
Topics in the Theory and Practice of
Computable Analysis

Branimir Lambov

PhD Dissertation

Department of Computer Science
University of Aarhus

Denmark





Topics in the Theory and Practice of
Computable Analysis

A Dissertation
Presented to the Faculty of Science

of the University of Aarhus
in Partial Fulfilment of the Requirements for the

PhD Degree

by
Branimir Lambov
December 16, 2005





Abstract

This dissertation deals with a breadth of computational aspects of analysis,
from obtaining computable information from classical proofs in analysis to im-
plementing real number computations efficiently in practice. The main contri-
butions of the paper can be summarized as follows:

• A generalization of a set of conditions given by Matiyasevich under which
a recursively defined sequence of real numbers can be shown to converge
computably. The generalization replaces monotonicity with a weaker con-
dition and allows errors in the computation of the sequence.

• The first explicit computable bound on the asymptotic regularity of Kras-
noselski-Mann iterations with error terms of asymptotically quasi nonex-
pansive self-mappings of closed convex subsets of uniformly convex Ba-
nach spaces. The bound permits the computation of approximate fixed
points of the function and relaxes the conditions under which the iteration
can be shown to be asymptotically regular.

• An application of the generalization of poly-time computability given by
the Basic Feasible Functionals to computable analysis and a correspon-
dence between the resulting notion and the concept of poly-time real-
valued function computability as defined by Ko.

• A framework for computable analysis based on interval arithmetic tai-
lored to efficient implementations with methods of including multi-valued
real functions in the model and reasoning about the complexity of real
functions given by representations in the framework.

• An implementation of exact real arithmetic based on this framework that
shows very high efficiency in cases where the precision needed to accu-
rately perform a computation is very low, the set of problems that appear
most often in practice and have so far have been the weakness of any
exact real number system.

• A package for interval arithmetic with double precision that makes use of
the SSE2 set of instructions to provide a very low overhead for interval
computations compared to double precision hardware floating point.
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Chapter 1

Introduction

Computable analysis is an area of mathematics as old as computability itself,
but an area which does not receive enough attention neither in the practice
of computing, where the notion of “real” number is usually taken to be rep-
resented by a finite (fixed-size) approximation, nor in mathematical analysis,
which claims that finding a monotone bounded sequence is sufficient to provide
an algorithm for “computing” a real number.

Both of these views are not sufficient when one is interested in obtaining
some forms of useful information about a particular end result.

Fixed-size approximations suffer from the build-up of rounding errors caused
by the impossibility to exactly represent operations, meaning that the only
information we are certain about is the correctness of the inputs. Nothing is
known for certain about the correctness of the result, which often means that
one is fooled to accept for accurate results which only have several correct bits,
and sometimes made to trust results that have nothing in common with the
actual ones (Chapter 8 gives an example of such a result).

The sufficiency of finding a monotone bounded sequence to define a real
number in classical mathematics is justified by the least upper bound property
of R, which can be used to show that in this case the sequence converges. How-
ever, we do not know to what it converges, because it is not possible to obtain
a modulus of convergence for the sequence and thereby be able to get approxi-
mations of the limit for a given precision. If that information was provided for
arbitrary monotone sequences, it could be used to solve the halting problem
(see Chapter 2).

As computers are becoming more and more powerful, computable analysis
begins to be understood as more than just a theoretical tool. It lets one solve
the former problem and gives an indication of the additional information that
is required of a mathematical algorithm to provide computable results, which
provide tools to extract approximations to the number. From the logical side,
constructive analysis is a tool that allows one to prove only facts that carry
information about a computation. The two are closely related, computable
analysis being the language in which the algorithms inherently present in a
constructive proof can be formalized and extracted using a suitable proof the-
oretic technique such as Kleene’s functional realizability. Using more elaborate
proof theoretic techniques, computable information can also be extracted from

1



2 Chapter 1. Introduction

classical proofs that use certain non-constructive principles.
The thesis starts with a chapter that introduces the context, defines the

notions of computable real numbers and functions along with some alternative
but equivalent formulations, discusses methods to introduce complexity for real
numbers and functions, and the topic of intensionality of real-valued functions.
It continues with an introduction to proof theory and introduces a method of
extracting computable information from non-constructive proofs in analysis.

Chapter 3 of the thesis generalizes a theorem by Matiyasevich showing the
computable convergence of certain recursively defined bounded monotone se-
quences. The monotonicity and boundedness requirements are relaxed to the
inequality 0 ≤ xn+1 ≤ (1 + an)xn + bn for bounded in sum sequences (an) and
(bn) of non-negative real numbers. This form of generalized monotonicity plays
an important role in recent fixed point theory. Additionally, the generalization
permits the computation of the sequence to be carried out with errors as long
as their sum is bounded asymptotically. The chapter also gives a sample use of
the original theorem to a generalization due to Hillam of Kransoselski’s fixed
point theorem on the real line.

Chapter 4 applies proof mining to a result in metric fixed point theory
where Krasnoselski-Mann iterations with error terms of asymptotically quasi
nonexpansive mappings of convex subsets of uniformly convex Banach spaces
are shown to be asymptotically regular, given that the function has at least one
fixed point. We give a bound for the realizer of the Herbrand Normal Form
of the statement of asymptotic regularity of the sequence under more general
conditions, relaxing the fixed point requirement to an approximate version. The
realizer, on one hand, has computational meaning which allows one to compute
arbitrarily precise approximate fixed points of the mapping, and, on the other
hand, using classical logic it allows one to prove a version of the theorem with
the relaxed conditions. To obtain the result, a relaxation of the definition of
quasi-nonexpansive functions is introduced, which turns out to be an interesting
property on its own right.

In Chapter 2 we introduce complexity of real numbers and functions based
on the class of functionals their representation belongs to. In Chapter 5 the
complexity class that arises from this definition for the class of the Basic Feasible
Functionals is compared to the Oracle Turing Machines running in polynomial
time used in Ko’s definition of real-valued function complexity. It is shown that
for compact intervals the class of basic feasible real functions coincides with the
class of the poly-time real-valued functions in the sense of Ko.

Chapters 6 and 7 define a concept of real number and function computability
that is constructed to permit very efficient implementations, based on interval
computations with a mechanism for increasing precision if needed. Chapter 6
compares it to the definition to real-function computability as given in Chap-
ter 2 and investigates how intensional functions can exist in this model. Chap-
ter 7 shows the obstacles in introducing complexity measures in this framework
and defines two kinds of moduli which can be used to show that a real number
or function belongs to a certain complexity class.

A very efficient implementation of exact real arithmetic based on this frame-
work, RealLib, is discussed in Chapter 8. The library relies on giving its users
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two levels of access to real numbers. A top layer which is easier to use and
allows one to operate on objects representing complete real numbers, and a
bottom layer that operates on approximations but is used as part of the com-
putation of complete real numbers on the top layer. Descriptions of a number
of performance problems that appear in implementations are given with the
solutions that were used in developing the system. The chapter continues with
a description of the system and a performance comparison with other existing
packages for real number arithmetic to show that the system is capable of per-
formance in the order of magnitude of the best alternative in all cases, including
problems where hardware floating point suffices to produce accurate results.

One of the most important components of this system, a package for interval
arithmetic using the SSE2 set of instructions, is discussed in Chapter 9. An
explanation of the ideas of the package and the actual implementation of the
various basic operations and functions is given. A performance comparison
shows that the efficiency of the package surpasses the available alternatives, and
the chapter concludes by giving suggestions for simple additional instructions
that can be implemented in hardware to further improve the performance at a
very low cost.

Appendices A and B form a manual for the RealLib package for exact real
number computations. Appendix A gives an introduction to the package using
a set of examples starting with simple expressions, through transferring the bulk
of a computation to the more efficient approximations layer, to a computation
of a transcendental function using the mechanisms of the library for computing
limits. A detailed reference of the interfaces and functions of the library is given
in Appendix B.
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Chapter 2

Context

We will assume that the reader is familiar with the concept of computability, its
properties and the equivalence of the different formulations of computability, as
well as the Church-Turing thesis that states that every machine-implementable
procedure can be described by one of the equivalent formulations of computabil-
ity. The reader should be aware of the known non-computability results, the
subrecursive classes (primitive recursive, elementary or poly-time functions)
and their definitions ([88] can be used as reference).

Since nothing that has been developed since defies the Church-Turing the-
sis, we will sometimes use higher-level language concepts (lambda abstraction
and application, objects (treatment of countable types, e.g. rational numbers
encoded as natural numbers, in the place of positive integers together with sets
of operations appropriate for the type) and exceptions (abrupt termination that
can pass through an object whose program code we possess)). If the reader is
not familiar with the semantics of these concepts, please refer to a modern book
on semantics (such as [85]).

For computability of functionals taking function arguments, we will use Hin-
man’s definitions from [39]. The majority of alternative formulations of Type-2
computability are equivalent to this concept, including the Oracle Turing Ma-
chines used by Ko [53], the Type-2 Theory of Effectivity used by Weihrauch
[113], and Kleene’s S1-S9 computability [50] restricted to Type 2.

It is known that strings of natural numbers of fixed length, integers and
rational numbers can be encoded in natural numbers in polynomial time in
such a way that every natural number denotes a unique element of the encoded
set, where also the encodings of Z and Q have poly-time basic operations:
addition, substraction, multiplication and division, as well as sign extraction
and taking the integer part of a rational number (in the sense of truncation,
downward rounding, upward rounding or rounding to nearest).

This can be achieved for example by the Cantor pairing 〈n,m〉 = (n+m)2+
m, encoding integers z by natural numbers n such that

z = (−1)n
⌈n

2

⌉
5



6 Chapter 2. Context

and rational numbers q by pairs 〈r, s〉:

q = (−1)r dr/2e
s+ 1

.

2.1 Real numbers and computability

Ordinary computability theory does not easily deal with computations on real
numbers because of the infinite nature of real numbers. Since there is a one-to-
one correspondence between real numbers and functions on natural numbers,
working with real numbers implies being able to generate and process infinite
amounts of information.

When the question at hand is to compute a certain real number, our task
will be to simply generate an infinite sequence that would identify the number
in a given representation. How easy, or whether at all possible, it is to compute
a real number depends on the given representation.

One of the most common ways to define the real numbers is via equivalence
classes of Cauchy sequences of rational numbers.

2.1.1 Cauchy sequences

Definition 2.1 A Cauchy sequence xn is a sequence of real numbers such that

∀ε > 0∃n ∈ N∀m ≥ n(|xn − xm| < ε).

Unfortunately, for all practical purposes having a computable function able
to generate a Cauchy sequence consisting of rational numbers and converging
to a given real number, is not sufficient. This is because the definition above
does not give us any information about the number in finite time (i.e. we have
no way of knowing how far we are from the limit for any given member of the
sequence, unless we examine the difference with infinitely many members).

To be able to obtain information, we need to require a witness function for
n above:

Definition 2.2 A modulus of convergence for a Cauchy sequence xn is a func-
tion M : N→ N, such that

∀k ∈ N∀m > M(k)(|xm − xM(k)| < 2−k).

A modulus of convergence exists for every real number (as it can be obtained
by arithmetical comprehension from the definition of a Cauchy sequence), but
computable moduli of convergence do not exist even for some numbers that can
be given as the limit of a computable Cauchy sequence. A few such numbers
are given by the Specker sum [106]

∑
i∈A 2−i for a semirecursive A1.

Using the modulus of convergence to pick a suitable selection of the members
of the Cauchy sequence, we obtain the computably equivalent representation
via rapidly converging Cauchy sequences:

1With a short argument one can show that the computability of such a number implies
the recursiveness of A and vice versa. Let A be the range of the recursive function a. Then
xi =

P
j:∃k≤i(a(k)=j) 2−j converges to the Specker sum for A.
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Definition 2.3 A rapidly converging Cauchy sequence is a sequence of real
numbers, such that

∀k ∈ N(|xk − xk+1| < 2−k+1).

The rate 2−k+1 is this definition is essential, because it ensures ∀k∀m >
k(|xk − xm| < 2−k) and thus gives a modulus M(k) := k. On the other hand,
from a Cauchy sequence xi with a modulus M one can extract the rapidly
converging sequence xM(i+1).

2.1.2 Cauchy function representations

When we talk about computations on real numbers, it is sometimes more con-
venient to think about approximations of the limit of a sequence rather than
forced distances between its elements. Here we give yet another equivalent for-
mulation, which we are going to use as our basic representation of real numbers:

Definition 2.4 A Cauchy function representation (CF-representation) of a
real number α is a function A : N→ Q, such that ∀n(|A(n)− α| < 2−n).

(every rapidly converging Cauchy sequence is a CF-representation of its
limit, and shifting the CF-representation by 2 elements gives its limit as a
rapidly converging Cauchy sequence)

A computable real number is thus one that has a computable CF-represen-
tation. Note that totality is part of the requirement for CF-representations of
numbers.

Once we have settled on the representation, functions on real numbers will
just have to convert representations of arguments to representations of results.
It is straightforward then to come up with this definition of a function on real
numbers:

Definition 2.5 A Cauchy function representation (CF-representation) of a
function φ : R→ R is a functional F : (N→ Q)→ N→ Q, such that whenever
A is a CF-representation of α ∈ dom φ, F (A) is a CF-representation of φ(α).

An important issue must be settled before we can understand what this
definition actually means restricted to computable functions, i.e. to settle on
what we mean by a ‘functional’ taking a function as an argument.

This can be settled in two different ways. One of the possibilities is to give
the function argument as code of a computable function, avoiding the necessity
to go into higher-type recursion theory. This gives rise to a world where the
computable real numbers are the only real numbers present (Russian School
of Constructive Mathematics). Unfortunately, this invalidates very well known
and widely used mathematical principles. In such a world it would not be guar-
anteed, for example, that a bounded monotone sequence converges, since the
limit of a computable sequence of numbers may converge to a non-computable
number such as one of the Specker numbers. Even weaker principles, such as
Brouwer’s fixed point theorem for R2 or above, would be invalid not only in
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the uniform sense, because there exist Lipschitz-continuous and computable
mappings on the computable unit square that have no fixed point [91].

Even though both these principles are not constructive, we aim to create
a world which makes a framework for computability in classical mathematical
analysis and thus should not fail such widely accepted truths. Surely, one could
not obtain meaningful information from the use of these principles, but the
mere truth of the statements can sometimes be very useful even in extracting
computable information (an example of such use of both principles will be given
in Chapter 4).

The second possibility is to permit all possible functions as arguments to
the CF-representation of a function. This is the approach we are going to take,
using some Type-2 notion of computability.

Ordinary recursion theory contains the notion of relative computation, where
the behavior of functions operating with a fixed infinite oracle are studied. If
we allow the oracle to vary, the concept of relative computation is transformed
to computation with function arguments. The only problem is that recursion
theory has a requirement for the oracle to be total, and special care needs to
be taken to be able to compose real functions and permit partial computations
at the same time (which is needed to be able to represent real functions whose
domain is not the entire real line).

Problems may arise if we expect functional substitution to recognize whether
or not its argument is total. This seems to be a natural requirement for real
number computations as a non-total argument does not define a real number.
This recognition is not possible and leads to contradictions (see e.g. [39], Ex-
ercise 4.27). Instead, we use a restricted form of functional substitution which
does not say anything about the behavior of the constructed functional if the
argument is not total:

Definition 2.6 ([39], Theorem 3.9) A functional F (n, α) is constructed via
restricted functional substitution from G(n, α, β) and H(p, n, α) if whenever
λp.H(p, n, α) is total,

F (n, α) ' G(n, α, λp.H(p, n, α)).

In this thesis the type-2 computability notion we use is Hinman’s partial
recursive functionals as defined in [39] (following Kleene’s definition from [49]),
which are closed under this form of functional substitution. Additionally, this
definition of restricted functional substitution coincides with the unrestricted
version when it is applied to total classes of functionals such as the ones de-
scribed in Section 2.2.

Composition of two CF-representations F,G of functions φ, ψ would require
that F ◦G(A) is a CF-representation of ψ(φ(α)) whenever A is a CF-represen-
tation of α ∈ dom φ and φ(α) ∈ dom ψ. This is exactly what the restricted
functional substitution gives us.

This is the most we can achieve, as the ideal case where F ◦G(A) is undefined
whenever A /∈ dom F , or F (A) /∈ dom G is not possible (in addition to
Hinman’s example, the reader may also refer to [113], Exercise 2.1.10).
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2.1.3 Computable real numbers and functions

We are now ready to give our definition of computable real numbers and func-
tions:

Definition 2.7 A real number or function is computable, if it has a CF-repre-
sentation as a recursive function (resp. partial recursive functional).

This definition of real functions using the Type-2 notion of functional is
able to work on any real number, since all real numbers have CF-representa-
tions (although possibly only non-computable ones). The main idea of the
representation, to be able to obtain information in finite time, is also preserved.

The latter also implies that to compute finite information about their result,
the computable real functions only have access to finite parts of their input. In
other words, the computable real functions must all be continuous. In particu-
lar, any non-constant function from the real numbers to discrete results cannot
be computable. This instantly gives us a few important examples of functions
which cannot be fully computable:

• any comparison, especially the equality test;

• any kind of rounding if it requires uniqueness of the result (e.g. first n
digits of the infinite decimal representation of a real number).

One can wonder what is the usefulness of the whole idea if we cannot even
provide a decimal representation of a result. The solution comes in the form of
redundancy: if we permit several choices for the finite size decimal approxima-
tions, it is possible to make a function that outputs decimal approximations.
More specifically, the so-called ‘faithful rounding’, where the decimal approxi-
mations need to be within a unit in the last place from the real number, can
be achieved. Similarly, all graphics where real numbers define objects have to
be drawn with “gray areas”, pixels for which we do not know if they belong to
the object or not.

The last paragraph describes a method of dealing with discontinuity that
will be discussed in more detail in Section 2.3. Redundancy is also a key feature
of the CF-representations of real numbers. Without redundancy, it is easy to
show that simple real function such as addition cannot be implemented (this is
the case with Turing’s initial idea to use the infinite decimal representation of
real numbers to define computability on the reals [111, 112]).

The four arithmetic operations can be easily shown to be computable, de-
fined for example as:

• addition: +R(A,B) := λn.A(n+ 1) +Q B(n+ 1)

• sign change: −R(A) := λn.−Q A(n)

• multiplication: ·R(A,B) := λn.A(size(|B(0)|Q+Q1)+n+2)·QB(size(|A(0)|Q
+Q 1) + n+ 2), where size(x) = µn < dxeQ.2n ≥Q x.

• reciprocal:
recipR(A) := λn.recipQ(A(n+ 1 + 2µk[|A(k)|Q ≥Q 2−(k+1)])
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These functionals need to make sure that for a fixed n the result of their
application is within 2−n from the actual result of the application of the real
number function. To do this, they request higher precision from their argu-
ments. For addition and substraction, this can be done by simply requesting
the value of the arguments for n + 1. Multiplication requires upper bounds
for the size of the arguments, which can be obtained by adding 1 to the their
value at 0, which then lets us compute an index giving us sufficiently precise
approximations. These three functionals are total, while division is not.

To be able to approximate the result of division of one by a real number, we
need to find witness that the number is non-zero. This is what the minimization
in the functional recipR does, looks into the argument until it tells it that the
represented number is at least 2−k away from 0. This functional makes many
evaluations of the input to find that witness. In particular, if the argument
given to recipR is 0, the functional will make use of all the information in its
argument in order to diverge.

The latter is not a problem as division is not defined for arguments that are
real zeroes. For anything that is not zero, recipR will eventually find a point
where it can be separated from zero, and since the minimization does not depend
on n, the reciprocal will return a total function, which is a CF-representation
of the reciprocal of the argument.

Unless we have extra information about the argument to division, it is easy
to show that unbounded minimization is unavoidable, i.e. unbounded mini-
mization can be defined from a CF-representation of division. If we want to
be able to operate on real numbers given as black-box functions, to be able to
compute partial real functions we cannot restrict ourselves to a subrecursive
class of functionals.

One can write CF-representations for the real numbers and continuous real
functions that occur in practice, such as the numbers π, e, Euler’s γ, the func-
tions

√
·, log, e·, sin, cos, arctan, Riemann ζ etc. Some discontinuous functions

can be computed if their domains are restricted to exclude the point of discon-
tinuity, e.g. the function

sgn(x) =


−1, if x < 0

1, if x > 0
div, otherwise .

The last paragraph gives us reason to believe that the idea is useful not
only as a theoretical tool, but also for reliable computations in practice. Addi-
tional robustness to the idea is given by the abundance of equivalent alternative
formulations.

2.1.4 Alternative formulations

A. Grzegorczyk was the first to define computable analysis in a manner equiva-
lent to the one used today. In [34], he gave several equivalent formulations. In
one of them, he represents a real number α as a function A : N→ Z, such that
for all n ∣∣∣∣α− A(n)

n+ 1

∣∣∣∣ < 1
n+ 1

.
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For a function φ to be computable on a compact domain with rational
endpoints [a, b], he required two things:

• a computable function F : (Q ∩ [a, b]) → N → Q, such that whenever
q ∈ Q, F (q) represents φ(q).

• a computable modulus of uniform continuity G : N→ N for φ:

∀n ∈ N∀x, y ∈ [a, b]
(
|x− y| < 1

G(n) + 1
→ |φ(x)− φ(y)| < 1

n+ 1

)
.

This definition avoids any higher-type computability notion in the definition
at the expense of having more complicated composition of real functions and
application of a computable real function to a real number. The approach is
also used by Pour-El and Richards in [93].

A modified version is used by Schwichtenberg in [102], where the numbers
are defined as Cauchy sequences of rational approximations with a separate
modulus of convergence. The definition of a function is modified accordingly,
using three functions, F (with domain as above) generating a Cauchy sequence,
H giving a modulus of convergence for the generated sequences uniform in the
argument of F , and modulus of uniform continuity G as above. This makes the
application operation much simpler as the Cauchy sequence can be constructed
using F alone, while the modulus of convergence requires only G and H.

Another one of the formulations given by Grzegorczyk states that a real
function φ is computable on a compact interval with rational endpoints [a, b] if
there exists a computable function F : I(Q ∩ [a, b]) → I(Q ∩ [a, b]) (where by
I(X) we denote real intervals with endpoints in X), satisfying

• if α ∈ K for an interval K ∈ I(Q ∩ [a, b]), then φ(α) ∈ F (K)

• if φ(α) ∈ L for some interval L, then there exists an interval K, such that
F (K) ⊆ L

• if K ⊆ L are intervals, then F (K) ⊆ F (L).

This formulation allows us to work directly on the level of approximations,
does not require any type-2 notion of computability and has very straightfor-
ward and simple operations for application and composition. The restriction
of a compact domain can be avoided if we permit ±∞ as possible endpoints of
the interval.

The domain theoretic approach to computable analysis used by Edalat [19],
Escardo [22] and others uses this formulation, but phrased in domain theoretic
terms. The interpretation relies heavily on monotonicity, which is not essential
for Grzegorczyk’s formulation.

Indeed, Grzegorczyk gives yet another definition using intervals, where a real
function φ is computable on a compact interval [a, b] if there exists a function
F : I(Q ∩ [a, b])→ I(Q ∩ [a, b]) satisfying

• if α ∈ K for an interval K ∈ I(Q ∩ [a, b]), then φ(α) ∈ F (K)
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• if β 6= φ(α), there exists an interval K 3 α, such that β /∈ F (K).

The second condition states that the output intervals gets arbitrarily small
given an appropriately small input interval. This characterization appears to
be most useful for efficient practical implementations of exact real arithmetic.
It coincides with an approach sometimes used to provide reliable computations,
evaluations using interval arithmetic with increasing precision until the output
interval shrinks enough to provide a meaningful output. More emphasis on this
approach will be given in Chapters 6 and 7.

Ko [53] and Weihrauch [113] use type-2 computability notions and ap-
proaches very similar to our definition. Ko uses the concept of Oracle Turing
Machines (OTM), which employ a special operation to obtain the value of an
oracle (i.e. a type-1 argument) for a given index in one computational step.
This is essentially the machine model of the idea of partial recursive functionals
that we are using. Ko’s model uses the dyadic numbers D as a base for the reals
instead of Q. The dyadic numbers can be defined as the rationals that can be
written in the form m2n where m and n are integers. The dyadic numbers
have natural binary representations in the form ±1a1a2 . . . ak.b0b1 . . . bl, in fact
infinitely many since every representation can be extended by adding zeroes to
the right. Ko uses prec(±1a1a2 . . . ak.b1b2 . . . bl) = l as a measure for the length
of a binary representation of a dyadic number, and represents a real number α
as a function A : N→ D, such that ∀n (prec(A(n)) = n ∧ |A(n)− α| ≤ 2−n)2

A computable real function φ in Ko’s sense is then defined as an OTM
computable F : (N → D) → N → D, such that for every representation A of a
real number α, F (A) is a representation of φ(α).

Weihrauch uses a different but equivalent computability approach (called
Type-2 Theory of Effectivity, TTE) where the function arguments are stored
on an infinite tape. The machine reads from this tape and writes on a different
output tape where it is not allowed to return and delete cells it has already
written to. One of the variety of representations that he gives, ρC , directly
coincides with ours if we translate it to the setting of partial computable func-
tionals. He also gives several equivalent alternatives: ρ, where a real number is
described as the list of all intervals containing it and ρsd where a real number
is described via its infinite representation in “signed digit notation”, which is a
binary representation that uses an additional digit, 1 denoting −1, to introduce
sufficient redundancy.

The TTE representation ρsd and Ko’s OTM’s working on dyadic Cauchy
function representations are especially suitable for complexity analysis.

2.2 Complexity in computable analysis

2.2.1 Complexity classes of real numbers

It is easy to define the complexity of real numbers as the complexity of the
function that generates them as a Cauchy function representation. For example,

2the difference between < and ≤ in the evaluation of the error is inessential as a < b implies
a ≤ b and a ≤ b implies 1

2
a < b for positive a, b.
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the class of the primitive recursive reals can be defined as the real numbers
having a primitive recursive CF-representation. This also works for all levels of
the Grzegorczyk hierarchy [33] above and including the class of the elementary
functions (i.e. the third level of the hierarchy).

For smaller complexity classes such as the poly-time functions, the model of
CF-representations above cannot work, because it is impossible to generate a
representation that is at least n bits long given an argument n (that is because
all poly-time functions of n are bounded by3 2p(|n|) for some polynomial p, which
is not sufficient to generate numbers as big as 2n). The solution of the problem
comes in the form of modified definition of CF-computability, where the rate of
convergence of the sequence is 2−|n| instead of 2−n.

Definition 2.8 A sharp CF-representation of a real number α is a function
A : N→ Q, such that ∀n(|A(n)− α| < 2−|n|).

This change is immaterial for the higher complexity classes that include
the function 2n, but is essential for the class of the poly-time computable real
numbers. We will therefore say that a real number is in a given complexity
class if it has a sharp CF-representation in the class.

The situation is more complicated when we consider real functions, because
they are higher type objects and there is no universally accepted theory for
complexity in Type 2 and above. We will define several classes of subrecursive
functionals of higher type that are often used to classify complexity, given in
order of decreasing complexity: the levels of Gödel’s primitive recursive hierar-
chy including the primitive recursive functionals in the sense of Kleene S1-S8,
the functionals corresponding to the levels of Grzegorczyk’s hierarchy, and the
Basic Feasible Functionals. To be able to use the latter, we will also use a sharp
version of the CF-representations of functions:

Definition 2.9 A sharp CF-representation of a real function φ is a functional
F : (N → Q) → N → Q, such that whenever α ∈ dom φ and A is a sharp
CF-representation of α, F (A) is a sharp CF-representation of φ(α).

2.2.2 Higher-type complexity

The type structure T is defined inductively by the following two rules:

0 ∈ T
(τ → σ) ∈ T if σ, τ ∈ T

where 0 is the type of the natural numbers N. Other notations for τ → σ used
in the literature include σ(τ) or (τ)σ. We will omit brackets if they can be
recovered from the right-associativity of the operator→ (i.e. 0→ 0→ 0 means
0→ (0→ 0), and the brackets in (0→ 0)→ 0 cannot be omitted). We will use
either x : ρ or xρ to denote that the variable x is of type ρ.

The level of a type is defined by the rule level(τ → σ) = max(level(σ),
level(τ)+1) with level(0) = 0. The type of functions on natural numbers 0→ 0

3as usual in complexity theory, |n| denotes the bit-length of n, i.e. |n| = dlog2(n + 1)e.
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is of level 1, and the type of functionals (0 → 0) → 0 → 0 operating on a
function and returning a function (which is equivalent to a functional taking
one function and one number argument and returning a number) is of level 2.

The pure types are denoted by integers and defined by induction as 0 and
the types n+ 1 := n→ 0 if n is a pure type. The pure type n is a type of level
n.

Since lower types are trivially embeddable into higher ones, and arbitrarily
long tuples of objects of the same type can be effectively (in polynomial time)
coded in a single object, all the types of a certain level can be considered
equivalent to the pure type of that level, that is why we will speak directly of
type 1 referring to all types of level 1, meaning all functions on an arbitrary
number of integer arguments. By type 2 we will thus refer to all functionals
that take at least one function argument or generate a type-2 object.

