the existene of e�etive bounds in the form of e.g. thehalting problem.Seondly, the interpretation of the negative translation of the axiom of depen-dent hoie by bar reursive funtionals requires arguments whih hold only inthe model of hereditarily strongly majorizable funtionalsM!;X over the typesIN and X but not in the full set-theoreti model S!;X . In onsequene, for theextrated bounds to hold in S!;X , we must restrit the types of the quanti�edvariables in the theorem to be proved to types of degree 1 or (1; X), as for thoselow types the proper inlusions between these two models hold.We will see now that the intuitionisti ounterpart of A! and its extensions tometri, hyperboli, CAT(0) and normed linear spaes do not su�er from suhrestritions (even when strong ine�etive priniples are added).In the lassial ase, an extension of G�odel's Dialetia interpretation ombinedwith negative translation and majorization (monotone funtional interpretation)was used to obtain the results. In the intuitionisti setting we derive these re-sults from a monotone variant of Kreisel's modi�ed realizability interpretation(in short: mr-interpretation), the so-alled monotone modi�ed realizability in-terpretation. Kreisel's mr-interpretation was introdued in [17, 18℄ and studiedin great detail in [26, 27℄. The monotone mr-interpretation was introdued in[10℄ and is studied in detail in [12℄.This interpretation has the following nie properties:1. As in the lassial ase, we an use the general metatheorem as a blakbox to prove (even qualitatively new) uniformity results without atuallyhaving to arry out the extration.2. Contrary to lassial systems, we are no longer restrited to proofs of89Aqf -statements, but an allow 89A-statements for arbitrary A. Fur-thermore, the additional restritions on the quanti�ers stated in Theorem3.2 and Theorem 3.6 an be signi�antly relaxed.3. We may add large lasses of additional axioms �: whih inlude highlyine�etive priniples suh as full omprehension for arbitrary negated for-12



mulas (whih is not even allowed in the lassial ontext, where it wouldgive full omprehension for all formulas).The Markov Priniple in all �nite types is the prinipleM! : ::9xAqf (x)! 9xAqf (x);where Aqf is an arbitrary quanti�er-free formula and x is a tuple of variables ofarbitrary types (Aqf may ontain further free variables).As disussed above, in the lassial ase it is stritly neessary that the inter-pretation we hoose interprets the Markov priniple, and this imposes ertainrestritions on the formal system. In the intuitionisti setting we an hoose notto inlude the Markov Priniple. As a onsequene, when extending intuitionis-ti analysis with non-onstrutive priniples we have an atual hoie betweentwo main diretions in whih to extend the formal system: with or without theMarkov Priniple M!:Extending the system with the Markov Priniple would fore us both to restritextensionality to weak extensionality and to allow at most the independeneof premise sheme for purely universal formulas. However, we ould still {replaing the use of negative translation in the proofs of the main results in[13℄ by the reasoning used to prove theorem 3.18 in [10℄ (based on monotonefuntional interpretation) { extrat bounds for arbitrary formulas 89A, insteadof the restrited formula lass 89Aqf .We hoose instead to extend our formal system in the diretion without M!.Abandoning the Markov Priniple allows us to add full extensionality and om-prehension and independene of premise shemes for arbitrary negated formulas,as well as many other essentially non-onstrutive analyti or logial priniples(see also [10℄).Let omprehension for negated formulas be the priniple (also for tuples ofvariables y): CA�: : 9� ��!0 �x�:108y�(�(y) =0 0$ :A(y));where y = y�11 ; : : : ; y�kk is an arbitrary tuple of variables of arbitrary types, andlet the independene-of-premise priniple for negated formulas be:IP �: : (:A! 9y�B(y))! 9y�(:A! B(y)) (y =2 FV(A));where in both ases A;B are arbitrary formulas. The union of these priniplesover all types � of the underlying language are denoted by CA: and IP: where{ when working over the systems A!i [X; : : :℄ { we allow arbitrary types � 2 TX .De�nition 4.1. A formula A 2 A!i , resp. A 2 A!i [: : :℄, is alled 9-free (or`negative'), if A is built up from prime formulas by means of ^;!;: and 8only, i.e. A ontains neither 9 nor _. We denote 9-free formulas A by Aef .The priniples CAef and IPef are the priniples orresponding to CA: andIP:, where instead of :A we have an 9-free formula Aef .13



