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Abstract. In this paper we study with proof-theoretic methods the func-
tion(al)s provably recursive relative to Ramsey’s theorem for pairs and the
cohesive principle (COH).

Our main result on COH is that the type 2 functionals provably recursive
from RCA0 + COH + Π0

1-CP are primitive recursive. This also provides a uni-
form method to extract bounds from proofs that use these principles. As a
consequence we obtain a new proof of the fact that WKL0 + Π0

1-CP + COH is
Π0

2-conservative over PRA.
Recent work of the first author showed that Π0

1-CP + COH is equivalent to
a weak variant of the Bolzano-Weierstraß principle. This makes it possible to
use our results to analyze not only combinatorial but also analytical proofs.

For Ramsey’s theorem for pairs and two colors (RT2
2) we obtain the upper

bounded that the type 2 functionals provable recursive relative to RCA0 +
Σ0

2-IA+RT2
2 are in T1. This is the fragment of Gödel’s system T containing only

type 1 recursion — roughly speaking it consists of functions of Ackermann type.
With this we also obtain a uniform method for the extraction of T1-bounds
from proofs that use RT2

2. Moreover, this yields a new proof of the fact that
WKL0 + Σ0

2-IA + RT2
2 is Π0

3-conservative over RCA0 + Σ0
2-IA.

The results are obtained in two steps: in the first step a term including
Skolem functions for the above principles is extracted from a given proof.
This is done using Gödel’s functional interpretation. After this the term is
normalized, such that only specific instances of the Skolem functions are used.
In the second step this term is interpreted using Π0

1-comprehension. The
comprehension is then eliminated in favor of induction using either elimination
of monotone Skolem functions (for COH) or Howard’s ordinal analysis of bar
recursion (for RT2

2).

1. Introduction

The aim of this paper is to develop a technique of program extraction for proofs
that use Ramsey’s theorem for pairs, the cohesive principle and other principle
weaker than Ramsey’s theorem for pairs. As a consequence it also gives a proof
theoretic account of conservation results for those principles. This paper extends
our previous treatment of Ramsey’s theorem for pairs in [34], where only single
instances of Ramsey’s theorem are discussed, to the full second order closure of
those principles.

Ramsey’s theorem for pairs (RT2
n) is the statement that every coloring of pairs

of natural numbers ([N]2) with n colors has an infinite homogeneous set. A simple
colorblindness argument shows that

RT2
2 ↔ RT2

n for every fixed n.
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Ramsey’s theorem for pairs and arbitrary large colorings (RT2
<∞) is defined as

∀nRT2
n. This principle is proof-theoretically stronger than RT2

2.
A coloring c of pairs is called stable if c({x, ·}) eventually becomes constant for

every x. The restriction of RT2
n to stable colorings is denoted by SRT2

n. Here a
similar colorblindness argument can be applied.

A set G is called cohesive for a sequence (Ri)i∈N of subsets of N if

∀i
(
G ⊆∗ Ri ∨G ⊆∗ Ri

)
,

where X ⊆∗ Y :≡ (X \ Y is finite). The cohesive principle (COH) states that for
every (Ri)i∈N an infinite cohesive set exists. It is in some way the counterpart to
SRT2

n since
RCA0 ` RT2

n ↔ SRT2
n ∧ COH

for 2 ≤ n ≤ ∞, see [7, 8].
The computational strength of Ramsey’s theorem has been investigated since

the early 70’s. Specker showed 1971 that there exists a computable coloring of [N]2

that has no computable homogeneous set, see [47]. Jockusch improved this 1972
by showing that in general there is not even a Σ0

2 infinite homogeneous set. He
also provided an upper bound on the strength of Ramsey’s theorem for pairs and
showed that each computable coloring of pairs admits an infinite homogeneous set
H with H ′ ≤T 0′′, see [21]. Seetapun and Slaman showed in [43] that RT2

2 does not
solve the halting problem. Cholak, Jockusch and Slaman improved both results by
showing that an infinite homogeneous low2 set exists for every computable coloring
of pairs, i.e. a set H satisfying H ′′ ≤T 0′′, see [7].

From Specker’s results it is clear that RCA0 0 RT2
2. Seeptapun’s and Slaman’s

results immediately yield an upper bound on the proof-theoretic strength, it implies
that RT2

2 does not prove Π0
1-comprehension (or, equivalently, ACA0). Hirst showed

1987 that RT2
2 implies the infinite pigeonhole principle (RT1

<∞) which is equivalent
to the Π0

1-bounded collection principle (Π0
1-CP)1, see [16]. Cholak, Jockusch and

Slaman showed along their recursion theoretic proof that RT2
2 is Π1

1-conservative
over RCA0 + Σ0

2-IA.
This leaves the question whether RT2

2 implies Σ0
2-IA. Despite of many efforts in

the last years this question has not been settled yet.
Ramsey’s theorem for triples and bigger tuples is equivalent to ACA0 and hence

fully classified in the sense of reverse mathematics, see [45].
The cohesive principle has been originally considered in recursion theory, see

for instance [46]. Its computational strength has been fully determined in [19].
Cholak, Jockusch and Slaman observed in [7] that Ramsey’s theorem for pairs
splits nicely into a stable part and the cohesive principle. They also showed that it
is Π1

1-conservative over RCA0 and RCA0 + Σ0
2-IA. In the course of the classification

of Ramsey’s theorem the cohesive principle’s logical strength received attention in
the last years, see for instance [10] and [9]. In [9] it was shown that the cohesive
principle is Π1

1-conservative over RCA0 + Π0
1-CP. We recently showed that over

RCA0 + Π0
1-CP the cohesive principle is equivalent to a weak form of the Bolzano-

Weierstraß principle, see [37]. Thus the cohesive principle also shows up in analytic
proofs.

For an extensive survey on the current status of Ramsey’s theorem for pairs and
weaker principles, see [15] and [44].

The purpose of this paper is to give an account to the above mentioned conser-
vation results from the perspective of proof mining and program extraction. We
provide new proofs for these conservation results which additionally yield realizing

1In the first order context this principle is usually denoted by BΠ0
1 which is equivalent to BΣ0

2.
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terms. Since the types of these terms rise with the complexity of the formula this
is naturally bounded to Π0

3-sentences.

Proofwise low. Define Π0
1-comprehension as

(Π0
1-CA) : ∀X ∃Y ∀u (u ∈ Y ↔ ∀v 〈u, v〉 ∈ X) .

This covers the full strength of Π0
1-comprehension since ∀v 〈u, v〉 ∈ X is a univer-

sal Π0
1-statement (relative to the parameter u). Full arithmetical comprehension

(ACA0) follows by iteration. For a primitive recursive term t we will write Π0
1-CA(t)

if X is instantiated with the set {n | t(n) = 0}.2 For a closed term t the principle
Π0

1-CA(t) is also called an instance of Π0
1-comprehension.

The union of Π0
1-CA(t) for all terms t containing only number variables free is

the same as light-face Π0
1-comprehension. In particular, this does not prove ACA0.

Let P be a second order principle stating the existence of a set G relative to a
set parameter S — that is a principle of the form

(P) : ∀S ∃G P (S,G).

Definition 1 (proofwise low). Call a principle of the form P proofwise low over
a system T if for every provably continuous3 term ϕ a provably continuous term ξ
exists such that

(1) T ` ∀S
(
Π0

1-CA(ξS)→∃G
(
P (S,G) ∧ Π0

1-CA(ϕSG)
))
.

If we additionally can prove this for a sequence of solutions, i.e.
(2)
T ` ∀(Si)i∈N

(
Π0

1-CA(ξ(Si)i)→∃(Gi)i∈N
(
∀i P (Si, Gi) ∧ Π0

1-CA(ϕ(Si)i(Gi)i)
))

then we call P proofwise low in sequence over the system T . Here (Si)i is (a code
of) the sequence of sets Si. It is given by the set {〈i, x〉 | x ∈ Si}.

The notion of proofwise low is comparable to low2 in the recursion theoretic
setting: take for instance T = WKL0, then a proofwise low statement in T satisfies

RCA0 ` ∀S
(
WKL ∧ Π0

1-CA(ξS)→∃G
(
P(S,G) ∧ Π0

1-CA(ϕSG)
))
.

The analogous recursion theoretic statement would be that relative to an oracle
of Turing degree d � 0′ — this resembles the premise — a set G satisfying the
statement P (S,G) and its Turing jump G′ can be computed. From this follows
that G′′ ≡T 0′′ or in other word that G is low2.

The main results of this paper are divided into two parts:
(i) We show roughly that

• RT2
2 is proofwise low over WKL0 (Corollary 46) and that

• COH is proofwise low in sequence over WKL∗0. The system WKL∗0 is
defined to be WKL0 where Σ0

1-induction is replaced by quantifier-free-
induction plus the exponential function. (Corollary 33)

(ii) We show for principles P that
• if P (S,G) is Π0

1 and P is proofwise low over WKL0, the system WKL0+
Σ0

2-IA + P is Π0
3-conservative over Σ0

2-induction. (Section 10.3)
• if P (S,G) is Π0

3 and P is proofwise low in sequence over WKL∗0 the
system WKL0 + Π0

1-CP +P is Π0
3-conservative over RCA0 and Π0

2-con-
servative over PRA. (This covers COH. See Theorem 36.)

2Strictly speaking RCA0 does not contain terms. Here and in the following we silently assume
that we work in the conservative extension of RCA0 by all primitive recursive functions.

3Continuous means here continuous in the sense of Baire space, i.e. ϕ is continuous if

∀f ∃n ∀g (∀x < nf(x) = g(x)→ϕ(f) = ϕ(g)) .

Such functionals can be coded into primitive recursive functions. For details see definitions 6 and
7 below.



4 ALEXANDER P. KREUZER AND ULRICH KOHLENBACH

This simplifies the results slightly. The actual results require a suitable finite
type extension of WKL0 and WKL∗0, they also allow a function parameter to the
Π0

3-formula and provide extraction of type 2 functionals, see below.
The first part of the results is based on the proofs by “first jump control” for SRT2

2

and COH of Cholak, Jockusch and Slaman, see [7], showing that these principles
have low2 solutions. (See proposition 31 with corollary 33 and proposition 44 with
corollary 46.) To our knowledge these proofs have not been used before to obtain
conservativity results for RT2

2. Cholak, Jockusch and Slaman developed in this
paper a different, more complicated proof needing Π0

2-comprehension that can be
used in a forcing construction to show conservativity of RT2

2 over Σ0
2-induction.

For the second part we use Gödel’s functional interpretation (always combined
with a negative translation) to extract a term t from a proof of an arbitrary state-
ment of the following form

P→∀x∃y A(x, y),

where A is quantifier-free and P is a proofwise low principle. (See the proof of
proposition 35 and proposition 50.) For an oracle solution P of the functional
interpretation of P this term will then satisfy

∀xA(x, t(P, x)).

We normalize t so that every application of P in the proof is of a specific form and
one can read off from the term and the proof how much of P is used (section 8). The
functional P is then eliminated from t by interpreting every specific application of P.
This is done either by (2) or the functional interpretation of (1) in a way that retains
the instance of comprehension. If this retained instance of comprehension is used
for the next interpretation of P then an inductive treatment of every application of
P yields that

(i) in the first case one instance of the functional interpretation of Π0
1-CA suf-

fices to prove to totality of t and hence ∀x∃y A(x, y), see proposition 52,
(ii) in the second case one instance of Π0

1-CA proves the totality of t and hence
∀x∃y A(x, y), see proposition 35.

The instance of comprehension is then eliminated in favor of induction:
In the case (i) the solution to this functional interpreted instance of comprehension
is provided by an instance of Spector’s bar recursion (in fact by an application of
the rule of bar recursion). This usage of bar recursion is then eliminated using
Howard’s ordinal analysis of bar recursion in favor of Σ0

2-induction, see section 7.
In the case (ii) the instance of comprehension is eliminated through elimination

of Skolem functions for monotone formulas (section 5) yielding that ∀x∃y A(x, y) is
provable in primitive recursive arithmetic. For this it is crucial that P is proofwise
low over a system that does not contain Σ0

1-induction, for instance WKL∗0.
These techniques of elimination of instances of comprehension can be viewed as

a proof-theoretic refinement of the arithmetical conservativity of ACA0 over PA, see
[4], [11], [50] and [45, IX.1.6].

Comparison to conservation results by syntactic forcing. Syntactic forcing is a
method to prove conservativity result. It is commonly used in reverse mathematics.

To show that a second order principle P is conservative over T it proceeds by first
taking an arbitrary countable model of T . This model is then extended through a
forcing argument to include sets solving all instances of P without altering the first
order part. The conservativity then follows by Gödel’s completeness theorem. For
details and further information see [2].

The elimination of monotone Skolem functions and Howard’s elimination of bar
recursion are constructive: a careful analysis of the proofs would yield a uniform
method to obtain a term of T for each function provable total using P. Whereas
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the forcing argument essentially uses a reductio ad absurdum argument (if P would
not be conservative then by the completeness theorem there would be a model that
could not be extended).

Forcing yields in many cases full Π1
1-conservativity whereas the functional in-

terpretation usually stops at Π0
3-conservativity. This is a consequence of the way

the functional interpretation works: it transforms every statement in a functional,
where for every additional quantifier alternation the type-level rises, making it more
complex to analyze. For instance, Π0

3-statements correspond to type 2 functionals
(i.e. functionals essentially of the form NN → N).

This makes it easier to handle principles implying the Π0
1-bounded collection

principle (Π0
1-CP). Due to the well-known fact that Π0

1-CP is Π0
3-conservative over

Σ0
1-IA the base theory for the functional interpretation does not change. This cir-

cumvents the problems forcing experiences when proving conservativity over Π0
1-CP,

see [15, §6].
The original proof that RT2

2 or COH is Π1
1-conservative over Σ0

2-induction uses
syntactic forcing, also the proof that COH is Π1

1-conservative over Σ0
1-induction

uses it, see [7]. The original proof of the fact that COH is Π1
1-conservative over

Π0
1-CP is done using a complicated double forcing, see [9]. Our proof of the fact

that COH + Π0
1-CP is Π0

3-conservative over Σ0
1-IA is similar to the proof of [7] since

we show conservativity over RCA0 (without Π0
1-CP) and therefore do not face the

problems forcing experiences with Π0
1-CP and that Chong, Slaman and Yang in [9]

deal with. Additionally, our proof is open for proof mining, which means it provides
a method for program extraction.