In this thesis the types will be always interpreted over the full set-theoretic
type structure Sω over N:

S0 := N, Sτ→ρ := SSτ
ρ

where SSτ
ρ is the set of all set-theoretic functions from Sτ to Sρ.

Primitive recursive computability in higher types can be given by the terms
that can be defined in Gödel’s “System T ” in the model Sω. The system
was proposed by Gödel in [29] to be used in his functional interpretation of
constructive logic. It is defined by the terms constructed from:

• constants 0,

• successor constant S,

• the combinator constant Σρ,σ,τ for every ρ, σ, τ ∈ T ,

• the projector constant Πσ,τ for every σ, τ ∈ T ,

• recursion constant Rρ for every type ρ.

The meaning of the constants is pretty standard: the constant 0 function,
the successor function for natural numbers, the projector and combinator often
used as alternative formulation of the typed lambda calculus, and primitive
recursion. However, the recursion operation for types other than 0 is not some-
thing trivial. The definition of primitive recursion in Gödel’s System T is

Rρxy0 =ρ x
Rρxy(Sz) =ρ y(Rρxyz)z

(2.1)

(where =ρ is set-theoretic equality, z : 0, x : ρ and y : ρ→ 0→ ρ.)
On type 0 this is just the standard primitive recursion. Recursion on type

1, however, lets one define some non-primitive recursive functions such as the
Ackermann function. Moreover, the higher the level of recursion that is used,
the more powerful the functions become, which is why we talk about Gödel’s
primitive recursive hierarchy based on the highest type of the recursion used in
their definition.
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The functionals of pure type of level 0 in this hierarchy exactly match the
functionals that can be defined using Kleene’s rules S1 to S8 [50]. At Type 1,
they are just the ordinary primitive recursive functions.

One can also define a higher-type extension of Grzegorczyk’s hierarchy,
which matches the ordinary levels of the hierarchy at Type 1. The higher
type Grzegorczyk functionals of level n are defined as the terms built from:

• constants 0,

• successor constant S,

• the combinator constant Σρ,σ,τ for every ρ, σ, τ ∈ T ,

• the projector constant Πσ,τ for every σ, τ ∈ T ,

• constant Rb for bounded recursion

Rbxyz0 =0 x

Rbxyz(Sv) =0 min(y(Rbxyzv)v, zv)

where x, v : 0, y : 0→ 0→ 0, z : 0→ 0

• the n-th branch An : 0→ 0→ 0 of the Ackermann function as defined in
[98].

This definition was obtained by removing some redundancies from the def-
inition of GnA

ω of [69]4.
A higher-type extension of the polynomial-time computable functions is

given by the Basic Feasible Functionals (BFF) [83, 14, 45]. They can be defined
as the terms built from:

• a constant for every polynomial-time computable function,

• the combinator constant Σρ,σ,τ for every ρ, σ, τ ∈ T ,

• the projector constant Πσ,τ for every σ, τ ∈ T ,

4The additional symbols min, max, µb, Φ1, R̃ρ used in [69] can be recovered using the fol-
lowing definitions:

P := λx.Rb0(λab.b)Sx

I := λxyz.Rby(λab.z)(λb.z)x

−̇ := λxy.Rbx(λab.Pa)(λb.x)y

min := λxy.Rb0(λab.x)(λb.y)(S0)

max := λxy.I(−̇xy)yx

Φ1 := λfx.f(Rb0(λab.I(−̇(f(Sb))(fa))a(Sb))Sx)

µb := λfx.P (Rb0(λab.Ima(I(fxb)(Sb)a)a)S(Sx))

R̃ρ := λxyzvw.Rb(yw)(λab.zabw)(λb.vbw)x
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• constant Rbn for bounded recursion on notation:

Rbnxyz0 =0 x

Rbnxyzv =0 min(y(Rbnxyzbv/2c)v, zv)

where x, v : 0, y : 0→ 0→ 0, z : 0→ 0

In [45], Kapron and Cook give an Oracle Turing Machine characterization
of the Basic Feasible Functionals as the machines that compute in time which
is a second-order polynomial in the length of their inputs. A second order
polynomial is one that can take function parameters, but a crucial element of
this is the definition for a length of a Type-1 argument. The simple definition
|f | (x) = |f(x)| is not sufficient, but the definition

|f | (x) = max
|i|<x

f(i)

makes the characterization possible. The latter encompasses the most of the
function argument that the BFF functional can make use of.

Just like with real numbers, we will say that a real function belongs to a
given complexity class if it has a sharp CF-representation in the class. Since the
complexity classes we use are not limited to Type 2, it is very easy to extend
the notion to operators on real functions (which would be Type 3 objects).

All of the complexity classes discussed in this subsection can be used to
define classes of computable real functions. By construction, they are all closed
under composition and unrestricted functional substitution, ensuring that the
composition of real functions and the result of the application of a function
to a number will remain in the same complexity class. The real numbers and
results of functions applied to real numbers will also be part of a well-studied
complexity class for type-1 functions5.

2.2.3 Other characterizations of complexity classes in analysis

Although our concept of complexity for real functions is a straightforward ex-
tension of the concept for real numbers, it is not the one commonly used in the
computable analysis community, where quantitative evaluations of the number
of stages in a machine model of computation are the most accepted method of
evaluating complexity.

The main problem that needs to be overcome when one wants to propose
a complexity notion for real functions, is the existence of many representations
of the same real number of varying quality. In our model of sharp CF-repre-
sentations it is possible to represent the number one, for example, as:

1. a constant function that returns the same representation of the rational
number 1,

2. a function that returns different rational numbers equal to 1, using integer
codes of size greater than 2n,

5see [92] for the complexity of primitive recursive functions in Gödel’s sense of levels higher
than 0.
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3. a function that returns 1 − 2−(|n|+1), using integer codes of size smaller
than 2p(|n|) for some polynomial p,

4. a function that produces rational approximations to 1 with the required
precision, using integer codes as big as the Ackermann function of |n|.

All of these are valid sharp CF-representations of a real number. A poly-
nomial time computable function should be able to process any of them. The
ability to do this is an intrinsic feature of all the computability classes we dis-
cussed above.

This is not the case if one counts the steps that a Turing machine model
for type-2 computability needs in order to compute on the inputs given above.
In order to read the outputs of an oracle query for the cases 2 and 4, the
Turing machine would require, respectively, non-polynomial and non-primitive
recursive time. I.e., should we permit all the possibilities above to represent a
real number, there would be

• (due to 2) no bound polynomial in the precision |n| for the running time
of any real function that depends on its argument,

• (due to 4) not even a bound primitive recursive in |n|.

To solve the problem, one has to reduce the possible speed of growth of the
functions representing real numbers. In fact, all real numbers in a bounded
interval have dyadic representations, which can be encoded in size smaller than
2p(|n|) for the same p. For an unbounded interval, representations of size 2p(|n|,|b|)

can be given, where b is an upper bound for the represented number. This is
the key observation that makes Ko’s complexity theory for real functions [53]
possible.

The restriction is an integral part of Ko’s definition of computable real
number. He specifies the dyadic numbers as the base for the reals instead of
the rationals, and specifically requires the representations of real numbers to
return numbers of precision6 |n|7, ruling out all but case 3 in the list above.

When the functions are only required to operate on objects of this kind, the
running time of an Oracle Turing Machine becomes meaningful:

Definition 2.10 (Ko, [53], 2.18) Let G be either a bounded closed interval
[a, b] or the set R. Let f : G→ R be a computable function. Then, we say that
the time complexity of f on [a, b] is bounded by a function t : G → N → N if
there exists an OTM M which computes f in Ko’s sense such that for all x ∈ G
and n > 0, the running time of M(x, n) is bounded by t(x, n).

The class of the polynomial-time computable functions f : [a, b] → R on a
compact interval is then defined as the class of functions whose running time is

6Recall from the previous section that the precision of a dyadic number is given by the
number of digits to the right of the decimal point.

7Although in Section 2.1 of [53], Ko uses n as the argument in the definition of real numbers,
in Section 2.2 and throughout the rest of the book, he insists on passing n in unary notation.
The latter is equivalent to defining the real numbers as functions of |n|.
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bounded by a polynomial in the precision n. We will see in Chapter 5 that this
definition of polynomial-time computability coincides with BFF-computability
of sharp CF-representations on a compact interval.

Alternatively, the poly-time functions in the sense of Ko have a characteriza-
tion using the first of Grzegorczyk’s formalizations of real number computability
modified to work with diadic approximations in place of rational numbers:

Definition 2.11 (Ko, [53], 2.21) A function f is poly-time computable on
[a, b] iff there exist poly-time functions m and ψ : (D ∩ [a, b]) → N → D such
that

• m is a sharp modulus of continuity for f on [a, b] (i.e. ∀n∀x, y ∈ [a, b](|x−
y| ≤ 2−|m(n)| → |f(x)− f(y)| ≤ 2−|n|)).

• for any d ∈ D ∩ [a, b] and all n ∈ N, |ψ(d, n)− f(d)| ≤ 2−|n|

It becomes significantly more complicated to define complexity of operators
on real functions in Ko’s model. The Oracle Turing Machine model only works
at type level 2, thus all functions must be translated to a type-1 setting in order
to apply it. When real functions are represented in the first of Grzegorczyk’s
characterizations, functionals of Type 2 can be used to represent real operators.
However, the time complexity of these functionals once again becomes useless
for the same reason as above, the varying quality of representations of real func-
tions, especially of the modulus of continuity. Ko tries to solve the problem by
restricting the class of functions to which the operators can be applied to only
polynomial time functions, and verifying whether the application of an operator
to a polynomial time function results in a polynomial time function. The re-
sulting notion of pointwise complexity is a meaningful one, but the restrictions
are much too severe.

In the TTE model of real number computability, the same quality issue
makes the representations ρ and ρC useless, but the computably equivalent for-
mulation ρsd solves the problem by similarly enforcing only representations of
size polynomial to the precision. The induced complexity concepts are equiva-
lent to Ko’s.

2.2.4 Complexity and interval approaches to computable analy-
sis

In the previous section we gave two of Grzegorczyk’s definitions of real number
functions that rely on applying functions to intervals with additional require-
ment that the outputs eventually shrink when they are applied to a sequence
of intervals that converges to a single real number, with and without the added
requirement of monotonicity.

It is easy to understand why this definition would not easily admit a com-
plexity measure. The word “eventually” is the root of the problem. Since such
a function can wait for arbitrarily long time, it is easy to define functions of
very low complexity that compute any computable real function (a proof of this
will be given in Chapter 7).
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A solution of the problem is to replace the word eventually with a specific
bound, i.e. to additionally supply a modulus of convergence for real numbers
and functions. Just like the case of classical versus computable versions of the
notion of Cauchy sequence, here we get a separation between computable and
complexity bounded versions. A sequence of shrinking intervals converging to
a real number suffices to compute the number, because we can always find
the rate of convergence via unbounded minimization. If we want to extract
information in complexity bounded time, however, the unbounded minimization
is not available, thus we need to have additional information about the number,
given in the form of an explicit rate of convergence.

The approach is discussed in more detail in Chapter 7, where we also inves-
tigate its relation to sharp CF-computability.

2.3 Intensionality in computable analysis

In the preceding sections we have consciously restricted the objects that rep-
resent real functions to output the same real number regardless of the actual
representation of the input that was given. Some of the equivalent concepts of
Section 2.1 rely on this requirement. It is necessary if we want our objects to
represent real number functions.

Sometimes we might like to relax our requirement on the represented objects
to something less restrictive than a function. For example, the square root of
a complex number can be taken to be one of two equally valid values. To
make this into a function, a unique choice between the two values must be
made (usually taken as the one with the angle with the positive real line that
is smaller in absolute value, and the one with a positive imaginary value if the
angles are both π/2). The choice causes a discontinuity in the function, making
it non-computable unless the line of discontinuity is excluded from the domain
of the function.

Another example of forcing uniqueness causing discontinuity is the argument
function for complex numbers. Here, the possible choices are infinitely many,
and the unique selection, as above, picks the least possible absolute value, or π
if the number lies on the negative part of real line. The latter becomes a line
of discontinuity that must be excluded from the domain if we want to give a
computable representation of the function.

Many complex functions may be implemented using the argument function
as a building block. This includes the square root example above, as well as
raising a complex number to an arbitrary power. For the latter, the straightfor-
ward definition xy = ey·ln x would be undefined for all x that lie on the negative
part of the real line.

Yet another example was already mentioned in Section 2.1: rounding in any
form that requires uniqueness. Specifically, the operations b·c (‘floor function’,
also known the Gauss staircase), d·e (‘ceiling function’), and rounding to the
nearest integer are not computable. In Section 2.1 we declared that the problem
can be overcome by introducing redundancy in the form of faithful rounding:
the faithful rounding of x is allowed to be either bxc or dxe.
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The following function fr : (N → Q) → Z implements faithful rounding in
the framework of CF-representations:

fr(A) :=
⌊
A(1) +Q

1
2

⌋
Q

If A represents the real number α, |A(1)−α| < 2−1 and thus bαc ≤ fr(A) ≤
dαe.

One can see from this definition that the actual choice that fr makes depends
solely on A(1). The same real number may be represented by Cauchy functions
with values at 1 that round to a different integer, thus fr does not represent a
real number function, because it does not respect equality of real numbers but
depends on the actual representation.

In Section 2.1 the rounding was somehow external to the framework, in the
sense that we would use the operation in order to finally obtain a meaningful
result. As we can see from the discussion above, cases where multiple results
are (equally) acceptable arise naturally even for real number functions. It is
not hard to see that the functions discussed in the beginning of the section
can be implemented in a similar way by a function that depends on the actual
representation. It would be thus preferable to permit this mechanism to also
work inside the framework for real number computations.

We may say that such CF-functions fail the extensionality principle for real
numbers, meaning8 that there exist CF-representations x, y such that x =R y
does not imply f(x) =R f(y). We will call them intensional representations
to denote this fact. In the constructive literature some authors use the term
operations for objects of this kind.

These objects do not describe functions on real numbers. To denote the fact
that more than one result is possible for the application of such an object to a
real argument, they are usually called “multi-valued functions” in the literature
(in [113], for example). To accommodate intensionality, our definition of a real
number function must allow for the following:

Definition 2.12 A CF-representation of a multi-valued real function φ : R ⇒
R is a functional F : (N → Q) → N → Q, such that whenever A is a CF-
representation of α ∈ dom φ, F (A) is a CF-representation of a real number
β ∈ φ(α).

Restricted to (single-valued) functions this coincides with the definition we
had before. The discussion above tells us that there are computable multi-
valued functions that do not have any computable choice function, i.e. whose
computable realizations are all intensional.

Multi-valued functions allow us to avoid discontinuities by replacing points
of discontinuity with sufficiently big “buffers” where the function may return
results continuous with either the left or right half of the graph. The buffer

8If one works in a formal system where real numbers are actually defined by the equivalence
classes of CF-representations, this also means that the extensionality principle ∀f : R →
R∀x, y ∈ R(x = y → f(x) = f(y)) is indeed false if such objects are permitted
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can be made arbitrarily small, as long as it is a neighborhood instead of just a
point.

The importance of intensional functions can also be seen from the fact that
modifying the Blum/Shub/Smale algebraic model for assessing real function
complexity [5] to a version that matches the computable real functions as de-
fined in the thesis relies on some form of approximate comparison. The latter
uses the fact that if a < b, then for an arbitrary x at least one of the facts x < b
or a < x is true and can be shown computably. This can be easily made into a
multi-valued function.

The following version is used in Brattka and Hertling’s model of feasible
real random access machines [6]:

<k (x, y, k) =


{tt}, if x < y − 1

k
{ff }, if x > y + 1

k
{ff , tt}, otherwise .

Its CF-representation can be given by

lt(X,Y, k) =
{

tt , if X(|k|+ 1) ≤Q Y (|k|+ 1)
ff , otherwise .

While intensionality is very easy to introduce in any type-2 framework for
analysis (the TTE model, for example, is defined from the beginning for multi-
valued functions), it is incompatible with some of the equivalent alternative
frameworks that were discussed in Section 2.1. Since the multi-valued functions
are only continuous on the representations and not necessarily on the real num-
bers, the first characterization of Grzegorczyk’s does not work, because rational
approximations without additional information are not sufficient to choose in a
way that would make a meaningful definition to replace the uniform modulus
of continuity.

The two interval approaches have this information, but would suffer from
consistency issues if there is no way to store the choice once it has been made.
Chapter 6 will discuss a consistent way to introduce intensionality in an interval
approach.

2.4 Classical analysis and computability

How can we use mathematics in this setting of representing real numbers as
computable objects? Since we explicitly required a rate of convergence for
every Cauchy sequence to make it into a computable real number, and the
usual classical tool to extract this information (arithmetical comprehension) is
not computable, does ordinary mathematics work if it very often “constructs”
a solution to a problem by giving a converging sequence with no known rate of
convergence?

In general, the answer to this question is no. However, in many special cases
the useful information contained in this kind of “semi-constructive” proof can
be recovered. One way to ensure that computable data are given by a proof is
the use of constructive logic in place of classical.
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In constructive logic every existential quantifier of a true sentence implies a
witness (or realizer) for its truth. The proof of an existential statement ∃xP (x),
for example, can be used to construct a procedure that computes a witness y
which makes P (y) true. In more complex statements the witness is a function,
for example the constructive version of the condition ”a is a Cauchy sequence”
∀k∃n∀m > n(|a(m) − a(n)| < 2−k) needs a witness for n. This is exactly the
modulus M we talked about in Section 2.1 and required to define real numbers.
Therefore, the constructive proof of convergence of a sequence contains in itself
everything that is needed to compute the limit as a computable real number.

This correspondence goes much further than just the definition of real num-
bers (see e.g. [2]), but the information in the constructive proof is not obvious
and must be extracted using some proof interpretation. Various proof interpre-
tations will be discussed in the following sections. The process of extracting
extra information from existing proofs is called “Proof Mining”. In Chapter 4
we will give an application of Proof Mining to fixed point theory.

Via the well known negative translation ([28], see also [110] and [69]), clas-
sical logic can be embedded in intuitionistic logic. However, the witnesses
contained in this classical fragment have a different meaning from the witnesses
in the original proof and their extraction is not an easy task.

Take for example the statement that the sequence of rational numbers a
converges:

∀k∃n∀m > n(|a(m)−Q a(n)|Q <Q 2−k). (2.2)

Its negative translation is the formula

∀k¬¬∃n∀m > n(|a(m)−Q a(n)|Q <Q 2−k).

Some of the proof interpretations which we will speak about in the following
chapter cannot extract any information about the realizer of n in this state-
ment. Others can, but, because of the negative results already mentioned, yield
something that is not sufficient to constructively recover a realizer of n in the
original statement (2.2).

In some cases the original realizer can be recovered using principles that
allow us to remove certain double negations, such as the Markov principle Mω:

∀x(¬¬∃yA0(x, y)→ ∃yA0(x, y)) (2.3)

(where by the index ·0 we denote a quantifier-free formula, and x, y are tuples
of variables of arbitrary type).

Some interpretations are compatible with this principle, and the exact treat-
ment of the principle makes the difference between having any or no information
about the actual witness for classical Π0

2 statements.
We cannot expect to be able to use similar principles for more complex

statements, because there exist classically true Π0
3 statements that cannot have

computable realizers (e.g. a realizer of y in ∀x∃y∀z(Txxy = 0 ∨ ¬Txxz = 0
which is a prenexiation of the classically true fact ∀x(φx ↓ ∨¬φx ↓) would let us
solve the halting problem). Instead, statements of higher complexity must be
reformulated, for example to their Herbrand Normal Form, in order to obtain
computable output.
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Definition 2.13 The Herbrand Normal Form (HNF) of a statement A =
∀y0∃x1∀y1 . . .∃xn∀ynA0(y0, x1, y1, . . . , xn, yn) is defined as

AH := ∀y0, f1, . . . , fn∃x1, . . . , xnA0(y0, x1, f0(x1), . . . , xn, fn(x1, . . . , xn)).

With the axiom of choice A and AH are equivalent classically, but not con-
structively. The HNF works by showing that no counterexample to A exists.
Thus it is said that witnesses for x above satisfy the no-counterexample inter-
pretation of A. The properties of the HNF of Π0

3 statements will be further
discussed in the next sections.

Herbrand’s theorem gives us means to find a finite list of candidate no-
counterexample interpretations, but only for sentences given in the so-called
“open theories” (where the logical axioms are purely universal). Later Kreisel
defines a method [72, 73] of finding recursive functionals that satisfy the no-
counterexample interpretation for statements in Peano Arithmetic, but un-
fortunately one cannot do this easily in a modular way, i.e. to use the no-
counterexample interpretations of all the theorems used in a proofs to compute
no-counterexample interpretations of the result of that proof requires opera-
tions of very high complexity ([60], see also [108]). The ability to achieve this
easily is a key feature that a proof interpretation must have in order to be useful
in practice.

In the rest of this chapter we will discuss interpretations of the intuitionistic
Heyting Arithmetic HA and its higher type versions E−HAω and WE−HAω

(both are based on Heyting Arithmetic in higher types with equality in higher
types as the defined notion

x =0 y := x = y

x =ρ→τ y := ∀z ∈ ρ(xz =τ yz)

with the former including the full axiom of extensionality

∀zρ1→...→ρk→0, xρ1
1 , y

ρ1
1 , . . . , x

ρk
k , y

ρk
k

(
∧k

i=1(xi =ρi yi)→ zx =0 zy
)

and the latter is restricted to only the quantifier-free rule of extensionality

A0 → s =ρ t

A0 → r[s] =τ r[t]
,

where sρ, tρ, rρ→τ are terms of the language and A0 is quantifier-free. The
closed terms definable in these systems correspond to Gödel’s primitive recursive
functionals.). Proper definitions of the arithmetics and proofs of the properties
of the the different interpretations are given in [110] and [69].

2.5 Proof Interpretations

A proof interpretation associates for any given formula in a given formal system
another formula in a possibly different system. The interpretation gives a set
of transformations that reflect the rules of the system, so that an interpretation
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can be given for every formula that can be proved. Out of this interpretation,
one can read the realizers (or witnesses) of the result.

The first interpretation we will mention is realizability. When it is applied
to E−HAω, its version is called modified realizability.

Definition 2.14 (Kreisel, [74]) The modified realizability interpretation x mr A ∈
L(E−HAω) is defined using the following set of rules on the logical structure
of the formula A ∈ L(E−HAω):

1. x mr A := A, if A is a prime formula and x is an empty tuple.

2. x, y mr (A ∧B) := x mr A ∧ y mr B.

3. z, x, y mr (A ∨B) :=
(
((z = 0)→ (x mr A)) ∧ ((z 6= 0)→ (y mr B)

)
.

4. y mr (A→ B) := ∀x(x mr A→ yx mr B).

5. x mr (∀yA(y)) := ∀y(xy mr A(y)).

6. z, x mr (∃yA(y)) := x mr A(z).

The interpretation is sound for E−HAω, i.e. for every closed formula A, if
E−HAω ` A then there exists a tuple of closed terms t such that E−HAω `
t mr A. The soundness theorem (given e.g. in [110], Theorem 3.4.5) gives us
rules to construct realizers for every provable formula in E−HAω. In fact, the
soundness theorem is also true for the stronger system E−HAω+AC+IP¬+Γ,
where AC is the full axiom of choice, IP¬ is the independence of premise schema
for arbitrary negated formulae

(¬A→ ∃yB)→ ∃y(¬A→ B)

and Γ is an arbitrary set of ∃-free formulae (an ∃-free formula is one built up
from prime formulae using only ∧, → and ∀).

If t mr A, one can easily read the specific clause satisfied in a disjunction
and the numbers or primitive recursive functions that specify the witnesses of
existential quantifiers, but only if they appear non-negated.

As usual in an intuitionistic system, negation is the defined notion ¬A :=
A → (0 = 1). The realizer of a negated formula obtained by modified real-
izability is empty, since the interpretation only looks for a way to satisfy the
conclusion, which as a quantifier-free formula has an empty realizer.

In addition to this, Markov’s principle is incompatible with the modified re-
alizability interpretation, since the latter satisfies IP¬ which yields non-computable
results in combination with Markov’s principle (indeed Markov’s principle con-
tains the instance ∀x(¬¬∃yTxxy → ∃yTxxy) and applying IP¬ to it gives
∀x∃z(¬¬∃yTxxy → Txxz), a realizer of which would solve the halting prob-
lem). Therefore we cannot expect to be able to use modified realizability on
classical results easily.

Modified realizability can be used to extract information from constructive
proofs. There are even machine-implemented modified realizability systems
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that can analyze completely formalized proofs and extract realizers automati-
cally. Additionally, the Friedman A-translation [23, 15] combined with modi-
fied realizability is able to extract information from classical proofs, but a more
general approach should deal with the problem at its roots by defining a better
proof interpretation.

The problem in dealing with negated statements comes from the fact that
modified realizability only looks into the positive part of implications, but does
not say anything about how a failure in the conclusion leads to a failure in the
premise. Since the definition of negation in intuitionistic logic relies on this
mechanism, negation is not properly treated by realizability.

Gödel’s functional interpretation treats implication in a manner that exposes
this mechanism.

Definition 2.15 (Gödel, [29]) The functional interpretation of a formula A ∈
L(WE−HAω) is the translation AD ≡ ∃x∀yAD(x, y) in the same language.
The free variables of AD are those of A, the types and length of x and y depend
on the logical structure of A only, and AD is a quantifier-free formula.

(i) AD := AD := A for a prime formula A,
(ii) (A ∧B)D := ∃xu∀yv(A ∧B)D

:= ∃xu∀yv(AD(x, y) ∧BD(u, v)),
(iii) (A ∨B)D := ∃z, xu∀yv(A ∨B)D

:= ∃z, xu∀yv((z = 0→ AD(x, y)) ∧ (z 6= 0→ BD(u, v))),
(iv) (∃zA(z))D := ∃z, x∀y(∃zA(z))D

:= ∃z, x∀yAD(x, y, z),
(v) (∀zA(z))D := ∃X∀z, y(∀zA(z))D

:= ∃X∀z, yAD(Xz, y, z),
(vi) (A→ B)D := ∃U, Y ∀x, v(A→ B)D

:= ∃U, Y ∀x, v(AD(x, Y xv)→ BD(Ux, v)).

The translations of ¬A and ¬¬A that this interpretation induces do expose
information:

(¬A)D = ∃Y ∀x¬AD(x, Y x)
(¬¬A)D = ∃X∀Y ¬¬AD(XY , Y (XY ))

In other words, the functional interpretation of the negation of a statement
is a functional that takes candidate proofs of AD and finds counterexamples
to them. The functional interpretation of a classical statement refutes the fact
that a candidate mechanism for finding counterexamples works by providing a
witness to the contrary.

The latter is very similar to Kreisel’s no-counterexample interpretation. In
a specific instance, let us examine the functional interpretation of the nega-
tive translation of the statement (2.2) that the sequence of rational numbers a
converges:

(∀k¬¬∃n∀m ≥ n(|am − an| < 2−k))D

= ∀k∃N∀M(|aN(M) − aN(M)+M(N(M))| < 2−k)
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= ∃N∀k∀M(|aN(M,k) − aN(M,k)+M(N(M,k))| < 2−k). (2.4)

This is exactly the HNF of the statement (2.2), but unlike the no-counter-
example interpretation, the functional interpretation is modular in the sense
that from the functional interpretation of A and A→ B one can always easily
construct the functional interpretation of B, which is highly non-trivial for the
no-counterexample interpretation when the implication has a more complex
logical structure. Already for Σ0

3 the functional interpretation of the negative
translation differs from the no-counterexample interpretation, and the higher-
type objects used in the definition of the functional interpretation make it
possible to have simple interpretation of the modus ponens rule.

The statement (2.4) is a constructively weaker form of convergence that can
be satisfied computably for the Specker sequences. In fact, since the sequences
that converge to these numbers are monotone and bounded, using the following
lemma one can obtain primitive recursive realizers for (2.4) for any Specker
number:

Lemma 2.1 Let (an) be a sequence in R+ with an+1 ≤ an for all n. Then9

∀ε > 0∀g : N→ N∃n ≤ max
i<ba0/εc

gi(0)
(
an − ag(n) ≤ ε

)
.

While this form does not allow us to compute limits of sequences that have
been proven classically to converge as computable real numbers (which is impos-
sible because of the Specker examples), it does let us extract some information
about the limits. In certain cases one is interested only in the distance be-
tween an and an+1 (for example in applying Krasnoselski-Mann iterations to a
function to find an approximate fixed-point), and this is given by the HNF for
M(n) := n+1 (see Chapter 4). In some cases additional information combined
with the HNF allows us to recover the full constructive statement of convergence
([61]).