We next reall Kreisel's mr-interpretation and Bezem's[1℄ notion of strong ma-jorizability, whih is an extension of Howard's [6℄ notion of majorizability, for alltypes TX . Combining these allows us to de�ne the monotone mr-interpretation.For eah formula A(a), where a are the free variables of A, Kreisel's mr-interpretation de�nes, by indution on the logial struture of A, a orrespond-ing formula `x mr A' (in words: x modi�ed realizes A), where x is a (possiblyempty) tuple of variables, whih do not our free in A. From a proof of AKreisel's mr-interpretation extrats a tuple of losed terms t s.t. 8a(ta mr A(a)).For details see e.g. [26, 27℄.Remark 4.2. 1. For every 9-free formula A we have (x mr A) � A with xthe empty tuple.2. (x mr A) is always an 9-free formula.De�nition 4.3 ([13℄, extending [6, 1℄). The strong majorizability relations-maj is de�ned as follows:� x� s-maj0 x :� x� � x� x� s-majX x :� (0 =0 0) in A!(i)[X; d; : : :℄,� x� s-majX x :� kx�kX �IR kxkX in A!(i)[X; k � k; : : :℄,� x� s-maj�!� x :� 8y�; y(y� s-maj� y ! x�y� s-maj� x�y; xy)De�nition 4.4 ([10℄). A tuple of losed terms t� satis�es the monotone mr-interpretation of A(a) if9z(t� s-maj z ^ 8a(za mr A(a))We briey reall some properties of the mr-interpretation. As we have the fullaxiom of hoie AC in A!i , resp. A!i [: : :℄, one shows:Proposition 4.5 (Troelstra[26℄).A!i + IPef ` A$ 9x(x mr A)Similarly for A!i [: : :℄ + IPef .Proof. By indution on the logial struture of A.Corollary 4.6. 1. For every formula A 2 A!i we an onstrut an 9-freeformula Bef s.t. A!i + IPef ` :A$ Bef :Similarly for A!i [: : :℄.2. For every 9-free formula Aef 2 A!i we have that A!i ` Aef $ ::Aef .Similarly for A!i [: : :℄.3. Over A!i we have IPef $ IP: and CAef $ CA:. Similarly for A!i [: : :℄.14



Proof. 1. By Proposition 4.5 we haveA!i + IPef ` :A$ 8y((y mr A)! ?);where 8y((y mr A)! ?) is 9-free, as (y mr A) is 9-free.2. This equivalene is provable intuitionistially in the ontext of deidableprime formulas.3. A!i + IPef ` IP: follows from `1.', and A!i + CAef ` CA: follows from thefat that A!i + CAef ` IPef and `1.'. The onverse impliations follow from`2.'.In the following, we will omit mentioning IP: and IPef , as they follow from theorresponding omprehension shemes CA: and CAef (and the deidability of=0).Disussion of extensionality, ontinued: As mentioned above, in the on-text of funtional interpretation full extensionality is muh too strong, as itwould allow us to derive (when ombined with the generalized majorizabilityfrom [13℄) statements e.g. about uniform ontinuity whih are not true in gen-eral. In the ontext of (monotone) modi�ed realizability full extensionality isharmless. Extensionally de�ned equalities in the premise of impliations, e.g. ininstanes of the extensionality axiom, as indeed instanes of the extensionalityaxiom as a whole, are 9-free and thus realized by the empty tuple.Informally speaking, funtional interpretation is `too eager', seeking to extratevery possible and hene some unwanted bounds. In ontrast, modi�ed realiz-ability is `lazy enough' to only extrat bounds where this is expliitly asked for,namely from positive existential statements. Where funtional interpretationextrats bounds on universal premises in an impliation, modi�ed realizabilityleaves them alone. In pratie, this allows us to remove the requirement toexpliitly prove every extensional equality used in the proof and instead to sim-ply assume it as a premise, leading to a more natural, intuitive treatment ofextensionality.We an prove the following theorem, orresponding to Theorem 3.2 in the las-sial setting:Theorem 4.7. 1. Let � be a type of degree 1, let � be a type of degree (�; 0)and let � be a type of degree (�; X). Let s�!� be a losed term of A!i [X; d℄and let A (resp. B) be an arbitrary formula with only x; y; z; n (resp.x; y; z) free. Let �: be a set of sentenes of the form 8u�(C ! 9v ��tu9w:D) with t�!� be a losed term of A!i [X; d℄, the type � 2 TXarbitrary, the type � of degree (�; 0) and  of degree (�; X). IfA!i [X; d℄ + CA: + �: ` 8x�8y �� s(x)8z� (:B ! 9n0A);then one an extrat a primitive reursive (in the sense of G�odel) fun-tional � : S� � IN! IN suh that for all b 2 IN8x�8y �� s(x)8z�9n � �(x; b)(:B ! A)15