2. Logical systems

We will work in a setting based on fragments of Heyting and Peano arithmetic
in all finite types introduced in [51], for details see also [32].

In general, theories will be written with a superscript ω which indicates that this
is a finite type theory. Axioms and rules will not have an ω. The only exceptions
to this are the theories of reverse mathematics (RCA0, WKL0, ACA0, RCA∗0, WKL∗0)
and PRA.

2.1. Finite types. The set of all finite types T is inductively defined as

0 ∈ T, ρ, τ ∈ T⇒ τ(ρ) ∈ T,

where 0 denotes the type of natural numbers and τ(ρ) the type of functions from ρ
to τ . The set of pure types P ⊂ T is defined as

0 ∈ P, ρ ∈ P⇒ 0(ρ) ∈ P.

They will often be denoted by natural numbers:

0(n) := n+ 1,

e.g. 0(0) = 1. The degree deg(ρ) of a type ρ is inductively defined as

deg(0) := 0, deg(τ(ρ)) := max(deg(τ), deg(ρ) + 1).

We will often denote the type of a term or variable by a superscribed index. For
two types ρ, τ we will write ρ ≤ τ if deg(ρ) ≤ deg(τ).

Equality =0 for type 0 objects will be added as primitive notion to the systems.
Higher type equality =τρ will be treated as abbreviation:

xτρ =τρ y
τρ :≡ ∀zρ xz =τ yz.



6 ALEXANDER P. KREUZER AND ULRICH KOHLENBACH

2.2. Gödel’s system T . Define the λ-combinators Πρ,σ,Σρ,σ,τ to be the function-
als satisfying

Πρ,σx
ρyσ =ρ x, Σρ,σ,τx

τσρyσρzρ =τ xz(yz).

Similar define the recursor Rρ of type ρ to be the functional satisfying

Rρ0yz =ρ y, Rρ(Sx
0)yz =ρ z(Rρxyz)x.

Let Gödel’s system T be the T-sorted set of closed terms that can be build up
from 00, the successor function S1, the λ-combinators and, the recursors Rρ for
all finite types ρ. Using the λ-combinators one easily sees that T is closed under
λ-abstraction, see [51].
Tn denotes the subsystem of Gödel’s system T , where primitive recursion is

restricted to recursors Rρ with deg(ρ) ≤ n. The system T0 corresponds to the ex-
tension of Kleene’s primitive recursive functionals to mixed types, see [24], whereas
full system T corresponds to Gödel’s primitive recursive functionals, see [13].

2.3. Heyting and Peano arithmetic. Define the neutral Heyting/Peano arith-
metic (N-HAω, N-PAω) to be the extension of the term system T to a T-sorted
intuitionistic resp. classical logical system plus the schema of full induction and the
equality axioms for type 0, i.e.

• x =0 x, x =0 y→ y =0 x, x =0 y ∧ y =0 z→x =0 z,
• x1 =0 y1 ∧ · · · ∧ xn =0 yn→ t(x1, . . . , xn) =0 t(y1, . . . , yn) for any n-ary

term t of suitable type,
and substitution schemata for λ-combinators and the recursors, i.e.

(SUB) :


t[Πxy] =0 t[x]

t[Σxyz] =0 t[xz(yz)]

t[R0yz] =0 t[y]

t[R(Sx)yz] =0 t[z(Rxyz)x]

for all t of type 0.

For a formal definition see [52, I.1.6.15] (there N-HAω is called HAω).
These theories are neutral with respect to an intensional or an extensional in-

terpretation of higher type objects. However, for type 0 objects the usual equal-
ity axioms hold. Higher type equality is of no effect except for the SUB -rule.
Later we will add functionals yielding cohesive and homogeneous set which are not
extensional (in the presence of extensionality they would prove full arithmetical
comprehension, see [31]) and therefore can only be analyzed in a neutral context.

Let weakly extensional Heyting/Peano arithmetic (WE-HAω, WE-PAω) be
N-HAω resp. N-PAω plus the quantifier-free rule of extensionality, i.e.

(QF-ER) :
Aqf→ s =ρ t

Aqf→ r[s/xρ] =τ r[t/yρ]
,

where Aqf is quantifier-free and sρ, tρ, rτ are terms of WE-HAω. Note that the ad-
dition of SUB here is redundant, since QF-ER together with the axioms for Π,Σ, R
proves it. The systems with full extensionality, i.e. N-HAω, N-PAω plus the exten-
sionality axioms

(Eρ,τ ) : ∀zτρ, xρ, yρ (x =ρ y→ zx =τ zy)

for all τ, ρ ∈ T, will be denoted by E-HAω and E-PAω. For a detailed definition of
these systems, see [32, section 3].

The weakly extensional and neutral theories allow functional interpretation in
themselves, which is not possible in the presence of full extensionality. Later we will
eliminate the usage of extensionality (see proposition 3 below), hence neither the
interpretation of constants yielding cohesive/homogeneous sets nor the functional
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interpretation will lead to problems. For a discussion of these systems and the
connection to functional interpretation we refer to [51].

It is also important to note that in presence of only QF-ER the deduction theorem
in general fails, see [32, theorem 9.11]. To overcome this we will restrict the use of
principles in premises of QF-ER. This will be denote by the ⊕-sign, e.g. WE-PAω ⊕
WKL denote the system WE-PAω + WKL, where WKL may not be used in the
premise of QF-ER. The weak extensional systems satisfy the deduction theorem
with respect to ⊕.

We now introduce fragments of neutral and (weakly) extensional Heyting/Peano
arithmetic corresponding to Tn:
Define N-HAωn� to be the logical system extending Tn plus Σ0

n+1-IA and plus the
case-distinction functionals (Condρ)ρ∈T and its substitution axioms

(SUBCond) :

{
t[Condρ(0

0, xρ, yρ)] =0 t[x]

t[Condρ(Su, x
ρ, yρ)] =0 t[y]

for all t of type 0.

These case distinction functionals are needed for the functional interpretation and
cannot be defined in these fragments of N-HAω, see [41, 3]. In the full system T they
can be simulated by the recursors. Instead of N-HAω0 � we also write N̂-HAω�. The
classical systems N-PAωn�, N̂-PAω� are defined similarly. In the same way also the
(weakly) extensional systems (W)E-HAωn�, ̂(W)E-HAω�, (W)E-PAωn�, ̂(W)E-PAω� are
defined.4 However for the classical systems defined here one does not need to add
Cond to the system since it is provably definable with the λ-combinators and R0, see
[41]. Note that Σ0

n+1-induction is provable with the recursor Rn and quantifier-free
induction and full QF-AC in all types (definition below) over the classical systems
defined here. Hence the addition of it to the classical systems is actually superfluous.
This follows from [41] and Kreisel’s characterization theorem, see [32, proposition
10.13].

2.4. Grzegorczyk arithmetic. We moreover need weaker fragments of Heyting
and Peano arithmetic containing only quantifier-free induction.

Let weakly extensional Grzegorczyk arithmetic of level n in all finite types GnAω(i)

be the (intuitionistic) system containing =0-axioms, QF-ER, λ-abstraction, the n-th
branch of the Ackermann-function, bounded search and bounded primitive recur-
sion. For a detailed definition see [26].5 The neutral variant will be denoted by
N-GnAω, the extensional one by E-GnAω.

Let G∞Aω be the union of all these systems. This system contains all prim-
itive recursive functions but not all primitive recursive functionals (in the sense
of Kleene). For instance R0 is not contained in G∞Aω. Thus it also contains no
Σ0

1-induction. The set of all closed terms of GnAω is called GnRω. See [26] and [32,
Chapter 3] for all of this.

2.5. Quantifier-free axiom of choice. Let QF-AC be the schema

∀x ∃y Aqf(x, y)→∃f ∀xAqf(x, f(x)),

where Aqf is a quantifier-free formula. If the types of x, y are restricted to α, β we
write QF-ACα,β .

4For a formal definition let ̂(W)E-HAω� be defined as in [32, section 3.4] and define (W)E-HAωn�

to be ̂(W)E-HAω� plus Σ0
n+1-IA and the defining axioms and constants for the recursors Rρ with

deg(ρ) ≤ n. The neutral variants are defined in the same way but without the rule of extensionality.
5In [32] the system GnAω is defined to include all N,NN,NNN

-true ∀-sentences. In a pure
proof-mining context these sentences do not matter because they have no impact on the provable
recursive functions in the system. We only add quantifier-free induction (QF-IA), to be able to
later establish conservativity over PRA.
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The scheme QF-AC0,0 corresponds to recursive comprehension (∆0
1-CA) in a sec-

ond order context. Thus ŴE-PAω� + QF-AC1,0 and RCA0 share the same proof
theoretic strength. RCA0 can easily be embedded into ŴE-PAω� + QF-AC1,0 and
ŴE-PAω� + QF-AC1,0 is conservative over RCA0 modulo this embedding, see [31].
For this reason ŴE-PAω�+ QF-AC1,0 is called RCAω0 .

The system RCA∗0 is RCA0, where Σ0
1-induction is replaced by quantifier-free-

induction and the exponential function, see [45, X.4.1]. This system can be em-
bedded into G3Aω + QF-AC1,0 and both systems are Π0

2-conservative over Kalmar
elementary arithmetic.

In ordinary mathematics higher types usually do not occur and second order
arithmetic is sufficient to formalize most of it. We require here a system containing
all finite types to be able to carry out a functional interpretation and thus cannot
use a second order system.

2.6. The quantifier-free subsystems. In order to exploit the full subtlety of
the functional interpretation we will also need the quantifier-free subsystems of
N-GnAωi and N-HAωn�. The quantifier-free subsystems are denote by qf-N-GnAω

resp. qf-N-PAωn�. (The quantifier free subsystems satisfy the law of excluded middle
and are therefore classical.)

They are obtained from the full systems as follows:
• The quantifier-rules and -axioms are dropped from logic.
• For all axioms of the form A(xρ11 , . . . , x

ρn
n ), where A is quantifier-free, the

following axioms are added to the system:

A(tρ11 , . . . , t
ρn
n ),

where ti are arbitrary terms.
• The induction schema is replaced by the (quantifier-free) induction rule:

A(00), A(x0)→A(Sx0)

A(t0)
,

where A is quantifier-free, x does not occur free in the assumption and t is
an arbitrary term.

These quantifier-free systems contain only prime formulas of the form

t0 =0 t1,

where t0, t1 are terms in N-GnAωi resp. N-HAωn�. Formulas are logical combinations
of these predicates. Obviously, qf-N-GnAω and qf-N-PAωn� are subsystems of N-GnAωi
resp. N-HAωn�. (For a detailed discussion of these systems we also refer the reader
to [51, 1.6.5]. For technical reason we use here the variant of the systems described
remark 1.5.8.)

Observe, that in these system we can only instantiate type 0 variables (via the
induction rule) and not higher type variables, hence we immediately obtain the
following lemma:

Lemma 2. Let A be a sentence and

T ` A,
where T = qf-N-GnAω, qf-N-PAωn�.

Then there exists a derivation of A in T that contains only the variables of A
plus some fresh variables of type 0.

Proof. In a derivation of A in T replace every variable not of type 0 and not
occurring in A by constant 0ρ of suitable type. Since higher type variables cannot
be instantiated the derivation remains valid. �
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2.7. Functional interpretation. Functional interpretation will denote in this pa-
per a negative translation followed by Gödel’s Dialectica translation.

Gödel’s Dialectica translation is a proof interpretation that translates proofs from
(a fragment of) WE-HAω or N-HAω into its quantifier-free subsystem, see [13].

Let T be such a system. The Dialectica translation associates to each formula
A of T a ∃∀-formula

AD :≡ ∃x∀y AD(x, y),

where AD is quantifier-free. In particular, for a Σ0
2 sentence A the formula AD is

the quantifier-free matrix of A.
From a proof of A one then can extract a term t, such that

qf-T ` AD(t, x).

A negative translation is a proof translation that translates classical proofs into
intuitionistic proofs. It also proceeds by associating each formula A a formula AN
such that

S ` A↔ AN and S ` A =⇒ Si ` AN .

Here S is any of (W)E-PAω, ̂(W)E-PAω�, GnAω or its neutral variants and Si is
its intuitionistic counterpart. (To be specific, Kuroda’s negative translation AN is
obtained from A by inserting ¬¬ after each ∀ and in front of the whole formula.)

Thus we denote by functional interpretation a proof translation from (a fragment
of) WE-PAω or N-PAω into its quantifier-free part. We abbreviate the functional
interpretation by ND. The ND-translation of a formula A will be denoted by AND

and the quantifier-free matrix of it by AND.
The functional interpretation in particular has the property to extract a term for

each provable recursive function, i.e. from a proof of a ∀∃-statement (in WE-PAω

or any other fragment for which the functional interpretation holds)

WE-PAω ` ∀u∃v Aqf(u, v)

it extracts a term t such that

qf-WE-HAω ` Aqf(u, tu)︸ ︷︷ ︸
≡AND(t,u)

.

For an introduction to the functional interpretation see [32, 3, 51].
Since the functional interpretation does not interpret full extensionality it is

often combined with the elimination of extensionality.

Proposition 3 (Elimination of extensionality, [38]). Let A be a formula containing
only free variables and quantification of type ≤ 1. If

E-PAω + QF-AC0,1 + QF-AC1,0 ` A

then

N-PAω + QF-AC0,1 + QF-AC1,0 ` A.

The same holds also for the fragments N̂-PAω� and N-GnAω.

Proof. Proposition 10.45 and lemma 10.41 of [32]. These lemma and proposition
actually do not make use of weak extensionality and therefore show conservativity
even over a neutral theory. �
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2.8. Additional notation and definitions. We denote sets by capital letters.
Unless otherwise noted they are represented by characteristic functions. Sometimes
capital letters also denote higher type functionals. It will be clear from the context
what is meant.

It is important to note that in systems not containing Σ0
1-induction it is in general

not provable that every infinite set — that is a set X satisfying ∀k ∃n > k n ∈ X
— can be strictly increasingly enumerated, i.e. there exists a strictly monotone
function f such that rng(f) = X. The system ŴE-HAω� + QF-AC0,0 proves that
the first statement implies the second. The converse — every strictly increasingly
enumerable set is infinite — is already provable without Σ0

1-induction, for instance
G3Aω suffices.