The soundness theorem for functional interpretation ([110], Theorem 3.5.10
(ii)) is valid for the system WE−HAω + AC + Mω + IP∀ + Π, where M
is Markov’s principle for all finite types, IP∀ is the independence of premise
principle for universal statements

(∀xA0(x)→ ∃yB(y))→ ∃y(∀xA0(x)→ B(y))

(where y is of arbitrary finite type and does not occur free in the quantifier-free
A0), and Π is a collection of purely universal statements. It lets one extract
closed terms t, such that WE−HAω + Π ` ∀yAD(t, y) whenever WE−HAω +
AC +Mω + IP∀ + Π ` A, where A is a sentence of L(WE−HAω).

Both the restriction to weak extensionality and of the independence of
premise principle to only universal statements are essential, since the com-
bination of Markov’s principle in all higher types with full extensionality or
more general IP principle leads to contradictions with the possibility to extract
computable realizers (see [43] and also [69]).

9The notation gi stands for g iterated i times.
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If we extend WE−HAω to the classical system WE− PAω by adding the
law of excluded middle A ∨ ¬A for arbitrary formulae, we can state the fol-
lowing version of the soundness theorem: whenever WE− PAω + QF−AC +
Π ` A (where QF-AC is the quantifier-free axiom of choice, ∀x∃yA0(x, y) →
∃Y ∀xA0(x, Y x)), one can extract closed terms t, such that WE−HAω + Π `
∀y(A′)D(t, y), where A′ is a negative translation of the sentence A.

For Π0
2 statements the existence of a computable realizer is always guar-

anteed, because it can be found via unbounded minimization. The functional
interpretation gives us more than just that, since it interprets Markov’s princi-
ple by looking in the computational information that is present in the functional
interpretation of a doubly negated statement. Unlike some forms of realizability
which interpret Markov’s principle by unbounded search, functional interpreta-
tion does not require unbounded minimization to satisfy Markov’s principle, and
can therefore be used for complexity-bounded fragments of arithmetic ([14, 59])
where all representable functionals match one of the complexity classes defined
in Section 2.2.

The instance of the soundness of the functional interpretation for WE− PAω

for Π0
2-statements can be given by the following theorem:

Theorem 2.1 ([69]) If WE− PAω + QF−AC + Π ` ∀x∃yA0(x, y), where x
and y are the only free variables in the quantifier-free A0, then there exists a
tuple of closed terms t of WE−HAω, such that WE−HAω +Π ` ∀xA0(x, tx).

An even more interesting modification is obtained when one combines the
functional interpretation with a mechanism that allows one to reason in bounds
instead of actual realizers. A requirement for this is some notion of monotonic-
ity in higher types which allows one to preserve bounds across applications of
functionals and therefore permits one to achieve modularity of bounds via the
modus ponens rule.

2.6 Majorizability and its combination with proof
interpretations

Definition 2.16 (W.A. Howard, [41]) We define x∗ majρ x for a finite type
ρ by induction on the type:

x∗ maj0 x := x∗ ≥ x,

x∗ majτ→ρ x := ∀y∗, y
(
y∗ majτ y → x∗(y∗) majρ x(y)

)
.

We will say that a class of functionals C is hereditarily majorized by another
class C∗ if for every functional F ∈ C there exists F ∗ ∈ C∗ such that F ∗ maj F .
We will also use the term “hereditarily self-majorized” for the classes that are
majorized by themselves.

Majorizability is closely linked with complexity. In fact, all the complexity
classes discussed in Section 2.2 are hereditarily self-majorized. Here we will
give a short proof of this fact for the class of the Basic Feasible Functionals
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following the proofs in [41] and [69] of the self-majorizability of the levels of
Gödel’s primitive recursive hierarchy and the Grzegorczyk higher-type hierar-
chy, respectively.

Theorem 2.2 For every functional F ∈ BFF there exists F ∗ ∈ BFF, such
that F ∗ maj F .

Proof. Σδ,ρ,τ and Πρ,τ are self majorizable, and for every poly-time function f
there exists a polynomial p with coefficients among the natural numbers, such
that f(x) ≤ 2p(|x|) = f∗(x). The right hand side of this inequality is a polytime
function for which ∀x∀y ≤ x

(
f∗(x) ≥ f∗(y) ≥ f(y)

)
, i.e. f∗ maj1 f . Define

R∗
bn(x, y, g, h) := h(x)

If x∗, y∗ ≥ x, y, g∗ maj0→0→0 g and h∗ maj1 h

R∗
bn(x∗, y∗, g∗, h∗) = h∗(x∗) ≥ h(x) ≥ Rbn(x, y, g, h),

which proves R∗
bn maj0→0→(0→0→0)→1→0 Rbn.

Now the theorem follows from the fact that t∗ majρ→τ t∧ s∗ majρ s implies
t∗s∗ majτ ts. 2

The monotone functional interpretation is obtained by combining the two
notions, replacing the construction of exact realizers in the soundness theorem
by the construction of their majorizers, which in some cases (such as the rule
A → A ∧ A) is a much simpler task. The soundness theorem of the monotone
functional interpretation gives rules to construct terms t∗, such that

∃x(t∗ maj x ∧ ∀yAD(x, y)).

In an existential statement the realizer is a constant, thus having a majorizer
for it simply gives us a bound. In a statement of the form ∀x ∈ N∃y ∈ N the
realizer of y is a function Y : N→ N and its majorizer is a monotone function
which is everywhere greater than Y , i.e. a complexity bound for Y .

The soundness theorem for monotone functional interpretation ([58]) is valid
for WE−HAω +AC +Mω + IP∀ + ∆, where ∆ is a set of sentences that have
the logical form ∀a∃b ≤ ra∀cB0(a, b, c) for some tuple of closed terms r, giving
us rules to extract majorizers t∗ such that WE−HAω+AC+∆ ` ∃x(t∗ maj x∧
∀y∀aAD(xa, y, a)) whenever WE−HAω +AC +Mω + IP∀ + ∆ ` A(a).

The main benefit of using the combination is that ineffective principles that
belong to the set ∆ have realizers in monotone functional interpretation which
allow us to use these principles in extracting computational information from
proofs that use them, namely bounds on the final results. One of these principles
is the Weak König’s Lemma (WKL) stating that every infinite binary tree has
an infinite branch. We will not detail the method which translates WKL to the
appropriate form here, the reader can refer to [55] for details.

As we did in the previous section, we can state a version of the soundness
theorem for the classical system WE− PAω applied to Π0

2 sentences:



2.7. Proof Mining and Analysis 29

Theorem 2.3 ([58]) Let τ be a type of level at most 2, ρ be an arbitrary finite
type, and s be a closed term of WE− PAω. If WE− PAω + QF−AC + ∆ `
∀x1∀y ≤ρ sx∃zτA0(x, y, z), where the only free variables in A0 are x, y and z,
then there exists a closed term t, such that WE−HAω + AC + ∆ ` ∀x∀y ≤ρ

sx∃zτ ≤τ txA0(x, y, z).

In the following section we will describe a concrete result achieved using this
mechanism.

2.7 Proof Mining and Analysis

Analysis is a very good candidate for Proof Mining, because a lot of informa-
tion is hidden in the use of real numbers as basic objects. When one speci-
fies the representations of real numbers as in Section 2.1, information that is
not obvious in a proof is exposed. Simple statements in analysis start to in-
volve quantifiers, for example the equality test x = y for x, y ∈ R becomes
∀n(|X(n) −Q Y (n)|Q <Q 2−(n−1), where X and Y are the representations of
the two numbers. Quantification over the real numbers becomes quantification
over the type-1 functions with an universal test.

If, for example, we apply this to a statement of the form

∀x, y ∈ R(f(x) = 0 ∧ f(y) = 0→ x = y) (2.5)

we transform the statement to

∀X1, Y 1(R(X) ∧ R(Y )→ (F (X) =R 0 ∧ F (Y ) =R 0→ X =R Y ))

(where F is a CF-representation of the function f and R(X) is true if X is a
CF-representation of a real number) and after we apply the definitions of =R
and R(x)

∀X1, Y 1((∀p∀q > p(|X(p)−Q X(q)|Q <Q 2−p ∧ |Y (p)−Q Y (q)|Q <Q 2−p))→
(2.6)

(∀n(|F (X)|R(n) <Q 2−n ∧ |F (Y )|R(n) <Q 2−n → ∀k(|X −R Y |)R(k) <Q 2−k))).

This statement is too complicated to gather any useful information from
its proof interpretation. However, one can avoid the external implication by
ensuring R(X) and R(Y ), or rather by finding a conversion which we will denote
by X̃ that makes sure that X̃ is a real number for every X1. By also ensuring
that X̃ =1 X whenever X is indeed a real number, we can make sure that role
of the quantifiers ∀X ∈ R and ∃Y ∈ R will be fulfilled by ∀X1, resp. ∃Y 1 and
substituting X̃ and Ỹ for X and Y .

The following computable10 functional implements the ·̃ operator:

f̃(k) =
{

f(k), if ∀n, n′ < k(|f(n)−Q f(n′)|Q <Q 2−n)
f(µm < k.[∃n, n′ < m(|f(n)−Q f(n′)|Q ≥Q 2−n)]), otherwise

(2.7)
10In fact, it is easy to see that the modification of this functional to sharp CF-computability

belongs to all complexity classes discussed in Section 2.2.
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When we apply the substitution to (2.5), we obtain the much more suitable
for proof mining form

∀X1, Y 1∀k∃n(|F (X̃)|(n) <Q 2−n ∧ |F (Ỹ )|(n) <Q 2−n → |X̃ − Ỹ |(k) <Q 2−k).
(2.8)

In fact, we may assume that the ·̃ operator is included in every operation
on real numbers, i.e. we can define e.g. X−R̃ Y := X̃−R Ỹ and F̃ (X) := F (X̃)
and just assume R̃ (resp. F̃ etc.) is used everywhere instead of R (resp. F ).

The statement (2.8) is a Π0
2 statement for which we know that we can find a

realizer for n as a function of X,Y and k. However, the form above talks about
the representations of the numbers, while in practice we would prefer to ignore
the actual representations and talk about how approximate a root a number
has to be in order to know that it is an approximation of the root. In other
words, we want to have the following version of the above statement:

∀X1, Y 1∀k∃n(|F (X)| <R 2−n ∧ |F (Y )| <R 2−n → |X −R Y | <R 2−k).

The latter would again complicate the structure too much, but we can ob-
serve that in the statement above any of the <R relations may be equivalently
substituted for their non-strict versions11. We may then change the compar-
isons, so that the prenexiation of both of them results in an existential quanti-
fier, i.e.

∀X1, Y 1∀k∃n(|F (X)| ≤R 2−n ∧ |F (Y )| ≤R 2−n → |X −R Y | <R 2−k). (2.9)

Exposing the hidden quantifiers in the latter statement gives us

∀X1, Y 1∀k∃n∃p∃q

(|F (X)|(p) <Q 2−n +Q 2−p ∧ |F (Y )|(p) <Q 2−n +Q 2−p

→ |X −R Y |(q) <Q 2−k +Q 2−q),

where we can choose to ignore the realizers of p and q (which would be quite
messy and tell us facts we do not need to know). As long as the comparisons
are of the form that matches the last quantifier in the statement, we can ignore
the representation details and analyze the proof up to the form (2.9), which in
fact gives us exactly what we want to know: the realizer of n in (2.9) is known
as a modulus of uniqueness for the root of the function F and can be obtained
from a proof of uniqueness of that root (see [56]).

If x is to come from a bounded interval [−b, b] of R we can apply the tech-
nique we used to avoid the test if X represents a real number to define X̂ to
convert all X1 to representations of numbers in the bounded set, also ensur-
ing that the encoding of X̂ is majorized by some function b∗ of b (see [56] for
details on the actual construction of ·̂ and b∗, or Chapter 5 for a very similar
construction).

11since x < 2−n → x ≤ 2−n → x < 2−(n−1), and ∀n(x < 2−(n−1)) is equivalent to
∀n(x < 2−n)



2.7. Proof Mining and Analysis 31

Using monotone functional interpretation and the fact that b∗ maj X̂ for all
X1 we will be able, for example, to obtain bounds for the above realizers that do
not depend on x at all, but only on the bound. Moreover, it would be possible
to analyze proofs that use non-effective principles such as the Weak König’s
Lemma by substituting computable bounds for the possibly non-computable
result of the application of the principle.

The latter appears in analysis in the following forms [104]:

• every uniformly continuous function attains its maximum on a compact
interval,

• every continuous function on a compact interval is uniformly continuous,

• every continuous function can be uniformly approximated by polynomials
of rational coefficients on a compact interval,

• the Heine-Borel theorem on [0, 1] (every covering by a sequence of open
intervals has a finite subcovering),

• Brouwer’s fixed point theorem (every continuous mapping of [0, 1]n to
itself has a fixed point),

• Schauder’s fixed point theorem for separable Banach spaces,

• Hahn-Banach theorem for separable Banach spaces,

• Cauchy-Peano existence theorem.

2.7.1 Abstract spaces

When one tries to extract computational content from proofs in analysis that
deal with a general class of spaces (such as e.g. metric spaces satisfying some
additional properties such as hyperbolic spaces, CAT(0) spaces etc.), sometimes
it is beneficial to abstract away the details about the space and its elements. To
do this, one can introduce a system that is based on a hierarchy of types built
upon two basic types, N andX whereX is the space in question. For the objects
of the class X we define a metric d : X → X → 1, which gives a representation
of a real number for the distance between two objects in X. We can then define
equality of objects in X as the defined notion x =X y := d(x, y) =R 0 and
equality in higher types as before.

Using the separation of X from the numeric types one can make a very
general framework for analysis, where the only computational information given
by objects of type X is the distance between such objects or (in a normed
space) the norm of the objects. In extracting bounds from such a framework in
a bounded space, one can completely replace any appearance of objects of the
space by a bound on the size of the space.

Indeed, U. Kohlenbach proves a series of metatheorems that guarantee cer-
tain numerical results can be achieved from a proof of a fact in certain logical
systems. One of the instances of these metatheorems applies to the setting of
bounded convex subsets of uniformly convex12 normed spaces, where the logical

12See Definition 2.18 below for a definition of the concept of uniform convexity.
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framework is given by the system Aω[X, ‖ · ‖, C, η], where Aω is a system for
analysis based on the extension of the classical system WE− PAω to the type
hierarchy over N and X, where equality in X is a defined notion. The system
includes the axiom of dependant choice, a function ‖ · ‖ : X → 1 that gives
the norm of objects in X as a representation of a real number, a characteristic
function χC for the bounded convex subset C and a modulus of uniform con-
vexity η. An axiom stating that the subset C is bounded by b ∈ Q is explicitly
included in the framework. The system Aω is powerful enough to formulate
most proofs in analysis.

Definition 2.17 A formula F is called ∀-formula (resp. ∃-formula) if it has
the form F ≡ ∀aσFqf (a) (resp. F ≡ ∃aσF0(a)) where aσ = aσ1

1 , . . . , a
σk
k , F0

does not contain any quantifier and the types in σi are N or C.

Theorem 2.4 ([67]) Let η be a constant of type 1, and τ = C,N → C or
C → C. s is a closed term of type 1→ 1 and B∀, C∃ are ∀- resp. ∃-formulas.
If the sentence

∀x1∀y ≤1 s(x)∀zτ
(
∀u0B∀(x, y, z, u)→ ∃v0C∃(x, y, z, v)

)
is provable in Aω[X, ‖ · ‖, C, η], then one can extract a computable functional
Φ : 1→ 0→ 1→ 0 of type level 2 in Sω such that

∀y ≤1 s(x)∀zτ
[
∀u ≤ Φ(x, b, η)B∀(x, y, z, u)→ ∃v ≤ Φ(x, b, η)C∃(x, y, z, v)

]
holds in any non-trivial (real) uniformly convex normed linear space (X, ‖ · ‖)
with convexity modulus η and any non-empty b-bounded convex subset C ⊂ X.
Instead of single variables x, y, z, u, v we may also have finite tuples of variables
x, y, z, u, v as long as the elements of the respective tuples satisfy the same type
restrictions as x, y, z, u, v.
Moreover, instead of a single premise of the form ‘∀u0B∀(x, y, z, u)’ we may
have a finite conjunction of such premises.

This theorem is applicable to recent theorems in fixed-point theory dealing
with the convergence of Krasnoselski-Mann iterations of asymptotically quasi-
nonexpansive mappings. Before we analyze how it can be applied, we will give
a very short introduction to the subject.

2.7.2 Nonexpansive self-mappings and Krasnoselski iterations

In fixed point theory (for an introduction, see [46]), two basic theorems stand on
opposite sides of the spectrum, Schauder’s and Banach’s fixed point theorems.

Theorem 2.5 (Schauder’s fixed point theorem) Let K be a nonempty com-
pact convex subset of a Banach space X, and suppose f : K → K is continuous.
Then f has at least one fixed point.

(This theorem is a generalization of Brouwer’s fixed point theorem to arbitrary
Banach spaces.)
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Theorem 2.6 (Banach’s contraction mapping principle) Let (X, d) be a
non-empty complete metric space. Let f : X → X be a contraction (i.e. Lip-
schitzian function with constant q < 1). Then f has a unique fixed point
x̃ in X and for each x ∈ X, limn→∞ fn(x) = x̃. Moreover, d(fn(x), x̃) ≤
qn

1−qd(f(x), x).

The latter applies to a very restricted class of functions, but gives com-
putable iterative procedure and a computable bound for the construction of
the fixed point, while the former applies to a very large class of functions, but
gives no indication of procedure for computing a fixed point. Furthermore, as
we already mentioned in Section 2.1, even for R2 and the square [0, 1] × [0, 1]
there exist computable real functions without a computable fixed point ([91]).
In [103] it is shown that Schauder’s fixed point theorem is equivalent in com-
plexity to the Weak König’s Lemma.

When we try to consider an extension of the class of functions for which
we can construct procedures to find a fixed point to the class of nonexpansive
mappings (with Lipschitz constant 1) we run into three major problems:

• the space has to be bounded, otherwise mappings such as f : R →
R, f(x) := x+ 1 do not have fixed points;

• if a fixed point exists, it may be not unique, e.g. f : [0, 1]→ [0, 1], f(x) :=
x.

• even in the case of unique fixed points, the Banach iterative procedure will
possibly not lead to it. For example, consider f : [0, 1] → [0, 1], f(x) :=
1− x on the unit interval of the reals: it has the unique fixed point 1/2,
but the iterative procedure started at 0 will keep oscillating between 0
and 1.

Some algebraic structure for the space is needed to obtain results in this case,
thus we replace arbitrary metric spaces by normed ones. The first results in
that part of the field use a condition on normed spaces called uniform convexity :

Definition 2.18 ([11]) A normed linear space (X, ‖ · ‖) is uniformly convex if

∀ε > 0∃δ > 0∀x, y ∈ X(‖x‖, ‖y‖ ≤ 1 ∧ ‖x− y‖ ≥ ε→ ‖1
2
(x+ y)‖ ≤ 1− δ)

A function η : (0, 2]→ (0, 1] providing such δ for a given ε is called a modulus
of uniform convexity.

An example of uniformly convex space is the space R2 with the ordinary
Euclidean norm (with η(ε) = ε2/8); a space that is not uniformly convex is
again R2, but with the norm ‖(x1, x2)‖ = max(|x1|, |x2|), because one can pick
two different points in the unit ball (which in this case looks geometrically as a
square), whose convex combination does not lie in the interior of the ball.

With this definition in place the following theorem gives us a procedure to
find a fixed point:
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Theorem 2.7 (Krasnoselski, [71]) Let K be a non-empty convex compact
set in a uniformly convex Banach space (X, ‖ · ‖) and f a nonexpansive self-
mapping of K. Then for every x0 ∈ K, the sequence

xk+1 =
xk + f(xk)

2

converges to a fixed point z ∈ K of f .

For example, the very first Krasnoselski iteration started at 0 finds the fixed
point of the function f(x) = 1− x above.

This type of result has been focus of much attention and generalizations
of Krasnoselski’s theorem have been given in a number of ways, which will
be discussed below. Additionally, Ishikawa [42] gives a proof of the statement
without a requirement for uniform convexity of the space, but for the generalized
classes of mappings all results rely on this property (see [27]). Browder and
Petryshyn, on the other hand, realize that the compactness of K is not required
if we restrict the result to the so-called “asymptotic regularity” of the sequence
xn, i.e. the fact that ‖xn − f(xn)‖ → 0 (one of the uses of compactness in the
theorem is the finding of a fixed point through Schauder’s theorem which can be
replaced by an application of a result by Browder, Göhde and Kirk [8, 30, 47],
and the other use of compactness is required to imply the convergence of the
sequence (xn) given its asymptotic regularity, which cannot be avoided):

Theorem 2.8 ([9]) Let K be a non-empty convex closed and bounded set in a
uniformly convex Banach space (X, ‖ · ‖) and f a nonexpansive self-mapping of
K. Let λ ∈ (0, 1). Then for every x0 ∈ K, the iteration

xi+1 = (1− λ)xi + λf(xi)

satisfies
‖xn − f(xn)‖ → 0.

Although this result does not give a fixed point of the function f , it still
gives one approximate fixed points, which can be argued to be sufficient in
practice. However, the actual computable information given by Kransoselski’s
result is nothing more than what is given by the statement above, because it
does not give us any computable procedure to construct the fixed point (see [68]
for a counterexample). Since Krasnoselski’s theorem applies to a very restricted
class of spaces, results closer to 2.8 are clearly better to analyze for additional
computable information.

More general classes of functions for which we know that some form of
the Krasnoselski iterations is asymptotically regular are given by the following
classes.

Definition 2.19 ([26]) f : C → C is said to be asymptotically nonexpansive
with sequence (kn) ∈ [0,∞)N if lim

n→∞
kn = 0 and

‖fn(x)− fn(y)‖ ≤ (1 + kn)‖x− y‖, ∀n ∈ N,∀x, y ∈ C.
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Example 2.1 (taken from [26]) : Let B is the unit ball in the Hilbert space
l2 and let f be defined as

f((x1, x2, x3, . . .)) = (0, x2
1, A2x2, A3x3, . . .)

where Ai is a sequence of numbers 0 < Ai < 1 such that
∏∞

i=2Ai = 1/2.
Then F is Lipschitzian with ‖f(x) − f(y)‖ ≤ 2‖x − y‖, x, y ∈ B; moreover,
‖f i(x)− f i(y)‖ ≤ 2

∏i
j=2Aj‖x− y‖ for i = 2, 3, . . .. Thus

lim
i→∞

ki = lim
i→∞

2
∞∏

j=2

Aj − 1 = 0.

Thus f is asymptotically nonexpansive, but clearly not nonexpansive.

Definition 2.20 ([18]) f : C → C is quasi-nonexpansive if

‖f(x)− p‖ ≤ ‖x− p‖, ∀x ∈ C,∀p ∈ Fix(f).

Example 2.2 (taken from [18]) f : R→ R,

f(x) =
{

0, if x = 0
(x/2) sin(1/x), otherwise .

The only fixed point is f(0) = 0, and ‖f(x)−f(0)‖ = ‖f(x)‖ ≤ ‖x/2‖ ≤ ‖x−0‖.
On the other hand, ‖f( 2

3π )− f( 1
2π )‖ = 1

3π >
1
6π = ‖ 2

3π −
1
2π‖. Hence f is quasi-

nonexpansive, but not nonexpansive.

A logical combination that covers both definitions above is the notion of
asymptotically quasi-nonexpansive mappings:

Definition 2.21 f : C → C is asymptotically quasi-nonexpansive with se-
quence kn ∈ [0,∞)N if lim

n→∞
kn = 0 and

‖fn(x)− p‖ ≤ (1 + kn)‖x− p‖, ∀n ∈ N,∀x ∈ X, ∀p ∈ Fix(f). (2.10)

The literature uses a more generalized scheme for iterations known as Krasnoselski-
Mann iterations:

Definition 2.22 (Krasnoselski-Mann iterations)

x0 := x ∈ C, xn+1 := (1− λn)xn + λnf(xn), λi ∈ [0, 1]

The form used for asymptotically nonexpansive mappings replaces f(xn) by
fn(xn) (see e.g. [101]). Additionally, one can account for errors in the compu-
tation by including an error term and define the Krasnoselski-Mann iterations
with error terms (introduced in [114]):

x0 := x ∈ C, xn+1 := αnxn + βnf
n(xn) + γnun,

where αn, βn, γn ∈ [0, 1] with αn + βn + γn = 1 and un ∈ C for all n ∈ N.
Finally, we define an additional property which is often needed to treat

asymptotically non-expansive mappings:

Definition 2.23 ([101]) f : C → C is said to be uniformly λ-Lipschitzian
(λ > 0) if

‖fn(x)− fn(y)‖ ≤ λ‖x− y‖, ∀n ∈ N,∀x, y ∈ C.



36 Chapter 2. Context

2.7.3 Application

A result that combines all the generalizations from above can be given by the
following theorem (which combines the results of a series of recent papers, see
[94, 114, 101] and most closely [96]):

Theorem 2.9 Let (X, ‖ · ‖) be a uniformly convex (real) normed linear space
and C be a bounded convex subset of X. Let k ∈ N and αn, βn, γn ∈ [0, 1]
such that 1/k ≤ βn ≤ 1 − 1/k, αn + βn + γn = 1 and

∑
γn < ∞. Let f :

C → C be a uniformly Lipschitz continuous function which is asymptotically
quasi-nonexpansive and has at least one fixed point. Define

x0 := x ∈ C, xn+1 := αnxn + βnf
n(xn) + γnun,

where (un) is a bounded sequence in C. Then the following holds:

‖xn − f(xn)‖ → 0.

Assuming the compactness of C the condition of having a fixed point is
directly satisfied by Schauder’s theorem. In a more general context where the
space is Banach and C is closed in addition to being convex and bounded,
but the mappings are restricted to asymptotically non-expansive, a fixed point
can be shown to exist by Goebel and Kirk’s fixed point theorem [26], which
relies on the uniform convexity of the space. The given form encompasses both
cases, and also allows one to weaken the requirements as we will see below.
Additionally, not aiming for a fixed point of the function (which as we already
mentioned is not possible to find computably) but settling for the asymptotic
regularity of (xn) allows us to treat X as an abstract space and use the ideas of
the section to restrict the appearance of objects in X in the extracted bounds
only as bounds on the size of the space.

To apply any quantitative reasoning, we must make explicit the various
hidden bits of information in the statement. The uniform Lipschitz continuity
requires a number l such that ∀n∀x, y ∈ C(‖fn(x) − fn(y)‖ ≤ l‖x − y‖). The
asymptotic quasi non-expansiveness requires a sequence (kn) which satisfies
(2.10) together with a boundK for

∑∞
n=0 ki. Additionally, we ask for an explicit

bound b on the size of the convex subset C, u on the norm of the error sequence
(un), and E on

∑∞
n=0 γn.

The statement of Theorem 2.9 can be given as the following logical state-
ment:

∀f : C → C∀k ∈ N∀(kn) : N→ [0, 1]∀(αn), (βn), (γn) : N→ [0, 1]∀(un) : N→ C

∀l ∈ Q+∀b ∈ Q+∀u ∈ Q+∀E ∈ Q+(A→ B)

where A is the conjunction of the following conditions:

A1 : ∀n(1/k ≤R βn ≤R 1− 1/k)

A2 : ∀n(
n∑

i=0

kn ≤R K)
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A3 : ∀n(
n∑

i=0

γn ≤R E)

A4 : ∀n(‖un‖ ≤R u)

A5 : ∀n∀x, y ∈ C(‖fn(x)− fn(y)‖ ≤R l‖x− y‖)

A6 : ∀n(αn + βn + γn =R 1)

A7 : ∃p(‖f(p)− p‖ =R 0)

A8 : ∀n∀p, x ∈ C(‖f(p)− p‖ =R 0→ ‖fn(x)− fn(p)‖ ≤R (1 + kn)‖x− p‖)

and B is the statement

∀q∃n∀m > n(‖xm − f(xm)‖ ≤R 2−q). (2.11)

In fact A6 is not necessary, because we can entirely omit it by using sub-
stitute sequences β̃n = βn, γ̃n = max(γn, 1 − β̃n), α̃n = 1 − β̃n − γ̃n in order to
force the sum to be always 1 without affecting the truth of the other conditions
involving (γn) and (βn). There are hidden quantifiers in the comparisons above,
but they are all ∀-statements, thus they do not add up to the logical complexity
of the formula with the exception of the premise in A8. In fact that statement
is incompatible with Theorem 2.4 and we cannot change it using one of the
tricks discussed in previous sections to put it in the proper logical form.

Instead, we can observe that the proof of Theorem 2.9 (implicitly given
in the analysis in Chapter 4) does not use quasi-nonexpansiveness in its full.
We can prove a slightly modified version of the theorem which only requests
the function to be asymptotically non-expansive with respect to only a certain
fixed point of the function. This lets us replace A8 with a weaker form of
quasi-nonexpansiveness that applies only to some fixed point of the function:

Definition 2.24 A function f : C → C is called asymptotically weakly quasi-
nonexpansive if it satisfies

∃p ∈ C∀n∀x ∈ C(‖f(p)− p‖ =R 0 ∧ ‖fn(x)− fn(p)‖ ≤R (1 + kn)‖x− p‖).