holds in any (non-empty) metri spae (X; d) whose metri is bounded byb 2 IN and whih satis�es �:.52. For bounded hyperboli spaes (X; d;W ); `1.' holds with Ai[X; d;W ℄; (X; d;W )instead of A!i [X; d℄; (X; d).3. If the premise is proved in A!i [X; d;W;CAT(0)℄ instead of A!i [X; d;W ℄then the onlusion holds in all nonempty b-bounded CAT(0) spaes satis-fying �::As in the lassial ase, instead of single variables and single premises we mayalso have tuples of variables and a �nite onjuntion of premises.Proof. Sine prime formulas inA!i [X; d℄+CA:+�: are deidable, it follows fromCorollary 4.6 that this theory is equivalent to the theory A!i [X; d℄+CAef+�0ef ,where �0ef is the set of sentenes whih results from �: by replaing in eahS 2 �: the negated formula :D by the 9-free formula Def from Corollary 4.6whih is equivalent to :D. For the subsystem of A!i [X; d℄ + CAef + �0ef notinvolving (X; d), i.e. restrited to the types T, the theorem is proved in [10℄ byestablishing that this theory has a monotone mr-interpretation in its lassialounterpart (for a somewhat more restrited set �0ef even in itself) by terms inG�odel's T ((although we use mr rather than mr-with-truth we do not have torestrit the formulas A;C to �1 as in [10℄(thm.3.10) sine in the presene of AC(and hene in S!) we an use proposition 4.5 to infer these formulas bak fromtheir mr-interpretations).To extend the proof to the full theory A!i [X; d℄+CAef +�0ef , i.e. now involvingthe full range of types TX , we observe the following:1. By arguments similar to those used in the lassial ase (see [13℄) thesoundness of the monotone mr-interpretation of the logial axioms andrules, the de�ning equations for ombinators �;� and the reursors R,axiom shemes E;AC and the axiom shema of indution extends to thetypes TX without any hanges.2. The additional axioms of A!i [X; d℄ are purely universal and do not ontain_, and hene have a trivial monotone mr-interpretation by the emptytuple.3. The additional 9-quanti�ers ranging over variables of type degree (�; X),both in the onlusion and in sentenes of the set �0ef , an easily be ma-jorized using appropriate onstant 0X funtionals as shown in [13℄.4. The monotone mr-interpretation extrats a realizer  2 S!;X dependingonly on a suitable interpretation of the onstants of A!i [X; d℄: The ma-jorization relation extends to TX as de�ned above and given a losed term5Here bX is understood to be interpreted by b.16



 of A!i [X; d℄ we an onstrut as in [13℄ a majorant  �, by indution onthe term struture of  suh thatS!;X j=  � s-maj  : � does not involve dX and whih depends on (X; d) only via the inter-pretation of the onstant bX by a bound b 2 IN on the metri d and onthe interpretation of 0X by some arbitrary element of X . Using the sametehniques as in the lassial ase ([13℄) one an eliminate the latter de-pendeny and onstrut from  � a funtional � 2 S0!(�!0) whih is givenby a losed term of A!i (i.e. a primitive reursive funtional in the senseof G�odel) s.t.S!;X j= 8x�8y �� s(x)8z�9n � �(x; b)(:B ! A(x; y; z; n)):Sine, again by orollary 4.6, :B is equivalent to an existential free formulait is does not in any way ontribute to the extrated term. For A!i [X; d;W ℄and A!i [X; d;W;CAT(0)℄ the arguments are similar. In all three ases the �nalextrated funtional � is primitive reursive in the sense of G�odel, i.e. � isgiven by a losed term in G�odel's T .In a similar way, one an prove semi-intuitionisti ounterparts to the general-ized metatheorems presented in [4℄.We �rst show the following orollary, orresponding to Corollary 3.5 in thelassial ase:Corollary 4.8. 1. Let P (resp. K) be a A!i -de�nable Polish spae (resp.ompat Polish spae) and let A;B and �: be as in the previous theorem.If A!i [X; d;W ℄ + CA: + �: proves that8x 2 P8y 2 K8zX ; fX!X(:B ! 9n0A)then there exists a primitive reursive funtional �1!0!0 (on representa-tives x : IN! IN of elements of P) suh that for all x 2 ININ; b 2 IN8y 2 K8zX ; fX!X9n � �(x; b)(:B ! A)holds in any (non-empty) hyperboli spae (X; d;W ) whose metri is boundedby b and whih satis�es �::2. The result also holds for A!i [X; d℄; (X; d).Proof. The details of the proof are similar to the lassial ase, i.e. by Theorem4.7 we an extrat a primitive reursive bound �(x; b) on n whih holds in allspaes (X; d;W ), resp. (X; d), whose metri is bounded by b.In [4℄ a re�ned version of orollary 3.5 is established whih states that if theassumption is proved in A![X; d;W ℄�b (i.e. without the use of the axiom statingthe boundedness of d) that then the onlusion holds in arbitrary (not neessary17



bounded) hyperboli spaes as long as b � d(x; f(x)). This also holds (thoughwith `Fix(f) 6= ;' dropped) for funtions whih are not nonexpansive but onlyhave a bounding funtion 