Sequence codes are denoted by 〈x0, . . . , xn〉. The corresponding projection func-
tions and length function are denoted by (·)i and lth(·). We encode sequences
using a bijective and monotone (in each component) sequence-coding based on the
Cantor pairing, see [32, definition 3.30]. This coding is definable in every system
containing qf-N-G3Aω.

We model in our systems n-colorings of [N]2 as functions c : N × N → n with
c(x, y) = c(y, x).

Further we define the following notions:
• f̄ denotes the course-of-value function of f1, i.e. f̄(n) = 〈f(0), . . . , f(n−1)〉.
• x @ X iff x is an initial segment of a strictly monotone enumeration of X.
• x ⊆fin X iff x is an code for a finite subset of X.

Definition 4 (Bounded type 1 recursor, R̃1). The bounded type 1 recursor R̃1 is
defined as

R̃10yzhu =0 min(y(u), h(0, u))

R̃1(x+ 1)yzhu =0 min(z(R̃1xyzh)xu, h(x, u)).

We will denote by (R̃1) the defining axioms. Note that they are purely universal
and that R̃1 can be trivially majorized.

Definition 5 (Uniform weak König’s lemma, UWKL, [30]). Uniform weak König’s
lemma is the statement

∃Φ ≤1(1) 1∀f (T∞(f)→∀x0 f(Φfx) = 0),

where T∞ expresses that f describes an infinite 0/1-tree.

We can modify (in G∞Aω) every function f such that it describes an infinite
0/1-tree and is not altered if it already described such a tree. We will write f̌ for
this modification, see [25, 32].

With this we can restate UWKL equivalently as

∃Φ ≤1(1) 1∀f1 ∀x0 f̌(Φf̌x) = 0.

Note that the condition ≤1(1) is superfluous because the modified tree contains only
0/1-sequences.

By Skolemization we add a weak König’s Lemma functional constant B described
by the (purely universal) axiom

(3) ∀f ∀x0 f̌(Bf̌x) = 0.

This axiom will be denoted by (B). Note that B can be trivially majorized.
In a system containing full extensionality UWKL implies Π0

1-CA, see [30], hence
it is too strong for our purpose. But in a weakly extensional system it often can be
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handled like WKL, for instance it vanishes under a monotone functional interpreta-
tion like WKL and can be added to the elimination of monotone Skolem functions,
see [30]. Note that proposition 3 does not cover UWKL.

3. Continuous functionals

Recall that a type 2 functional ϕ is continuous if

(4) ∀g1 ∃n0 ∀h1
(
ḡn = h̄n→ϕ(g) = ϕ(h)

)
.

Definition 6 (Associate, [23, 33]). For every continuous type 2 functional ϕ we
will denote by αϕ an associate of ϕ, i.e. a type 1 function with the properties

(5)
∀f ∃n αϕ(f̄n) 6= 0,

∀f, n
(
αϕ(f̄n) 6= 0→ϕ(f) = αϕ(f̄n) .− 1

)
.

The value of ϕ is uniquely determined through αϕ. For every continuous func-
tional there exists an associate, though it is not uniquely determined. For details
see also [39].

Definition 7. A functional given by a closed term ϕρ of T is called provably
continuous if for some term αϕ (containing at most the free variables of ϕ) of type
1 (if ρ > 0) resp. 0 (if ρ = 0), the following holds:

T ` ϕ ≈ρ αϕ.

Here, for general xρ and α0/1, the relation x ≈ρ α is defined by induction on ρ:

x ≈0 α :≡ x =0 α,

x ≈τρ α :≡ α ∈ ECFτρ ∧ ∀yρ ∀β ∈ ECFρ (y ≈ρ β→xy ≈τ α �β) ,

where ECF is the model of extensional hereditarily continuous functionals formalized
in T and � denotes the application in ECF. (See [24, 33, 51], for a definition see
also [32, definitions 3.58, 3.59].)

Especially, in the case of ρ = 2 a functional ϕ is provably continuous in T if it
has an associate αϕ in T and (5) is provable.

Proposition 8. For every term t2 ∈ GnRω, T0, T1 there exists provably in GnAω

resp. ŴE-PAω�, WE-PAω1 � a (primitive recursive) associate αt. In other words t is
provably continuous.

Proof. We first consider the case of ŴE-PAω� = WE-PAω0 � and GnAω. Here the only
functional constants having no trivial associate are the λ-combinators and R0 (in
the case of ŴE-PAω�) and the course-of-value functional (in the case of GnAω). The
associates of R0 and the course-of-value functional can easily be computed and (5)
be proven in the respective systems. By normalization one can find a term t̃ =2 t

that does not include λ-abstraction of type ≥ 1. The proposition for ŴE-PAω� and
GnAω follows from this.

In the case of WE-PAω1 � we prove by induction over the structure of t that
t is provably continuous. For this it is sufficient to prove that every functional
constant is provably continuous and to observe that this property is retained under
composition. The associates for the λ-combinators are easily definable and provable
in these systems, see [51].

Here we only show that the existence of an associate for R1 is provable in
WE-PAω1 �, since we are only interested in this case. For the other recursors the
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proof is similar. Let

αR1
(0, y′, z′, u) :=

{
(y′)u + 1 if u < lth y′,

0 otherwise,

αR1(x+ 1, y′, z′, u) :=

(z′)〈
x,(λk.αR1

(x,y′,z′,k)
.− 1)k

〉 if ∃k < lth y′, such that
αR1(x, y′, z′, k) > 0
and this is > 0,

0 otherwise.

Using Π0
2-induction one shows that

∀x (∀u∃nαR1(x, ȳn, αλr.zrnn, u) = R1(x, y, z, u) + 1)

and hence that αR1
is an associate of R1. �

4. Properties of instances of comprehension

Remark 9. A sequence of Π0
1-comprehension instances

(
Π0

1-CA(fi)
)
i
may be reduced

to the single instance of Π0
1-CA(f ′) with f ′xy := f(x)1(x)2y, see [27, remark 3.8].

Lemma 10 ([27, 28]). For suitable terms ξi of G3Aω we have
(i) G3Aω + QF-AC0,0 ` ∀f

(
Π0

1-CA(ξ1f)→Π0
1-AC(f)

)
,

(ii) G3Aω + QF-AC0,0 ` ∀f
(
Π0

1-CA(ξ2f)→∆0
2-CA(f)

)
,

(iii) G3Aω + QF-AC0,0 ` ∀f
(
Π0

1-CA(ξ3f)→∆0
2-IA(f)

)
,

(iv) G3Aω + QF-AC0,0 ` ∀f
(
Π0

1-CA(ξ4f)→Π0
1-CP(f)

)
,

(v) G3Aω + QF-AC0,0 + WKL ` ∀f
(
Π0

1-CA(ξ5f)→Π0
2-WKL(f)

)
.

Here the principle K-AC denotes the scheme of axiom of choice, where the base
formula is of type K. Similarly K-WKL denotes weak König’s lemma where the
tree is given by a predicate of type K. The principles K-IA and K-CA are defined
likewise.

If K = Π0
n,Σ

0
n then an instance of those principles is given by a function f coding

the quantifier-free part of the Π0
n resp. Σ0

n formula. For instance

Π0
1-AC(f) ≡ ∀x ∃y ∀z f(x, y, z) = 0→∃Y ∀x∀z f(x, Y (x), z) = 0.

Similar a ∆0
2-formula is given by an f coding a function for a Π0

n and a function
for a Σ0

n formula.

Proof of lemma 10. For (i), (ii) see [28, lemma 4.2]. The statements (iii), (iv) are
immediate consequences of these. Note that we require here G3Aω and not only
G2Aω as in the reference, since we do not add the true universal sentences to the
system, see footnote 5.

For (v) let ξ5 be such that the instance of Π0
1-CA yields the comprehension

function for the innermost quantifier of the tree predicate reducing Π0
2-WKL to

Π0
1-WKL. This is equivalent to WKL and thus included in the system, see for

instance [45]. �

For the ordinal analysis of terms we will need the following abbreviation:

ωµ0 = µ and ωµk+1 = ωω
µ
k ,

where k ∈ N and µ is an ordinal.

Lemma 11. Let n ∈ N and let t[g] be a type 1 term with the only free variable g
such that λg.t[g] ∈ Tn. Then for every term ϕ in Tn−1 or in G∞Rω if n = 0 there
exists a term ξ in the same system such that WE-PAωn−1�+QF-AC or G∞Aω+QF-AC
in the case of n = 0 proves

∀g
(
Π0

1-CA(ξg)→∃f1
(
f satisfies the defining axioms of t[g] ∧ Π0

1-CA(ϕfg)
) )
.
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Defining axioms of t[g] are a formula A, such that ∀g, x, y (A(g, x, y)↔ t[g]x = y).
(Since t1 can be defined by (unnested) ordinal recursion of order < ωωn+1, one can
take for A the formula describing this recursion.)

Proof. First fix a suitable encoding for ordinals smaller than ε0 in this system, see
for instance [14].

Every term t1 ∈ Tn can be defined through (unnested) ordinal recursion of order
< ωωn+1; the totality of such a recursion can be proven using a suitable instance of
Σ0
n+1-IA, see [40] and theorem 17 below. Such an instance is included in the system

because a suitable instance of Π0
1-CA reduces it to Σ0

n-IA. This proves the claim
that there is a total function f satisfying the definition of t[g].

For the second part note that the defining axioms of unnested ordinal primitive
recursion of order type α are given by

(6) f(0) := f0, f(n) := h(n, f(l(n)),

where l satisfies

(7) l(n) ≺ n for n > 0

and ≺ defines a well-ordering on N of order type α.
We say a finite sequence s satisfies the defining axioms (6) up to n if

(s)0 = f0, (s)i = h(i, (s)l(i)) for all i ∈
⋃
n′≤n

⋃
k

{
lk(n′)

}
\ {0}

For notational ease we assume here that l(0) = 0. Note that because of (7) the set⋃
k

{
lk(n′)

}
defines an ≺-descending chain and is therefore provably finite.

For the second part we have to prove a comprehension of the form

(8) ∃H ∀k (k ∈ H ↔ ∀xϕ(f, g, k, x) = 0) .

We use the imposed instance of comprehension to prove the following comprehension

∃H ∀k
(
k ∈ H ↔ ∀x∀s, n

(
s satisfies the defining axioms of t[g] up to n

→αλf.ϕ(f,g,k,x)(s) ≤ 1
))
.

Note that this comprehension is equivalent to (8) if f is total. �

The proof of the comprehension above is similar to the construction of a 1-generic
set: If the statement

∀xϕ(f, g, k, x) = 0

for a fixed k fails, then there is an x such that ϕ(f, g, k, x) 6= 0. Since ϕ is continuous
this depends only on an initial segment of f . We express this by using associates,
i.e. this statement is equivalent to

∃nαλf.ϕ(f,g,k,x)(f̄n) > 1.

Hence it suffices to consider only finite initial segments.
We will use this technique in most proofs of instances of comprehension in this

paper. This is the reason why we require ϕ to be provably continuous in the
definition of proofwise low.

5. Elimination of monotone Skolem functions

Let ∆ be a set of sentences of the form ∀a∃b < ra ∀c0Bqf(a, b, c), where r is a
closed term and Bqf is quantifier-free and contains any further free variables than
those shown. Let ∆̃ be the corresponding set of Skolem normal form of the sentence
of ∆, i.e. the corresponding formulas of the form ∃B < r ∀a, c0Bqf(a,Ba, c).
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Theorem 12 ([27, 3.8]). Let γ be an arbitrary type and let Aqf be a quantifier-free
statement where only the shown variables are free and let s be a term in G∞Rω. If

G∞Aω + QF-AC⊕∆ ` ∀u1 ∀v ≤γ su
(
Π0

1-CA(ξuv)→∃w0Aqf(u, v, w)
)

then one can extract from a proof a term t ∈ T0 such that

ŴE-HAω�⊕ ∆̃ ` ∀u1 ∀v ≤γ su∃w ≤0 tu Aqf(u, v, w).

Especially, in case that Aqf ∈ L(PRA), u of type 0, v absent and ∆ = ∅ we have

PRA ` ∀u0Aqf(u, tu).

Corollary 13. Let γ, ξ, s, Aqf be as in theorem 12. However ξ may contain B but
s and Aqf must not. Then the following holds: If

G∞Aω + QF-AC⊕ (B) ` ∀u∀v ≤γ su
(
Π0

1-CA(ξuv)→∃w0Aqf(u, v, w)
)

then one can extract from a proof a term t ∈ T0 such that

ŴE-HAω� ` ∀u1 ∀v ≤γ su∃w ≤0 tu Aqf(u, v, w).

Proof. First note that due to [27, remark 2.10] we may add the (majorizable) con-
stant B to G∞Aω in theorem 12.

Apply this theorem to ∆ :=
{
∀f ∀x f̌(Bf̌x) = 0

}
, cf. definition 5 and (3) on

p. 10. The premise of the corollary implies that

G∞Aω + QF-AC⊕∆ ` ∀u∀v ≤γ su
(
Π0

1-CA(ξuv)→∃w0Aqf(u, v, w)
)
.

Theorem 12 and noticing that ∆ ≡ ∆̃ yields

ŴE-HAω�⊕∆ ` ∀u1 ∀v ≤γ su∃w ≤0 tu Aqf(u, v, w)

and so
ŴE-HAω� ` ∆→∀u1 ∀v ≤γ su∃w ≤0 tu Aqf(u, v, w).

Since the constant B only occurs in ∆, we may replace it with a new variable and
so replace ∆ with UWKL. The corollary now follows from [32, corollary 10.34]. �

6. Bar recursor

With bar recursion (even of the lowest type) one can interpret the functional
interpretation of (instances of) Π0

1-CA. This will be discussed in detail in propo-
sition 48 below. In this section we will show that the bar recursor B0,1 can be
majorized provably in ŴE-HAω�.

Definition 14 (bar induction of type 0). Let bar induction of type 0 be

(BI0) :


∀x1 ∃n0

0 ∀n ≥ n0Q(x, n;n) ∧
∀x1, n0 (∀dQ(x, n ∗ d;n+ 1)→Q(x, n;n))

→∀x1, n0Q(x, n;n),

where

(x, n)k :=

{
x(k), if k < n,
0, otherwise,

(x, n ∗ d)k :=


x(k), if k < n,
d, if k = n,
0, otherwise.

If Q is restricted to formulas in K, we write K-BI0.