This form also absorbs A7 and allows us to pull ∃p ∈ C to the list of universal
quantifiers in front of the implication, leaving a ∀-statement for the premise.
Because quasi-nonexpansiveness is used only in cases where the existence of a
fixed point is additionally present, this notion is weaker. It is also more general
(e.g. the function x2 : [0, 1] → [0, 1] is only quasi-nonexpansive in the weak
sense), but appears to be sufficient to carry out many results. Shortly after
the appearance of [66], the same notion appears in an equivalent form as “J-
type” mappings in [24] where the relevant fixed point of the function is called
a “center” (see also [25]).

With this change the theorem we analyze assumes the following form:

Theorem 2.10 Let (X, ‖ · ‖) be a uniformly convex (real) normed linear space
and C be a bounded convex subset of X. Let k ∈ N and αn, βn, γn ∈ [0, 1] such
that 1/k ≤ βn ≤ 1− 1/k, αn + βn + γn = 1 and

∑
γn < ∞. Let f : C → C be
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a uniformly Lipschitz continuous function which is asymptotically weakly quasi
non-expansive. Define

x0 := x ∈ C, xn+1 := αnxn + βnf
n(xn) + γnun,

where (un) is a bounded sequence in C. Then the following holds:

‖xn − f(xn)‖ → 0.

It remains to handle the conclusion. It is a Π0
3 statement of convergence,

which we cannot directly use in an application of Theorem 2.4. However, once
we observe that changing the non-strict comparison in it to a strict version
does not change the meaning of the statement, and replace it with its Herbrand
Normal Form

∀q∀M1∃n(‖xn+M(n) − f(xn+M(n))‖ <R 2−q),

we obtain a statement which does have the necessary structure to allow a uni-
versal quantifier to be pulled out of the implication to leave the ∃-statement as
the conclusion.

After these changes the theorem

∀f : C → C∀p ∈ C∀s ∈ [0, 1]N∀(un) ∈ CN∀b ∈ Q∀q0∀M1

(A1∧ . . .∧A5∧‖f(p)−p‖ =R 0∧∀n∀x ∈ C(‖fn(x)−fn(p)‖ ≤R (1+kn)‖x−p‖)

→ ∃n(‖xn+M(n) − f(xn+M(n))‖ <R 2−q))

(where we have shorthanded the list of [0, 1] sequences by s and the list of
bounds by b) has the necessary logical form to apply Theorem 2.4. We are
guaranteed to achieve bounds on both the existential statement in the conclu-
sion, a quantitative result which allows us to find a bound on the time it takes
to reach an approximate fixed point of f , and on a selection of the universal
statements in the premise, which can be used to obtain a qualitative strength-
ening of the result by relaxing the condition on p being a fixed point by the
availability of arbitrarily precise approximate fixed points.

The metatheorem 2.4 guarantees that we can find a functional Φ primitive
recursive in the sense of Gödel such that

∀f : C → C∀p ∈ C∀s ∈ [0, 1]N∀(un) ∈ CN∀b ∈ Q∀q0∀M1

(A1 ∧ . . . ∧A5 ∧ ∀n ≤ Φ(q,M, b)|‖f(p)− p‖(n)| <Q 2−n∧

∀n∀x ∈ C(‖fn(x)− fn(p)‖ ≤R (1 + kn)‖x− p‖)

→ ∃n ≤ Φ(q,M, b)(‖xn+M(n) − f(xn+M(n))‖ <R 2−q))

holds. The bound Φ does not depend on the bounded parameters s, but only on
some of their features given as bounds in b. Moreover, the bound is completely
uniform in f as long as it satisfies the requirements, and in p, which in particular
lets us formulate a stronger version of the original theorem13:

13using the classical step of recovering ‖xn − f(xn)‖ → 0 from its HNF
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Theorem 2.11 Let (X, ‖ · ‖) be a uniformly convex (real) normed linear space
and C be a bounded convex subset of X. Let k ∈ N and αn, βn, γn ∈ [0, 1] such
that 1/k ≤ βn ≤ 1 − 1/k, αn + βn + γn = 1 and

∑
γn < ∞. Let f : C →

C be a uniformly Lipschitz continuous function which has arbitrarily precise
approximate fixed points pε for all ε > 0, such that

∀n∀x ∈ C(‖fn(x)− fn(pε)‖ ≤R (1 + kn)‖x− pε‖).

Define
x0 := x ∈ C, xn+1 := αnxn + βnf

n(xn) + γnun,

where (un) is a bounded sequence in C. Then the following holds:

‖xn − f(xn)‖ → 0.

In case the mapping is asymptotically nonexpansive, this version no longer
requires Goebel and Kirk’s fixed-point theorem. Instead, one can use much
simpler reasoning to satisfy the conditions of this theorem (Lemma 4.6) which
is also true for incomplete normed spaces and does not require the subset C to
be closed.

The actual extraction of the bound can be done automatically if we have a
completely formalized proof of the theorem in the system in Aω[X, ‖ · ‖, C, η],
but in practice it is easier to perform the bound extraction by hand using
the proof of the metatheorem as guidance, rather than trying to formalize the
theorem. The extraction is performed in Chapter 4, where we achieve all that
the metatheorem predicts, and even the following stronger result, which does
not require boundedness of the whole subset C:

Theorem 2.12 Let X, x, (xn), (αn), (βn), (γn), (un) be as above. Let C be a
convex subset of X and f : C → C be uniformly l-Lipschitzian and

∀ε > 0∃pε ∈ C

 ‖f(pε)− pε‖ ≤ ε ∧
‖pε − x‖ ≤ d ∧
∀y ∈ C∀n (‖fn(y)− fn(pε)‖ ≤ (1 + kn)‖y − pε‖)

 (2.12)

where d ∈ Q∗
+, kn ∈ R+ and also

∑∞
n=0 kn ≤ K ∈ Q+.

Let 1/k ≤ βn ≤ 1 − 1/k for some k ∈ N,
∑∞

n=0 γn ≤ E ∈ Q+, and (un) be
bounded with ‖un − x‖ ≤ u ∈ Q+.

Then

∀δ ∈ (0, 1]∀g : N→ N∃n ≤ Φ∀m ∈ [n, n+ g(n)] (‖xm − f(xm)‖ ≤ δ)

where Φ = Φ(K,E, u, k, d, l, η, δ, g) and

Φ(K,E, u, k, d, l, η, δ, g) = hi(0)
h = λn.(g(n+ 1) + n+ 1)
i =

⌊
3(5KD+6E(U+D)+D)k2

εη(ε/(D(1+K)))

⌋
D = eK(d+ EU)
U = u+ d
ε = δ/(2(1 + l(l + 1)(l + 2))).
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While in other cases of proof extraction from similar theorems one can obtain
a realizer for the full statement of convergence (for example, using monotonicity
of ‖xn−f(xn)‖, see [61]), this does not appear to be the case here. Still the HNF
of the statement is sufficient to obtain useful information, such as a bound on
the number of iterations we need to perform in order to obtain an approximate
fixed point of the mapping f by using λn.0 for the parameter g (Corollary 4.6).

The weak form of asymptotical quasi-nonexpansiveness is essential to ob-
taining the form (2.12). Trying to weaken the stronger notion to approximate
fixed points leads to much stronger conditions which, unlike (2.12), are not
satisfied by the conditions of Theorem 2.11 or 2.9. Naturally, the metatheorem
does not allow this.

2.7.4 Refined Metatheorems

The actual extraction of the bound provides a more general result than what
Metatheorem 2.4 predicts. Subsequently, by defining majorizability in the space
X parametrized by an element of the space, Gerhardy and Kohlenbach [25]
give refined versions of the set of metatheorems that replace the requirements
for boundedness of the convex set (by dropping the axiom stating that C is
bounded, which is denoted by the index −b in the designation of the formal
system below) with a local version that only accounts for the distances between
the elements used in the definition of the theorem. The definition of generalized
strong majorizability that allows this result is the following:

Definition 2.25 ([25], Definition 3.3) We define the relation &a
ρ between

objects x, y, a of type ρ̂, ρ and X respectively (where ρ̂ is obtained from ρ by
replacing all instances of X with 0) by induction on ρ as follows:

x0 &a
0 y

0 := x ≥N y,

xX &a
X yX := x ≥R dX(y, a),

x &a
ρ→τ y := ∀z′, z(z′ &a

ρ z → xz′ &a
τ yz) ∧ ∀z′, z(z′ &a

ρ̂ z → xz′ &a
τ̂ xz).

In case the subject theorem deals with normed spaces, the 0 used implicitly
by the norm operation must also be accounted for, thus the above operation
is used relative to the point a := 0. The following theorem can now correctly
predict the conditions from which a computable realizer of the HNF of the
statement of asymptotic regularity can be given:

Theorem 2.13 (instance of Theorem 6.3 of [25]) Let η be a constant of
type 1, and τ = C,N → C or C → C. s is a closed term of type 1 → 1 and
B∀, C∃ are ∀- resp. ∃-formulas.
If the sentence

∀x1∀y ≤1 s(x)∀zτ
(
∀u0B∀(x, y, z, u)→ ∃v0C∃(x, y, z, v)

)
is provable in Aω[X, ‖·‖, C, η]−b, then one can extract a computable functional14

Φ : 1→ 1→ 1→ 0 of type level 2 such that

∀y ≤1 s(x)∀zτ∀z∗ &0
τ z

14The second argument to Φ is of type τ̂ , which in this case is at most type 1.
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[
∀u ≤ Φ(x, z∗, η)B∀(x, y, z, u)→ ∃v ≤ Φ(x, z∗, η)C∃(x, y, z, v)

]
holds in any non-trivial (real) uniformly convex normed linear space (X, ‖ · ‖)
with convexity modulus η and any non-empty convex subset C ⊆ X.
Instead of single variables x, y, z, u, v we may also have finite tuples of variables
x, y, z, u, v as long as the elements of the respective tuples satisfy the same type
restrictions as x, y, z, u, v.
Moreover, instead of a single premise of the form ‘∀uNB∀(x, y, z, u)’ we may
have a finite conjunction of such premises.

Only one detail in the actual realizers is not directly ensured by this refined
metatheorem, the fact that the realizers depend only on bounds on the distances
between the objects involved instead of bounds on their norm. Since the normed
space X allows one to talk about the norm of separate elements, if one is to
treat completely generic proofs dealing with normed spaces, one cannot avoid
requesting a bound for the norm of the points in the space involved in the
definition of the theorem.

In fact, Theorem 2.11 requires X to be a normed space only to formulate
uniform convexity. The fact that the latter and the norm operation are only
used on differences between two elements in the space is the reason why our
manual bound extraction does not require a bound for the size of one of the
elements used in the definition (in this case the most obvious choice is a bound
on x). It is very probable that the theorem can be stated for a hyperbolic space
which satisfies Machado’s axioms that characterize convex subsets of normed
spaces [79], in which case a different metatheorem ([25], 4.10) would apply and
ensure that the realizers depend on only the distances between the objects used
in the definition of Theorem 2.11.
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Chapter 3

Rates of convergence of recursively defined

sequences

This chapter is a reprint of [76], “Rates of convergence of recursively defined
sequences”, Proceedings of the 6th Workshop on Computability and Complexity
in Analysis (CCA 2004), Electronic Notes in Theoretical Computer Science,
Volume 120 (2005), pp. 125-133.

Abstract

This paper gives a generalization of a result by Matiyasevich which
gives explicit rates of convergence for monotone recursively defined se-
quences. The generalization is motivated by recent developments in fixed
point theory and the search for applications of proof mining to the field. It
relaxes the requirement for monotonicity to the form xn+1 ≤ (1+an)xn+bn
where the parameter sequences have to be bounded in sum, and also pro-
vides means to treat computational errors.

The paper also gives an example result, an application of proof mining
to fixed point theory, that can be achieved by the means discussed in the
paper.

3.1 Introduction

In classical mathematics many interesting results are based on the fact that

every bounded monotone sequence of real numbers converges to a finite limit.
(3.1)

Unfortunately, this fact is not reflected constructively, i.e. there is no the-
orem letting us compute the speed of the convergence of the sequence which
would be needed to compute the limit. Moreover, as shown by Specker in
[106], it is possible to construct computable monotone sequences whose limit is
non-computable, thus finding the speed is even impossible in certain cases.

If we are interested in extracting effective data from a proof that uses this
fact, this imposes a significant problem. Since we do not have a constructive
analog for it, we would generally be unable to continue past an application
of it. The quantitative information hidden within the proof may thus seem
inaccessible.

43
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Sometimes it is possible to bypass this problem using (constructively) weak-
ened versions of the statement of convergence like its Herbrand Normal Form
(HNF):

∀k ∈ N∀g : N→ N∃n(g(n) ≥ n→ |xn − xg(n)| ≤ 2−k). (3.2)

This modification is not strong enough to allow the Specker examples, and
we even have a solution for the general theorem in the form of a functional (for
u ≤ xi ≤ xi+1 ≤ v for all i)

H(u, v, k, g, x) ≡ µi ≤ (v − u)2k
(
gi(0) < gi−1(0) ∨ |xgi−1(0) − xgi(0)| ≤ 2−k

)
.

(3.3)
By certain proof-theoretic techniques (a combination of negative translation

and an appropriate so-called monotone version of Gödel’s functional interpre-
tation, see [58]) one can show that in extracting bounds from proofs based on
(3.1) it is sufficient to maintain bounds for (3.2) throughout the proof if the con-
clusion has a sufficiently simple logical form or is weakened accordingly. This
is due to the fact that having a bound on (3.2) is nothing else than having a
realizer for the monotone functional interpretation of the negative translation
of (3.1).

The weakened form may be sufficient to get a full rate of convergence. E.g.
[61] treats a proof in fixed point theory that uses the fact (3.1), but does not
require its full power as even an instance of its HNF with g(n) = n+ 1 suffices
to yield the final result. In other cases (e.g. [66]) the weakened form appears
in the final result, but may be sufficient to extract valuable information.

However, this approach does not always give the needed answer. It is thus
interesting to investigate whether other approaches can resolve the ineffectivity
caused by the use of this fact without weakening it. Naturally, these would rely
on additional information about the converging sequence.

An approach to handling this problem was taken by Matiyasevich in [81].
He addressed the question of the convergence of a bounded monotone sequence
which is defined recursively. It is known that if a diagonalization of the function
that defines the recursion has a unique root in the interval where the sequence
lies, then the sequence converges to that root. Matiyasevich proved the follow-
ing theorem:

Theorem 3.1 Let (xn) be a non-decreasing sequence of real numbers from the
segment [u, v] and let F be a uniformly continuous function defined on all r real
numbers 〈y1, y2, . . . , yr〉 such that u ≤ y1 ≤ y2 ≤ . . . ≤ yr ≤ v with modulus of
continuity ω, i.e.

∀k∀x0 ≤ x1 ≤ . . . ≤ xr−1 ∈ [u, v]∀y0 ≤ y1 ≤ . . . ≤ yr−1 ∈ [u, v](∧r−1
i=0 |xi − yi| < 2−ω(k) → |F (x0, x1, . . . xr−1)− F (y0, y1, . . . yr−1)| < 2−k

)
.

(3.4)
If F (xk, xk+1, . . . , xk+r−1) = 0 for every k, and moreover, the equation F (x, x,
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. . . , x) = 0 has a unique root with a “modulus of uniqueness”1 η, i.e.

∀k∀x, y ∈ [u, v](
(|F (x, x, . . . x)| < 2−η(k) ∧ |F (y, y, . . . y)| < 2−η(k))→ |x− y| < 2−k

)
,
(3.5)

then
∀k∀m > φ(k)(|xm − xφ(k)| ≤ 2−k),

where φ(k) = 2(r − 1)(v − u)2ω(η(k)).

In Section 3.2 we give an example for an application of this result to a
theorem in fixed point theory.

The main subject of this paper is to treat a generalization of this result of
Matiyasevich where the sequences do not need to be monotone. They need to
satisfy the inequality xn+1 ≤ (1 + an)xn + bn, where (an) and (bn) are non-
negative and bounded in sum. We would call such sequences almost monotone.

The convergence of sequences satisfying this inequality, introduced by Qi-
hou in [94], finds wide use in fixed point theory in recent papers ([66, 94, 96]
among others) to treat Krasnoselski-Mann iterations of asymptotically quasi-
nonexpansive mappings with error terms. The form of the inequality reflects
the most current iterative schemes used to treat asymptotically non-expansive
functions (introduced in [101]) via the (an) term and also allows for computa-
tional errors in the evaluation of the schemes ([114]) via the (bn) term.

Error terms are also interesting for recursively-defined sequences, as e.g.
computations with computers often introduce errors which can be arbitrarily
reduced by increasing the computational precision but never completely elimi-
nated. One would be interested whether a computation of a recursive sequence
can start at a low precision and be subsequently refined to achieve the correct
final result.

It turns out that it can, provided that the condition on the sequence being
almost monotone can be preserved.

The main theorem to be proved in Section 3.3 gives an explicit rate for the
convergence of almost monotone recursively-defined sequences, for which moduli
of the kind (3.4) and (3.5) can be found. The result also allows computational
error, and is uniform in the sense that it only reflects the sequence and recursive
definition through a selection of parameters, and is thus applicable to the full
range of functions that satisfy the same parameters.

3.2 Application of Matiyasevich’s result to fixed point
theory

In [38] Hillam proved the following generalization of Krasnoselski’s Theorem on
the real line:

1this term was introduced in [56] in a much more general context. Special forms such
moduli also occur in numerical analysis (notably in approximation theory) under the name of
strong unicity
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Theorem 3.2 Let f : [u, v] → [u, v] be a function that satisfies a Lipschitz
condition with constant L. Let x0 in [u, v] be arbitrary and define xn+1 = (1−
λ)xn +λf(xn) where λ = 1/(L+1). If (xn) denotes the resulting sequence, then
(xn) converges monotonically to a point z in [u, v] where f(z) = z.

Hillam proves this statement using three cases:

• ∃n.f(xn) = xn: since ∀m > n(xm = xn = f(xn)), the sequence converges
to xn. In the treatment that follows we will allocate this case to one of
the others;

• f(x0) > x0: by the continuity of f there exists a fixed point between x0

and v and then the sequence increases monotonically and is bounded from
above by that fixed point2, therefore by (3.1) it converges;

• f(x0) < x0 is analogous to the previous.

After that with a simple triangle inequality he proves that the point to which
the sequence converges is a fixed point of f .

Suppose that in addition to the conditions in Theorem 3.2 we know that the
mapping has a unique fixed point with modulus of uniqueness η. Then, using
Matiyasevich’s result, we can formulate the following theorem:

Theorem 3.3 Let f : [u, v] → [u, v] be a function that satisfies a Lipschitz
condition with constant L. Let f have a unique fixed point within [u, v] with
a modulus of uniqueness η. Let x0 in [u, v] be arbitrary and define xn+1 =
(1− λ)xn + λf(xn) where λ = 1/(L+ 1). Then the following is true:

∀k
(
|xφ(k) − f(xφ(k))| ≤ (L+ 1)2−k ∧ ∀m > φ(k)(|xm − xφ(k)| ≤ 2−k)

)
,

(i.e. the sequence converges with rate of convergence φ and its limit is a fixed
point of f) where φ(k) = 2(v − u)2η(k+dlog2(L+1)e).

Proof. Let F (y1, y2) = (1− λ)y1 + λf(y1)− y2. Since λL ≤ 1 this function has
a Lipschitz constant 1 and thus a modulus of continuity ωF (k) = k.

F (y, y) = λ(f(y)− y) and thus we can infer that the solution to F (y, y) = 0
has a modulus of uniqueness ηF (k) = η (k + dlog2(L+ 1)e).

By Matiyasevich’s theorem any monotone sequence within [u, v] defined
recursively by F converges with rate φ(k).

Suppose f(x0) ≥ x0. By Hillam’s proof either x0 < x1 < . . . < p where p
is a the least fixed point of f greater than x0, or there exists an n, such that
x0 < . . . < xn = . . . = p. In either case (xn) is monotonically increasing and
bounded from above by p. Alternatively, if f(x0) ≤ x0, by the same reasoning
(u+ v− xn) is monotonically increasing and bounded from above by u+ v− p.

In both cases the sequence is monotonically increasing and bounded within
[u, v], hence Matiyasevich’s result applies and therefore

∀k∀m > φ(k)
(
|xm − xφ(k)| ≤ 2−k

)
.

2see the details in [38]
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It remains to show that the point it converges to is a fixed point. Let k be
arbitrary and n = φ(k):

|xn − f(xn)| ≤ |xn − xn+1|+ |(1− λ)(xn − f(xn))|,

thus
|xn − f(xn)| ≤ 1

λ
|xn − xn+1| ≤ (L+ 1)2−k.

2

3.3 Almost monotone recursive sequences

We will start with an investigation into some of the properties of almost monotone
sequences:

Lemma 3.1 Let (xn) be a sequence of non-negative real numbers such that

xn+1 ≤ (1 + an)xn + bn (3.6)

where 0 ≤ an, bn.
Then for any m and n

xn+m ≤ (xn +
m−1∑
j=0

bn+j) · e
P m−1

j=0 an+j , (3.7)

and if additionally
∑∞

i=0 ai ≤ A ∈ R and
∑∞

i=0 bi ≤ B ∈ R, then

∀n(0 ≤ xn ≤ (x0 +B)eA). (3.8)

Proof. By induction we can show for any n,m ∈ N

xn+m ≤ xn ·
m−1∏
j=0

(1 + an+j) +
m−1∑
i=0

bn+i ·
m−1∏

j=i+1

(1 + an+j)

and also (by the arithmetic-geometric mean inequality)

m−1∏
j=0

(1 + an+j) ≤ (1 +

∑m−1
j=0 an+j

m
)m ≤ e

P m−1
j=0 an+j .

Combining them yields (3.7), and (3.8) is an instance of this inequality with
n ≡ 0. 2

In this main result, we generalize Matiyasevich’s result by extending the
class of sequences to almost monotone ones and introducing computational
error. Note that, even though we define the error sequence (cn) separately, it
will usually be reflected in the parameters (an) and (bn) as well.



48 Chapter 3. Rates of convergence of recursively defined sequences

Theorem 3.4 Let (xn) be a sequence of non-negative real numbers such that

xn+1 ≤ (1 + an)xn + bn

and
|F (xn, xn+1, . . . , xn+r−1)| ≤ cn,

where (an), (bn), (cn) are sequences that satisfy

0 ≤ an,

∞∑
i=0

ai ≤ A ∈ R,∀k∀m > α(k)(am < 2−k),

0 ≤ bn,
∞∑
i=0

bi ≤ B ∈ R,∀k∀m > β(k)(bm < 2−k).

0 ≤ cn,∀k∀m > γ(k)(cm < 2−k)

for some A,α,B, β and γ.
Let d = (x0 + B)eA and F be uniformly continuous on [0, d] with modulus

ω, i.e.

∀k∀x0, x1, . . . , xr−1 ∈ [0, d]∀y0, y1, . . . yr−1 ∈ [0, d](∧r−1
i=0 |xi − yi| < 2−ω(k) → |F (x0, x1, . . . xr−1)− F (y0, y1, . . . yr−1)| < 2−k

)
(3.9)

and have a unique solution of F (x, x, . . . , x) = 0 within [0, d] with uniform
modulus of uniqueness η, i.e.

∀k∀x, y ∈ [0, d](
(|F (x, x, . . . x)| < 2−η(k) ∧ |F (y, y, . . . y)| < 2−η(k))→ |x− y| < 2−k

)
.
(3.10)

Then
∀k∀m ≥ φ(k)

(
|xφ(k) − xm| < 2−k

)
, (3.11)

where
φ(k) = p(r − 1) + max(α(q), β(q), γ(η(k + 1) + 1))

q = θ(k) + 3 + dlog2(d+ 1)re

p = bd · 2θ(k)c+ 1

θ(k) = max(k, ω(η(k + 1) + 1))

Proof. Lemma 3.1 ensures that all members of the sequence (xn) lie within
[0, d], thus we can safely use the moduli ω and η and freely substitute d as an
upper bound for any xn.

Using α and β we can make sure that, from a certain point onwards, any
growth of the sequence (xn) in a group of r consecutive elements is sufficiently
restricted. For any i ≥ max(α(q), β(q)) (using Lemma 3.1, r < 2q, and ex ≤
1 + 2x for x ≤ 1) we have:

xi+j − xi ≤ (xi + j2−q)ej2
−q − xi ≤ (xi + j2−q)(1 + j2−q+1)− xi

≤ j2−q(2xi + 1 + j2−q+1) < (d+ 1)r2−q+2 ≤ 2−θ(k)−1 (3.12)
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for any j < r.
We will now show that a significant distance between elements of (xn) suf-

ficiently far in the sequence has to be repeated in the distance between another
pair of elements. Let n,m be natural numbers, m,n ≥ max(α(q), β(q), γ(η(k+
1) + 1)), and suppose xm+(r−1) ≥ xn + 2−k. From its definition we know that
θ(k) ≥ k and thus (3.12) yields

xm − xn = xm+(r−1) − xn − (xm+(r−1) − xm)

≥ 2−k − 2−θ(k)−1 ≥ 2−k−1.

By the uniqueness (3.10) of the root of F (x, x, . . . , x) = 0 we can infer
|F (xi, xi, . . . , xi)| ≥ 2−η(k+1) where i is either n or m. By the continuity (3.9)
of F applied to F (xi, xi, . . . , xi) and F (xi, xi+1, . . . , xi+r−1), where

|F (xi, xi, . . . , xi)− F (xi, xi+1, . . . , xi+r−1)| ≥ 2−η(k+1) − ci
≥ 2−η(k+1) − 2−(η(k+1)+1)

≥ 2−(η(k+1)+1)

we know there must exist j ∈ {1, 2, . . . , r−1} such that |xi−xi+j | ≥ 2−ω(η(k+1)+1)

≥ 2−θ(k). Because of (3.12) the sequence cannot be growing that much between
xi and xi+j , therefore

xi − xi+j ≥ 2−θ(k). (3.13)

Now the distance between the pair xm, xn+(r−1) has to be at least 2−k (for
simplicity we will only write the case i = n, the case i = m yields an identical
result):

xm − xn+(r−1) ≥ (xm − xm+(r−1)) + (xm+(r−1) − xn) + (xn − xn+r−1)
> −2−θ(k)−1 + 2−k + (xi − xi+j + xi+j − xi+r−1)
> −2−θ(k)−1 + 2−k + 2−θ(k) − 2−θ(k)−1

= 2−k.
(3.14)

The same distance is maintained. Provided m − (r − 1) continues to be
greater than or equal to max(α(q), β(q), γ(η(k+ 1) + 1)), this argument can be
applied again.

To continue with the main part of the proof, fix an arbitrary k and let
n0 = φ(k) and m0 ∈ N. Suppose |xm0+n0 − xn0 | ≥ 2−k. Consider the following
cases:

Case 1. xm0+n0 ≥ xn0+2−k. Let ni+1 = ni+(r−1) andmi+1 = mi−2(r−1).
By induction, using (3.14) with n = ni,m = ni +mi − (r− 1) as the induction
step, we know that at least for i ≤ b m0

(r−1)c (since ni +mi remains greater than
or equal to max(α(q), β(q), γ(η(k + 1) + 1)))

xmi+ni ≥ xni + 2−k.

In particular, for s = b m0
2(r−1)c, we have 0 ≤ ms < r and xns+ms−xns ≥ 2−k,

which is a contradiction with (3.12).
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Case 2. xm0+n0 ≤ xn0−2−k. Let ni+1 := ni−(r−1) andmi+1 := mi+2(r−1).
Since n0 = max(α(q), β(q), γ(η(k + 1) + 1)) + p(r − 1), we can apply (3.14) p
times, taking n = mi + ni and m = ni − (r − 1). Therefore for any i ≤ p we
have

xni ≥ xmi+ni + 2−k,

and moreover (using (3.13)), for each iteration there is a distinct index li ∈
{ni − (r − 1), ni + mi} where we have a significant drop in the values of the
sequence, i.e. where

xli − xli+j ≥ 2−θ(k)

for some j < r. (note that the drops cannot coincide because the points are at
least (r − 1)-apart)

We will prove that these drops accumulate and our choice of p makes this
impossible. We will define two additional sequences to measure how big (xn)
could grow, and what difference there is between that and the real (xn).

Let y0 = x0, yn+1 = (1 + an)yn + bn, zn = yn − xn. We can easily see that
xn ≤ yn ≤ yn+1 and zn+1 ≥ (1 + an)yn + bn − (1 + an)xn − bn ≥ zn for all n.
Lemma 3.1 can also be used for (yn) as an instance of a sequence that satisfies
(3.6) with the same constants, thus (yn) (and thereby (zn)) also lies within
[0, d].

For each i < p, there exists j < r, such that

zli+j = yli+j − xli+j ≥ yli − xli+j = zli + xli − xli+j ≥ zli + 2−θ(k),

and because of the monotonicity of (zn) and li ∈ {ni − (r − 1), ni +mi} also

zmi+1+ni+1 − zni+1 = zmi+ni+(r−1) − zni−(r−1)

= zmi+ni − zni + (zmi+ni+(r−1) − zmi+ni) + (zni − zni−(r−1))

≥ zmi+ni − zni + 2−θ(k).