 : IN! IN suh that8k0; ~zX(d(z; ~z) � k ! d(z; f(~z)) � 
(k))for some zX ; where then the bound depends on 
: This orollary has a semi-intuitionisti ounterpart analogous to the previous results:Corollary 4.9. 1. Let P (resp. K) be a A!i -de�nable Polish spae (resp.ompat Polish spae) and let A and B be as before but not ontaining theonstant 0X . If A!i [X; d;W ℄�b + CA: proves that8x 2 P8y 2 K8zX ; fX!X ;
1(8k0; ~zX(dX(z; ~z) �IR (k)IR ! dX(z; f(~z)) �IR (
(k))IR) ^ :B ! 9n0A)then there exists a primitive reursive funtional �1!1!0 (on representa-tives x : IN! IN of elements of P) suh that for all x;
 2 ININ8y 2 K8zX ; fX!X ;
19n � �(x;
)(8k0; ~zX(dX (z; ~z) �IR (k)IR ! dX(z; f(~z)) �IR (
(k))IR) ^ :B ! A)holds in any (non-empty) hyperboli spae (X; d;W ).2. The result also holds for A!i [X; d℄�b; (X; d).Even if `z' does not our in B;A we need the assumption on f;
 to hold forsome z in X:Note, that the boundedness of (X; d) and the bound b as a parameter havebeen replaed by a far more general ondition on f and the parameter 
 in theunbounded ase. Still, the extrated bound � may display similar uniformities,i.e. independene of z; f and the underlying spae (X; d). As an example, fornonexpansive funtions f and the additional premise d(z; f(z)) � b we obtain
(n) := n + b. This yields an e�etive bound � depending only on x and b,where b is not a bound on the whole spae, but only on d(z; f(z)).Remark 4.10. As in the lassial ase, we an add in orollary 4.8 additionalassumptions about the funtion f , if of suitable logial form, to the premise. Inthe lassial ase we added the assumption `f n.e.' and `Fix(f) 6= ;' to thepremise of the impliation. Both assumptions an also be added in the semi-intuitionisti ase. The ondition `f n.e.' is purely universal and hene isequivalent to its double negation. The statement `Fix(f) 6= ;' an be writtenas 9uXC8, where C8 is purely universal and so again equivalent to its doublenegation. Thus, �rst pulling out the existential quanti�er from the premise9uXC8 as a universal quanti�er just as 8zX, we an extrat a bound � thatdoes not depend on u and does not depend on any of the negated premises norC8. Shifting the quanti�er 9u bak in we get the result.In the lassial ase the premise `f n.e.' ensures that a given f indeed behaveslike a funtion, i.e. is needed to prove the extensionality of f , as the weak18



extensionality rule QF-ER is not strong enough to ensure this. The weakerassumption `f d.n.e' does not imply extensionality. This is the reason whyin appliation 3.16 of [13℄ one arefully had to observe that QF-ER was infat suÆient to formalize the proof in question. Likewise the 
-ondition inCorollary 4.9 does not imply extensionality. In the semi-intuitionisti ase,where we have full extensionality inluded as an axiom this does not ause anydiÆulties.The bene�t of adding `Fix(f) 6= ;' was that FI would weaken that assumption to`f has approximate �xed points', whih for nonexpansive and even diretionallynonexpansive selfmappings of a bounded hyperboli spae is always true (see [5℄and [15℄) whereas, in general, `Fix(f) 6= ;' is not. In the semi-intuitionistiase `Fix(f) 6= ;' will not disappear from the premise, as monotone modi�edrealizability does not weaken universal premises suh as dX(x; f(x)) =IR 0IR:For normed linear spaes we prove the following semi-intuitionisti ounterpartto Theorem 3.6:Theorem 4.11. 1. Let � be a type of degree 1, � be an arbitrary type inTX and let � be a type of degree (X;C). Let s�!� be a losed termof Ai[X; k � k; C℄ and let A (resp. B) be an arbitrary formula with onlyx; y; z; n (resp. x; y; z) free. Let �: be a set of sentenes of the form8u�(C ! 9v �� tu9w:D) where t�!� is a losed term of A!i [X; k�k; C℄,the types �; � 2 TX are arbitrary and  is of degree (X;C). IfA!i [X; k � k; C℄ + CA: + �: ` 8x�8y �� s(x)8z�(:B ! 9n0A);then one an extrat a primitive reursive (in the sense of G�odel) fun-tional � : S� � IN! IN suh that for all b 2 IN8x�8y �� s(x)8z�9n � �(x; b)(:B ! A)holds in any nontrivial normed linear spae (X; k � k) and any b-boundedonvex subset C whih satisfy �::Instead of single variables and single premises we may also have tuples of vari-ables and a �nite onjuntion of premises.The proof is based on arguments similar to the proof of Theorem 3.6, resp.the variations due to the hange of setting from lassial to semi-intuitionistidisussed in the proof of Theorem 4.7. The variables of degree (X;C) in thesentenes A 2 �: an again easily be majorized by a suitable interpretationof the onstant bX by a bound b on the norm of the elements of the onvexsubset C. As before, the generalized metatheorems for normed linear spaes in[4℄ an be transferred to the semi-intuitionisti setting in a similar way, yieldingsimilar uniform bounds. However, for (unbounded) onvex subsets C we needthe additional premise kXk; kxk � b and the 