Lemma 15.
ŴE-PAω�+ QF-AC0,0 ` Π0

1-BI0
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Proof. Let Q(x, n;n) ≡ ∀k Qqf(x, n;n; k). Suppose that Π0
1-BI0 does not hold, i.e.

the premises of Π0
1-BI0 are true and

∃x1
0, n

0
0 ¬∀k0

0 Qqf(x0, n0;n0; k0),

which is equivalent to

(9) ∃x1
0, n

0
0, k

0
0 ¬Qqf(x0, n0;n0; k0).

The second premise yields

∀x1, n0, k0 ∃d, k′ (¬Qqf(x, n;n; k)→¬Qqf(x, n ∗ d;n+ 1; k′)) .

Since the whole statement only depends on an initial segment of x1, it can be coded
in a type 0 object x′0. For instance let x′ := x̄n then λi.(x′)i, n = x, n.

Using QF-AC0,0 we then obtain functions D(x, n, k), K(x, n, k) with
(10)
∀x0, n, k

(
¬Qqf(λi.(x)i, n;n; k)→¬Qqf(λi.(x)i, n ∗D(x, n, k);n+ 1;K(x, n, k)

)
.

Then define using simultaneous course-of-value recursion (n0, x0, k0 are from (9))
the functions D0,K0:

D0(n) := x0(n)

K0(n) := k0

}
for n ≤ n0,

D0(n) := D(D0, n, n,K0(n− 1))

K0(n) := K(D0, n, n,K0(n− 1))

}
for n > n0.

The definition of D0 and (9),(10) yield

∀n ≥ n0 ¬Q(D0, n;n)

and hence a contradiction to the first premise of Π0
1-BI0. �

Proposition 16. ŴE-PAω�+ QF-AC0,0 proves that there exists a majorant B∗0,1 of
B0,1.

Proof. Define B∗0,1 like in [32, proof of theorem 11.17]. By the cited proof it suffices
to show Π0

1-BI0. (Note that in that proof Q is a Π0
1 formula in the case where

ρ = 0.) Hence the proposition is an immediate consequence of lemma 15. See also
[5]. �

7. Ordinal analysis of terms

7.1. Ordinal Peano/Heyting arithmetic. In this section we will investigate the
strength of induction along ordinals the systems ŴE-HAω�, ŴE-PAω�.

We will code ordinals using the ordinal coding of [14, II.3.a]. (This coding uses
the Cantor normal form for ordinals to define primitive recursive codes for ordinals.)
For convenience we repeat the definition of ωµk :

ωµ0 = µ and ωµk+1 = ωω
µ
k

Here k ∈ N and µ is an arbitrary ordinal number.

Theorem 17 ([40], [53]). The functions and functionals of level 2 that are ordinal
recursive (unnested) in an ordering < ωωk+1 are exactly the functions and functionals
in Tk.

Theorem 18 ([14, II.3.18]).

ŴE-PAω�+ Σ0
m+k−1-IA ` Σ0

m-LNP(< ωωk )

for every m, k ∈ N, where LNP denotes the least number principle.
In particular, ŴE-PAω�+Σ0

k+1-IA proves the totality of < ωωk+1-recursive functionals
of type ≤ 2.

Proof. See [14, II.3.18] and [40]. �
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7.2. Application to bar recursion. Our goal is now to use the equivalences
between ordinal induction and Σ0

k-induction and an ordinal analysis of bar recursion
to establish conservation results of bar recursion over induction along ω.

Definition 19 (Howard’s bar recursor). Define the bar recursor Bρ,τ as

Bρ,τAFGt :=τ

{
Gt, if A[t] < lth t,

F t(λuρ.Bρ,τAFG(t ∗ u)), otherwise,

where [t] := λx.(t)x.

Definition 20 (restricted bar recursor).

Φ′τAFGt :=τ

{
Gt, if A[t] < lth t,

F t(Φ′τAFG(t ∗ 0))(Φ′τAFG(t ∗ 1)), otherwise.

The bar recursor Φ′0 can be used to solve the functional interpretation of WKL,
see [18]. (Φ′τ is the restricted bar recursor schema 1 from there.)

We call a term semi-closed if it contains only variables of degree ≤ 1 free. Howard
introduced the notion of computational size for semi-closed terms, see [17, 18].
Roughly speaking the computation size of a semi-closed term of type 0 is an upper
bound on the number of term reductions on has to apply to obtain a numeral. The
computational size of a degree 1 term is the computational size of t(H0, . . . ,Hn),
where Hi are fresh variables such that the terms is of type 0.

Theorem 21 ([18, 2.2, 2.3]). Let Φ′0AFGc resp. B0,1AFGc be a semi-closed term
and let A,F,G have the computational sizes a, f, g then

(i) Φ′0AFGc has computational size σ := (f + g + h)ω + ω(h+ 1),
where h := ωa+ ω and,

(ii) B0,1AFGc has computational size σ := ωg+f2h, where h := ωa+ ω.
This equivalence can be proven in Σ0

1-LNP(σ).

Proof. See the proofs in [18, 2.2, 2.3]. Note that these proofs actually define a
counting function for the computation-tree through transfinite recursion. This re-
cursion is essentially a transfinite primitive recursion over σ. Hence this proof may
be carried out in Σ0

1-LNP(σ). �

Remark 22. If we apply the rule of bar recursion to semi-closed, primitive recursive
terms (in the sense of Kleene, i.e. terms of computation size ωn for n ∈ ω) we obtain
a term with computation size < ωmω for an m ∈ ω and therefore a term that is
provably definable already in ŴE-PAω�ωl2 for an l ∈ ω or in ŴE-PAω�+ Σ0

2-IA. We
can carried out the proof of the equivalence, theorem 21, in the same system, see
theorem 17. Hence in each of these systems we can also proof the equivalence of
both terms.

If we apply the rule of restricted bar recursion to primitive recursive terms, which
contain only free variable of type 0, we even end up with a primitive recursive term.

8. Term-normalization

Denote by T(k)[F0, . . . , Fn−1] the extension of the system Tk resp. T with the con-
stants F0, . . . , Fn−1. Further we treat here Rρ as an unspecified constant (without
Rρ axioms) in the case of qf-GnAω.

In the following we will call the reduction of

Condρ(τ)(x, y, z)u
τ to Condρ(x, yu, zu)

a Cond-reduction. These Cond-reductions are provably valid in qf-N-GnAω.
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Theorem 23 (term-normalization for type 2). Let Fi be constants of type ≤ 2.
For every term t1 ∈ T0[(Condρ)ρ∈T, F0, . . . , Fn−1] there is provably in qf-N-G3Aω

a term t̃ ∈ T0[Cond0, F0, . . . , Fn−1] for which

∀x tx =0 t̃x

and where every occurrence of an Fi is of the form

Fi(t̃0[y0], . . . , t̃k−1[y0]).

Here k is the arity of Fi, and t̃j [y0] are fixed terms whose only free variable is y0.

Proof. Without loss of generality we take the system T0[F ] where F is of type 2. For
notational simplification we assume that the recursor R0 can be obtained from F .
This can always be achieved with coding.

Let t1 be a term in T0[F ]. The term tx, where x is a fresh variable, is =0-equal to
a term t′[x] where t′ results from tx by carrying out all possible Π-, Σ-, and Cond-
reductions. The outermost symbol of t′ cannot be Π, Σ, or Condρ with ρ 6= 0, since
otherwise in t′ either not all Π-, Σ-reductions had been carried out or t′ would not
be of type 0.

Hence one of the following holds:
1) t′[x] = 00

2) t′[x] = S(t0a[x])
3) t′[x] = F (t1b [x])
4) t′[x] = Cond0(t0c [x], t1d[x], t1e[x])

In the first case we are done, λx.t′[x] satisfies the theorem. In the second case we
proceed the same way with the term ta. In the third case we proceed with the
term tby

0 where y0 is a new variable making tb to type 0 and in the fourth case we
proceed with the terms tc, tdy0, tey

0. Note that we can code the variables x and y
in one type 0 variable. Also note that since we applied all Cond-reductions only
Cond0 occurs.

By the strong normalization theorem this process stops, yielding the desired
term, see e.g. [12]. �

Theorem 24 (term-normalization for type 3). Now let Gi be constants of type ≤ 3.
For every term t1 ∈ T0[(Condρ)ρ∈T, G0, . . . , Gn−1] there is provably in qf-N-G3Aω

a term t̃ ∈ T0[Cond0, G0, . . . , Gn−1] for which

∀x tx =0 t̃x

and where every occurrence of an Gi is of the form

Gi(t̃0[f1], . . . , t̃k−1[f1]).

Here k is the arity of Gi, and t̃j [f1] are fixed terms whose only free variable is f1.

Proof. Analogous to proof of theorem 23. See also [29, proof of proposition 4.2]. �

Note that the equality between t, t̃ is only pointwise. Therefore one needs (weak)
extensionality to conclude that s[t] =0 s[t̃] for an arbitrary term s.

Application to proofs in quantifier-free systems. For a term t call the term
where every maximal type 0 subterm (i.e. every subterm of type 0 which is not
included in a different subterm of type 0) is replaced by a fresh type 0 variable
skeleton. Obviously, t can be regained from its skeleton by substitution of type 0
terms.

Lemma 25. Let T be qf-N-GnAω with n ≥ 3 or qf-N̂-PAω� augmented with arbitrary
constants H0, H1, . . . , let t0, t1 ∈ T0[Cond0, H0, H1, . . . ] and in t0, t1 all possible Π-,
Σ-reductions have been carried out.

Then the following are equivalent:
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(i) The terms t0, t1 are provable equal in every term context (T ` s[t0] =0 s[t1]
for every term s).

(ii) T ` P (t0) =0 P (t1), where P is a variable of suitable type.
(iii) The terms t0, t1 have the same skeleton (modulo renaming of type 0 vari-

ables) and t0, t1 are obtained from the skeleton by substitution of =0-equal
terms.

Proof. (i) ⇒ (ii) is clear. (ii) ⇒ (i) follows from the fact that one can replace P
by any term in the derivation and so in particular by λx.s[x]. By definition of the
axioms of a quantifier-free system the axioms of this new derivation are also in T .
(iii) ⇒ (i) follows from the =0-axioms.

For (ii)⇒ (iii) observe that the only way to prove the equality in (ii) are the SUB
rule, the SUBCond rule for Cond0, or the =0-axioms. The Π-, and Σ-reductions com-
mute with applications of =0-axioms and in t0, t1 all possible Π- and Σ-reductions
have been carried out we may assume that only the =0-axioms, SUBCond-axioms
for Cond0, and the SUB-axioms for R0 are used. These axioms only change type 0
values and, therefore, the skeletons have to be the same. The lemma follows. �

Proposition 26. Let T be qf-N-GnAω where n ≥ 3 or qf-N̂-PAω� augmented by a
type 2 constant F . Further let A be a formula containing only type 0 variables free
and satisfying T ` A.

Then there exists a formula Ã such that the weakly extensional intuitionistic
system TWE corresponding to T (i.e. GnAωi or ŴE-HAω�) proves A ↔ Ã and that
there is a derivation D̃ of T ` Ã where every occurring term is normalized according
to theorem 23, i.e. each occurrence of F is of the form F (ti[x]).

Moreover, these applications of F can be chosen independently from each other
in the sense that

T 0 P [F (t′)] =0 P [F (t′′)] for a fresh variable P

for all type 0 substitution instances t′, t′′ of ti resp. tj with i 6= j. (In other words,
the theory T does not see that the F (t′), F (t′′) are applications of F and not just
an arbitrary term of suitable type and with the same free variables. Hence they may
be replaced independently.)

Using coding we may also allow finitely many constants Fi of type ≤ 2.

Proof. Let D be a derivation of T ` A. By lemma 2 we may assume that only the
variables of A and some free type 0 variables occur in D. Hence every term showing
up in D satisfies the premise of theorem 23.

We obtain a new derivation D̃ by replacing every term in D with its normal form
as defined in the proof of theorem 23 (in particular all possible Π-, and Σ-reductions
have been carried out and only Cond0 occurs in t̃). The derivation D̃ is still valid
because the used logical axioms and rules, SUB-axioms for the recursor and Cond,
=0-axioms, and quantifier-free induction rule are translated into other instances of
themselves. The used SUB-axioms for Π and Σ become trivial since in all terms all
possible Π- and Σ-reductions have been carried out.

Let Ã be the result of D̃. Each term occurring in Ã is just the normal form of
the term at the same position in A and therefore weakly extensional equal to it.
Hence

TWE ` A↔ Ã.

Obviously, the derivation D̃ contains only finitely many applications ti of F .
Each of the ti contains only type 0 variables free. However, these applications of
F are not independent from each other because there might be equalities between
them provable in T .
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Passing to the skeletons of ti we obtain applications of F which are by lemma 25
pairwise independent or literally equal and which still contain only type 0 param-
eters. �

Remark 27. If in the above theorem one adds a type 3 constant G instead of F to
the system and uses theorem 24 instead of 23 one obtains a similar result with the
exception that the applications ti now also depend on function variables fi. (These
variables result from the normalization defined in theorem 24. They can be coded
together into one variable f such that the derivation D̃ may be contains only the
variables occurring in Ã plus some fresh type 0 variables.)

9. Cohesive principle (COH)

Let (Rn)n∈N be a sequence of subsets of N. A set G is cohesive for (Rn)n∈N if
∀n
(
G ⊆∗ Rn ∨ G ⊆∗ Rn

)
, i.e.

∀n∃s (∀j ≥ s (j ∈ G→ j ∈ Rn) ∨ ∀j ≥ s (j ∈ G→ j /∈ Rn)) .

A set G is strongly cohesive for (Rn)n∈N if

∀n∃s∀i < n (∀j ≥ s (j ∈ G→ j ∈ Ri) ∨ ∀j ≥ s (j ∈ G→ j /∈ Ri)) .

The cohesive principle (COH) is the statement that for every sequence of sets an
infinite cohesive set exists. Similarly the strong cohesive principle (StCOH) is the
statement that for every sequence of sets an infinite strongly cohesive set exists. We
denote by (St)COH(r,G) the statement that G is a set that satisfies the (strong)
cohesive principle for the sets given by the characteristic functions (λx.r(i, x))i
where r : N× N→ 2.

Proposition 28 ([15, 4.4]).
(i) G3Aω ` StCOH→COH
(ii) G3Aω ` StCOH→Π0

1-CP
(iii) G3Aω ` StCOH↔ COH ∧ Π0

1-CP

Proof. The first statement is clear and the third statement is an immediate conse-
quence of the first and second.