Iterating this argument we arrive at

zmp+np ≥ zmp+np − znp ≥ zm0+n0 − zn0 + p2−θ(k) ≥ p2−θ(k) > d,

which is a contradiction.
In either case the assumption |xn0 − xm0+n0 | ≥ 2−k causes a contradiction

with our choice of n0, therefore (since k and m0 were arbitrary)

∀k∀m ≥ φ(k)
(
|xφ(k) − xm| < 2−k

)
.

2

3.4 Conclusions and future work

In this paper we have approached the problem of recovering effective informa-
tion from ineffective mathematical proofs by using an approach by Matiyase-
vich. We have given an application of it and a generalization motivated by
recent developments in fixed point theory.
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As future work within the topic, we are interested in non-trivial applications
of the generalized result. On the other hand, by a result of Kohlenbach in [56],
the main prerequisite of the treatments presented here, a modulus of uniqueness,
can be extracted under very general conditions even from highly ineffective
proofs of the uniqueness of the root. We are interested in finding applications
of either the original theorem of Matiyasevich or the generalized result presented
here, where finding the modulus is non-trivial, but can be achieved using the
theorem from [56].
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Chapter 4

Bounds on iterations of asymptotically

quasi-nonexpansive mappings

This chapter is a reprint of [66] “Bounds on Iterations of Asymptotically Quasi-
Nonexpansive Mappings”, coauthored with Ulrich Kohlenbach, in Proceedings
of the international conference on Fixed Point Theory and Applications, Valen-
cia 2003, pp. 143-172, Yokohama Publishers 2004.

Abstract

This paper establishes explicit quantitative bounds on the computa-
tion of approximate fixed points of asymptotically (quasi-)nonexpansive
mappings f by means of iterative processes. Here f : C → C is a self-
mapping of a convex subset C ⊆ X of a uniformly convex normed space
X. We consider general Krasnoselski-Mann iterations with and without
error terms. As a consequence of our quantitative analysis we also get
new qualitative results which show that the assumption on the existence
of fixed points of f can be replaced by the existence of approximate fixed
points only. We explain how the existence of effective uniform bounds in
this context can be inferred already a-priorily by a logical metatheorem
recently proved by the first author. Our bounds were in fact found with
the help of the general logical machinery behind the proof of this metathe-
orem. The proofs we present here are, however, completely selfcontained
and do not require any tools from logic.

4.1 Introduction

This paper is part of a series of papers which apply tools from mathematical
logic to metric fixed point theory ([62, 61, 63, 64] and – for the logical back-
ground – [67, 65]). These applications are concerned with both quantitative
as well as qualitative aspects of the asymptotic regularity of various iterations
of nonexpansive and other mappings in hyperbolic and normed spaces. More
specifically, we are interested in effective rates of convergence which are uni-
form w.r.t. many of the parameters involved. Recently ([67]), the first author
proved general logical metatheorems which a-priorily guarantee the existence
of such uniform bounds if the convergence statement proved has a certain logi-
cal form, and the proof can be carried out in a certain (rather flexible) formal
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setting. The proofs of these metatheorems are constructive and allow one to
actually extract effective bounds from a given ineffective convergence proof. In
this paper we apply this methodology to Krasnoselski-Mann iterations of as-
ymptotically quasi-nonexpansive mappings in uniformly convex normed spaces.
We first show how this context fits within the scope of the metatheorems from
[67] and then actually construct uniform effective bounds in the main part of
this paper which is selfcontained and does not rely on any prerequisites from
logic.
In the following, let (X, ‖ · ‖) be a uniformly convex (real) normed linear space
and C ⊆ X a nonempty convex subset.
The class of asymptotically nonexpansive mappings f : C → C was introduced
in [26]:

Definition 4.1 f : C → C is said to be asymptotically nonexpansive with
sequence (kn) ∈ [0,∞)N if lim

n→∞
kn = 0 and

‖fn(x)− fn(y)‖ ≤ (1 + kn)‖x− y‖, ∀n ∈ N,∀x, y ∈ C.

Definition 4.2 ([101]) f : C → C is said to be uniformly λ-Lipschitzian (λ >
0) if

‖fn(x)− fn(y)‖ ≤ λ‖x− y‖, ∀n ∈ N,∀x, y ∈ C.

In the following we use the notation Fix(f) := {p ∈ C : f(p) = p}. The
concept of quasi-nonexpansive functions was introduced in [18] (based on a
similar concept due to [16, 17]):

Definition 4.3 f : C → C is quasi-nonexpansive if

‖f(x)− p‖ ≤ ‖x− p‖, ∀x ∈ C,∀p ∈ Fix(f).

Finally, combining the notions of asymptotically nonexpansive mappings and
quasi-nonexpansive mappings we obtain the concept of asymptotically quasi-
non-
expansive mappings first studied in [107] and [87] and more recently in [94, 95,
96]:

Definition 4.4 f : C → C is asymptotically quasi-nonexpansive with sequence
kn ∈ [0,∞)N if lim

n→∞
kn = 0 and

‖fn(x)− p‖ ≤ (1 + kn)‖x− p‖, ∀n ∈ N,∀x ∈ X, ∀p ∈ Fix(f).

In the context of asymptotically (quasi-)nonexpansive mappings f : C → C the
so-called Krasnoselski-Mann iteration is defined as follows

x0 := x ∈ C, xn+1 := (1− αn)xn + αnf
n(xn),

where (αn) ∈ [0, 1]N.
We will also consider Krasnoselski-Mann iterations with error terms

x0 := x ∈ C, xn+1 := αnxn + βnf
n(xn) + γnun, (4.1)
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where αn, βn, γn ∈ [0, 1] with αn + βn + γn = 1 and un ∈ C for all n ∈ N (this
types of error terms was first considered in [114]).

In this paper we study uniform quantitative versions as well as qualitative
improvements of the following theorem which itself seems to be new (though
kind of implicit in the literature, see below):

Theorem 4.1 Let (X, ‖ · ‖) be a uniformly convex (real) normed linear space
and C be a convex subset of X. Let (kn) be a sequence in R+ with

∑
kn <∞.

Let k ∈ N and αn, βn, γn ∈ [0, 1] such that 1/k ≤ βn ≤ 1−1/k, αn +βn +γn = 1
and

∑
γn <∞. Let f : C → C a uniformly Lipschitz continuous function such

that there exists a p ∈ Fix(f) with

∀x ∈ C∀n ∈ N
(
‖fn(x)− p‖ ≤ (1 + kn)‖x− p‖

)
.

Define
x0 := x ∈ C, xn+1 := αnxn + βnf

n(xn) + γnun,

where (un) is a bounded sequence in C. Then the following holds:

‖xn − f(xn)‖ → 0.

Corollary 4.1 Let (αn), (βn), (γn), (kn), (un), k as well as (X, ‖ · ‖), C as in
theorem 4.1. If f : C → C is uniformly Lipschitzian and asymptotically quasi-
nonexpansive with sequence (kn) and Fix(f) 6= ∅, then ‖xn − f(xn)‖ → 0.

If f : C → C is asymptotically nonexpansive with a sequence (kn) ∈ R+ such
that

∑
kn < ∞ then f automatically is uniformly Lipschitz continuous hence

corollary 4.1 implies:

Corollary 4.2 Let (αn), (βn), (γn), (kn), (un), (X, ‖ ·‖), C as in theorem 4.1. If
f : C → C is asymptotically nonexpansive with sequence (kn) and Fix(f) 6= ∅,
then ‖xn − f(xn)‖ → 0.

Corollary 4.3 Let (X, ‖ · ‖) be a uniformly convex Banach space, C ⊂ X a
(nonempty) bounded closed convex subset (αn) ∈ [1/k, 1−1/k]N for some k ∈ N,
f : C → C asymptotically nonexpansive with sequence (kn) such that

∑
kn <∞

and
x0 := x ∈ C, xn+1 := αnxn + (1− αn)fn(xn).

Then ‖xn − f(xn)‖ → 0.

Proof. Corollary 4.3 follows from corollary 4.2 by omitting the error term (i.e.
taking an arbitrary sequence (un) in C with γn = 0) and using a theorem from
[26] stating that asymptotically nonexpansive mappings f : C → C always have
fixed points (under the given assumptions on X,C). 2

The proof of theorem 4.1 is ineffective and the conclusion ‘‖xn−f(xn)‖ → 0’,
i.e.

∀l ∈ N∃n ∈ N∀m ∈ N(‖xn+m − f(xn+m)‖ < 2−l) (4.2)
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has too complicated a logical form as for our metatheorems to guarantee a com-
putable bound on ‘∃n ∈ N’, i.e. a computable rate of convergence. Nevertheless,
(4.2) is (non-constructively) equivalent to

∀l ∈ N∀g ∈ NN∃n ∈ N(‖xn+g(n) − f(xn+g(n)‖ < 2−l) (4.3)

which does have the required logical form so that we can extract a computable
bound Φ on ‘∃n’ with g as an additional argument of the bound Φ. The trans-
formed version (4.3) of (4.2) is well-known in logic and called the Herbrand
normal form of (4.2). Whereas (4.3) trivially follows from (4.2), the proof of
the converse is ineffective.1 Hence an effective bound on ‘∃n’ in (4.3)’ does not
lead to an effective bound on ‘∃n’ in (4.2) unless the sequence (‖xn − f(xn)‖)
is nonincreasing (where this follows already from the special case where g ≡ 0)
which is e.g. the case for nonexpansive functions f .
Actually, a slightly more flexible form of (4.3) still has a the required logical
structure2

∀l ∈ N∀g ∈ NN∃n ∈ N∀m ∈ [n, n+ g(n)](‖xm − f(xm)‖ < 2−l)

and we will focus on effective bound Φ(l, g) on this ‘∃n’.
In practice, it will be mostly the special case where g ≡ 0, i.e.

∀l ∈ N∃n ≤ Φ(l, 0)(‖xn − f(xn)‖ < 2−l)

which is of relevance. However, this will not always be sufficient. On gen-
eral logical grounds though, namely the soundness of the so-called monotone
functional interpretation on which our metatheorems are based and the fact
that a bound on (4.3) realizes the monotone functional interpretation of (the
Gödel negative translation of) (4.2), it follows that a bound for general g is
sufficient for a quantitative analysis of any use of theorem 4.1 in a proof of a
∀∃-consequence. Our bounds seem to be (already in the case of asymptotically
nonexpansive mappings) the only known general quantitative results of that
kind (see e.g. [4] for a discussion of the lack of quantitative results in this con-
text).

The qualitative improvement of theorem 4.1 which is obtained via our quan-
titative analysis consists in the possibility to replace in order to show ‖xn −
f(xn)‖ → 0 for a given x ∈ C the assumption

∃p ∈ Fix(f)∀y ∈ C∀n ∈ N
(
‖fn(y)− p‖ ≤ (1 + kn)‖y − p‖)

by

∃d ∈ N∀ε > 0∃pε ∈ Fixε(x, d, f)∀y ∈ C, n ∈ N
(
‖fn(y)−fn(pε)‖ ≤ (1+kn)‖y−pε‖),

where
Fixε(x, d, f) := {p ∈ C : ‖x− p‖ ≤ d ∧ ‖f(p)− p‖ ≤ ε}.

1Suppose (4.2) fails for l ∈ N. Then (4.3) fails for the same l if we take g(n) :=
min m(‖xn+m − f(xn+m)‖ ≥ 2−l).

2Here and below we write m ∈ [n, n + g(n)] for m ∈ N ∧m ∈ [n, n + g(n)].
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This, of course, is of interest mainly for asymptotically nonexpansive mappings
where it replaces the assumption that Fix(f) 6= ∅ by

∀x ∈ C∃d ∈ N∀ε > 0(Fixε(x, d, f) 6= ∅).

With the stronger assumption on (kn) that
∑

((kn + 1)r − 1) <∞ for some
r > 1, corollary 4.3 is proved in [97]. For Hilbert spaces X and r = 2 corollary
4.3 is already due to [101]. For Banach spaces satisfying Opial’s condition ([90])
and

∑
kn < ∞, corollary 4.3 follows from [100] (note, however, that Opial’s

condition is not even satisfied for Lp except for p = 2).3 The result in the
literature most close to corollary 4.1 is the main theorem in [96] whose proof
technique – together with an argument reminiscent of a lemma in [101] – we
actually use to prove theorem 4.1 and corollary 4.1. The theorem in [96] is
concerned with the convergence of (xn) towards a fixed point of f and the
assumption of C being compact.4 Without that assumption but assuming that
Fix(f) 6= ∅ the proof actually yields that

lim
n→∞

‖xn − fn(xn)‖ = 0

which together with an argument from [101] gives

lim
n→∞

‖xn − f(xn)‖ = 0.

[96] in turn relies on [99] (see also [109]).

4.2 A logical metatheorem with applications in fixed
point theory

This section – which is independent from the main part of this paper – requires
some background in logic as developed in [67]. In [67], we have defined a
formal system Aω[X, ‖ · ‖, C, η] for classical analysis over a uniformly convex
normed space (X, ‖ ·‖) (with a modulus of uniform convexity η) and a bounded
convex subset C ⊂ X. The system is formulated in the language of functionals
of finite type over the types X (for variables ranging over X-elements) and
N by closure of these types under function space formation: with ρ, τ being
types, ρ → τ is the type of all functions mapping objects of type ρ to objects
of type τ. The type C is treated as a subtype of X. The system contains
full countable choice (and hence full comprehension over integers) and even
full dependent choice. It is well known in logic that such a system allows
to formalize most of existing proofs in analysis. Whereas elements of X are
treated as ‘primitive’ objects (so-called ‘atoms’) real numbers are – as usual
– explicitly represented via Cauchy sequences of rationals numbers with fixed
rate of convergence. Both equality =R on R as well as equality =X on X are

3For some generalizations of the main results of [100] see also [109].
4[96] actually considers more general Ishikawa-type iterations. In order to keep the techni-

calities of our paper down we confine ourselves here to the Krasnoselski-Mann type iterations.
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defined notions where x =X y :≡ ‖x − y‖ =R 0. There are some subtleties,
though, which have to do with the restricted availability of extensionality of
functions w.r.t. =X . These issues, however, are trivial in our applications in
this paper as full extensionality of the functions we will consider follows from
the continuity assumptions made (see below).

Definition 4.5 A formula F is called ∀-formula (resp. ∃-formula) if it has the
form F ≡ ∀aσFqf (a) (resp. F ≡ ∃aσFqf (a)) where aσ = aσ1

1 , . . . , a
σk
k , Fqf does

not contain any quantifier and the types in σi are N or C.5

Remark 4.1 The notions of ∀-formula and ∃-formula (as well as the theorem
corresponding to theorem 4.2 below) from [67] allow more general types. For
simplicity we formulate above just the special case needed in this paper.

Every (real) normed space (X, ‖ · ‖) together with a bounded convex subset C
of X gives rise to the ‘full’ model Sω,X over X,C of Aω[X, ‖ · ‖, C]. If (X, ‖ · ‖)
is uniformly convex and η : N → N a modulus of uniform convexity6 than
this model will be a model of Aω[X, ‖ · ‖, C, η]. We say that a sentence A ∈
L(Aω[X, ‖ · ‖, C, η]) holds in (X, ‖ · ‖) and C if it holds in this model (see [67]
for details on all this).

Definition 4.6 For functionals xρ, yρ of type ρ = N→ N we define x ≤ρ y by

x ≤ρ y :≡ ∀zN(x(z) ≤N y(z)).

Theorem 4.2 ([67]) Let η be a constant of type N → N, σ, ρ = N → N and
τ = C,N → C or C → C. s is a closed term of type σ → ρ and B∀, C∃ are ∀-
resp. ∃-formulas.
If the sentence

∀xσ∀y ≤ρ s(x)∀zτ
(
∀uNB∀(x, y, z, u)→ ∃vNC∃(x, y, z, v)

)
is provable in Aω[X, ‖ · ‖, C, η], then one can extract a computable functional7

Φ : NN × N× NN → N such that

∀y ≤ρ s(x)∀zτ
[
∀u ≤ Φ(x, b, η)B∀(x, y, z, u)→ ∃v ≤ Φ(x, b, η)C∃(x, y, z, v)

]
holds in any non-trivial (real) uniformly convex normed linear space (X, ‖ · ‖)
with convexity modulus η and any non-empty b-bounded convex subset C ⊂ X.
Instead of single variables x, y, z, u, v we may also have finite tuples of variables
x, y, z, u, v as long as the elements of the respective tuples satisfy the same type
restrictions as x, y, z, u, v.
Moreover, instead of a single premise of the form ‘∀uNB∀(x, y, z, u)’ we may
have a finite conjunction of such premises.

5Recall from [67] that the type ‘C’ is a defined type where – using the notation from [67]
– ‘∀xCA’ and ‘∃xCA’ stand for ‘∀xX(χC(x) =N 0 → A)’ and ‘∃xX(χC(x) =N 0 ∧ A)’, where
χC represents the characteristic function of C in X.

6I.e. ∀x, y ∈ X, k ∈ N(‖x‖, ‖y‖ ≤ 1 ∧



x+y

2




 ≥ 1− 2−η(k) → ‖x− y‖ ≤ 2−k).

7In the sense type-2 computability theory, i.e. Turing computability w.r.t. oracle Turing
machines.
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Using the so-called standard representation of compact Polish spaces like [0, 1]N

(with the product metric) theorem 4.2 implies the following corollary (see [67]):

Corollary 4.4 Let B∀, C∃ be ∀- resp. ∃-formulas and ϕ : N→ N be a (primi-
tive recursive function).
If the sentence

∀nN, gN→N, (ak) ∈ [0, ϕ(n)]N, xC , (uk)N→C , fC→C(
∀wNB∀(w)→ ∃vNC∃(v)

)
is provable in Aω[X, ‖ · ‖, C, η], then one can extract a computable functional
Φ(n, g, b, η) such that

∀n, b ∈ N, α, η ∈ NN, (ak) ∈ [0, ϕ(n)]N, x ∈ C, (uk) ∈ CN, f : C → C(
∀w ≤ Φ(n, g, b, η)B∀(w)→ ∃v ≤ Φ(n, g, b, η)C∃(v)

)
holds in any non-trivial (real) uniformly convex normed linear space (X, ‖ · ‖)
with convexity modulus η and any non-empty b-bounded convex subset C ⊂ X.
Instead of single variables n, g, (an) we may also have finite tuples of each of
these variables.
Moreover, instead of a single premise of the form ‘∀wNB∀(w)’ we may have a
finite conjunction of such premises.

A crucial feature in the above corollary is that the bound Φ(n, α, b, η) does not
depend on (ak), x, (uk) or f at all and on X and C only via η and b.

Theorem 4.1 can be proved in Aω[X, ‖ · ‖, C, η] and even in a weak frag-
ment thereof (as the proof of the quantitative strengthened form of theorem
4.1 given below shows, neither dependent choice DC nor countable choice is
needed). Problems in connection with the restricted availability of extension-
ality in Aω[X, ‖·, ‖, C, η] (see [67]) do not apply here since the assumption on f
being (even uniformly) Lipschitz continuous implies the extensionality (see the
detailed discussion in the case of nonexpansive functions given in [67]). Hence
corollary 4.4 is applicable and guarantees a-priorily a strong uniform effective
version of theorem 4.1 in the sense explained in the introduction.

Remark 4.2 (for logicians) There is a minor problem having to do with the
fact that our formal system proves only weak extensionality of the constant χC

representing the characteristic function of C. As a consequence of this we have
to make sure that the condition (we discuss things for notational simplicity here
only for the special case of constant sequences) α+ β + γ = 1 becomes provable
which can be achieved by replacing

(∗) ∀α, β, γ ∈ [0, 1](α+ β + γ = 1→ A(α, β, γ))

officially by

(∗∗)∀α, β ∈ [0, 1]A(α,min(1− α, β), 1− α−min(1− α, β)).

In the following, though, we will continue to write (∗) instead of (∗∗) for better
readability.
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The assumptions on αn, βn, γn, kn all become ∀-formulas once we express ‘
∑
kn

<∞’ and ‘
∑
γn <∞’ explicitly with bounds K,E ∈ N, i.e.

A1 :≡

∀n ∈ N(αn + βn + γn =R 1 ∧ 1
k ≤R βn ≤R 1− 1

k ∧
n∑

i=0
ki ≤R K ∧

n∑
i=0

γi ≤R E).

The existential quantifier ‘∃p ∈ C’ in the premise

∃p ∈ C
(
f(p) =X p ∧ ∀x ∈ C∀i ∈ N

(
‖f i(x)− p‖ ≤R (1 + ki)‖x− p‖

))
.

can be moved out as a universal quantifier in front of the whole implication
leaving back the ∀-premise

A2 :≡ f(p) =X p ∧ ∀x ∈ C∀i ∈ N
(
‖f i(x)− p‖ ≤R (1 + ki)‖x− p‖

)
.

Finally, we have the condition on f being uniformly Lipschitz continuous which
becomes an ∀-formula once stated with a Lipschitz constant λ ∈ N

A3 :≡ ∀n ∈ N∀x, y ∈ C
(
‖fn(x)− fn(y)‖ ≤R λ · ‖x− y‖

)
.

Hence in total, theorem 4.1 can be reformulated as

∀λ, k, l,K,E ∈ N, g ∈ NN, (kn) ∈ [0,K]N, (αn), (βn), (γn) ∈ [0, 1]N, xC , pC

∀(un)N→C , fC→C
(
A1 ∧A2 ∧A3→∃n∀m ∈ [n, n+ g(n)](‖xm − f(xm)‖ <R 2−l).

Since the conclusion is (relative to Aω[X, ‖ · ‖, C, η] equivalent to) an ∃-formula
and the premise is a conjunction of ∀-formulas, we can apply corollary 4.4 to
get an effective bound Φ(λ, k, l,K,E, g, b, η) on ‘∃n’, i.e.

∃n ≤ Φ(λ, k, l,K,E, g, b, η)∀m ∈ [n, n+ g(n)](‖xm − f(xm)‖ <R 2−l), (4.4)

that does not depend on (αn), (βn), (γn), x, p, f, (kn), (un) but only on λ, k, l,K,
E, g as well as a bound8 b on C and the modulus η.

Corollary 4.4 not only provides an effective bound for the conclusion but also
allows one to to replace ∀-premises by approximate versions thereof. We are
here only interested in one of the premises, namely A2, which can be also written
as

∀m ∈ N
(
(‖f(p)−p‖ ≤R 2−m)∧∀x ∈ C∀i ∈ N

(
‖f i(x)−f i(p)‖ ≤R (1+ki)‖x−p‖

))
,

(4.5)
where

(‖f(p)− p‖ ≤R 2−m) ∧ ∀x ∈ C∀i ∈ N
(
‖f i(x)− f i(p)‖ ≤R (1 + ki)‖x− p‖

)
itself is a ∀-formula. By the corollary we get an effective bound
Ψ := Ψ(λ, k, l,K,E, g, b, η) on ‘∀m’ such that in order to obtain the conclusion
(4.4) we can replace (4.5) by

∀m ≤ Ψ
(
(‖f(p)−p‖ ≤R 2−m)∧∀x ∈ C∀i ∈ N

(
‖f i(x)−f i(p)‖ ≤R (1+ki)‖x−p‖

))
8This requirement will be weakened below.
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and hence – since Ψ does not depend on p – by ∀m ∈ N∃p ∈ C
(
(‖f(p)− p‖ ≤R 2−m) ∧ ∀x ∈ C∀i ∈ N(
‖f i(x)− f i(p)‖ ≤R (1 + ki)‖x− p‖

))
.

So in effect we have replaced the assumption on f having real fixed points by
the weaker assumption on f having approximate fixed points.

The proof of theorem 4.2 in [67] (and hence that of corollary 4.4) is constructive
and provides algorithm for actually extracting a bound Φ from the proof of
theorem 4.1 together with a proof verifying the bound which – moreover – only
uses the existence of ε-fixed points of f. The latter will be shown to always
exist for asymptotically nonexpansive mappings by a completely elementary
argument, while the existence of real fixed points requires the completeness
of X and closedness of C and is based on the non-trivial convex intersection
property of uniformly convex Banach spaces, see [26] and also [27]. All this
will be carried out in the reminder of this paper. The explicit extraction of
the bounds will, furthermore, show that the assumption on C being bounded
(needed in the conclusion of the application of theorem 4.2 and hence corollary
4.4) can be replaced by the assumption that (un) is bounded (as in theorem
4.1) and that there exists a d ∈ N such that within the d-neighbourhood of
x ∈ C there are approximate fixed points pε ∈ C of f for any ε > 0 (which
is trivially satisfied if Fix(f) 6= ∅). Hence we indeed get in the end a uniform
quantitative version of the ‘original’ theorem 4.1.

4.3 Some helpful lemmata

Lemma 4.1 Let (an) be a sequence in R+ with an+1 ≤ an for all n. Then

∀ε > 0∀g : N→ N∃n ≤ max
i<ba0/εc

gi(0)
(
an − ag(n) ≤ ε

)
Proof. The inequality can fail in at most ba0/εc − 1 steps of applying g, thus
it has to be true for at least the one remaining. 2

Lemma 4.2 (Quantitative version of a lemma by Qihou, [95]) Let (an),
(bn), (cn) be sequences in R+, A ∈ Q∗

+, B, C ∈ Q+, such that an+1 ≤ (1+bn)an+
cn; a0 ≤ A;

∑
bn ≤ B;

∑
cn ≤ C. Then the following hold:

1. (A+ C)eB is an upper bound on an.

2. Let
Φ(A,B,C, g, ε) := max

i<b(4BD+4C+D)/εc
gi(0),

where D = (A+ C)eD. Then

∀ε ∈ (0, 1]∀g ∈ N→ N∃n ≤ Φ(A,B,C, g, ε)
(
g(n) > n→ |ag(n) − an| ≤ ε

)
.

(4.6)
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3. Let
Ψ(A,B,C, g, ε) = Φ(A,B,C, g, ε/3).

Then

∀ε ∈ (0, 1]∀g : N→ N∃n ≤ Ψ(A,B,C, g, ε)
∀i, j (g(n) ≥ j > i ≥ n→ |aj − ai| ≤ ε) . (4.7)

Proof. 1: By induction on m one shows

an+m ≤ an ·
m−1∏
j=0

(1 + bn+j) +
m−1∑
i=0

cn+i ·
m−1∏

j=i+1

(1 + bn+j)

and also (by the arithmetic-geometric mean inequality)

m−1∏
j=0

(1 + bn+j) ≤ (1 +

∑m−1
j=0 bn+j

m
)m < e

P m−1
j=0 bn+j

and combined

an+m ≤ (an +
m−1∑
j=0

cn+j) · e
P m−1

j=0 bn+j , (4.8)

am ≤ (A+ C) · eB

for all m ∈ N.
2: Consider (a∗n) in which a∗0 = a0 and a∗n+1 = (1 + bn)a∗n + cn.

Note D ≥ a∗n+1 ≥ a∗n+1 − an+1 ≥ (1 + bn)(a∗n − an) ≥ a∗n − an. Build the
two series

En = 4(BD + C −
∑
i≤n

(biD + ci))

and
Dn = D − (a∗n − an).

Their sum satisfies the conditions of Lemma 4.1, therefore there exists n ≤
Φ(A,B,C, g, ε), such that En − Eg(n) ≤ ε and Dn −Dg(n) ≤ ε, but this means

g(n)∑
i=n

biD +
g(n)∑
i=n

ci ≤
ε

4
.

Then (using ex ≤ 1 + 2x for 0 ≤ x < 1)

aj − ai < (ai +
ε

4
)e

ε
4D − ai ≤

(ai +
ε

4
)(1 +

ε

2D
)− ai ≤

εD

2D
+
ε

4
+

ε2

8D
< ε
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for all i, j, such that n ≤ i < j ≤ g(n). That is, if the series grows (i.e.
ag(n) > an), it will satisfy the inequality. If it decreases, then

an − ag(n) ≤ an − ag(n) + a∗g(n) − a
∗
n = Dn −Dg(n) ≤ ε.

3: By the proof of the previous point, there is an n ≤ Ψ(A,B,C, g, ε), for
which we have |ag(n) − an| ≤ ε/3 and also ∀i, j(g(n) ≥ j > i ≥ n ∧ aj > ai →
aj − ai ≤ ε/3). Therefore, for any i with g(n) ≥ i ≥ n we have ag(n) − ε/3 ≤
ai ≤ an + ε/3 and hence ∀i, j ∈ [n, g(n)](ai ≤ an + ε/3 ≤ ag(n) +2ε/3 ≤ aj + ε),
from which the needed inequality follows directly. 2

Lemma 4.3 Let D : N → Q∗
+, B, C : N → Q+, and for all q, let (an)q, (bn)q,

(cn)q be sequences in R+, such that aq
n+1 ≤ (1+ bqn)aq

n + cqn; aq
n ≤ D(q);

∑
bqi ≤

B(q);
∑
cqi ≤ C(q) for all n, q ∈ N. Then:

1. Let

Φ(D,B,C, g, ε,m) = max
i<b 1

ε

P m−1
q=0 (4B(q)D(q)+4C(q)+D(q))c

gi(0).