-ondition is written as8xC(kxkX �IR (n)IR ! kf(x)kX �IR (
(n))IR):19



Remark 4.12. In the lassial ase the onstrution of majorants d�X resp.k � k�X depends on the interpretation of dX resp. k � kX in the model SX;! via anine�etive operator ()Æ, whih from a (representative of a) real number selets aanonial representative of that real number. As an operator of type 1! 1; ()Æis primitive reursive inE2(f1) :=0 � 0; if 8x0(f(x) =0 0)1; if :8x0(f(x) =0 0):Sine the funtional interpretation of the de�ning axioms of (E2) would re-quire non-majorizable funtionals (although E2 itselfs is trivially majorizable)one must not inlude the operator ()Æ to A![X; : : :℄. This auses no problemsas ()o only is involved in the interpretation of the theory in the model S!;X .Subsequently the ine�etive ()o operator an be majorized e�etively!In the semi-onstrutive ase we ould atually add the ()Æ operator via E2 tothe theory, as monotone modi�ed realizability leaves the de�ning axioms of theE2 untouhed, and arry out part of the argument regarding the ()Æ operator inthe theory itself rather than in the model. The existene of E2 atually followsfrom CAef and hene from CA::5 Appliation to Metri Fixed Point TheoryTo illustrate the various aspets of Theorem 4.7 we onsider three di�erentproofs of (variants of) Edelstein's Fixed Point Theorem: �rst a re�nement ofthe original proof by Edelstein[3℄ developed in [16℄, next an alternative, on-strutive proof by Rakoth[21℄ and �nally a more reent proof arried out inthe framework of Bishop-style onstrutive mathematis by Bridges, Julian,Rihman and Mines[2℄. Though ompletely elementary, if not trivial, from afuntional analyti point of view, this example serves well to demonstrate thevarious logial aspets of proof mining using the metatheorems presented inthe previous setions. For reent non-trivial appliations of proof mining see[11, 14, 15℄.In [22℄, Rhoades presents a survey and omparison of a large number of di�erentnotions of ontrativity, ompiled from the literature on metri �xed point the-ory, for whih �xed points theorems have been proven. Many of these notions ofontrativity and the aompanying proofs of �xed point theorems are far moretehnial than the example presented in this setion. Further surveys on notionsof ontrativity an be found in [23, 20℄. We intend to treat suh more general�xed point theorems based upon the more ompliated notions of ontrativitydisussed in these survey artiles in a subsequent paper.Edelstein de�nes ontrative (self-)mappings as follows:De�nition 5.1 (Edelstein[3℄). A self-mapping f of a metri spae (X; d) isontrative if for all x; y 2 X: x 6= y ! d(f(x); f(y)) < d(x; y).Edelstein's Fixed Point Theorem is: 20



Theorem 5.2 (Edelstein[3℄). Let (X; d) be a omplete metri spae, let f bea ontrative self-mapping on X and suppose that for some x 2 X the sequeneffn(x)g has a onvergent subsequene ffni(x)g: Then � = limn!1 fn(x) existsand is a unique �xed point of f .For a ompat spae (X; d) the sequene ffn(x)g always has a onvergent sub-sequene, and thus ffn(x)g always onverges to a unique �xed point. We arenow interested in obtaining a omputable (Cauhy) modulus Æ for the sequeneffn(x)g s.t. 8m;n > N : d(fm(x); fn(x)) < " for N := Æ("): In addition to", we must prima faie expet the rate of onvergene Æ to also depend on x,the spae (X; d), the funtion f and a modulus of ontrativity for f , if suha modulus exists. In an intuitionisti setting the meaning of the impliationexpressing the ontrativity of f is to give a proedure to transform a witness of`d(x; y) > 0' into a witness of `d(f(x); f(y)) < d(x; y)'. Proving (or assuming)ontrativity of f in an intuitionisti setting yields a funtion that dependingon x; y and an ", by whih d(x; y) is larger than 0, produes an � by whihd(f(x); f(y)) is smaller than d(x; y). Suh a funtion, if uniform with regard tox; y 2 X , is none other than a modulus of ontrativity.Remark 5.3. On ompat metri spaes or, more generally, on bounded metrispaes, monotone funtional interpretation