For the second we prove the infinite pigeonhole principle RT1
<∞ from StCOH.

The infinite pigeonhole principle is equivalent to Π0
1-CP, over Σ0

1-induction. This
was shown in [16]. The proof can even be carried out in G3Aω, see [36]:
Let f : N → n be a coloring. Define Ri := {x | f(x) = i}. Let G be an infinite,
strongly cohesive set for Ri. By definition there is an s with

∀i < n (∀j ≥ s (j ∈ G→ j ∈ Ri) ∨ ∀j ≥ s (j ∈ G→ j /∈ Ri)) .

By the totality of f there is exactly one i such that the first disjunction holds, i.e.
the color i occurs infinitely often on G and thus on N. �

Lemma 29. G3Aω proves that a countable number of instances of (St)COH is
uniformly equivalent to a single instance of (St)COH.

Proof. Let (Rj,i)j,i∈N be a sequence of sequences of sets. A set which is (strongly)
cohesive for all of these sets is obviously also (strongly) cohesive for the sets (Rj,i)i∈N
for each j. Hence a single application of (St)COH is sufficient to solve the sequence
of instance of (St)COH given by (Rj,i)i∈N for each j. �

Proposition 30.

G∞Aω + QF-AC⊕WKL ` ∀r : N× N→ 2
(
Π0

1-CA(ξr)→∃GStCOH(r,G)
)
,

where ξ is a suitable term.
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Proof. Define

Rn := λx.r(n, x), Rx :=
⋂

i<lth(x)

{
Ri if xi = 0,

Ri otherwise.

Here and in the following let x be the code of the sequence 〈x0, . . . , xlth(x)−1〉.
For every n the set (of sets) {Rx | x ∈ 2n} is a partition of N, i.e.

(11) ∀n∀z ∃!x ∈ 2n z ∈ Rx.

This statement can be proved with an instance of quantifier-free induction (the
tuple 〈x0, . . . , xn−1〉 is bounded by 1n and z is a parameter).

We construct an infinite Π0
2-0/1-tree T deciding at level n whether for the solution

set G either G ⊆∗ Rn or G ⊆∗ Rn holds: Let

T (〈x0, . . . , xn〉) iff R〈x0,...,xn〉 is infinite.

The statement “Rx is infinite” is Π0
2. The predicate T clearly defines a tree. The

tree is infinite because otherwise

∃n∀x ∈ 2n ∃y ∀z > y z /∈ Rx

and this together with an instance of Π0
1-CP yields a contradiction to (11). (x can

be bounded by 1̄n.)
With an application of an instance of Σ0

1-induction we prove

∀x
(
Rx infinite→∀n∃〈l0, . . . , ln−1〉 (∀i < n− 1 li < li+1 ∧ ∀i < n li ∈ Rx)

)
and then conclude

(12) ∀n∀x
(

lth(x) = n

∧ Rx infinite→∃〈l0, . . . , ln−1〉 ∀i < n− 1 li < li+1 ∧ ∀i < n li ∈ Rx
)
.

An instance of Π0
2-WKL yields an infinite branch b of T , i.e. ∀n

(
Rb̄(n) infinite

)
.

Using (12) we obtain

(13) ∀n∃〈l0, . . . , ln−1〉
(
∀i < n− 1 li < li+1 ∧ ∀i < n li ∈ Rb̄n ⊆ Rb̄i

)
.

An application of QF-AC yields an enumeration n 7→ 〈l0, . . . , ln−1〉 of finite tuples.
Searching for the least code of a tuple and the properties of (13) assure that every
tuple is extended by the following. Hence we may diagonalize to obtain an the set
G := {l0, l1, . . . }. This set is strongly cohesive and solves the proposition.

Note that the instances of Σ0
1-IA, Π0

1-CP and Π0
2-WKL can be reduced to an

instance of Π0
1-CA using lemma 10 and remark 9 yielding a suitable term ξ. �

We now strengthen this proposition to

Proposition 31. For every closed term ϕ one can construct a closed term ξ such
that

G∞Aω + QF-AC⊕WKL `
∀r : N× N→ 2

(
Π0

1-CA(ξr)→∃G
(
StCOH(r,G) ∧ Π0

1-CA(ϕrG)
))
.

Proof. We construct an infinite Π0
2-0/1-tree, in which we decide at level

• 2n whether G ⊆∗ Rn or G ⊆∗ Rn and at level,
• 2n+ 1 the n-th value of the instance of Π0

1-comprehension,
i.e. whether ∀k (ϕrG)nk = 0 is true.
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We assign to every element of the tree a finite (potential) initial segment Lx of G.
At level 2n we add — as in the previous proposition — the next element of Rx;
at level 2n+ 1 we only add the smallest counterexample (extending our old initial
segment of G with elements from Rx) to the statement ∀k (ϕrG)nk = 0 if it is false
and nothing otherwise. Define:

T (〈x0, . . . , x2n〉) iff R〈x0,x2,...,x2n〉 is infinite,

T (〈x0, . . . , x2n, 0〉) iff ∀l ⊆fin R〈x0,x2,...,x2n〉 ∀k αϕ(L〈x0,...,x2n〉 ∗ l, n, k) ≤ 1,

T (〈x0, . . . , x2n, 1〉) iff ∃l ⊆fin R〈x0,x2,...,x2n〉 ∃k αϕ(L〈x0,...,x2n〉 ∗ l, n, k) > 1,

L〈〉 := 〈〉,

L〈x0,...,x2n〉 := L〈x0,...,x2n−1〉 ∗
〈
min

{
x ∈ R〈x0,x2,...,x2n〉

∣∣∣x > maxL〈x0,...,x2n−1〉
}〉
,

L〈x0,...,x2n,0〉 := L〈x0,...,x2n〉,

L〈x0,...,x2n,1〉 := L〈x0,...,x2n〉 ∗ l,

k〈x0,...,x2n,1〉 := k,

kx := 0 for all x not of this form,

where 〈l, k〉 minimal with

l @ R〈x0,x2,...,x2n〉 ∧ αϕ(L〈x0,...,x2n〉 ∗ l, n, k) > 1.

For notational simplification we omitted the requirements to make T closed under
prefix, but we can simply add the conditions of the previous levels to the definition
of T making it a tree.
Lx and kx is clearly defined if T (x) is true (use an instance of Σ0

1-induction to
show this — weaken the Π0

2-statement “Rx is infinite” in the definition of T to
∃z ∈ Rx).

Using the same argument as in the previous proposition we see that the tree is
infinite. But we cannot apply Σ0

1-WKL(ξr), because this instance contains L, which
is in general not computable in r (in the sense of G∞Aω).

The graph of x 7→ (Lx, kx) is definable and ∆0
1. For notational ease we define

the graph of its course-of-value function:

(〈x0, . . . , xn〉, 〈L0, . . . , Ln〉, 〈k0, . . . , kn〉) ∈ GL̄,k̄ iff

n = 0: Ln = 〈〉, k = 0,
n even: Ln = Ln−1 ∗ 〈y〉, kn = 0

where y minimal with y ∈ R〈x0,...,x2m−1〉 ∧ y > max(Ln−1),
n odd and xn = 0: Ln = Ln−1, kn = 0,
n odd and xn = 1: Ln = Ln−1 ∗ l and 〈l, kn〉 minimal with l @ R〈x0,x2,...,x2n〉 ∧

αϕ(Ln ∗ l, (n− 1)/2, kn) > 2.

(Note that equations like Ln = Ln−1 ∗ l we omitted for notational ease the bounded
quantifier ∃l < Ln for l.) So we can replace every reference to Lx in the definition
of T by

∃k, y (x, (y, k)) ∈ GL,k or ∀k, y (x, (y, k)) ∈ GL,k.

The resulting tree is still Π0
2 so we may apply an instance of Π0

2-WKL and obtain
an infinite branch b.

Setting G :=
⋃
n L

b̄(n) now enumerates an infinite strongly cohesive set and from
b we can decide ∀k (ϕrG)nk = 0 for every n. �
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Corollary 32 (to the proof). For every system T containing G∞Aω and every
provably continuous term ϕ there exists a term ξ, such that

T + QF-AC⊕WKL `
∀r : N× N→ 2

(
Π0

1-CA(ξr)→∃G
(
StCOH(r,G) ∧ Π0

1-CA(ϕrG)
))
.

Corollary 33. (St)COH is proofwise low in sequence over G∞Aω + QF-AC⊕WKL.

Proof. Lemma 29 and proposition 31 (with corollary 32). �

Our goal is now to interpret consequences (of the form ∀x1 ∃y0Aqf(x, y)) of a
principle P that is proofwise low in sequence. For this we will strengthen P to the
statement that there exists a uniform solution functional P for P. The functional
P must be of type ≤ 2, such that after extracting terms using the functional inter-
pretation one can normalizing them with the tools of Section 8. With this we will
see that P is only used finitely many times and can be replaced using the lowness
property in favor of an instance of Π0

1-CA.
The properties of the solution functional P must be axiomatizable universally,

since they will become an implicative assumption. After prenexation they will be-
come purely existential and the functional interpretation will extract terms witness-
ing them. Existential quantifier in the axiomitation of P would become universal
after prenexation and therefore would need to be presented afterward.

If P is of the form

(14) ∀S ∃G ∀xPqf(S,G, x)︸ ︷︷ ︸
≡:P (S,G)

,

where Pqf is quantifier-free. Then one can take for P the Skolem functional for G,
i.e. a functional P satisfying

∀S ∀xPqf(S,P(S), x).

With the help of the following lemma we can obtain a functional for P where P
is a Π0

3 formula. This is sufficient for StCOH.

Lemma 34. Let P be a principle proofwise low in sequence over G∞Aω + QF-AC⊕
WKL, that has the form

(15) (P) : ∀S ∃G ∀x∃y ∀z Pqf(S,G, x, y, z)︸ ︷︷ ︸
≡:P (S,G)

,

where Pqf is quantifier-free.
Then the principle

(16) (P ′) : ∀S ∃G, Y ∀Z1 ∀x Pqf(S,G, x, Y (x, Z), Z(Y (x, Z))

is proofwise low in sequence, in the sense that for every closed term ϕ a closed term
ξ exists, such that Π0

1-CA(ξ(Si)i(Zi)i) proves

∃(Gi)i, (Yi)i
(
∀i, Z ′, x Pqf(Si, Gi, x, (Y )i(x, Z

′), Z ′(Yi(x, Z
′))) ∧

Π0
1-CA(ϕ(Si)(Zi)(Gi)(λx.Yi(x, Zi)i))

)
.

Proof. The lowness of P provides that for every term ϕ′ an instance of Π0
1-compre-

hension Π0
1-CA(ξSZ) proves

∃G
(
∀x0 ∃y0 ∀z0 Pqf(S,G, x, y, z) ∧ Π0

1-CA(ϕ′SZG)
)
.

Hence it also proves

∃G
(
∀x, Z ∃y Pqf(S,G, x, y, Z(y)) ∧ Π0

1-CA(ϕ′SZG)
)
.
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By searching for the least y we may assume that there exists a unique y for each
x, Z. Let Y (x, Z) be the choice function for y obtained using QF-AC. To show
that P ′ is proofwise low it suffices to show for every closed ϕ that there is a closed
ϕ′ (and thus a closed ξ) such that Π0

1-CA(ϕSZG(λx.Y (x, Z))) is provable from
Π0

1-CA(ϕSZ).
Since Y is computable in S,G a suitable ϕ can easily be constructed with the

same generic construction used in the proof of lemma 11.
One also easily verifies that the whole argumentation is stable under sequences

and hence that P ′ is proofwise low in sequence. �

It is easy to see that P ′ is equivalent to P over QF-AC0,0. For such principle we
could then use a solution functional P = (PG,PY ) that codes together the Skolem
functions for G, Y in (16), i.e.

(17) ∀S ∀Z ∀x Pqf(S,PG(S), x,PY (G, x, Z), Z(PG(G, x, Z))︸ ︷︷ ︸
≡:PS(P,(Z,x))

.

Proposition 35. Let Aqf ∈ L(G∞Aω) be a quantifier-free formula that contains
only the shown variables free and let P be a principle proofwise low in sequence
over G∞Aω + QF-AC⊕WKL of the form (15). If

Ê-PAω�+ QF-AC0,1 + QF-AC1,0 + Π0
1-CP + P + WKL ` ∀x1 ∃y0Aqf(x, y),

then one can find a term ξ such that

G∞Aω + QF-AC⊕ (B) ` ∀x1
(
Π0

1-CA(ξx)→∃y0Aqf(x, y)
)
.

Proof. We first prove the proposition without Π0
1-CP.

Note that due to
• the deduction theorem (which holds for Ê-PAω�),
• the elimination of extensionality (proposition 3),
• the strengthening of WKL to UWKL and
• the strengthening of P to the Skolem normal-form of P ′, i.e. the statement

there exists an P satisfying (17)
we obtain

N-G∞Aω + QF-AC ` (∃P ∀u1 PS(P, u)) ∧ (R0) ∧ (B)→∀x1 ∃y0Aqf(x, y),

where u codes the pair (Z, x) from (17) and (R0) are the defining axioms for the
recursor R0. Note that also the formulas (R0), (B) can be written in the form
∃R0 ∀u1 (R0)qf(R0, u) resp. ∃B ∀u1 (B)qf(B, u) for quantifier free (R0)qf, (B)qf.

Applying the functional interpretation to this yields terms ty, tP , tR0
, tB ∈ G∞Rω

such that

(18) qf-N-G∞Aω `
(
PS(P, tP (x,P, R0,B)) ∧

(R0)qf(R0, tR0
(x,P, R0,B)) ∧ (B)qf(B, tB(x,P, R0,B))→Aqf(x, ty(x,P, R0,B))

)
,

see [51, 26].
The terms tP (x,P, R0,B), tR0(x,P, R0,B), tB(x,P, R0,B), ty(x,P, R0,B) have

type ≤ 1. By proposition 26 we obtain a new derivation in qf-N-G∞Aω of a sentence
which is equivalent to (18) over qf-G∞Aω and where each application of P is of the
form P(ti[z

0]) or a substitution instance of P(ti[z
0]) and P(ti[z

0]) and P(tj [z
0]) are

independent (in the sense of proposition 26). Same for R0,B.
Our goal is now to replace these occurrences of P, R0, and B in the normalized

derivation of (18) by a low solution to those principles, such that the premise of
(18) becomes provable.