Then

∀ε ∈ (0, 1]∀m ∈ N∀g ∈ N→ N∃n ≤ Φ(D,B,C, g, ε,m)

∀q < m
(
g(n) > n→ |aq

g(n) − a
q
n| ≤ ε

)
.

2. Let Ψ(D,B,C, g, ε,m) = Φ(D,B,C, g, ε/3,m). Then

∀ε ∈ (0, 1]∀m ∈ N∀g ∈ N→ N∃n ≤ Ψ(D,B,C, g, ε,m)

∀q < m∀i, j
(
g(n) ≥ j > i ≥ n→ |aq

j − a
q
i | ≤ ε

)
.

Proof. As in the previous proof, we can represent every (aq
n) by two series (Dq

n)
and (Eq

n) in a common sum, to which we can apply Lemma 4.1. Then we can
carry on the rest of the proof for the individual sequences. 2

Definition 4.7 (Clarkson, [11]) A modulus of uniform convexity of a uni-
formly convex space (X, ‖ · ‖) is a mapping η : (0, 2] → (0, 1], such that for all
x, y ∈ X, ε ∈ (0, 2]

‖x‖, ‖y‖ ≤ 1 ∧ ‖x− y‖ ≥ ε→
∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− η(ε).

Lemma 4.4 (Groetsch, [32]) Let (X, ‖·‖) be uniformly convex with modulus
η. If ‖x‖, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε > 0, then

‖λx+ (1− λ)y‖ ≤ 1− 2λ(1− λ)η(ε), 0 ≤ λ ≤ 1.
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The next lemma is an adaptation (and improvement) of a lemma from [101]
to our situation, i.e. Mann iterations with error term instead of Ishikawa iter-
ations without error term as considered by Schu:

Lemma 4.5 Let X be a normed linear space, C ⊆ X a convex subset of X,
f : C → C uniformly l-Lipschitzian, and (xn) be a Krasnoselski-Mann iteration
starting from x ∈ C with error vector (un) where ‖un−xn‖ is bounded by u for
all n ∈ N.

Then if ‖xn−fn(xn)‖ ≤ εn and ‖xn+1−fn+1(xn+1)‖ ≤ εn+1, then ‖xn+1−
f(xn+1)‖ ≤ εn+1 + (εn + γnu)(l + l2).

Proof.

‖xn+1 − f(xn+1)‖ ≤ ‖xn+1 − fn+1(xn+1)‖+ ‖fn+1(xn+1)− f(xn+1)‖
≤ εn+1 + l‖fn(xn+1)− xn+1‖
≤ εn+1 + l‖fn(xn+1)− αnxn − βnf

n(xn)− γnun‖
≤ εn+1 + l‖fn(xn+1)− fn(xn)‖+

+l(αn + γn)‖fn(xn)− xn‖+ lγn‖un − xn‖
≤ εn+1 + lεn + l2‖xn+1 − xn‖+ γnul

≤ εn+1 + lεn + l2‖βnf
n(xn)− (βn + γn)xn + γnun‖+

+γnul

≤ εn+1 + lεn + l2βn‖fn(xn)− xn‖+ γnu(l + l2)
≤ εn+1 + (εn + γnu)(l + l2).

2

In [26] it is shown – using that reflexive and hence a-fortiori uniformly convex
Banach spaces have the so-called ‘convex intersection property CIP’ – that
asymptotically nonexpansive selfmappings of bounded closed convex subsets
C ⊂ X have fixed points. Our quantitative results reduce the need of fixed
points to that of approximate fixed points. For the latter we now give a fully
elementary proof which does not need CIP (nor the completeness/closedness of
X/C):

Lemma 4.6 Let (X, ‖ · ‖) be a uniformly convex space with modulus η, and
C ⊆ X be nonempty, convex and bounded. Let f : C → C be asymptotically
non-expansive with sequence (kn).

Then Fixε(f) := {x ∈ C : ‖f(x)− x‖ ≤ ε} 6= ∅,∀ε > 0.

Proof. Let y ∈ C. Consider

ρ0 := inf
{
ρ ∈ R+ : ∃x ∈ C∃k ∈ N∀i > k.‖f i(y)− x‖ ≤ ρ

}
Since C is bounded, the set is non-empty and ρ0 exists. We also have ρ0 ≥ 0

and
∀δ > 0∃x ∈ C∃k ∈ N∀i > k.‖f i(y)− x‖ ≤ ρ0 + δ/2. (4.9)

Case 1. ρ0 > 0:
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Let ε ∈ (0, 4] and choose δ ∈ (0, 1] such that

η

(
ε

2(ρ0 + 1)

)
> 1− ρ0 − δ

ρ0 + δ
.

By (4.9), there is an xδ ∈ C, such that

∃k ∈ N∀i > k.‖f i(y)− xδ‖ ≤ ρ0 + δ/2. (4.10)

Assume that
∀k ∈ N∃n > k.‖fn(xδ)− xδ‖ ≥ ε/2. (4.11)

Let n be large enough that (using (4.11))

(1 + kn)(ρ0 + δ/2) ≤ ρ0 + δ ∧ ‖fn(xδ)− xδ‖ ≥ ε/2, (4.12)

and m ≥ n be large enough that (using (4.10))

‖fk(y)− xδ‖ ≤ ρ0 + δ/2

for all k ≥ m− n. Then

‖fn(xδ)− fk(y)‖ ≤ (1 + kn)‖xδ − fk−n(y)‖ ≤ ρ0 + δ (4.13)

and
‖xδ − fk(y)‖ ≤ ρ0 + δ/2 ≤ ρ0 + δ (4.14)

for all k ≥ m.
(4.12), (4.13) and (4.14) yield by uniform convexity and δ ≤ 1∥∥∥∥xδ − fn(xδ)

2
− fk(y)

∥∥∥∥ ≤ (
1− η

(
ε

2(ρ0 + 1)

))
(ρ0 + δ) < ρ0 − δ

for all k ≥ m, which contradicts the minimality of ρ0.
Hence (4.11) is false, i.e.

∃k∀n ≥ k.‖fn(xδ)− xδ‖ < ε/2,

which implies that there exists a k, such that

‖fk+1(xδ)− xδ‖ < ε/2 and ‖fk+2(xδ)− xδ‖ < ε/2

and hence ‖f(x)− x‖ < ε for x := fk+1(xδ).
Since ε ∈ (0; 4] was arbitrary, this implies Fixε(f) 6= ∅.
Case 2. ρ0 = 0:
Let ε > 0. Then (4.9) implies

∃x ∈ C∃k ∈ N∀i > k.‖f i(y)− x‖ ≤ ε/2

and therefore xε := fk+1(y) is an ε-fixed point of f , and again Fixε(f) 6= ∅. 2
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4.4 Main results

Throughout this section, (X, ‖·‖) will be a uniformly convex space with modulus
of uniform convexity η and C a convex subset of X. f will be a mapping from
C to C, x ∈ C and the series (xn) will be a Krasnoselski-Mann iteration with
error terms (4.1), and (αn), (βn), (γn), (un) as defined in (4.1).

Theorem 4.3 Let f be uniformly l-Lipschitzian and

∀ε > 0∃pε ∈ C

 ‖f(pε)− pε‖ ≤ ε ∧
‖pε − x‖ ≤ d ∧
∀y ∈ C∀n (‖fn(y)− fn(pε)‖ ≤ (1 + kn)‖y − pε‖)

 (4.15)

where d ∈ Q∗
+, kn ∈ R+ and also

∑∞
n=0 kn ≤ K ∈ Q+.

Let 1/k ≤ βn ≤ 1 − 1/k for some k ∈ N,
∑∞

n=0 γn ≤ E ∈ Q+, and (un) be
bounded with ‖un − x‖ ≤ u ∈ Q+.

Then

∀δ ∈ (0, 1]∀g : N→ N∃n ≤ Φ∀m ∈ [n, n+ g(n)] (‖xm − f(xm)‖ ≤ δ)

where Φ = Φ(K,E, u, k, d, l, η, δ, g) and

Φ(K,E, u, k, d, l, η, δ, g) = hi(0)
h = λn.(g(n+ 1) + n+ 1)
i =

⌊
3(5KD+6E(U+D)+D)k2

εη(ε/(D(1+K)))

⌋
D = eK(d+ EU)
U = u+ d
ε = δ/(2(1 + l(l + 1)(l + 2))).

Proof. Let ν ∈ (0, 1) ∩ Q, p be a pε from (4.15), and for the moment assume
‖f(p) − p‖ ≤ νn+1/(n + K) is satisfied for all n. Set U := u + d ≥ ‖un − p‖.
Then we also have ‖fn(p) − p‖ = ‖fn−1(f(p)) − fn−1(p) + fn−1(p) − p‖ ≤
νn+1

n+K

∑n−1
i=0 (1 + ki) ≤ νn+1 by the third clause in (4.15), and

‖xn+1 − p‖ = ‖αnxn + βnf
n(xn) + γnun − p‖

= ‖αn(xn − p) + βn(fn(xn)− fn(p)) + γn(un − p) + βn(fn(p)− p)‖
≤ αn‖xn − p‖+ βn‖fn(xn)− fn(p)‖+ γnU + βnν

n+1

≤ αn‖xn − p‖+ βn(1 + kn)‖xn − p‖+ γnU + νn+1

≤ (1 + kn)‖xn − p‖+ γnU + νn+1. (4.16)

By Lemma 4.2 for all m ∈ N

‖xm − p‖ ≤ D, (4.17)

where D := eK · (d+ EU + ν(1− ν)).
For any n, assume ‖xn− p‖ ≥ ε+ νn+1 and ‖fn(xn)−xn‖ ≥ ε+ νn+1. The

latter implies

‖(xn − p)− (fn(xn)− fn(p))‖ ≥ ‖xn − fn(xn)‖ − ‖p+ fn(p)‖ ≥ ε.
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Hence by Lemma 4.4, using kn ≤ K, and (4.17),∥∥∥∥(1− βn)
xn − p

(1 + kn)‖xn − p‖
+ βn

fn(xn)− fn(p)
(1 + kn)‖xn − p‖

∥∥∥∥ ≤
1− 2βn(1− βn) · η

(
ε

(1 +K)D

)
. (4.18)

Thus

‖xn+1 − p‖ = ‖αnxn + βnf
n(xn) + γnun − p‖

= ‖(1− βn − γn)(xn − p) + βn(fn(xn)− fn(p)− p+ fn(p)) + γn(un − p)‖
≤ ‖(1− βn)(xn − p) + βn(fn(xn)− fn(p))‖+ γn‖un − xn‖+ νn+1

≤ ((1 + kn)‖xn − p‖)
(
1− 2βn(1− βn)η

(
ε

(1+K)D

))
+ γn(U +D) + νn+1

≤ ‖xn − p‖+ knD + γn(U +D) + νn+1 − ε · 2 1
k2 η

(
ε

(1+K)D

)
but ‖xn − p‖ ≤ ‖xn+1 − p‖+ |‖xn − p‖ − ‖xn+1 − p‖|, therefore (4.19) implies

0 ≤ |‖xn − p‖ − ‖xn+1 − p‖|+knD+γn(U+D)+νn+1−2εk−2η

(
ε

(1 +K)D

)
,

where the positive additives can be made arbitrarily small by Lemma 4.2, and
the negative is a constant greater than 0. Assume we have made the posi-
tive sum smaller than this constant for two consecutive members of the series
starting at n. By contradiction we will have for both i = n and i = n+ 1

‖xi − p‖ < ε+ νi+1 or ‖f i(xi)− xi‖ < ε+ νi+1. (4.19)

Consider the following cases:
Case 1. ‖xn+1 − p‖ < ε+ νn+2.
Here we have

‖f(xn+1)− xn+1‖ ≤ ‖f(xn+1)− f(p)‖+ ‖p− xn+1‖+ ‖p− f(p)‖
≤ (1 + l)‖xn+1 − p‖+ νn+1 ≤ (2 + l)(ε+ νn+1).

Case 2. ‖xn+1 − fn+1(xn+1)‖ < ε+ νn+2 and ‖xn − fn(xn)‖ < ε+ νn+1.
Then, using Lemma 4.5 with εn+1 = εn = ε+ νn+1, we have

‖xn+1 − f(xn+1)‖ ≤ (ε+ νn+1 + γn(U +D))(1 + l + l2).

Case 3. ‖xn+1 − fn+1(xn+1)‖ < ε+ νn+2 and ‖xn − p‖ < ε+ νn+1.
In this case we have (reasoning as in (4.20))

‖xn − fn(xn)‖ ≤ (2 + l)(ε+ νn+1)

and again using Lemma 4.5

‖xn+1 − f(xn+1)‖ ≤ (ε+ νn+1 + γn(U +D))(1 + l(l + 1)(l + 2)).
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In either case, if we denote

pn = |‖xn − p‖ − ‖xn+1 − p‖|
qn = knD + 2γn(U +D) + 2νn+1

and we have
pn, qn < εk−2η

(
ε

(1+K)D

)
and

pn+1, qn+1 < εk−2η
(

ε
(1+K)D

)
,

(note that |‖xn − p‖ − ‖xn+1 − p‖| + knD + γn(U + D) + νn+1 ≤ pn + qn <

2εk−2η
(

ε
(1+K)D

)
) where ε = δ/(2(1 + l(l + 1)(l + 2))), then (using that qn+1 <

ε)

‖xn+1 − f(xn+1)‖ ≤
(
ε+

qn+1

2

)
(1 + l(l + 1)(l + 2)) ≤ δ (4.20)

Next, construct the two series

an = ‖xn − p‖ and

bn = KD + 2E(U +D) +
2ν

(1− ν)
−

n−1∑
i=0

(kiD + 2γi(U +D) + 2νi+1))

(note pn = an+1 − an, and qn = bn+1 − bn). We know from (4.16) that an+1 ≤
(1 + kn)an + γnU + νn+1, and bn+1 ≤ bn, therefore by Lemma 4.3

∀k ∈ N∀g : N→ N∃m < Φν∀i, j(
m− 1 ≤ i < j ≤ m+ g(m)→ |aj − ai|, |bj − bi| ≤ εk−2η

(
ε

(1+K)D

))
,

where

Φν(K,E, u, k, d, l, η, δ, g) = hi(0)
h = λn.(g(n+ 1) + n+ 1)

i =
⌊

3(5KD + 6E(U +D) + 6ν/(1− ν) +D)k2

εη (ε/(D(1 +K)))

⌋
D = eK(d+ EU + ν/(1− ν))
U = u+ d

ε = δ/(2(1 + l(l + 1)(l + 2))).

This is enough to ensure (4.19) and hence (4.20) for all n ∈ [m,m + g(m)]
and therefore

∀δ ∈ (0, 1]∀g : N→ N
∃n ≤ Φν(K,E, u, k, d, l, η, δ, g)∀m ∈ [n, n+ g(n)] (‖xm − f(xm)‖ ≤ δ) .

It only remains to throw away the assumption that ‖f(p)− p‖ ≤ νn+1/(n+
K) holds for all n. This we can do by simply relaxing it to only the n’s for
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which the inequality was used in the proof, i.e. for all n ≤ Φν . This is certainly
satisfied by pνΦν+1/(Φν+K) using (4.15).

The value of ν was arbitrary within (0, 1) ∩ Q, thus we can take it arbi-
trarily small and the bound will get lower at the expense of requiring better
approximate fixed points (which we have). Therefore Φ = infν∈(0,1) Φν will be
sufficient for the bound.

Computing the infimum yields the form (4.16). 2

Remark 4.3 Using the argument about the Herbrand normal form (4.3) in
Section 1, this theorem and all its corollaries allow us to also conclude

‖f(xn)− xn‖ → 0.

In particular, theorem 4.3 implies theorem 4.1 from the introduction and is in
fact a quantitative strengthening of the latter.

Corollary 4.5 Let f be uniformly l-Lipschitzian and asymptotically quasi-nonex-

pansive with sequence (kn), Fix(f) 6= ∅, and also
∑∞

n=0 kn ≤ K ∈ Q+.
Let 1/k ≤ βn ≤ 1 − 1/k for some k ∈ N,

∑∞
n=0 γn ≤ E ∈ Q+, and (un) be

bounded with ‖un − x‖ ≤ u ∈ Q+.
Then

∀δ ∈ (0, 1]∀g : N→ N∃n ≤ Φ∀m ∈ [n, n+ g(n)] (‖xm − f(xm)‖ ≤ δ)

where Φ is as defined in theorem 4.3 with d ≥ ‖x− p‖ for some p ∈ Fix(f).

Proof. Direct corollary of the main theorem, where the first and second clauses
of (4.15) are satisfied by the existence of real fixed points of f , and the third
clause follows from the assumption on f being asymptotically quasi-nonexpansive.
2

Corollary 4.6 If we only need to find a single xn, which is an approximate
fixed point of the function, taking g(n) ≡ 0 gives

∀δ ∈ (0, 1]∃n ≤ Φ1(K,E, u, k, d, l, η, δ) (‖xn − f(xn)‖ ≤ δ)

where

Φ1(K,E, u, k, d, l, η, δ) =
⌊

3(5KD + 6E(U +D) +D)k2

εη (ε/(D(1 +K)))

⌋
D = eK(d+ EU)
U = u+ d

ε = δ/(2(1 + l(l + 1)(l + 2))).

Remark 4.4 If the modulus of uniform convexity of the space can be written in
the form η(ε) = εη̃(ε) where η̃ is monotone (0 < ε1 ≤ ε2 ≤ 2→ η̃(ε1) ≤ η̃(ε2)),
the proof of Theorem 4.3 allows to extract a bound with η replaced by η̃ (by
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changing η
(

ε
(1+K)D

)
to η

(
ε

(1+kn)‖xn−p‖

)
in (4.18) we can replace (4.19) by

‖xn+1 − p‖ ≤ ‖xn − p‖+ knD+ γn(U +D) + νn+1 − ε · 2 1
k2 η̃

(
ε

(1+K)D

)
and the

change carries on through the proof).

Disregarding the various constants, the ε-dependency of our bounds in the
case g ≡ 0 is ε · η(ε).

It is well-known that the Banach spaces Lp with 1 < p < ∞ are uniformly
convex ([11]). For p ≥ 2, εp

p2p is a modulus of convexity ([36], see also [62]).
Since

εp

p2p
= ε · η̃p(ε)

where

η̃p(ε) =
εp−1

p2p

is monotone, we can apply the previous remark. Hence we get – disregarding
again constants – that the ε-dependency of our bounds in the case of Lp (p ≥ 2)
is εp.
For the case X := R with the Euclidean norm, where we can choose η̃(ε) := 1

2
(since ε/2 is a modulus of convexity), we have a linear dependency in ε. These
results match in quality the bounds obtained in [48, 62, 63] for the case of
nonexpansive functions and the usual Krasnoselski-Mann iteration (without
error terms). In that case, the deep work in [1] even established a quadratic
bound in arbitrary normed spaces for the special case of constant λn = λ ∈
(0, 1). For general (λn) (satisfying λn ∈ (0, 1 − 1/k) and

∑
λn = ∞), the

first bounds for Krasnoselski-Mann iterations in arbitrary normed and even
hyperbolic spaces were established in [61, 64].

In the case of asymptotically nonexpansive mappings f : C → C (C ⊂ X
bounded, closed and convex) it is an open problem whether Fixε(f) 6= ∅,
∀ε > 0, for general (i.e. not uniformly convex) Banach spaces X (see [27],
p.135).

Corollary 4.7 Let f be asymptotically nonexpansive with sequence (kn), d is
such that Fixε(x, d, f) 6= ∅ for all ε > 0 and also

∑∞
n=0 kn ≤ K ∈ Q+.

Let 1/k ≤ βn ≤ 1 − 1/k for some k ∈ N,
∑∞

n=0 γn ≤ E ∈ Q+, and (un) be
bounded with ‖un − x‖ ≤ u ∈ Q+.

Then

∀δ ∈ (0, 1]∀g : N→ N∃n ≤ Φ∀m ∈ [n, n+ g(n)] (‖xm − f(xm)‖ ≤ δ)

where Φ is as defined in theorem 4.3 with l = 1 +K.

Proof. Direct corollary to the main theorem, using 1+K ≥ 1+ kn for any n as
the Lipschitz constant. 2

Corollary 4.8 Let C be a bounded convex subset of X with diameter d ∈ Q∗
+

and f be asymptotically nonexpansive with sequence (kn), and also
∑∞

n=0 kn ≤
K ∈ Q+.
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Let 1/k ≤ βn ≤ 1− 1/k for some k ∈ N,
∑∞

n=0 γn ≤ E ∈ Q+.
Then

∀δ ∈ (0, 1]∀g : N→ N
∃n ≤ Φ2(K,E, k, d, η, δ, g)∀m ∈ [n, n+ g(n)] (‖xm − f(xm)‖ ≤ δ)

where

Φ2(K,E, k, d, η, δ, g) = hi(0)
h = λn.(g(n+ 1) + n+ 1)

i =
⌊

3(5Kd+ 6Ed+ d)k2

εη (ε/(d(1 +K)))

⌋
ε = δ/(2(1 + (K + 1)(K + 2)(K + 3))).

Proof. Using Lemma 4.6 we can fulfill the conditions of the previous corollary,
and the boundedness of C allows us to replace all bounds on the distances in
the proof with d. 2

Concluding remark:

1. With somewhat more complicated bounds our analysis also extends to
the case where f : C → C is instead of being l-uniformly Lipschitzian
only ω-uniformly continuous, i.e.

∀ε > 0, n ∈ N, x, y ∈ X
(
‖x− y‖ < ω(ε)→ ‖fn(x)− fn(y)‖ < ε

)
,

where ω : R∗
+ → R∗

+ (i.e. ω is what in constructive analysis is called a
modulus of uniform continuity for all fn). In particular, this covers the
case of λ-α-uniformly Lipschitzian functions (see [96]).

2. We expect that our analysis can be adapted also to Ishikawa-type itera-
tions. However, this would further complicate the technical details.
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Chapter 5

The Basic Feasible Functionals in

Computable Analysis

In Section 2.2 we gave a definition of complexity classes of real-valued functions
using subrecursive classes of type-2 functionals, including the Basic Feasible
Functionals (BFF) as a higher-type extension of poly-time computability. We
also gave Ko’s definition of real function complexity, and specified what it means
for a real-valued function to be poly-time in the sense of Ko. This chapter of
the thesis will compare the two notions to prove the following theorem:

Theorem 5.1 (5.2) Let a, b ∈ Q, a < b. A real function φ : [a, b] → R has
a sharp CF-representation in BFF if and only if it is poly-time computable in
the sense of Ko.

To be poly-time computable in the sense of Ko, a real function φ must have
a realization in the form of an Oracle Turing Machine (OTM) computing a
function F : (N → D) → N → D, which runs in time polynomial in the given
precision for all arguments in the domain of φ.

To allow that “time polynomial in the given precision” relates to polynomial
time computability, all precision arguments in Ko’s model are given in unary
notation. We will use the equivalent formulation where the precision is taken
to be the length of the precision argument.

Another feature of Ko’s model for computable analysis is the additional
requirement in place for the precision of the representations of real numbers,
stating that a representation A of α must satisfy

∀n(prec(A(n)) = |n| ∧ |A(n)− α| ≤ 2−|n|).

Since any dyadic number m.2−e is naturally represented as the pair 〈m, e〉 of
integer ‘mantissa’ and ‘exponent’, and the function prec can be directly defined
as prec(m · 2−e) = e, we will fix the representation of dyadic numbers as the
pair 〈m, e〉. Moreover, since the functions representing real numbers explicitly
specify the exponent, we will use this equivalent definition of Ko-computable
real numbers and functions:

Definition 5.1 A function A : N → Z is a Ko-representation of α ∈ R, if
∀n.(|A(n)− 2|n|α| ≤ 1).
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Since dyadic numbers of precision n are represented by numbers of size n
plus the number of digits of the integer part of the number, for every closed
interval [a, b] with rational endpoints the growth of the representations is poly-
nomially bounded, i.e. there exists a polynomial p(n) = n + |max(|a|Q, |b|Q)|,
such that |A(n)| ≤ p(|n|) for all n and for any representation of any real number
in [a, b].

The next lemma proves that BFF can replace the Oracle Turing Machine
running in polynomial time in the definition of poly-time computability accord-
ing to Ko.

Lemma 5.1 Let a, b ∈ Q, a < b, and φ : [a, b] → R. There exists an Oracle
Turing Machine M , which computes a Ko-representation F of φ and runs in
time polynomial to the precision, if and only if there exists a Ko-representation
G : (N → Z) → N → Z of φ in BFF. Moreover, whenever A is a Ko-
representation of a number α ∈ [a, b], F (A) = G(A).

Proof(→). Let B : (N→ Z)→ N→ Z be defined as:

B(A,n) :=
{

A(n), if P (A,n) = 0
2|n|−(m−1)c, otherwise ,

where

P (A,n) :=


0, if ∀p ≤ |n| (d2pae − 1 ≤ A(2p) ≤ b2pbc+ 1 ∧

∀m < p(|A(2m)− 2m−pA(2p)| < 2))
1, otherwise

m := µq < |n| [P (A, 2q) = 1]
c := max(min(d2|m|−1ae, A(2m−1)), b2|m|−1bc)

B is a basic feasible functional (because the quantifiers and minimization
are sharply bounded) and for every Ko-representation A of a real number in
[a, b] B(A) = A. Indeed, ∀n.(|A(n) − 2|n|α| ≤ 1) implies ∀m∀p > m(|A(2m) −
2m−pA(2p)| ≤ 2) and, together with a ≤ α ≤ b, ∀p(d2pae − 1 ≤ A(2p) ≤
b2pbc+ 1).

Let A be a sequence of numbers which is not a Ko-representation of a real
number in [a, b]. Then ∃n(|A(n) − 2|n|α| > 1 ∨ A(n) < 2|n|a − 1 ∨ A(n) >
2−|n|b + 1). Since bxc ≤ x ≤ dxe, this implies that there exists n, such that
¬P (A,n). For every m ≥ n we have B(A,m) := 2|m|−|n|c, which says that
B(A) is a Ko-representation of the number 2−(|n|−1)c, which is within [a, b].

For any A : N → Z, B(A) is a Ko-representation of a real number within
[a, b], therefore the Oracle Turing Machine M taking B(A) as input runs in time
polynomial to the precision n. We can now use Cook and Kapron’s characteri-
zation of the BFF using Oracle Turing Machines [45]: combining this machine
with an OTM implementation of B which will be queried only polynomially
many times, we get a machine which runs in time polynomial to the precision
n and the size of the argument A, i.e. a basic feasible functional G := B ◦ F
which matches F for all arguments that are Ko-representations of numbers in
[a, b]. 2
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Proof(←). The BFF have the Ritchie-Cobham property (see [83]), which means
that any BFF can be realized by an OTM running in time bounded by |H(A,n)|
for some BFF H. Let H be this bound for G. The BFF are also a heredi-
tarily self-majorized class, which means that there exists a BFF H∗ such that
H∗ maj H. From our discussion of the properties of the dyadic numbers we
know that there is a common bound for the growth of any Ko-representation
of any real number in a closed interval. Let this bound be given as the nat-
ural number polynomial p, i.e. p(|n|) ≥ |A(n)| for all Ko-representations A of
numbers in [a, b]. Let A∗ := λn.2p(|n|). Since A∗ is monotone and everywhere
greater than A, A∗ maj A. Note also that A∗ is a poly-time function.

From the properties of the majorization relation we know that
H∗(A∗) maj H(A), and in particular that H∗(A∗,m) ≥ H(A,m) for all Ko-
representations of numbers in the interval and for all precision requests m, thus
|H∗(A∗,m)| is also an upper bound for the running time of the OTM realizing
F . But since A∗ is a fixed poly-time function, λm.H∗(A∗,m) is a basic feasible
functional of type-1, i.e. a poly-time function. Its growth is therefore bounded
by some polynomial q(|m|), which proves that F := G can be realized by an
Oracle Turing Machine running in time polynomial in the precision for any
Ko-representation of any number in [a, b]. 2

Sharp CF-computability also uses the convention to specify precision re-
quests as the length of the precision argument, but has no restriction on the
growth of the number representations, which map precisions to rational approx-
imations.

Let us make sure that we can convert rational to dyadic approximations
and vice versa:

Lemma 5.2 There exist a pair of poly-time functions DtoQ : Z→ N→ Q and
QtoD : Q→ N→ Z, such that

DtoQ(m, e) = m · 2−|e|∣∣∣QtoD(q, e)− 2|e|q
∣∣∣ ≤ 1

2

Proof. Let
DtoQ(m, e) := m ·Q 2−|e|

QtoD(q, e) :=
⌊
2|e|q +Q

1
2

⌋
Q
.

The two conversions are poly-time as a composition of poly-time functions.
2

We are now ready to prove the main theorem in this chapter.