and monotone modi�ed realizabilityautomatially strengthen the general notion of ontrativity to uniform ontra-tivity, i.e. the existene of a modulus of ontrativity. As we will see, the notionof uniform ontrativity is suÆient even on unbounded metri spaes to guar-antee the onvergene of ffn(x)g to a unique �xed point and to state an e�etiverate of onvergene.In [21℄ Rakoth onsiders funtions with a multipliative modulus of ontrativ-ity � s.t. 8x; y 2 X : d(x; y) > "! d(f(x); f(y)) � �(") � d(x; y)where 0 � �(") < 1 for all " > 0.6 Note that the existene of suh a modulus �is a uniform version of Edelstein's notion of ontrativity as � does not dependon x; y but only on ":Rakoth's multipliative modulus of ontrativity � is only one possible inter-pretation of witnessing the ontrative inequality. From the point of view oflogi, to witness an inequality s < t one has to produe an " > 0 s.t. s+ " < t.This leads to a additive modulus of ontrativity � s.t.8x; y 2 X : d(x; y) > "! d(f(x); f(y)) + �(") � d(x; y)It is easy to see that a modulus � an always be de�ned given a modulus �:�(") := (1� �(")) � "6Atually Rakoth requires � to be monotonially dereasing and to satisfy x 6= y !d(f(x); f(y)) � �(d(x; y)) � d(x; y) instead. In the proof only the above property is needed,whih follows from Rakoth's requirements. 21



To de�ne a modulus � in terms of a modulus � we have to assume that themetri d on X is bounded and de�ne:�(") := 1� �(")bAs Rakoth has shown (see below) the existene of a modulus of ontrativity �implies that the iteration sequene ffn(x)g is bounded. From this he onludesthat even without assuming the boundedness of X the sequene ffn(x)g isCauhy (and hene onverges to a unique �xed point of f).7 As we will see,by 4.9 this yields the existene of a uniform Cauhy modulus whih is largelyindependent from the starting point x and the funtion f but only depends onthe modulus �; a bound b on d(x; f(x)) and the error ".It should be noted that it is stritly neessary for the modulus � to be uni-form with regard to x; y 2 X , as otherwise a funtion, although ontrative,might not have a �xed point. Edelstein's non-uniform notion of ontrativityx 6= y ! d(f(x); f(y)) < d(x; y) is in general only suÆient to prove the exis-tene of a �xed point in ompat spaes, where that notion is equivalent to theexistene of uniform moduli � and �. In most other ases the equivalene fails.As a ounterexample, onsider the self-mapping f(x) := x + 1x of the interval[1;1). It is easy to see that the funtion f is ontrative in the sense of Edel-stein. Trivially, the funtion f has no �xed point. One, furthermore, proves byindution that for all n � 1:1 + nXi=1 1i � fn(1) � n+ 1Sine P1i=1 1i = 1, the iteration sequene ffn(1)g is unbounded. So by theaforementioned result of Rakoth, f does not have a modulus of ontrativity �(as an be also seen diretly). Counterexamples even in the ase of boundedmetri spaes8 are disussed in [24℄.Using a multipliative modulus �, Rakoth proves the following variant of Edel-stein's Fixed Point Theorem:Theorem 5.4 (Rakoth [21℄). Let (X; d) be a omplete metri spae andlet f be a ontrative self-mapping on X with modulus of ontrativity �, then� = limn!1 fn(x) exists and is a unique �xed point of f .Remark 5.5. Whereas Edelstein's theorem requires the existene of a onver-gent subsequene of ffn(x)g, whih is guaranteed in general only for ompatX; Rakoth's theorem avoids this by imposing a stronger uniform ontrativityon f (whih, however, follows from the usual one in the ompat ase).7With a somewhat di�erent proof one an also show this based on an additive modulus �instead of � although to derive the existene of a global modulus � from � seems to requirethe boundedness of (X; d). However, as Rakoth's proof shows, the ontratvity is (for givenx) used only on points of the form fn(x) and on those (by the boundedness of ffn(x)g) onean de�ne a modulus � from �:8In fat even in the ase of the losed unit ball of the Banah spae 0.22