We proceed by inductively over the nesting-depth of P, R0, and B replacing
the applications (and their substitution instances) with low solutions retaining the
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instance of comprehension. This operation leaves the derivation valid since the
different applications are independent. Concretely we replace P, R0,B by the fol-
lowing:

• R0(ti[z
0]) simply defines a primitive recursive function, which is provably

total using an instance of Σ0
1-induction. This instance can be obtained from

QF-IA and an instance of Π0
1-comprehension. Then lemma 11 yields a new

instance of comprehension (which allows R0(ti[z
0]) as parameter).

• P(ti[z
0]) can be handled using the assumption that P is proofwise low in

sequence (lemma 34)
• B(ti[z

0]) can trivially be handled because it is present in the verifying sys-
tem.

For the construction of these replacements we work in the system G∞Aω, i.e. with
weak extensionality and quantifiers. After this the premise of (18) becomes prov-
able. Quantifying over all x and coding x, z together into a new variable x, yields
the proposition without Π0

1-CP.
To prove the full proposition note that we can add StCOH to the system since it

is proofwise low in sequence, see corollary 33, and that StCOH implies Π0
1-CP, see

proposition 28. This completes the proof. �

Theorem 36 (Conservation for proofwise low in sequence). Let P be a principle
of the form (15) that is proofwise low in sequence over G∞Aω + QF-AC⊕WKL. In
particular, this includes all principles of this form proofwise low in sequence over
WKL∗0. If

Ê-PAω�+ QF-AC0,1 + QF-AC1,0 + Π0
1-CP + P + WKL ` ∀x1 ∃y0Aqf(x, y)

then one can extract a primitive recursive term t such that

ŴE-HAω� ` ∀x1Aqf(x, tx).

In particular, if Aqf ∈ L(PRA) and x is of type 0 we have PRA ` ∀xAqf(x, tx).

Proof. We may assume that Aqf ∈ L(G∞Aω). Otherwise it would contain R0. If this
is the case we normalize every term occurring in Aqf and replace every occurrence of
R0uvw by a fresh variable that will be ∃-quantified. There are no other occurrence
of R0 in Aqf since it contains (beside Π,Σ) no constant of type > 2. These fresh
variables will hold the value of R0uvw. This values exists provably with Σ0

1-IA and
can be expressed in a quantifier-free way.

Apply now elimination of Skolem function for monotone formulas (corollary 13)
to the result of proposition 35. �

Corollary 37. Especially from a proof of

Ê-PAω�+ QF-AC0,1 + QF-AC1,0 + Π0
1-CP + COH + WKL ` ∀x1 ∃y0Aqf(x, y)

one can extract a primitive recursive term t such that

ŴE-HAω� ` ∀x1Aqf(x, tx).

Proof. Theorem 36 and corollary 33. �

Corollary 38. The system WKLω0 + Π0
1-CP + COH is Π0

2-conservative over PRA.
Additionally, for every Π0

2-sentence one can extract uniformly a primitive recursive
(provably) realizing term.

Further WKLω0 + Π0
1-CP + COH is conservative over RCAω0 for sentences of the

form ∀x1 ∃y0 ∀z0Aqf(x, y, z).
As consequence we also obtain that WKL0 + Π0

1-CP + COH is conservative over
RCA0 for sentences of the form ∀X ∃y ∀z A(X, y, z), where A is ∆0

0, and thus in
particular is Π0

3-conservative.
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Proof. The first statement is clear from the preceding corollary and the definition
of WKL0. The second statement follows also from this corollary by noting that over
QF-AC0,0 every formula of the given form ∀x1 ∃y0 ∀z0Aqf(x, y, z) is equivalent to
∀x1, Z1 ∃y0Aqf(x, y, Zy).

The last claim follows from the former since RCAω0 is conservative over the second-
order fragment, which can be simulated in RCA0, see [31]. �

This in some sense is the best possible result since RCA0 + Π0
1-CP is not Σ0

3-con-
servative over a theory containing only Σ0

1-induction, see [1].

Remark 39. Recall that BW is the statement that every bounded sequence (yi)i∈N
of real numbers contains a subsequence (yf(i))i∈N converging with the rate 2−n,
i.e. ∀n∀i, j ≥ n |yf(i) − yf(j)| < 2−n, see [45]. It turns out that StCOH is equiva-
lent to a natural variant of this principle, namely the statement that each bounded
sequence (yi)i∈N of reals contains a Cauchy subsequence (yf(i))i∈N. This means a se-
quence which convergences but possibly without a computable rate of convergence,
i.e. ∀n∃k ∀i, j ≥ k |yf(i) − yf(j)| < 2−n, see [37]. Hence the term extraction results
we obtain below for StCOH also apply to this variant of the Bolzano-Weierstraß
principle.

10. Ramsey’s theorem for pairs

10.1. Stable Ramsey’s theorem for pairs (SRT2
2). An n-coloring c : [N]2 → n

is called stable if
∀x ∃k ∀y > k c(x, k) = c(x, y).

The point k is called a stability point for x.
We call an n-coloring strongly stable if

∀x∃k ∀y > k ∀x′ ≤ x c(x′, k) = c(x′, y).

Over Π0
1-CP strongly stable and stable coincide. Even an instance of the collection

principle of the form Π0
1-CP(ξc) where ξ is a suitable term and c the coloring suffices

to prove this equivalence.
Let SRT2

n be the statement expressing that every stable n-coloring of pairs has
an infinite homogeneous set and let SRT2

<∞ :≡ ∀n SRT2
n. For a stable n-coloring c

the statement SRT2
n(c,H) denotes that H is a homogeneous set for c.

The principle SRT2
2 is over Σ0

1-induction equivalent to the statement that for
every ∆0

2-set X there exists an infinite set Y with Y ⊆ X or Y ⊆ X, see [7, 8].
Before we go on with the main result we need some auxiliary lemmata:

Lemma 40 ([7, lemma 4.2]). For every fixed n, let (ξk,i)k<n,i∈N be a sequence
of Π0

1-sentences of the form ξk,i ≡ ∀xA(k, i, x) for a quantifier-free A such that
∀i ∃k < n ξk,i. Then WKL proves that there exists a choice function g : N → n
satisfying ∀i ξg(i),i.

If WKL is replaced by Σ0
1-WKL the same holds for Π0

2-sentences.

Proof. Define
f(〈x0, . . . , xn〉) = 0 iff

∧
i≤n

ξxi,i.

The function f clearly defines a Π0
1-0–n-tree and is by assumption infinite.

Via the equivalence of 0–n-trees and 0/1-trees and of Π0
1-WKL and WKL (see

[45]), weak König’s lemma yields a infinite branch g solving the lemma. �

Lemma 41 (and definition, Π0
1-class, [22]). A Π0

1-class A of 2ω is a set of functions
of the form

A = {f ∈ 2ω | ∀nA(f̄n)},
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where A is a quantifier-free formula.
WKL proves that a Π0

1-class A is not empty if

(19) ∀n0 ∃s ∈ 2n ∀s′ v s A(s′).

(The definition of Π0
1-class induces an infinite tree in which every f ∈ A codes an

infinite path through it.) The statement (19) is equivalent to a Π0
1-statement.

Note that one may also allow A to be a Π0
1-formula as the ∀-quantifier can be

coded into the quantification over n (see for instance [45]).

Remark 42 (Treatment of Π0
1-0/1-trees). Let T (w) :≡ (∀k Tqf(w, k) = 0) be a Π0

1-pred-
icate. Using the UWKL functional B one can define the functional

BΠ0
1
(Tqf) := B

(
min

w′vw,k≤lthw
Tqf(w

′, k)

)
that yields an infinite branch of T , if T defines an infinite 0/1-tree.

Furthermore, an instance of Π0
1-CA decides whether the tree T is infinite, since

∀n∃w ∈ 2n ∀k Tqf(w, k)

is equivalent a Π0
1-statement (over G∞Aω + QF-AC).

Hence one can treat Π0
1-0/1-trees mostly like quantifier free trees.

Proposition 43.

G∞Aω + QF-AC ` ∀c : N× N→ 2
(
Π0

1-CA(ξc)→∃H SRT2
2(c,H)

)
,

where ξ is a suitable term.

Proof. Assume that the coloring c is stable. Define for i < 2

Ai := {x | ∀k ∃y ≥ k c(x, y) = i }.
By stability Ai = {x | ∃k ∀y ≥ k c(x, y) = i }. Hence each Ai is a ∆0

2-set.
At least for one i the set Ai is infinite (by RT1

2). Fix such an i. With an instance
of Π0

1-CP we obtain strong stability, i.e.

∀x∃k ∀y > k ∀x′ ≤ x c(x′, k) = c(x′, y).

This instance of Π0
1-CP follows from a suitable instance of Π0

1-CA, see lemma 10.(iv).
Together with the infinity of Ai we get

∀x∃k ∈ Ai ∀x′ ≤ x (x′ ∈ Ai→ c(x′, k) = i) .

Define the set H inductively by

x ∈ H iff x ∈ Ai and c(x′, x) = i for all x′ < x with x′ ∈ H.
This definition only uses bounded course-of-value recursion in the characteristic
function of Ai which can be obtained from a suitable instance of Π0

1-CA, see
lemma 10.(ii). (The characteristic function χH of H is clearly bounded and hence
also its course-of-value function χH , which is actually defined in the recursion.)

The set H is clearly infinite and homogeneous. (The two instances of Π0
1-CA can

be coded into one term ξ, see remark 9.) �

Proposition 44. Let ϕcH be a term that is provably continuous in H, where
αϕc(·, n, k) is an associate for λH.ϕ(c,H, n, k). Then there exists a term ξ, such
that

ŴE-PAω�+ QF-AC⊕ (B)⊕ (R̃1) `
∀c : N× N→ 2

(
Π0

1-CA(ξc)→∃H SRT2
2(c,H) ∧ Π0

1-CA(ϕcH)
)
.

If ϕcH is moreover provably continuous in c the term ξ can be chosen such that
it is provably continuous.
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Sketch of proof. We assume that each Ai is unbounded, otherwise we are done.
We will build a set G such that G ∩ A0 and G ∩ A1 are infinite, homogeneous

and at least for one i < 2 the comprehension Π0
1-CA(ϕc(G ∩ Ai)) is decided. The

set H := G ∩Ai then solves this proposition.
We will construct the set G in steps such that at each step n we will assure that

|G ∩Ai| ≥ n for every i < 2

and for some i < 2 the comprehension for G∩Ai at the position (n)i will be decided,
i.e. whether the statement

(20) ∀k (ϕc(G ∩Ai)(n)i)k = 0

holds. More precisely, we will construct functions I, J : N→ 2, such that

∃I, J ∀n
(
∀k (ϕc(G ∩AI(n))(n)I(n))k = 0↔ J(n) = 0

)
.

With these functions we can then obtain a comprehension function for one of the
sets G ∩Ai, because either

(21) ∀m∃n
(
m = (n)I(n) ∧ I(n) = 0

)
and then J(N(m)), where N(m) is some choice function for n obtained by QF-AC,
decides the comprehension for G ∩A0 or

(22) ∃m∀n
(
m 6= (n)I(n) ∨ I(n) = 1

)
.

By choosing n = 〈m,m′〉 we obtain ∀m′ I(〈m,m′〉) = 1 and therefore the function
λm′.J(〈m,m′〉) decides the comprehension for G ∩A1.

The set G and the functions I, J will be constructed by recursion. We will first
give a sketch of the argument and later show that R0 and the imposed comprehen-
sion suffice for the construction.

By induction we construct (dn, Ln), such that the sequence (dn) is an ascending
sequence of finite sets and (Ln) is a descending sequence of infinite sets of possible
candidates to extend dn (i.e. dn+1 \ dn ⊂ Ln and min(Ln) is greater than the
stability point of dn). Each set Ln is low, in the sense that it can be described by
a term containing B and R̃1. The set G will be given by

⋃
n dn.

We start with (∅,N). Assume (dn, Ln) is already defined. We distinguish two
cases:
Case i) A partition Z0 and Z1 of Ln exists such that

(23) ∀z ⊆fin Zi
(
z is i-homogeneous→∀k αϕc(din ∪ z)(n)ik ≤ 1

)
,

where din = dn ∩ Ai, holds for all i < 2. (If we extend the initial segment
dn with elements from Zi the comprehension remains true.)

At least one of Z0 and Z1 is infinite because Ln is infinite. We take this
set as Ln+1, forcing (20) to be true for this i on all further extensions and
let dn+1 := dn.

Case ii) No partition satisfying (23) exists.
We know then that especially Ln∩A0 and Ln∩A1 is no such partition. So
we can find for one i a finite i-homogeneous set d′ ⊆fin Ai such that

∃k αϕc(din ∪ d′)(n)ik > 1.

Setting dn+1 := dn ∪ d′ and Ln+1 := {x ∈ Ln | x > max d′} forces the
comprehension function to be 6= 0 at (n)i.

Note that (23) defines a Π0
1-class of 2ω. (We view here a partition of N into two sets

Z0, Z1 as a function f ∈ 2ω with f(n) = i iff n ∈ Zi.) Thus we may assume that
the Zi are low and we can decide which case holds by asking if a certain 0/1-tree
is infinite (this is a Π0

1-statement).
The size requirements are met by extending dn+1 with suitable elements of Ln.
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The set G :=
⋃
n dn then satisfies the proposition. �

Proof. Define

L〈〉(w) := 0,

L〈x0,...,xn−1,(d,k,y)〉(w) :=


1 if w ≤ y,
sg
∣∣∣BΠ0

1
(θ(L〈x0,...,xn−1〉, d))−(k−1)

∣∣∣ if k ≥ 1 ∧ w > y,

L〈x0,...,xn−1〉w if k = 0 ∧ w > y.

(24)

(d is just an auxiliary parameter used to build the tree, it will be set to dn−1 defined
below; k denotes the case, k = 0 for case ii), k ≥ 1 for case i) and Zk−1 infinite in
the sketch; y is a lower bound for L.)

Here θ(B, d0, d1)wk will be the characteristic function of the predicate

(25) ∀i < 2 ∀y ⊆fin B ∩ {x < lth(w) | (w)x = i}(
y is i-homogeneous→αϕc(d

i ∪ y)(n)ik ≤ 1
)
,

where the variables w, y are numerals coding finite sets. The statement

TB,d0,d1(w) :≡ ∀k θ(B, d0, d1)wk = 0

defines the Π0
1-0/1-tree build in (23) in the sketch.