Theorem 5.2 Let a, b ∈ Q, a < b. A real function φ : [a, b] → R is poly-time
computable in the sense of Ko if and only if it has a sharp CF-representation
among the BFF.
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Proof(→). Let F : (N→ Z)→ N→ Z be the basic feasible functional obtained
by Lemma 5.1. Let G : (N→ Q)→ N→ Q be the following functional:

G(A) := λn.DtoQ(F (λm.QtoD(A(2m),m), 2n), 2n),

where DtoQ and QtoD are two conversion functions defined above.
Since every function(al) in this definition is basic feasible, and the class

of the basic feasible functionals is closed under composition and functional
substitution, G is a basic feasible functional.

Now let us prove that it is a sharp CF-representation of φ: Let A be a
CF-representation of a number α ∈ [a, b]. We have that for any m, |A(2m) −
α| < 2−|m|−1 and therefore |QtoD(A(2m),m) − 2|m|α| < 1, which means that
B := λm.QtoD(A(2m),m) is a Ko-representation of α.

From the definition of F we have that F (B) is a Ko-representation of φ(α).
Since |DtoQ(F (B, 2n), 2n)− α| ≤ 2−|2n| < 2−|n|, the final application of DtoQ
converts it to the CF-representation G(A). 2

Proof(←). LetG : (N→ Q)→ N→ Q be a CF-representation of a real function
φ : [a, b]→ R. Let F : (N→ Z)→ N→ Z be defined as:

F (B) := λn.QtoD(G(λm.DtoQ(B(2m), 2m), 2n), n).

Let B be a Ko-representation of a real number α ∈ [a, b]. Reasoning
as above, A := λm.DtoQ(B(2m), 2m) defines a CF-representation of α ∈
[a, b], we can also see that G(A) is a CF-representation of φ(α) and therefore
λn.QtoD(G(A, 2m),m) is a Ko-representation of it.

F is a basic feasible functional that maps Ko-representations of the input to
Ko-representation of the result. By Lemma 5.1 there exists an Oracle Turing
Machine implementing F and running in time polynomial to the precision. 2

Intuitively, the forward direction of the proof works because, using the
Cook/Kapron characterization, a basic feasible functional has sufficient time
to: read its input and convert it to a dyadic number with precision n (given by
the length of the real argument), process the input via a black-box copy of the
Ko-representation (given by the precision argument), and enough time to trans-
late the output to a rational number (given again by the precision argument).
The inverse argument relies on the fact that the BFF CF-representation of
the function never generates big numbers in itself, and since the arguments it is
given have a polynomially bounded growth, all computations stay polynomially
bounded in all three steps of the conversion.

This result was originally observed as part of [75], which discusses complex-
ity and intensionality in an interval framework for analysis (which will also be
given in Chapters 6 to 7 of the thesis). We decided to give it more emphasis
in a separate chapter, because the result in itself is interesting and gives extra
robustness to both Melhorn’s complexity notion and Ko’s.



Chapter 6

Computable Analysis via Partial

Approximation Representations

This chapter is a revised version of part of [75], “Complexity and Intensionality
in a Type-1 Framework for Computable Analysis”. Ong, L. (ed.), Computer
Science Logic: 19th International Workshop, CSL 2005, 14th Annual Confer-
ence of the EACSL, Oxford, UK, August 22-25, 2005. Proceedings. Lecture
Notes in Computer Science, vol. Volume 3634 (2005), pp. 442-461.

6.1 Introduction

This chapter of the thesis presents an approach to computable analysis which
corresponds to interval arithmetic supplied with a mechanism for increasing
precision. The approach is designed to allow very fast implementations of exact
real arithmetic.

One way to achieve good performance for an implementation is to have real
functions able to operate on simpler objects rather than the functions that de-
scribe real numbers. To make it easy for the user to write programs using these
simpler objects, one must have modularity on them, meaning that one should
be able to generate compositions of functions in a straightforward manner. This
is not possible to do using the representations of rational numbers that are the
simple objects in the approach of CF-representations. It is, however, possible
if the internal objects are intervals.

The core of the model is one of the equivalent definitions for real function
computability given by Grzegorczyk in [34]. Real functions in this model map
intervals to intervals and are not suspect to a monotonicity requirement. The
original definition is the third alternative described in Section 2.1.

In this chapter we present a definition that is not confined to functions
with closed intervals as domains, and is able to define functions like division
without requiring an explicit apartness bound. To do this, we must allow the
possible interval ends to include ±∞ in order to be able to specify cases where
we have no information about the result. Because of this, we use the term
partial approximations to denote intervals approximating a real number.

An additional problem that is solved in this definition is the possible failure
of the original approach when binary functions are considered. Due to the fact
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that it only requires that a certain size of the result is eventually reached, when
two arguments combine it may happen that they do not become small intervals
at the same time, which means that too elaborate a scheme must be employed
to correctly apply binary functions. Instead, we choose to resolve the problem
by requiring that the representations of real numbers produce intervals that
eventually stay smaller than an arbitrary size bound.

Additionally, this chapter gives a modification of the approach that can be
used to implement intensional representations of multi-valued functions with
the same efficiency.

We give proof of the equivalence of this approach to CF-computability in a
construction that is later also applied to the intensional partial approximation
representations, and in the following chapter to subrecursive classes to reason
about complexity in the approach. The real number library described in Chap-
ter 8 relies on this approach to provide exact real computations with overhead
that is low enough to make it possible for the library to be used in cases where
hardware floating point is often sufficient.

6.2 Definitions

The basic objects we are going to use contain approximation information and
an estimation of the amount of error in this approximation. To be able to
define a class of real functions equivalent to the CF-computable ones, a totally
indeterminate value has to be permitted (otherwise e.g. division cannot be
defined, see [105]). We do this by allowing an infinitely large value for the
error.

Let V be an enumerable dense subset of the real numbers that is closed
under addition, substraction and division by 2, and E be a subset of the posi-
tive rational numbers which contains 1 and is closed under multiplication and
division by 2, to which the special value ∞ is added. We assume both can
be computably encoded and converted from one to the other (using upwards
rounding in the case of conversions from V to E), the basic operations are
computable, and the comparison operator respects ∞. Possible choices for V
include Q and D; E can, for instance, be defined by adding +∞ to Q, D, the
set of numbers 2e for an integer e, or m · 2e where m is a small (e.g. m < 232)
integer.

Having the distinction between the sets V and E is prompted by the need
to include ∞, but also closely follows the choice one would often make when
an actual implementation is developed as one might prefer a simpler (and thus
more efficient) representation of the error information.

Definition 6.1 A partial approximation to a real number α is a pair 〈v, e〉
of type V × E, such that |v − α| < e. We will denote the class of partial
approximations to α with Aα, and the class of partial approximations to any
real with AR = ∪α∈RAα. If a ∈ AR we will use av, ae to denote respectively the
value and error in a.
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Definition 6.2 A partial approximation representation (p.a.r.) of a real num-
ber α is a function A : N→ Aα, for which ∀k∃n∀m ≥ n((A(m))e ≤ 2−k).

If a real number is CF-computable, then it certainly has a computable p.a.r.:
if B is a CF-representation of α, then λn.(B(n), 2−n) is one of its p.a.r.’s.
Conversely, if a is a p.a.r. of α, then

λk.(A(µn[(A(n))e ≤ 2−k]))v (6.1)

is a valid CF-representation for it.
For real functions, we want to have objects that operate on partial ap-

proximations instead of the full representations. They will have to convert
approximations to an input to approximations to the result of the application
of the function, and also we need to require that the precision of the output
approximations gets arbitrarily good as the precision of the input increases. In
other words,

Definition 6.3 A partial approximation representation of a partial function
φ : R → R is a partial function F : AR → AR, such that for any choice of
α ∈ dom φ and a partial approximation representation A of α, λn.F (A(n)) is
a partial approximation representation of φ(α).

Remark 6.1 This definition implies a ∈ Aα → F (a) ∈ Aφ(α) for α ∈ dom φ.

6.3 Computability

We have severely restricted the information to which the function object has
access; nevertheless, this does not restrict the class of real functions that are
computable. The following theorem is a proof of this fact that uses a construc-
tion which we will later modify to use in our complexity and intensionality
results:

Theorem 6.1 A partial function φ : R→ R is CF-computable if and only if it
has a computable p.a.r.

Proof(←). If we have a p.a.r. F of a function φ, and α ∈ dom φ, then the
functional

Φ(B,n) := (F (
〈
B(m), 2−m

〉
))v, where (6.2)

m = µp
[
(F (

〈
B(p), 2−p

〉
)e ≤ 2−n

]
is total in n for any CF-representation B of α since from Definitions 6.3 and
6.2 the minimization will always stop, and Definition 6.1 together with Remark
6.1 ensures |Φ(a, n)− φ(α)| < 2−n. 2

Proof(→). Fix a CF-representation Φ for φ.
For any a ∈ AR with ae < 1, we can effectively find the largest natural

number m with the property 2mae < 1. If ae ≥ 1, we take m = 0. Define the
function

b(n) := 2−nb2nav + 1/2c. (6.3)
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For 0 ≤ n < m we have that if α ∈ Aα

|b(n)− α| ≤ |av − α|+ 2−(n+1) ≤ 2−m + 2−(n+1) ≤ 2−n

In the following we will use the language of exceptions1. Given the code of
a computable functional Φ, we can construct an equivalent one Φ† that honors
a new exception x. We can create a function

bdm := λn.

{
b(n), if n < m
raise x, otherwise

and then define

Φ‡(B,n) :=


〈0,∞〉 , if n = 0
try

〈
Φ†(B,n− 1), 2−(n−1)

〉
catch(x) Φ‡(B,n− 1)

, otherwise
(6.4)

(Φ‡(bdm,n) finds the largest l ≤ n− 1 for which Φ(b, l) only refers to the first
m values in b, or returns a completely undefined value if such an n cannot be
found).

We will now prove that the function

F (a) := Φ‡(bdm,m+ 1) (6.5)

is the required p.a.r. of φ. To do this, we need to prove that G = λn.F (A(n))
is a p.a.r. of φ(α) for any p.a.r. A of α.

The first condition, F (a) ∈ Aφ(α) for any a ∈ Aα, follows from the require-
ment for Φ and the fact that there is a CF-representation for α that starts with
b(0), b(1), . . . , b(m− 1).

For the second condition, we need to prove the existence of 2−k-approxima-
tions to φ(α) among G(n) for any k. The sequence defined by

c(n) := 2−nb2nα+ 1/2c

is a proper CF-name for α. If α is not a dyadic number, then for an arbitrary
n, |α − c(n)| < 2−n−1. There exists q depending on n, such that |α − c(n)| ≤
2−n(1/2− 2−(q−n)), and for all partial approximations a with ae < 2−q we have
2i|av−c(i)| < 1/2 for all 0 ≤ i ≤ n. But this implies that the sequence obtained
by (6.3) coincides with c on the first n+ 1 elements.

Now, since Φ would look at finitely many elements of c to produce a value
with any precision 2−k, using that count in the procedure described above, we
can come up with a q supplying a long enough sequence. Combining this with
a requirement that m in (6.5) is sufficient for the target precision, we have
(F (a))e ≤ 2−k for all a’s with ae ≤ 2−max(q,k), and since A has only finitely

1The reader can refer to a current book on semantics (e.g. [85]) for a proper definition of
the concept and its implementation. Essentially the same approach (but explicitly specified
and not identified as a case of using exceptions) is used e.g. in [54] and [3] and even in the
definition of Kleene’s associates [51]. Through the use of exceptions we avoid the tedious
explicit construction of the functional Φ‡ from the code of Φ.
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many elements that have a bigger error, this is satisfied for a = A(n) for all n
beyond a certain point.

If α is a dyadic number, i.e. ∃n(c(n) = α), then there are only finitely many
variations of b that can exists, because they have to coincide after the first
n + 1 positions. Then there exists a maximum m for the number of lookups
Φ can make to any of these b’s in order to get a 2−k-precise result. Hence
ae ≤ 2−max(m,k) suffices to get the required precision for F (a). 2

6.4 Intensional representations

Intensionality does not work well with the type-1 frameworks, because inten-
sional functions rely on information that is not available in an approximation.
If Φ is not extensional, Theorem 6.1 does not hold. More specifically, a partial
function given by a p.a.r. is always extensional:

Theorem 6.2 Let F : AR → AR and let α ∈ R such that for all p.a.r. A of α,
λn.F (A(n)) is a p.a.r. of some β ∈ R. Then β depends only on α and not on
its representation A.

Proof. Let X and Y be two p.a.r.’s of α. Then

Z(n) =
{
X(n

2 ), if n is even
Y (n−1

2 ), otherwise

is also a representation of α. Then λn.F (Z(n)) is a p.a.r. of a real number β and
therefore λn.F (X(n)) and λn.F (Y (n)) are also p.a.r.’s to β as subsequences of
λn.F (Z(n)). 2

Still, intensional functions are interesting for us and we want to find a way
to accommodate them. To do this, we have to pass additional information to
the functions.

The most straightforward solution is to supply information about the history
of the approximation as an argument to the p.a.r., i.e. essentially use Kleene’s
associate definition [51]. We will not be treating this approach, because the
amount of information that has to be passed to the associate in a direct appli-
cation of Kleene’s approach is too big and complexity reasoning would be very
difficult if not impossible.

A different approach, carrying less information, is to give the function access
to the previous value it has produced, i.e.

Definition 6.4 A recursion-p.a.r. of a multi-valued function φ is a function
F : AR × AR → AR, such that for any choice of α ∈ dom φ and p.a.r. A
of α, λn.F (A(n), F (A(n − 1), F (A(n − 2), · · ·F (A(0), 0) · · · ))) is a p.a.r. of a
β ∈ φ(α).

Alternatively, one can extract the “history information” in a separate func-
tion:
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Definition 6.5 A storage-p.a.r. of a multi-valued function φ is a pair of func-
tions F : N→ AR and H : AR×N→ N, such that for any choice of α ∈ dom φ
and p.a.r. A of α, λn.F (H(A(n),H(A(n− 1),H(A(n− 2), · · ·H(A(0), 0) · · · )))
is a p.a.r. of a β ∈ φ(α).

The idea behind this is that the function has access to a memory cell where
it can store information about past calls and update at each call. This can be
very efficient, especially in practical cases where a couple of bits of external
storage2 can be sufficient.

We will be treating the storage-p.a.r. approach and in the end of the chapter
we will show that the two are equivalent.

Theorem 6.3 A multi-valued function has a CF-representation if and only if
it has a storage-p.a.r.

Proof(←). Given a storage-p.a.r. pair F,H, the function

Φ(a, n) = F (h(k))v, where

h(m) =
{

0, if m = 0
H(

〈
a(m− 1), 2−(m−1)

〉
, h(m− 1)), otherwise

k = µm. [F (h(m))e ≤ 2−n]

is a CF-representation of the function φ: h builds a sequence of applications
of H which is only lengthened when we move ahead in the approximation,
and since the sequence

〈
a(i), 2−i

〉
i∈N is a p.a.r. to the argument, the storage-

p.a.r. of φ has to return approximations to one of the possible results, and the
minimization for k always terminates. 2

Proof(→). We will define H that builds a signed digit representation of the
real number and adds more information to it with consecutive calls. We will be
storing the signed digit representation as a pair 〈hi, hs〉, where hi is an integer
approximating the number with error 1, and hs is a string of {−1; 0; 1} encoded
in base 4. The following function H : AR → N→ N implements this:

H(a, 〈hi, hs〉) =



〈hi, hs〉 , if ae > 2−(exp(〈hi,hs〉)+1)〈
bav + 1

2c, 0
〉
, if 1

4 < ae ≤ 1
2 ∧ 〈hi, hs〉 = 0

〈gi, 4gs + 1〉 , if ae ≤ 2−(exp(〈hi,hs〉)+1)∧
man(〈hi, hs〉)− av2exp(〈hi,hs〉) > 1

2

〈gi, 4gs + 3〉 , if ae ≤ 2−(exp(〈hi,hs〉)+1)∧
man(〈hi, hs〉)− av2exp(〈hi,hs〉) < − 1

2
〈gi, 4gs + 2〉 , otherwise ,

2In practice, F will usually take the current approximation as an additional argument. This
argument is not needed for the proofs that follow and does not interfere with them because
H can encode it in its result.
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where

〈gi, gs〉 = H(〈av, 2ae〉 , 〈hi, hs〉)

man(〈hi, hs〉) =


hi, if hs = 0
2man(

〈
hi, bhs

4 c
〉
)− 1, if hs ≡ 1(mod4)

2man(
〈
hi, bhs

4 c
〉
), if hs ≡ 2(mod4)

2man(
〈
hi, bhs

4 c
〉
) + 1, if hs ≡ 3(mod4)

exp(〈hi, hs〉) =
⌈
|hs|
2

⌉
.

We use the same construction as in Theorem 6.1 (changing only the defini-
tions of m and b), to prove that the following is a storage-p.a.r. of φ if Φ is its
CF-representation and Φ† is a version of it that honors a new exception x:

F (〈hi, hs〉) = Φ‡(bdm,m+ 1)

for

Φ‡(B,n) =


〈0,∞〉 , if n = 0
try

〈
Φ†(B,n− 1), 2−(n−1)

〉
catch(x) Φ‡(B,n− 1)

, otherwise

m = exp(〈hi, hs〉)

bdm = λn.

{
b(n), if n ≤ m
raise x, otherwise

b(n) = dya(man(g(n)), exp(g(n)))
g(n) =

〈
hi, bhs4n−mc)

〉
.

In this b decodes the information stored in h to a unary function which gives
correct approximations to the argument up to its m’th value and Φ‡ computes
Φ(b, n) for the largest n ≤ m for which this information is sufficient. If the
information in 〈hi, hs〉 is not yet sufficient to approximate the integer part of
the number, m will be 0 and thus Φ‡ will return an indeterminate value.

Let A be a p.a.r. of an α ∈ dom φ and h be a shorthand for h(n) =
H(A(n),H(A(n− 1), · · ·H(A(0), 0) · · · )).

Since A contains approximations to α for any precision, the string built by
h is has no limit for its length and encodes a CF-representation of α. Since
Φ is a computable CF-representation of φ, by passing to it finite parts of this
representation of α, we are getting finite parts of the representation of a number
β ∈ φ(α), and the construction of Φ‡ ensures F (h(n)) ∈ Aβ. To get arbitrarily
precise approximations to β it suffices to be able to provide arbitrarily long
finite parts of the CF-representation of α. We can do this, and all further
elements of the transformed sequence will be at least this precise. 2

Unlike in Theorem 6.1, where b can be different at consecutive calls to F
with different approximations to the number, here the initial part of b does not
change and this makes the proof simpler.

Finally, it remains to show that the recursion-p.a.r. approach shares the
same properties:

Theorem 6.4 A multi-valued function φ has a recursion-p.a.r. if and only if
it has a storage-p.a.r.
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Proof. Let R be a recursion-p.a.r. of φ. Then

H(a, h) = R(a, h)
F (h) = h

is a storage-p.a.r. of φ. Conversely,

R(a, h) = hide(F (H(a, extr(h))),H(a, extr(h)))

hide(a, h) =
{
〈h,∞〉 , if ae ≥ 1

2
hh(a, h), otherwise

hh(a, h) =
〈
2−ll(ae)

(
b2ll(ae)avc+ 2−|h|

(
(2|h| − 1) + 2−(|h|+1)h

))
, 2ae

〉
extr(a) =

{
av, if ae ≥ 1
ee(2ll(ae)+1av − b2ll(ae)+1avc), otherwise

ee(z) = 2count(z)+1(2count(z)z − (2count(z) − 1))

ll(e) =
{

0, if e ≥ 1
1 + ll(2e), otherwise

count(z) =
{

0, if z < 1
2

1 + count(2z − 1), otherwise

does the translation in the other direction: R hides the values of h inside the
results it returns by truncating av to the precision of ae and adding to it a
string of ones as long as the binary representation of h, followed by a zero and
h itself. Because ae is doubled, a is still a partial approximation to the result
of the application of the function, and the value of h can be extracted by first
removing the truncated av, counting the number of consecutive ones in the
remainder and then recovering h as the string of this length that follows the
separating zero. 2

6.5 Partial Approximation Representations in Prac-
tice

The partial approximations used in our model directly correspond to intervals
of the real line with endpoints in V ∪ {±∞}. For an easier presentation we
made explicit the center and error bound in such an interval, but a practical
implementation may choose to use any method of representing intervals that it
may see fit.

Moreover, the framework allows arbitrary overestimation in the evaluation
of functions on intervals, as long as the condition that given a converging se-
quence of interval they must return converging sequences. The functions may
overestimate arbitrarily within these limits.

For example, the four arithmetic operations on intervals x = [x, x] and
y = [y, y] may be implemented using the standard method

x� y = [min(x� y, x� y, x� y, x� y),max(x� y, x� y, x� y, x� y)]

through exact computations using rational numbers. Another approach could
use diadic numbers to represent the endpoints of the intervals and rounding
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to make the results of the operations dyadic of the same length as the inputs.
A third approach may choose to evaluate the result of the application of the
operations to the centers only to the precision of the inputs and give an error
bound depending on that precision and the continuity behavior of the function.

All these methods will fit in the p.a.r. framework. In the Domain Theoretic
framework [19], for example, it would not be obvious how the latter method
could be made monotone. The p.a. representations of real functions need not
satisfy that requirement.

The p.a.r. approach is modular, meaning that one can compose real func-
tions to build new functions without having to analyze the construction of the
building blocks. The resulting objects continue to work on simple approxima-
tions to real numbers. In order to use modularity in the model of CF-represen-
tations or the TTE model, one must use objects that represent real numbers
completely, which is quite inefficient.

The modularity property is very important from a practical point of view,
since it gives the possibility to imitate working on complete reals while the
actual computations are taking place on the approximations level. For example,
the reciprocal square root of a real number may be defined as the function
(λx.
√
x) ◦ (λx. 1x). If recip implements 1

x in the p.a.r. model and sqrt – square
root, then simply sqrt◦ recip would be a definition the reciprocal square root in
the p.a.r. model, even though none of these representations has access to the
complete real number.

Schwichtenberg’s approach to analysis with witnesses [102] also has mod-
ularity for the objects that carry out the computations, i.e. the objects that
convert rational approximations to rational approximations. However, it relies
on moduli of continuity every time it needs to extract actual information from
the objects. The moduli, in turn, rely on worst-case analysis for the preci-
sion that a function may require, which on the average requests much higher
precision than can be shown to be actually required by the error propagation
analysis done by partial approximation representations.

In some cases the method to first evaluate the required precision using
moduli of continuity and then compute an approximation using that is called
top-down evaluation, while the error propagation analysis is called bottom-up
evaluation. This issue will be further discussed in Chapter 8, where we describe
an actual implementation based on the p.a.r. model.

The best feature of this implementation is its possibility to achieve per-
formance close to the very best alternative method while providing certified
correctness. The p.a.r. model gives sufficient freedom to use a wide variety of
techniques in the same theoretical model.

The p.a.r. approach is sometimes implicitly used by numerical analysts
when they want to be certain about a result they have achieved. Using interval
arithmetic with varying precision until the end result is precise enough to fit
some criteria is an application of the p.a.r. model. In fact, this chapter gives
proof that this approach is powerful enough and represents exactly the functions
computable via CF-representations, a seemingly unrelated approach.

While the idea of using interval arithmetic with increasing precision may
be pretty straightforward, it is not that obvious how discontinuous functions
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should be handled. The intensional variations of the partial approximation
representations are a well specified approach that could handle many problems
arising in practice.

The intensional p.a. representations are given in two variants, so that an
implementation can make the best possible use of resources. In many cases the
storage-p.a.r. approach may provide the best performance, because some func-
tions would only require two bits to store whether they have made a choice and
in which direction it was taken. Alternatively, in cases where the implemen-
tation can make use of the previous approximation in computing the next one
(as e.g. in computing functions using the Newton method), the recursion-p.a.r.
approach would be more useful.



Chapter 7

Complexity of Partial Approximation

Representations

This chapter is a revised version of part of [75], “Complexity and Intensionality
in a Type-1 Framework for Computable Analysis”. Ong, L. (ed.), Computer
Science Logic: 19th International Workshop, CSL 2005, 14th Annual Confer-
ence of the EACSL, Oxford, UK, August 22-25, 2005. Proceedings. Lecture
Notes in Computer Science, vol. Volume 3634 (2005), pp. 442-461.

7.1 Introduction

Since the partial approximation representations of real numbers are allowed to
approach their limit arbitrarily slow, complexity reasoning based on the class
of functions used in the definition of a p.a.r. of a real number or function alone
is meaningless because all classes define the same set of numbers and functions,
namely all computable ones. For example,

Theorem 7.1 If a real number has a computable p.a. representation, it has a
poly-time p.a. representation.

Proof. Let A be one of the number’s p.a. representations and e be the program
code of A.

The poly-time functions can define the minimization normal form of the
partial recursive functions, i.e. there exist (see e.g. [89]) poly-time functions
U : N→ N and T : N→ N→ N→ N, such that

φe(x) ↓ ⇔ ∃y(T (e, x, y) = 0)

φe(x) ' U(µy[T (e, x, y) = 0].

The function

B(x) :=
{
U (µz < |x| [T (e, w, z) = 0]) , if ∃k, z < |x| (T (e, k, z) = 0)

〈0,∞〉 , otherwise ,

where
w = |x| − µk < |x| [∃z < |x| (T (e, |x| − k, z) = 0)],

87
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is poly-time, because pairing and sharply bounded quantification and mini-
mization are poly-time computable. It is a p.a.r. of the number represented
by A, since if we can eventually find a point n where all subsequent values of
A have error smaller than 2−k for any k, after the point 2m, for m such that
T (e, n,m) = 0, all values returned by B will return A(x) for some x ≥ n, i.e.
having error smaller than 2−k. 2

The same trick works for functions, but we must first impose some require-
ments on the encodings of V, E and their pairings in order to be able to per-
form operations on them. We request that the encodings satisfy the following
requirements:

• |〈a, b〉| is polynomial in max(|〈a〉V| , |〈b〉E|)

• 〈a, b〉 ≥ 〈a〉V and 〈a, b〉 ≥ 〈b〉E

• 〈2−n〉E ≥ 2n

• there exist poly-time functions that convert between the encodings of V
and E, rounding up if a number in V cannot be represented in E

• multiplication and division by 2 are poly-time (and thus also multiplica-
tion by 2±|k|) in both V and E

• addition and the floor function b·c in V are poly-time

• there exists a function dya(n, d) that selects a code for the dyadic number
n2−d, such that whenever a, b, c, d are positive integers, a ≤ c ∧ b ≤ d →
dya(a, b) ≤ dya(c, d)

• the absolute value operator on the codes is such that 〈v〉V ≤ 〈|v|〉V for
any v ∈ V

In the case V = Q and E = Q+
∞ these properties are satisfied e.g. by the

Cantor pairing, the encoding of rational numbers q as 〈n, d〉, such that

q = (−1)n b(n+ 1)/2c
d

,

and the encoding of ∞ as 〈0, 0〉.

Theorem 7.2 If a partial real function has a computable p.a. representation,
it has a poly-time p.a. representation.

Proof. Let F be one of the function’s p.a. representations and e be the program
code of F . Let b(a, n) =

〈
dya(b2|n|av + 1/2c, |n|), 2−|n|

〉
. If α is a real number

such that a ∈ Aα and m is the biggest number such that 2−m > ae, then
∀n < m(b(a, n) ∈ Aα).

The function

G(a) :=


U (µz < |a| [T (e, w, z) = 0]) , if ∃k < m∃z < |a|

(T (e, b(a, 2k), z) = 0)
〈0,∞〉 , otherwise ,
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where
w = m− 1− µk < m[∃z < |a| (T (e, b(a, 2m−1−k), z) = 0)]

m = µk < |a| [2−(k+1) ≤ ae],

is poly-time because m < |a| and thus bounded by m means sharply-bounded
by a, we can also compute 2k if k ≤ m, sharply-bounded minimization and
quantification are poly-time operations, and b is a poly-time function.

Following the reasoning in Theorem 6.1, we know that for any p.a.r. A of
a number α in the domain of the function, as l grows λn.b(A(l), n) becomes
a match for longer and longer initial sections of one of finitely many approxi-
mations of α. Because the choices are finitely many, for any k ∈ N there exist
common bounds m and n, such that ∃p < m∀l > n((F (b(A(l), p)))e < 2−k).
Moreover, there exists a common bound z for the computation code, i.e. ∃n <
m∃y < z∀l > n(T (e, b(A(l), p), y) = 0 ∧ (U(y))e < 2−k).

Since for every p.a.r. A there exists a point q such that ∀l > q((A(l))e <
2−max(m+2,z)), λl.G(A(l)) is a p.a.r. of the number represented by λl.F (A(l)),
because ∀l > q(G(A(l)))e < 2−k. 2

7.2 Real numbers.

In order to be able to speak about different complexity classes of real numbers,
we must make a definition which requests more from our functions in order to
avoid the minimization in (6.1). This gives rise to the following definitions and
equivalence property:

Definition 7.1 A modulus for a p.a.r. A of a real number α is a function
m : N→ N, such that for all k and all n > m(k), (A(n))e ≤ 2−|k|.

Definition 7.2 We will say that a real number is p.a.r.-computable in a given
class C of computable functions, if there exist both a p.a.r. and a modulus for
it in C.