The key step in the proof is to establish the following:Lemma 5.6. Let (X; d) be a metri spae and let f be a ontrative self-mappingon X with modulus of ontrativity �, then the iteration sequene ffn(x)g is aCauhy sequene.We now expet that our metatheorems allow us to extrat from a proof ofLemma 5.6 a Cauhy modulus Æ; in fat it suÆes to extrat a bound on themodulus, as suh a bound trivially also is a realizer for the modulus. Contrary toRakoth's proof, Edelstein's original proof is a lassial proof and sine express-ing that the sequene ffn(x)g is a Cauhy sequene requires a �03-statement,the metatheorem for the lassial ase annot be applied diretly to extrat aCauhy modulus from Edelstein's proof.In [16℄, Kohlenbah and Oliva use a trik to extrat a bound from Edelstein'snon-onstrutive proof: The proof of Edelstein's Fixed point theorem an besplit up into three lemmas. Eah of these lemmas is of a suitable logial form toallow extration of a bound, and ombining these bounds, the following modulusof onvergene (towards the unique �xed point) for f a self-map on a ompatspae K is extrated9:Æ(�; b; ") = � log((1� �(")) "2 )� log blog�((1� �(")) "2 ) �+ 1where � is the modulus of ontrativity for f , and b is a bound on the diameterof K. In aordane with Theorem 3.2, the same bound also holds if we replaethe ompat spae K by a (more general) b-bounded metri spae. Note thatthe Cauhy modulus Æ is uniform with regard to x 2 X and the funtion f .The treatment of (the lassial proof of) Edelstein's �xed point theorem in [16℄via monotone funtional interpretation generalizes Edelstein's result to boundedmetri spaes, where using the strengthening of ontrativity to uniform on-trativity a Cauhy modulus for the sequene ffn(x)g is extrated. Togetherwith the observation that only the boundedness of the iteration sequene isneeded and not the boundedness of the whole spae, the analysis of Edelstein'slassial, non-onstrutive proof yields essentially the same result as Rakoth'stheorem. However, with regard to the numerial quality of the modulus one ando better: As mentioned Rakoth's proof is fully onstrutive, and one easilysees that the onstrutive proof an be formalized in A!i [X; d℄�b. Thus, with-out the tedious work of splitting up Edelstein's proof, the metatheorem for thesemi-intuitionisti ase guarantees that we an extrat an e�etive bound on themodulus of onvergene or, without having to arry out the extration, proveuniformities for the modulus of onvergene.In A!i [X; d℄�b we an express the fat that fX!X represents a ontrative fun-tion with modulus �1 (of type degree 1), in short: `f ontr. �', as8k08xX ; yX(dX (x; y) �IR 2�k ! dX(f(x); f(y)) �IR (1� 2��(k)) �IR dX(x; y))9Originally in [16℄ an additive modulus of ontrativity � is onsidered. The extratedmodulus of onvergene is then Æ(�; b; ") = � b� �(")2�( �(")2 )�+ 1.23



Thus in the formal system A!i [X; d℄�b one an express Lemma 5.6 as:Lemma 5.7. A!i [X; d℄�b proves8fX!X8xX8�18k0(f ontr. �! 9N08m;n �0 N dX(fm(x); fn(x)) �IR 2�k):To see that Rakoth's proof an be formalized in A!i [X; d℄�b, one notes that theproof onsists of two main parts: �rst it is shown that for any starting point xthe sequene ffn(x)g is bounded and that the bound depends only on � and(a bound b on) d(x; f(x)). Given a starting point x, the funtion f and anarbitrary � > 0, Rakoth shows that one an bound d(x; fn(x)) for all n by10d(x; fn(x)) � b0(�; b) = max(�; 2 � b1� �(�) );where b � d(x; f(x)):Then using this bound and the ontrativity of f it is shown that ffn(x)g is aCauhy sequene and hene onverges to a unique �xed point.Appliation 5.8. Corollary 4.9 a-priorily guarantees that there exists a boundÆ(�; b; ") on N that holds for all metri spaes (X; d), all funtions f with modu-lus of ontrativity � and all x 2 X s.t. d(x; f(x)) � b. Moreover, by Corollary4.9 we an extrat an e�etive bound Æ(�; b; ") from Rakoth's onstrutive proof,and sine a bound on N also is a realizer, this gives us the following Cauhymodulus (and hene modulus of onvergene towards the unique �xed point):Æ(�; b; ") = l log "�log b0(�;b)log�(") m whereb0(�; b) = max(�; 2�b1��(�) ) with b � d(x; f(x)) and � > 0 arbitrary :Proof. Sine the relation �IR an be expressed as a �01-prediate, the premise `fontr. �' is 9-free, where � is an element of the Baire spae X = ININ:Moreover,by the omment after orollary 4.9, we an take 
(n) := n+ b sine f a-fortioriis nonexpansive. The onlusion, the Cauhy property of the sequene ffn(x)gis of the form 898, but ontrary to the lassial ase there are no restritionson the logial form, so that we an extrat an e�etive uniform bound Æ(�; b; ")on 9N , i.e. an e�etive uniform Cauhy modulus for (fn(x)).The existene of the Cauhy modulus Æ, with the desribed uniformities, isguaranteed by the semi-intuitionisti metatheorem, even without analyzing theproof. For the atual \extration" of a bound Æ(�; b; "), we briey sketh therelevant, seond part of Rakoth's proof:Let p 2 IN be given, then by de�nition (we an assume d(xk ; xk+p) > 0):d(xk+1; xk+p+1) � �(d(xk ; xk+p)) � d(xk ; xk+p):10Here for onveniene we taitly move bak to the more usual version of � as a funtionIR�+ ! (0; 1): 24