We will write TB,d and θ(B, d)wk for TB,d0,d1 resp. θ(B, d∩A0, d∩A1)wk. This
will not lead to problems because d∩Ai is just a number computable from d relative
to the imposed instance of comprehension. Note that Lx can be defined in B and
θ using the bounded iterator R̃1. Thus the function Lx can be described by a term
in this system.

We assume that for all x and i the set Lx∩Ai is infinite if Lx is infinite. Otherwise
the set Lx∩ [k,∞] for a suitable k would be an infinite subset of A1−i and therefore
solve the proposition.

Using this and an instance of ∆0
2-comprehension (over L) we generate functions

gi such that

(26) gi(x) := min(Lx ∩Ai).

With an application of Π0
1-AC and taking a maximum we obtain a function

h(〈x1, . . . , xn〉) giving a common stability point of x1, . . . , xn.
We now define (dn, ln) by recursion. (Lln should match Ln from sketch above.)

We use primitive recursion in the sense of Kleene, i.e. the recursion can be defined
with the recursor R0.

Let d0 := 〈〉 and l0 := 〈〉. For the recursion step we distinguish the cases:
Case i) The tree TLln ,dn(w) is infinite, i.e.

∀m ∃w ∈ 2m ∀k θ(Lln , dn)wk = 0.

By RT1
2 there is at least one j < 2 such that {x ∈ N | BΠ0

1
(θ(Lln , dn))x = j}

is infinite. An index j can be chosen constructively relative to Σ0
1-WKL, see

lemma 40. Set

d′n+1 := dn and k′n+1 := j + 1.

Case ii) The tree TLln ,dn(w) is finite, i.e.

∃m ∀w ∈ 2m ∃k θ(Lln , dn)wk 6= 0.

Then especially the set A0 does not code a path through the tree, i.e. for
this m

∃k θ(Lln , dn)(χA0
m)k 6= 0,
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where χA0
is the characteristic function of A0. So there is an i and a finite

i-homogeneous set y ⊆fin Ai ∩ {0, . . . ,m− 1} ∩ Lln such that

∃k αϕc(di ∪ y)(n)ik > 1.

Set
d′n+1 := d ∪ y and k′n+1 := 0.

Note that this case distinction is constructive relative to the given instance of
comprehension (the second quantifier of the formula is bounded).

Now we extend d′n+1 with suitable elements, such that the size requirements are
met:

dn+1 := dn ∪
⋃
i<2

{
gi(ln ∗ 〈dn, l′, h(d′n+1) + 1〉)

}
ln+1 := ln ∗ 〈dn, k′n+1, h(dn+1) + 1〉

Applying RT1
2 yields an i such that all comprehension instances are decided.

From the dn and the given comprehension one can easily obtain a enumeration of
the set G ∩Ai =: H.

This solves the proposition. The term ξc is continuous in c because the only
discontinuous functional in this system is B but it is only used to define Lx and
to prove WKL. Hence ξ can be chosen such that c does not occur as a parameter
to B. More precisely ξc is of the form ξ′[t1c, λx.L

x] with ξ′, t ∈ T0 and therefore
continuous. �

Proposition 45. Let ϕcH be a term that is provably continuous in H and let αϕc
be as in proposition 44. Then there exists a term ξ such that

ŴE-PAω�+ Σ0
2-IA + QF-AC⊕ (B)⊕ (R̃1) `
∀c : N× N→ n

(
Π0

1-CA(ξc)→∃H SRT2
<∞(c,H) ∧ Π0

1-CA(ϕcH)
)
.

If ϕ is moreover provably continuous in c the term ξ can be chosen such that it is
provably continuous in c.

Proof. Analogous to Proposition 44.
The applications of RT1

2 become applications of RT1
<∞, which is equivalent to

Π0
1-CP and thus provable using Σ0

2-IA. The 0/1-trees will become 0–n-trees; but
these trees can be constructively transformed into 0/1-trees, see [45].

The only difficult part is adopt the assumption that

(27) ∀x∀i < n (Lx infinite→Lx ∩Ai infinite) ,

which leads to the definition of gi in (26) because we cannot simply deduce the
existence of a solution from the failure of (27).

First note that (27) due to the minimal element parameter (y in (24)) is equiv-
alent to

(28) ∀x ∀i < n (Lx infinite→Lx ∩Ai not empty) .

If (27) resp. (28) does not hold, our goal is to find a set Lx on which — provided
we neglect colors that do not occur — the assumption holds. This can be done by
finding a maximal set K ⊆ n, such that there is an x with Lx ∩

⋃
k∈K Ak is empty.

Then for all x′ w x and i /∈ K the sets Ai ∪Lx are not empty. Thus if we relativize
our argumentation to Lx and the colors n \K the condition (27) holds.

To find such a K and x define

η(〈s0, . . . , sn−1〉) :≡ ∃x

(
Lx infinite ∧

∧
i

(si = 0→Lx ∩Ai = ∅)

)
.
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η is clearly Σ0
3. Finding a minimal tuple 〈s0, . . . , sn−1〉 satisfying η yields a suitable

solution. A minimal tuple can be obtained using an instance of Σ0
3-induction, which

is provable from Σ0
2-IA and an instance of Π0

1-comprehension. �

Corollary 46. Let ϕcH be a term that is provably continuous in H. Then there
exists a term ξ such that

(29) ŴE-PAω�+ QF-AC⊕ (B)⊕ (R̃1) `
∀c : N× N→ n

(
Π0

1-CA(ξc)→∃H RT2
2(c,H) ∧ Π0

1-CA(ϕcH)
)
.

The term ξ can be chosen such that c does not occur as a subterm of a parameter
of B.

If Σ0
2-IA is added to the system, RT2

2 may be replaced by RT2
<∞.

Hence RT2
2 is proofwise low over ŴE-PAω�+ QF-AC⊕ (B)⊕ (R̃1) and RT2

<∞ is
proofwise low over ŴE-PAω�+ QF-AC⊕ (B)⊕ (R̃1) + Σ0

2-IA.

Proof. Let Ri = {x ∈ N | c(i, x) = 0} and let g be a strictly increasing enumeration
of a cohesive set for Ri. The coloring c′(x, y) := c(gx, gy) is stable and for each
homogeneous set H ′ of c′ the set gH ′ is homogeneous for c. See [7].

Hence the corollary follows from corollary 32 and proposition 44 resp. proposi-
tion 45. �

By the proposition below RT2
2 implies Π0

2-LEM. Therefore, sequences of instances
of RT2

2 imply Π0
2-CA. Hence it is not possible to show that RT2

2 is proofwise low in
sequence.

Proposition 47. iRCA∗0 ` RT2
2→Π0

2-LEM, where iRCA∗0 is the intuitionistic system
corresponding to RCA∗0 and Π0

2-LEM is the Π0
2-law of excluded middle.

More precisely, for every Π0
2-statement ∀x∃y Aqf(x, y) there is a coloring such

that one can decide constructively from a homogeneous set whether the Π0
2-statement

is true or not.

Proof. We show for an arbitrary quantifier-free formula Aqf that ∀x ∃y Aqf(x, y) ∨
∃x∀y ¬Aqf(x, y). First note that iRCA∗0 proves that ∀x∃y Aqf(x, y)↔ ∀x∃y ∀x′ ≤ x∃y′ ≤ y Aqf(x

′, y′).
Hence we may assume thatAqf is monotone in the sense thatAqf(x, y)→∀u ≤ x∀v ≥ y Aqf(u, v).
Now color each pair {x, y} with x < y red if Aqf(x, y) holds and blue otherwise. It
is easy to see that there exists an infinite red homogeneous set iff ∀x ∃y Aqf(x, y) is
true. �

To overcome this problem we switch to the functional interpretation (i.e. ND-
interpretation) where the need for Π0

2-LEM vanishes.

10.2. ND-Interpretation of RT2
2. We now formulate the ND-interpretation of

RT2
2 and of corollary 46. For notational simplification we sometimes will not apply

the last application of QF-AC to the ND-interpretation. This corresponds to the
so-called Shoenfield translation, see [49]. For RT2

2 we use the formalization

RT2
2 :≡ ∀c : [N]2 → 2∃H ∀u < v c(Hu,Hv) = c(H0, H1).

The ND-interpretation then yields

RT2
2
ND

:≡ ∀c : [N]2 → 2∀U < V ∃H c(H(UH), H(V H)) = c(H0, H1)︸ ︷︷ ︸
≡:RT2

2ND(H;c,U,V )

.(30)
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Here the set H is given as an enumeration, i.e. H is strictly monotone and Hn is
the n-th element of H, and U < V is defined pointwise.6 Sometimes the parameters
c, U, V in RT2

2ND(H; c, U, V ) will be coded into a single parameter.
For the ND-interpretation of Π0

1-comprehension we use an ε-calculus like formu-
lation:

(31) Π0
1-ĈA(ϕ) :≡ ∃f ∀x, y (ϕ(x, f(x)) = 0 ∨ ϕ(x, y) 6= 0)︸ ︷︷ ︸

≡:
(

Π0
1-ĈA(ϕ)

)
QF

(f,x,y)

.

This leads to following ND-interpretation (modulo a last application of QF-AC)(
Π0

1-ĈA(ϕ)
)ND ≡ ∀X,Y ∃f (ϕ(Xf, f(Xf) = 0) ∨ ϕ(Xf, Y f) 6= 0) .

Because RT2
2 and Π0

1-ĈA(ϕ) are only ∀∃∀-statements, the ND-interpretation co-
incides with the no-counterexample interpretation. So one might view a solution
to RT2

2
ND, i.e. a term t(c, U, V ) that yields for every c, U, V a set H that may not

be homogeneous in total but for which c(H0, H1) = c(H(UH), H(V H)) holds,
as a procedure that disproves every possible counterexample to RT2

2. Same for
Π0

1-ĈA(ϕ).

Proposition 48 ([48], [32, 42]). The solution to
(
Π0

1-ĈA(ϕ)
)ND can be defined with

a single use of Φ0, this is Spector’s bar recursor for type 0:

tf := Φ0Xu0(λk0.0), unv :=

{
1 if ϕ(n, Y (v1)),

Y (v1) otherwise.

The bar recursor Φ0 is defined as in [32]. It is primitive recursively and instance-
wise definable in the bar recursor B0,1, see definition 19 below.

The statement from corollary 46 spelled out is

ŴE-PAω�+ QF-AC⊕ (B)⊕ (R̃1) ` ∀c
(
∃fξ ∀xξ, yξ

(
Π0

1-ĈA(ξc)
)
QF(fξ, xξ, yξ)→

∃H
(
∀u < v c(Hu,Hv) = c(H0, H1) ∧ ∃fϕ ∀xϕ, yϕ

(
Π0

1-ĈA(ϕcH)
)
QF(fϕ, xϕ, yϕ)

))
.

An ND-interpretation leads then to

Theorem 49 (ND-interpretation of corollary 46). For every provably continuous
(in c, H) term ϕ ∈ T0[B, R̃1] a term ξ ∈ T0[B, R̃1] (that is continuous in c) exists
such that

(32) ŴE-HAω�⊕ (B)⊕ (R̃1) ` ∀c∀fξ ∀U < V ∀Xϕ, Yϕ ∃xξ, yξ ∃H ∃fϕ((
Π0

1-ĈA(ξc)
)
QF(fξ, xξ, yξ)→

(
c(H(UHfϕ), H(V Hfϕ)) = c(H0, H1)

∧ Π0
1-ĈA(ϕcH)

)
QF(fϕ, XϕHfϕ, YϕHfϕ)

)
.

Moreover, there exist terms txξ , tyξ , tH , tfϕ ∈ T0[B, R̃1] (with the given parame-
ters) satisfying this formula.

6Officially, quantification over functions like c : [N]2 → 2 or strictly monotone increasing func-
tions like H are not included in our system as primitive notions, but we can enforce the same
behavior by quantifying over c : N×N→ N and H : N→ N and replacing every occurrence of c,H
with

c̃(x, y) := min

(
1,

{
c(x, y) if x < y

c(y, x) otherwise

)
, H̃(x) := x+ Σk≤xH(k).
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Proof. The system ŴE-PAω� + QF-AC has an ND-interpretation into ŴE-HAω�.
This also extends to additions of new constants and universal axioms. See e.g.
[3, 32]. �

The term tH and tfϕ can be seen as procedures transforming the no-counterex-
ample interpretation of the premise to the no-counterexample interpretation of the
conclusion; the terms txξ and tyξ yield which instance of the premise is needed to
prove the conclusion.

Note that the counter-functions of RT2
2 and Π0

1-ĈA have access to both tH and
tfϕ . The proof of proposition 50 bellow will use this.

To show that the no-counterexample interpretation of the conclusion (and hence
the conclusion) holds we have to provide an fξ that satisfies

(
Π0

1-ĈA(ξc)
)
QF(fξ, txξ , tyξ).

This can be done using B0,1, see proposition 48.
Note that here the application of

(
Π0

1-ĈA(ϕ)
)ND in the premise is not fully inter-

preted. We obtain this form by applying logical simplifications after the negative
translation. This leads to fixed terms in the second and third parameter of the
premise and will reduce the need for the bar recursor B0,1 to the rule of B0,1.

10.3. Application to Ramsey’s theorem.

Proposition 50. Let t1[g] be a term such that λg.t1[g] ∈ T0[R], where R is a
functional solving RT2

2
ND, and every occurrence of R is of the form

R(tc[g], tu[g], tv[g]).

Then there exist terms tx, ty, ξ ∈ T0[R̃1,B], such that one can inductively replace
every occurrence of R in t with a new term

r(f, g; t̃c[g], t̃u[g], t̃v[g])

(here r is a term and t̃c[g], t̃u[g], t̃v[g] are the results of replacing R in tc[g], tu[g],
tv[g]), such that

ŴE-HAω�+ QF-AC⊕ (B)⊕ (R̃1) ` ∀g1, f
(
Π0

1-ĈA(ξg)
)
QF(f, txg, tyg)

→RT2
2ND(r(f, g; t̃c[g], t̃u[g], t̃v[g]); t̃c[g], t̃u[g], t̃v[g]

)
.

The formula RT2
2ND denotes the quantifier-free part of RT2

2
ND, see (30) on p. 30.

Proof. We use theorem 49 to inductively interpret the term t. For convenience we
repeat (32), the existential quantified variables are replaced by their realizing terms
constructed in that theorem:

(33) ŴE-HAω�⊕ (B)⊕ (R̃1) ` ∀c∀fξ ∀U < V ∀Xϕ, Yϕ((
Π0

1-ĈA(ξc)
)
QF(fξ, txξ , tyξ)→ c(tH(UtHtfϕ), tH(V tHtfϕ)) = c(tH0, tH1)

∧
(
Π0

1-ĈA(ϕctH)
)
QF(tfϕ , Xϕ(tHtfϕ), Yϕ(tHtfϕ))

)
It is clear that in case of tc, tu, tv ∈ T0, i.e. there are no nested applications of

R, every application of R in the term t can be interpreted using (33). (Just set
c = tc, U = λfϕ.tu, V = λfϕ.tv and the others variable to 0.) Using contraction of
Π0

1-comprehension, see remark 9, a term containing multiple such occurrence of R
can be interpreted.

If the term tc contains a single occurrence of R then we first interpret this inner
R but now we will take advantage of ϕ and set ϕ,Xϕ, Yϕ so that the resulting
instance of ND-comprehension suffices to interpret the outer occurrence of R in t.

Iterating this process allows us to interpret all terms t ∈ T0[R] where every
occurrence of R is of the form R(tc[g], tu[g], tv[g]) with tu, tv ∈ T0.
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Now inductively assume that tu, tv are terms for which this proposition holds, i.e.
there exists terms t̃u, t̃v equal to tu, tv modulo a given instance of ND-comprehension
with the parameter H. The problem is now that the instances of comprehension
cannot be generated parallel to tc because they include the parameter H. But we
take advantage of the argument tfϕ of U and V . Coding the instances of ND-
comprehension together (ND-interpretation of remark 9) we can find ϕ′, X ′ϕ, Y

′
ϕ

such that (
Π0

1-ĈA(ϕ′cH)
)
QF(fϕ, X

′
ϕ(Hfϕ), Y ′ϕ(Hfϕ))

proves the original ND-instance of Π0
1-ĈA for ϕ and those needed for tu, tv.

This proves the proposition. �

Corollary 51 (Extension to R1, Φ′0). The statement of proposition 50 also holds
for terms t1[g] with λg.t[g] ∈ T0[R, R1,Φ

′
0] = T1[R,Φ′0], where every occurrence of

R is of the form required in proposition 50 and every occurrence of R1 or Φ′0 is of
the form

R1(t1[g], t2[g], t3[g]) resp. Φ′0(t1[g], t2[g], t3[g]).

Proof. The proof proceeds like in proposition 50:
To interpret R1 while retaining the instance of ND-comprehension, we will es-

sentially use a functional interpretation of the proof of lemma 11 (for n = 1). First
note that s := R1(t1[g], t2[g], t3[g]) defines a type 1 function in T1[g]. Arguing as
in lemma 11, it is clear that over ŴE-PAω� a suitable instance of Π0

1-CA with the
parameter g proves that s is total (∀x∃y 〈x, y〉 ∈ Gs[g], where Gs is the graph of
s). An ND-interpretation of this statement yields that even an instance of the
ND-interpretation of Π0

1-CA is sufficient to prove that s is total. Another instance
of ND-comprehension proves the ND-interpretation of the Π0

1-CA-instance in (8)
on p. 13. This instance is modulo the totality of s equivalent to an instance of
ND-comprehension with the parameter s. The two instances of ND-comprehension
used can be coded together, see remark 9.

The functional Φ′0 can be replaced by a function in T1[g], see theorem 21 and
remark 22, and hence can also be interpreted. �

Proposition 52. Let Aqf be a quantifier-free formula that contains only the shown
variables free. If

(34) N̂-PAω�+ QF-AC + Σ0
2-IA + RT2

2 + WKL ` ∀x1 ∃y0Aqf(x, y)

then one can find a terms ty, tu, tv, ξ ∈ T0[B, R̃1] such that

ŴE-HAω�⊕ (B)⊕ (R̃1)

` ∀x1 ∀f
((

Π0
1-ĈA(ξx)

)
QF(f, tufx, tvfx)→Aqf(x, tyfx)

)
.

Proof. A functional interpretation of the statement (34) yields closed terms resp.
term tuples ty, tR1 , tR, tΦ′0 ∈ T0, such that

qf-N̂-PAω� `
(
(R1)ND(R1, tR1

R1RΦ′0x) ∧ RT2
2ND(R, tRR1RΦ′0x)

∧WKLND(Φ′0, tΦ′R1RΦ′0x)
)
→Aqf(x, tyR1RΦ′0x).

Here we use that (Σ0
2-IA)ND can be solved by R1, see [41].

Apply now proposition 26 and remark 27 to this derivation to normalize it such
that only finitely many independent applications of R, R1,Φ

′
0 occur, where each of

them is of the form

R∗(t1[g], t2[g], t3[g]) resp. R1(t1[g], t2[g], t3[g]), Φ′0(t1[g], t2[g], t3[g])

and t1, t2, t3 are semi-closed.
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The terms occurring in this normalized derivation can be interpreted using corol-
lary 51. (Applications to literally equal terms are replaced by the same interpreta-
tion.)

The instances of ND-comprehension needed for corollary 51 can be coded to-
gether in one instance using remark 9. �

The application of Π0
1-CA can be interpreted by a non-iterated use R-(B0,1) of the

rule of bar-recursion — this means we substitute f with a solution tf to
(
Π0

1-ĈA
)ND:

ŴE-HAω�⊕ (B)⊕ (R̃1)⊕ R-(B0,1)

` ∀x1
((

Π0
1-ĈA(ξx)

)
QF(tf [x], tutf [x]x, tvtf [x]x)→Aqf(x, tytf [x]x)

)
The term tf ∈ T0[B, R̃1, B0,1] is defined as in proposition 48. Note that tf depends
on ξ, tu, tv and that it is of type 2 containing only one application of B0,1 to semi-
closed terms defining a type 2 object.

Since tf solves the instance of comprehension we obtain:

ŴE-HAω�⊕ (B)⊕ (R̃1)⊕ R-(B0,1) ` ∀x1Aqf(x, tytf [x]x).

The term t := λx.tytf [x]x ∈ T0[B, R̃1, B0,1], contains only majorizable constants;
the majorants to B, R̃1 are trivial and B0,1 is essentially majorized by itself, see
proposition 16, hence we can find a majorant t∗ ∈ T0[B0,1] to t containing also only
one application of B0,1 to semi-closed terms. Now we can apply bounded search to
obtain a new realizer t′ for y not containing B or R̃1:

t′x :=

{
minimal y ≤ t∗x with Aqf(x, y), if such a y exists,
0, otherwise.

Since t′ now does not contain B anymore we may weaken (B) to UWKL and
then eliminate it from the system using a monotone functional interpretation, see
[25, 32]. Hence we obtain a term t′ ∈ T0[B0,1] containing after normalization only
one occurrence of B0,1 defining a type 2 object, such that with the rule R-(B0,1) of
B0,1

ŴE-HAω�⊕ (R̃1)⊕ R-(B0,1) ` ∀x1Aqf(x, t
′x).

Using ordinal analysis of the B0,1-rule (cf. theorem 21 and remark 22) yields a
new term t′′ definable with ordinal primitive recursion up to ωω2 such that

ŴE-HAω�ωω2 ⊕ (R̃1) ` ∀x1Aqf(x, t
′′x).

Combining this with theorem 17 and noting that R̃1 is included in WE-HAω1 �

and that ŴE-PAω� + Σ0
2-IA has an ND-interpretation in WE-HAω1 � we obtain the

following theorem:

Theorem 53 (Conservation for RT2
2). If

N̂-PAω�+ QF-AC + Σ0
2-IA + RT2

2 + WKL ` ∀x1 ∃y0Aqf(x, y)

then one can extract a term t ∈ T1 such that

WE-HAω1 � ` ∀x1Aqf(x, tx).
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10.3.1. Extension to RT2
<∞. Proposition 50 holds analogously for RT2

<∞ if one adds
R1 and Σ0

2-IA to the verifying system; corollary 51 holds if one replaces R1 by R2.
But in contrast to the previous the technique used in remark 27 to extract terms

that meet the requirements of these propositions can only be applied to terms in
T1[R∞] and not to terms T2[R∞], because deg(R2) = 4 and therefore we could
not apply the term normalization. The mathematical reason is that R2 is strong
enough to iterate B0,1 and R∞.

This will hinder us to achieve full conservativity for full Σ0
3-IA over a system in

all finite types but a restricted variant of Σ0
3-induction can be handled. Define the

rule of Σ0
3-induction Σ0

3-IR as

(Σ0
3-IR) :

∃x∀y ∃z Aqf(0, x, y, z, a)

∀n
(
∃x ∀y ∃y Aqf(n, x, y, z, a)

→∃u∀v ∃wAqf(n+ 1, u, v, w, a)
)

∀n∃x∀y ∃z Aqf(n, x, y, z, a)
,

where Aqf is quantifier-free and contains only the variables shown, u, v, w, x, y, z, n
are type 0 variables and a denotes an arbitrary tuple of parameters. Let Σ0

3-IR2 be
the restriction of Σ0

3-IR to parameters a of type ≤ 2 then

Theorem 54 (Conservation for RT2
<∞). If

(35) N-PAω1 �+ QF-AC + Σ0
3-IR2 + RT2

<∞ + WKL ` ∀x1 ∃y0Aqf(x, y)

then one can extract a term t ∈ T2 such that

WE-HAω2 � ` ∀x1Aqf(x, tx).

Proof. The ND-interpretation of the conclusion of Σ0
3-IR2 is given by

∀n0 ∀Y 2 ∃x0, Z1Aqf(n, x, Y xZ,Z(Y xZ), a2).

One immediately see that Σ0
3-IR2 introduces only type 3 terms (tZ , tx ranging over

n0, Y 2, a2). Hence we can ND-interpret (35) in

qf-N-PAω1 �+ (G1) + · · ·+ (Gn)

where (Gi) are defining axioms and constants of type ≤ 3 introduced by the
rule Σ0

3-IR2. The terms occurring in the derivation can be viewed as terms in
T1[R∞,Φ

′
0, G1, . . . , Gn]. The requirements of theorem 24 in remark 27 are met and

we obtain a normalized derivation.
By [41], (Σ0

3-IA)ND can be solved by R2. Since Σ0
3-IA implies Σ0

3-IR2 the con-
stants Gi may be chosen to be in T2[R∞,Φ

′
0]. These terms can be handled like in

proposition 52.
This completes the proof. �

Corollary 55. If

Ê-PAω�+ QF-AC0,1 + QF-AC1,0 + Σ0
2-IA + RT2

2 + WKL ` ∀x1 ∃y0Aqf(x, y)

one can extract a term t ∈ T1 such that

WE-HAω1 � ` ∀x1Aqf(x, tx).

If RT2
<∞+Σ0

3-IR2 is added to the above system then one can extract a term t ∈ T2

realizing y provably in WE-HAω2 � instead of WE-HAω1 �.

Proof. Apply elimination of extensionality (proposition 3) and use theorem 53.
For the second statement use theorem 54. To be able to use the elimination of

extensionality the induction rule Σ0
3-IR2 has to be altered to include the premise that

the parameters are extensional. Since this is a formula of the form ∀u1 ∃v0Bqf(u, v),
the functional interpretation does not introduce terms of type > 3 and the rule
which still follows from Σ0

3-IA can be interpreted like in the proof of theorem 54. �
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Corollary 56.
• WKLω0 + Σ0

2-IA + RT2
2 is conservative over RCAω0 + Σ0

2-IA for sentences of
the form ∀x1 ∃y0 ∀z0Aqf(x, y).

As consequence, WKL0 + Σ0
2-IA + RT2

2 is conservative over RCA0 + Σ0
2-IA

for sentences of the form ∀X ∀x∃y ∀z A(X,x, y, z), where A is ∆0
0, and

thus, in particular, Π0
3-conservative.

• WKLω0 + Σ0
2-IA + Σ0

3-IR2 + RT2
<∞ is conservative over RCAω0 + Σ0

3-IA for
sentences of the form ∀x1 ∃y0 ∀z0Aqf(x, y).

Hence, WKL0 +Σ0
2-IA+Σ0

3-IR+RT2
<∞ is conservative over RCA0 +Σ0

3-IA
for sentences of the form ∀X ∀x∃y ∀z A(X,x, y, z), where A is ∆0

0, and
thus, in particular, Π0

3-conservative.
Moreover from of ∀x1 ∃y0Aqf(x, y) in the above theories one can extract terms

in T1 resp. T2 realizing y.

Proof. The former statements follow from the previous theorem with the fact every
sentence of the form ∀x1 ∃y0 ∀z0Aqf(x, y, z) is over QF-AC0,0 equivalent to a sentence
of the form ∀x1 ∃y0Bqf(x, y).

The conservativity over RCA0 follows from the fact that RCAω0 is conservative
over its second order fragment, which can be simulated in RCA0, see [31]. The
quantification over X and x can be coded into a quantification over a function.
The restrict on the rule of Σ0

3-induction is automatically met in a second order
system. �

11. Possible extensions

The question arises whether RT2
2 also is proofwise low in sequence over WKLω0

∗

(or G∞Aω + QF-AC + (B)) and hence does not imply Σ0
2-induction.

The first obstacle to show this is that the proof of the lowness-property crucially
depends on full Σ0

1-induction which renders G∞Aω or equivalently RCAω0
∗ insuffi-

cient. The other obstacle is that RT2
2 implies Π0

2-LEM so that sequences of solutions
would imply Π0

2-CA. Thus RT2
2 cannot be proofwise low in sequence over a theory

which does not include Π0
2-CA, see proposition 47. Actually even the so called stable

chain-antichain principle (SCAC) implies Π0
2-LEM (for a definition see [15]).

In [35] we refined the method based on the bar recursion (section 10.3) and
could show that the type 2 functionals that are provable from principles which
are proofwise low over WKLω0

∗ are primitive recursive. We also show that CAC is
proofwise low in sequence and thus that this theorem applies to it, see also [9].
However, we were not able to show that RT2

2 is proofwise low in sequence over
WKLω0

∗. (In other words we could overcome the second obstacle but not the first
one.) Still the question remains whether one could do the same with RT2

2 or any
other principle which is stronger than CAC. The principle RT2

2 splits into the so
called Erdős-Moser principle (EM) and CAC (actually even ADS), see [6]. Therefore
EM seems to be a good candidate for further investigations.
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