Now taking the produt from k = 0 to n� 1 we getd(xn; xn+p) � d(x0; xp) � n�1Yk=0 �(d(xk ; xk+p)):Sine we assumed d(x; f(x)) � b and hene b0(�; b) is a bound on d(x0; xp), weget d(xn; xn+p) � b0(�; b) � n�1Yk=0 �(d(xk ; xk+p)):If already d(xk ; xk+p) < " for some 0 � k � n�1 we would be done, so assumingd(xk ; xk+p) � " for all k = 0; : : : ; n� 1 and by8x; y 2 X : d(x; y) � "! d(f(x); f(y)) � �(") � d(x; y)we get that d(xn; xn+p) � b0(�; b) � (�("))n:Then solving the inequality b0(�; b) � (�("))n � " with regard to n yields thefollowing Cauhy modulus:Æ(�; b; ") = � log "� log b0(�; b)log�(") �where throughout b0(�; b) is as desribed above.As mentioned above, extrating a bound from the lassial proof of Edelstein'stheorem was only possible by breaking up the proof into a ouple of lemmas,eah of suitable form to extrat a bound, using the metatheorem for the lassialase. Compared to the bound extrated from the Edelstein's proof the boundfrom Rakoth's onstrutive proof - guaranteed a-priorily by the metatheoremto exist and to be uniform on x 2 X and f - is both (syntatially) simpler andbetter. Naturally, in many ases �nding a onstrutive proof for a lassiallytrue theorem may be far less trivial than in the ase of Rakoth's variant ofEdelstein's theorem and, in general, many lassially true theorems may nothave a onstrutive proof at all. However, as this example demonstrates, on-sidering a onstrutive proof may yield signi�antly simpler and better boundsthan in the lassial ase and may give fully uniform bounds from theorems hav-ing a logial form more omplex than 89, where the lassial metatheorem ingeneral fails, suh as for example the Cauhy property of an iteration sequene.Moreover, monotone funtional interpretation or monotone modi�ed realizabil-ity may automatially lead to the neessary strengthenings of the mathematialnotions involved, as e.g. strengthening the notion of ontrativity to uniformontrativity.Finally, even for proofs that are developed in a fully onstrutive setting, themetatheorem for the semi-onstrutive ase may reveal new uniformities not25



present in, or immediately obvious from, the theorem and proof under on-sideration. In [2℄ Bridges et al. treat Edelstein's �xed point theorem in theframework of Bishop-style onstrutive mathematis. A funtion f that is on-trative in the sense of Rakoth is denoted by the onept of `f is an almostuniform ontration'. The following theorem is proved:Theorem 5.9 ([2℄). Let f : X ! X be an almost uniform ontration on aomplete metri spae X. Then1. f has a unique �xed point � in X; and2. the sequene ffn(x)g onverges to � uniformly on eah bounded subset ofX.This theorem largely orresponds to Rakoth's theorem disussed above, butonly the uniformity with regard to x 2 X is stated, not the uniformity withregard to f or the bounded subset. Both uniformities follow already a-priorilyfrom the existene of a (onstrutive) proof for Rakoth's theorem by meansof our metatheorem. Also a modulus of onvergene is not expliitly stated,though both the uniformities and the e�etive modulus an be seen to be im-pliit in the proof. An analysis of the onstrutive proof in [2℄ easily yields anexpliit modulus of onvergene, whih is idential to the bound extrated fromRakoth's onstrutive proof.Corretions to [13℄:1) P. 96, line -7: `k0 = max k[: : :℄' must be `k0 = max k � 2(n+2)[: : :℄'2) P.116: in the def. of B, x should be a single funtional x rather than a tuple.3) P. 117 (line 7 and last line of 4.4) add: `the veri�ation of the funtionalinterpretation does not need QF-AC (whih is trivially interpreted)'.4) P.118 (4.7), p.122 (line 6):replae A![: : :℄+(BR) by A![: : :℄+(BR)nfQF-ACg.5) P.121, line 20 and footnote 26: `losed terms of A!+(BR)'.Referenes[1℄ M. Bezem. Strongly majorizable funtionals of �nite type: a model ofbar reursion ontaining disontinous funtionals. J. of Symboli Logi,50:652{660, 1985.[2℄ D. F. Bridges, F. Rihman, W. H. Julian, and R. Mines. Extensions andFixed Points of Contrative Maps in IRn. J. Math. Anal. Appl., 165:438{456, 1992.[3℄ M. Edelstein. On Fixed and Periodi Points under Contrative Mappings.J London Math. So., 37:74{79, 1962.[4℄ P. Gerhardy and U. Kohlenbah. General logial metatheorems for fun-tional analysis, 2005. Submitted, 42pp.26
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