Theorem 7.3 A real number has a sharp CF-representation in a subrecursive
class C that contains the poly-time functions and is closed under composition
if and only if it is p.a.r.-computable in C.

Proof. If B is a sharp CF-representation of the number, take the p.a.r. A(n) :=〈
B(n), 2−|n|

〉
and the modulus m(n) := n.

For the other direction B(k) := (A(m(k)))v is a sharp CF-representation of
the number if A and m are, respectively, its p.a.r. and modulus. 2

7.3 Type-2 complexity for functions.

Again taking the p.a.r. of a real function we lose all complexity information
about that function. To talk about complexity classes, we define a function
that can replace the minimization in (6.2) in a way that can also be used for
multi-argument functions:
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Definition 7.3 A modulus for a p.a.r. F of a partial real function φ is a
partial functional M : (N → AR) × (N → N) × N −→ N, such that for all
α ∈ dom φ, p.a.r. A of α, moduli m for A,

∀k∀n > M(A,m, k)((F (A(n)))e ≤ 2−|k|).

Note that even though the actual function object is a type-1 object, we now
introduce a type-2 operation to characterize it. However, some extra flexibility
comes from the separation of these two objects: to implement e.g. a feasible
real function one does not have to implement a feasible type-2 object, but only
needs to prove that it exists. Moreover, if a CF-representation of a function
needs extra information to be in a certain class (e.g. division needs evidence
that the denominator is non-zero to be primitive recursive), it will in general
only be needed for the modulus.

Definition 7.4 We will say that a real function is p.a.r.-computable in a given
class C of computable type-2 functionals, if both a computable p.a.r.1 and its
modulus can be found in C.

Theorem 7.4 If a function is p.a.r.-computable in a given class C that con-
tains BFF and is closed under functional composition and functional substitu-
tion for total functions, then it is computable in the same class.

Proof. For φ : R → R, α ∈ dom φ, F - p.a.r. of φ, M -modulus for F , and B -
CF-representation of α, take

Φ(B,n) := (F (A(M(A, λp.p, n))))v

where
A(p) :=

〈
B(p), 2−|p|

〉
.

A is a p.a.r. for α with a modulus λp.p, and hence from M being a modulus
to F , we have |Φ(B,n) − φ(α)| < 2−|n|. Φ is obtained by composition and
functional substitution from basic feasible functionals and F and M , therefore
it is in C. 2

The other direction is more complicated. First we will verify that p.a.r.-
computability coincides with CF-computability, i.e. that, in addition to the
p.a.r., a modulus can be found for every computable function:

Theorem 7.5 If a partial function φ : R → R is CF-computable, then it is
p.a.r.-computable in the class of all partial computable functionals.

Proof. For this proof we will need to modify the proof of Theorem 6.1. The
proof we used in Chapter 6 made a case selection according to a non-computable
predicate (whether a number is dyadic or not), which does not let us explicitly
construct a modulus.

1via the implicit embedding of Type 1 in Type 2
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The modified proof will rely on exhausting all possible initial sequences that
lead to the current approximation and choosing from them the one that gives
the best approximation of the output. With this modification we can be sure
that once a given interval results in an approximation with a given precision, all
subintervals of it will result in approximations of at least this precision. More
precisely, let Φ : (N→ Q)→ N→ Q be a CF-representation of the real function
φ. Let α ∈ dom φ and fix a ∈ Aα. Let

br(n) =
{
〈b2navc, 2n〉 , if rn = 0
〈d2nave, 2n〉 , if rn = 1

(i.e. given a binary string r, br(n) produces dyadic approximations rounded
according to the digits in r), let Φ† be a version of Φ that honors a new exception
x, brdm be defined as

brdm := λn.

{
br(n), if n < m
raise x, otherwise

and define the function Φ‡ as

Φ‡(B,n) :=


〈0,∞〉 , if n = 0
try

〈
Φ†(B,n− 1), 2−(n−1)

〉
catch(x) Φ‡(B,n− 1)

, otherwise

(Φ‡(brdm,n) finds the largest l ≤ n− 1 for which Φ(br, l) only refers to the first
m values in br, or returns a completely undefined value if such an n cannot be
found).

We will now prove that the function

F (a) := Φ‡(brdm,m+ 1),

where

r = µs
[
∀t < 2m

(
(Φ‡(bsdm,m+ 1))e ≤ Φ‡(btdm,m+ 1))e

)]
m = µk[2−(k+2) < ae]

is a p.a.r. of φ and will then define a modulus for this function.
All br(n) for n < m are approximations to α of precision 2−n. Moreover,

when we look at the functions br that would be generated by a subinterval d of
a, we will see that they will contain a match of these and therefore (F (d))e ≤
(F (a))e.

The canonical CF-representation c of α defined as

c(n) = 2−n

⌊
2nα+

1
2

⌋
will also be matched in its initial components by some br. Since c is a valid
(though possibly non-computable) CF-representation of α, for every precision
k, Φ(c) would have to request a finite part of c, which will eventually be matched
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by a br generated by a sufficiently small approximation a ∈ Aα. Thus F converts
approximations to α to approximations to φ(α).

Let M(A,m, k) := µn.[F (〈(A(m(n)))v, 3(A(m(n)))e〉)e ≤ 2−k]. The min-
imization halts, because selecting a subsequence of unboundedly decreasing
error from the p.a.r. we still have a p.a.r. of the same number and thus any
target precision will be reached. Additionally, for any n ≥M(A,m, k) we have
that (A(n))e ≤ (A(M(A,m, k)))e and therefore

A(n) ⊆ 〈(A(M(A,m, k)))v, 3(A(M(A,m, k)))e〉

and (F (A(n)))e ≤ 2−k. 2

To prove the equivalence between p.a.r.-computability and the existence of
sharp CF-representations in some restricted type-2 computability classes, we
need the higher-type monotonicity we have in the hereditarily self-majorized
classes such as the ones described in Section 2.2.2. The arguments to a real
function need not be subrecursive or even computable, but still the following
lemma shows that we can bound them in a suitable sense:

Lemma 7.1 Let b be defined as

b(n) := dya(b2|n|av + 1/2c, |n|). (7.1)

Then for all α ≤ a0, a ∈ Aα, b, created by (7.1) for a with ae ≤ 1,

J(a0) maj1 b

where
J(a0) = λn.dya(1 + b2|n|a0 + 1/2c, |n|). (7.2)

Proof. Since ae ≤ 1, we have |av| < a0 + 1 and therefore by the properties of
the encoding J(a0)(n) ≥ b(n), and also, since when n is increased both the nu-
merator and denominator in (7.2) do not decrease, we have ∀k ≤ n(J(a0)(n) ≥
J(a0)(k) ≥ b(k)), which means J(a0) maj1 b. 2

We are now ready to prove the result using another modification of the proof
of Theorem 6.1.

Theorem 7.6 If a partial real function has a sharp CF-representation in a
hereditarily self-majorized class of type-2 functionals that contains BFF and is
closed under composition and functional substitution for total functions, then it
is p.a.r.-computable in that class.

Proof. Let Φ be a sharp CF-representation of the partial real function φ.
We will use the proof of Theorem 6.1, substituting the definition (6.3) of

b with (7.1) and changing all functions used in that proof to basic feasible
versions (making use of the fact that Φ is now a sharp CF-representation of the
function). The function F defined as

F (a) := Φ‡(bdm, 2m+1)
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where Φ† is a version of Φ that honors the new exception x,

Φ‡(B,n) :=


〈0,∞〉 , if n = 0
try

〈
Φ†(B, bn2 c), 2

−|bn
2
c|

〉
catch(x) Φ‡(B, bn2 c)

, otherwise

bdm := λn.

{
b(n), if n < m
raise x, otherwise

b(n) := dya(b2|n|av + 1/2c, |n|)
m := µk < |a| [2−(k+2) < ae]

does the same job as the original definition in Theorem 6.1 and thus the same
reasoning tells us that it is a partial approximation representation of φ.

All operations used in the generation of F can be done without leaving the
class of Φ (this is true because m is bounded by |a| and thus all definitions here
can be expressed as composition or functional substitution of function(al)s in
the class2). Hence F is in the class. We now need to find a modulus for it.

In the class of Φ there exists a functional Ψ that does exactly the same job
as Φ, but instead of returning the approximation it gives the largest k to which
B was applied. Since the class contains this functional and is hereditarily self-
majorized, it also contains a majorizer Ψ∗ for it. The modulus for A gives us
means to bound the absolute value of the real number described by it, therefore,
with the previous lemma, there is a poly-time function b∗ := J(|A(m(0))|+ 1)
which majorizes all functions b generated by partial approximations with error
less than 1.

Hence l = Ψ∗(b∗, n) ≥ Ψ(b, n) for all good b’s, in particular for the one (call
it b0) generated by a0 = A(m(l)), which means Φ†(b0dl, n) will not raise an
exception, and F (a0) will give a result with the required precision.

Hence M(A,m, n) = max(m(Ψ∗(J(|A(m(0))| + 1), n)), n) is a modulus for
F . 2

7.4 Complexity of Intensional Representations

Complexity measures can be introduced similarly to the extensional case, but
here we also want to make sure the history information does not grow too
quickly:

Definition 7.5 A modulus for a storage-p.a.r. pair F,H of a function φ is a
pair of functions M,N : (N → AR) × (N → N) × N −→ N, such that for any
p.a.r. A to α ∈ dom φ with modulus m,

∀k
(
F (H(A(m(2|n|)),H(A(m(2|n|−1)), · · ·H(A(m(0)), 0) · · · )))e ≤ 2−k

)
,

where n = M(A,m, k) and

∀n
(
H(A(m(2|n|)),H(A(m(2|n|−1)), · · ·H(A(m(0)), 0) · · · ) ≤ N(A,m, n)

)
2the recursion on notation Φ‡ can be made bounded using the same trick that shows

maxx<|y| F (x) is in BFF for a function argument F (see [13]).
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Theorem 7.7 A multi-valued function has a sharp CF-representation in a
hereditarily self-majorized subrecursive class of functionals that includes the
BFF and is closed under composition and functional substitution for total func-
tions, if and only if it has a storage-p.a.r. and its modulus in the same class.

Proof(←). This variation of what we did in the previous theorem is in BFF if
F,H,M and N are in BFF:

Φ(a, n) = F (h(k))v, where

h(m) =
{

0, if m = 0
H(

〈
a(2|m|−1), 2−(|m|−1)

〉
, h(2|m|−1)), otherwise

k = M(λp.(a(p), 2−|p|), λp.p, n),

because the recursion on notation h is bounded by N(λp.(a(p), 2−|p|), λp.p, n).
2

Proof(→). All the constructions used in Theorem 6.3 can be done in BFF using
a modification similar to the previous theorem. The function H, defined as (not
changed from Theorem 6.3):

H(a, 〈hi, hs〉) =



〈hi, hs〉 , if ae > 2−(exp(〈hi,hs〉)+1)〈
bav + 1

2c, 0
〉
, if 1

4 < ae ≤ 1
2 ∧ 〈hi, hs〉 = 0

〈gi, 4gs + 1〉 , if ae ≤ 2−(exp(〈hi,hs〉)+1)∧
man(〈hi, hs〉)− av2exp(〈hi,hs〉) > 1

2

〈gi, 4gs + 3〉 , if ae ≤ 2−(exp(〈hi,hs〉)+1)∧
man(〈hi, hs〉)− av2exp(〈hi,hs〉) < − 1

2
〈gi, 4gs + 2〉 , otherwise ,

where

〈gi, gs〉 = H(〈av, 2ae〉 , 〈hi, hs〉)

man(〈hi, hs〉) =


hi, if hs = 0
2man(

〈
hi, bhs

4 c
〉
)− 1, if hs ≡ 1(mod4)

2man(
〈
hi, bhs

4 c
〉
), if hs ≡ 2(mod4)

2man(
〈
hi, bhs

4 c
〉
) + 1, if hs ≡ 3(mod4)

exp(〈hi, hs〉) =
⌈
|hs|
2

⌉
,

is poly-time, computed via bounded recursion on the notation of ae (the bound
is not explicitly specified, but hs only grows by two bits for every bit of precision
in ae and hi is bounded by bav + 1c or the previous value of hi).

Together with the function

F (〈hi, hs〉) = Φ‡(bdm, 2m+1)
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for

Φ‡(B,n) :=


〈0,∞〉 , if n = 0
try

〈
Φ†(B, bn2 c), 2

−|bn
2
c|

〉
catch(x) Φ‡(B, bn2 c)

, otherwise

m := exp(〈hi, hs〉)

bdm := λn.

{
b(n), if n ≤ m
raise x, otherwise

b(n) := dya(man(g(n)), exp(g(n)))
g(n) :=

〈
hi, bhs4n−mc)

〉
.

(where Φ† is a version of Φ that honors the new exception x) they form a
storage-p.a.r. of the function φ.

The M part of the modulus can be constructed exactly as in Theorem 7.6,
and the bound N is

N(A,m, n) =
〈
bA(m(0)) + 2

1
2
c, 22|maxi≤|n| A(m(2|n|−i))|

〉
.

(the maximum can be computed in BFF as shown in [13]) Because of the
properties of the encoding, if A(|n| − i)e ≤ 2−k, |A(|n| − i)| ≥ 2k, and since
in H we’re adding two bits for every bit of precision in the approximation, N
gives us a bound for the size of the history information. 2

Using the properties of the encodings that we have requested in this chapter,
Theorem 6.4 defines a poly-time conversion between storage- and recursion-
p.a.r., thus the results of this section also apply to recursion-p.a.r.’s.

7.5 Function complexity on closed intervals.

The previous sections give correspondence between complexity in this model
and type-2 complexity. In this section we will compare our approach to com-
plexity on closed intervals from the domain in the sense of Ko. To do this,
we introduce uniform moduli on closed subsets of the domain (which are also
uniform moduli of continuity for the function and its representation):

Definition 7.6 A uniform modulus on [a, b] ⊆ dom φ of a p.a.r. F of a real
function φ is a function U : N→ N, such that

∀α ∈ [a, b]∀a ∈ Aα∀k∀n(ae ≤ 2−|U(k)| → (F (a))e ≤ 2−|k|)

Theorem 7.8 A partial real function φ has a sharp CF-representation on
[a, b] ⊆ dom φ in a hereditarily self-majorized class of type-2 functionals closed
under composition and functional substitution for total functions if and only if
it has a p.a.r. and a uniform modulus in the same class.

Proof(→). Use a and b to find an upper bound for the absolute value of α, then
apply the same reasoning as in Theorem 7.6. 2
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Proof(←). M(A,m, k) = m(U(k)) is a modulus for all A’s representing reals
in the interval, thus φ is p.a.r.-computable in the class and thus has a sharp
CF-representation in it. 2

This definition characterizes real functions by a pair of type-1 functions
in a manner similar to Ko’s approach in its version that applies to the first
Grzegorczyk characterization of real functions (given by Definition 2.11). Let
us take a look at a few instances of this theorem:

Corollary 7.1 A partial real function φ has a CF-representation primitive re-
cursive in the sense of Kleene ([50]) on [a, b] ⊆ dom φ if and only if it has a
primitive recursive p.a.r. and a primitive recursive uniform modulus on [a, b].

Corollary 7.2 A partial real function φ has sharp CF-representation in BFF
on [a, b] ⊆ dom φ if and only if it has a poly-time p.a.r. and a poly-time
uniform modulus on [a, b].

It is easy to see that the following fact is true (using Ko’s characterization
of the poly-time real functions as poly-time maps of rational approximations
with poly-time moduli of continuity):

Theorem 7.9 A partial real function φ is feasible in the sense of Ko on [a, b] ⊆
dom φ if and only if it has a poly-time p.a.r. and a poly-time uniform modulus

on [a, b].

Combined with the previous corollary it gives an alternative proof of The-
orem 5.2.



Chapter 8

Efficient Implementation of Real-Number

Arithmetic

This chapter starts the practical part of the thesis, where we will discuss the
RealLib library for exact real number computations and a component of the
package that can also be used as a stand-alone library for double precision
interval arithmetic.

Portions of this chapter are also in [77], “RealLib, an Efficient Implementa-
tion of Exact Real Arithmetic”, CCA 2005 — Second International Conference
on Computability and Complexity in Analysis, August 25-29, 2005, Kyoto,
Japan. Informatik Berichte 326-7/2005 FernUniversität Hagen, Germany 2005.

8.1 Introduction

In developing a library1 for exact real number computations, our main objective
has been to create a tool which is useful in a wide variety of contexts. For this,
the library needs to be able to replace standard floating point with a minimum
of extra programming, stay clear of bad programming practices to decrease the
possibility of the library introducing bugs in existing code and to facilitate the
understanding of the mechanisms of the library, and, maybe most importantly,
the library must be able to reach performance comparable to that of hardware
floating point in the cases where it is actually possible to compute meaningful
results using low precision.

Combining these requirements presents a very difficult task. The perfor-
mance requirement clearly excludes higher-level approaches that manipulate
the real numbers as entities (more information about the performance prob-
lems of this approach will be given below; examples of packages implementing
this include ICReals [20], XRC [7], Few Digits [12] and others). On the other
hand, a minimal user effort in replacing floating point arithmetic with real
number arithmetic appears to require such an approach. It may seem that a
user interface that pretends to act on complete objects while in reality it does
something else is an answer to the problem, but such an approach appears to
require bad programming and non-standard behavior of the user’s programs as

1RealLib, available at http://www.brics.dk/~barnie/RealLib/
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demonstrated by Norbert Müller’s iRRAM [86].
Our exact real number implementation takes an approach which provides

two levels of access to real numbers aiming to satisfy conflicting parts of the
requirements. One of the levels operates on real numbers as complete entities
and is able to be easily integrated in existing code, but has poor performance
when a multitude of simple operations is to be performed. For the latter case,
our design provides an interface which operates on the level of approximations,
is free of performance issues, but where the control flow may become more
complicated as the objects operated on do not represent complete reals. Both
levels have well defined behavior and do not use any non-standard programming.

The two levels interact with each other, more specifically, the layer that op-
erates on complete entities (to be called the “top”, “numbers” or “direct” layer
in the rest of the chapter) can use objects written in the layer that operates
on approximations (to be called the “bottom”, “function” or “approximations”
layer). With the help of this mechanism, a user may encapsulate large com-
putations in a function on the bottom layer, and use it once or repeatedly at
the direct layer. In an extreme case (which may happen quite often in practice
and is very similar to the mode of operation of iRRAM), all of a computation
may be implemented on the approximations layer as what we call a “nullary”
function (i.e. a real number constant), using the top layer, for example, to only
create a real number linking to that object and print out an approximation to
it.

The rest of this chapter will explain the obstacles in designing efficient real
number systems along with suggestions for solving them, explain the way these
solutions are used in RealLib, and compare the library to the best available
alternatives.

8.2 Performance problems in real number arithmetic

The approach to real number computability most often attempted in practice
is some kind of type-2 approach using the TTE model of Weihrauch [113] or
an equivalent formulation. The approach looks pretty easy to implement, espe-
cially if one uses a functional language such as SML, ocaml and others.

Unfortunately, the type-2 character of the approach presents some barriers
to efficiently implementing the ideas. Some of them can be avoided, but some
of the problems are so serious that a clean type-2 implementation free of very
serious performance problems is impossible to achieve.

Indeed, clean2 type-2 implementations have proven to be extremely slow,
being at least a magnitude slower3 than mixed solutions such as RealLib and
iRRAM4, even in cases where higher precisions are used and the bookkeeping
overheads are low. What are the reasons for this poor performance?

2The term will be properly defined below.
3This statement is based on the results of Section 8.5 and the “Many Digits” friendly com-

petition, http://www.cs.ru.nl/~milad/manydigits/, in comparing the exact real number
packages RealLib and iRRAM to XRC, Few Digits and BigNum.

4There is a common misconception that iRRAM is an implementation of the TTE model
of real number computability. This is not true, as the reader will see later in Section 8.6.

http://www.cs.ru.nl/~milad/manydigits/
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Since every real number used in the course of a computation needs to be
present as a function object, a type-2 approach requires the library to use
representations of the way in which a real number was obtained, which has to
be implemented in some structure that stores a term representation of every
object used in the computation.

This leads to a wide variety of performance problems which will be discussed
below.

8.2.1 Problems with common subexpressions

The type-2 implementation of a binary operation computes an approximation
based on approximations to its operands at higher precision. Every time a bi-
nary operation is called, it asks its first argument to compute an approximation,
then it asks its second argument to compute an approximation and uses them
to compute an approximation to the output.

If both arguments are the same object, a straightforward implementation
would require that the same computation (probably with different accuracy) be
carried out twice. Moreover, a naive implementation would build a representa-
tion of the computation as a tree and will contain the argument twice.

Consider this simple example using a hypothetical class Real that imple-
ments type-2 real number arithmetic:

Real a(1);
for (i=0;i<100;++i)

a = a+a;

If the class Real uses a tree to store the term representations of the real
numbers, at the end of this fragment a will refer to a tree with 2101 − 1 nodes.

A better implementation of the class should prefer to use a directed acyclic
graph (dag) in the representation of real numbers to allow multiple references
to the same node and avoid the unnecessary growth of the size of the structure.

Even after switching to dags to represent expression trees, the better im-
plementation may run into the problem of complexity explosion, because the
straightforward implementation would still require the computation of an ap-
proximation to each node twice for every addition, or the computation of 2100

approximations to 1 and 2100− 1 additions on approximations. Naturally, such
an explosion cannot be permitted.

The problem can be solved by careful caching of the approximations, making
sure that the approximations to a node are asked with the same precision, and
that the cached approximations are deleted when they are no longer needed.
This is highly non-trivial to do in a clean type-2 implementation.

8.2.2 Unnecessary precision growth

A type-2 implementation of a function requires higher accuracy from its argu-
ments in order to be sure about the accuracy of its result. This may lead to
unnecessary big precision growth.

Consider this code fragment:
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Real a(0);
for (int i=1;i<=1000000;++i)

a = a+Real(i);

Addition requires approximations to its arguments of accuracy at least one
bit higher. Thus in this code fragment the accuracy needed will grow by at
least one bit in every iteration. Thus, if we want to compute an approximation
to a which is 32-bit accurate, we will end up performing many of the additions
at very high precision, some of them with 1000000 or more bits of precision.
Clearly this is not acceptable from a performance point of view, since in reality
less than 60 bits suffice to carry out the whole computation.

One may wonder if it is possible to balance the precision request so that a
binary operation requires less precision from its more difficult arguments. We
do not see how this could be implemented in practice.

The approach described so far is sometimes called “top-down evaluation” to
indicate that a node controls the accuracy of its siblings. The name also hints
at the possibility of a “bottom-up” approach where the accuracy of the siblings
determines the accuracy in a node, an approach which does not suffer from the
problem at hand.

The bottom-up approach evaluates everything at an (almost) constant pre-
cision starting from the leaves of the tree, keeping track of the errors that are
introduced at every step. In certain cases it may turn out that the end result
of the computation on a tree is not accurate enough. In such a case the whole
computation is restarted at higher precision until the process leads to a result
which is accurate enough (i.e. in which the accumulated error is sufficiently
small). The reiterations do not add much to the complexity of the process,
since e.g. by doubling the precision for each new iteration we can be certain
that time taken by the evaluation is dominated by the last iteration.

In this case the implementations of functions use interval arithmetic and
approximations to transcendental functions that accept arbitrary precision re-
quests. It may seem that such an approach requires at least twice the amount
of work, when one considers that an interval is represented as a pair of bounds
and every function must be evaluated at least twice. This is not required, as
one can use what is sometimes called “simplified interval arithmetic”, where the
functions are evaluated only at the center and the size of the resulting interval
is estimated from the size of the input interval.

It becomes very unclear whether we can still call this a type-2 approach
after this modification. We will leave this question open, and will keep using
the term “clean type-2 implementation” to mean a type-2 implementation that
uses the normal top-down evaluation, and will reserve “type-2” as an indication
of an approach where every real number is available as a function representation
and a real number function has full access to that representation.

8.2.3 Bookkeeping necessary

Even with the modifications discussed above, a type-2 implementation requires
a new object to be created every time an operation is performed. If we assume
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that this object takes at least 4 bytes of memory (to store the 32-bit address of
an argument), the absolute maximal number of operations that can be carried
out in a computation on a 32-bit machine is about 1 billion. Since this number
of operations can be easily reached e.g. in linear algebra, this restriction is
clearly unacceptable.

Moreover, every operation must allocate memory, which is known to be a
painfully slow process in modern computers, significantly slower than the time
it takes to actually perform the operation at low precisions. If we want to be
able to reach the performance level of hardware floating point, this is clearly
unacceptable.

Therefore one must consider an approach that does not store the history of
a computation at every step. This is not possible in a type-2 approach, since the
basic property of real functions in a type-2 model is the access to full function
representations of their real arguments.

The functions must operate on approximations and be modular in the ap-
proximations in the sense that the representation of the composition of two
functions must be achieved by composing the representations of the two func-
tions. In order to also achieve full soundness and completeness, i.e. equivalence
to the popular notions of computable analysis, a type-1 theoretical approach
must be used. Combined with the requirement for bottom-up evaluation, an
interval approach such as Grzegorczyk’s interval definitions [34] of real function
computability must be used.

8.2.4 Loss of locality information

Even if we disregard the time and space problems of creating a term represen-
tation, which may be negligible at higher precisions, a type-2 representation of
a computation lacks the locality information that a programmer or compiler
gives in a implementation of a function.

Let us take a look again at a slight modification of the last example:

Real a(0);
for (int i=1;i<=1000000;++i)

a = Real(i)+a;

Depending on the actual way that the process of evaluating the generated
expression is implemented, this computation may require the storage of up to
999999 temporary values. The evaluation of a tree is recursive, and a naive
implementation may evaluate the left hand side argument to additions first
before diving into the recursion to compute the right hand side argument, which
will lead to computing and storing a value for every iteration. If the precision
is high, this process will waste huge amounts of memory. Since this will also
destroy all data locality and trash all cache levels, the performance in such a
case is very far from acceptable.

While it is easy to find a solution to the problem for this concrete example,
finding an approach which chooses the better pattern of evaluating arguments
does not seem trivial. A heuristic must be used which will most probably fail
in a large number of cases.
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To solve the problem completely, we would prefer to execute the operations
with the order and locality that the programmer and compiler give. For this
example, it would mean that only a single object, a, needs to be stored to
complete the evaluation.

To achieve this, one again must use a bottom-up evaluation scheme com-
bined with a modularity requirement on the level of approximations, so that
the loop above can start with an approximation to a, update it at every itera-
tion, and finish with an approximation to the end result. If that end result is
not accurate enough, we should be able to rerun the code to achieve a better
approximation.

8.2.5 Impossible compiler optimizations

Whenever a computational tree determines the order of computations, it is
impossible to perform any compiler optimizations on the code.

In the case of very low precisions the overhead of a function call and inability
to execute computations in parallel may result in two-digit factors of slowdown.
We certainly do not want this if we want to be able to achieve performance close
to hardware floating point when the problem to be solved is easy.

To achieve the best possible performance, the programmer must be able to
write function code that is compiled specifically for fast instantiations of inter-
val arithmetic and additionally for slow but generic multiple precision floating
point. In C++ this is achieved using template functions.

The library must permit this tool to be used to achieve optimal performance.

8.3 Design of the RealLib library

The RealLib library provides two interfaces to the user. One of them behaves like
a type-2 implementation of exact real arithmetic, while the other operates on
approximations of numbers but still implements exact real arithmetic by being
an implementation of the model of Partial Approximation Representations for
computable analysis [75]. The top-level interface uses a bottom-up approach
to evaluating real numbers and is thus not a clean type-2 implementation. It
does this to avoid the first two performance problems discussed in the previous
section.

Our bottom-up approach uses fixed precision for all the computations on
an expression dag, which not only lets us avoid the precision growth associ-
ated with top-down evaluation, but also makes it easier to avoid the complexity
explosion by ensuring that once an approximation to an object is computed,
this approximation will have the exact precision needed for all other references
to the same object. By counting their number and the number of requests
already made, we can maintain efficient caching of all temporary results and
delete them exactly when they are no longer needed. Additionally, in an at-
tempt to minimize the effect of the loss of locality information, the library also
tries to optimize the order of evaluation of the siblings of nodes with multiple
arguments.
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The top layer of the library behaves like a built-in type for floating point
arithmetic with the exception of the aspects that have been proven to be unde-
cidable: because of the non-computability of the equality test, all comparisons
of real numbers are undefined for equal arguments; in consequence to this, the
library does not provide non-strict versions of comparisons (<= and >=) be-
cause they coincide with their strict counterparts; additionally, the rounding in
the library is always faithful (up to a distance of 1 unit in the last place) as
correct rounding (such as rounding to a double precision number according to
the IEEE-754 rules) is not achievable.

The top layer of the library is free of the first two performance issues, but
suffers badly from the rest of the problems discussed in the previous section. In
particular, there is a need to maintain full information about the way in which
a number was constructed. This is very inefficient when simple operations are
involved.

To solve this problem, the library provides a bottom layer, the level of
approximations where the objects on which the user’s code operates are interval
approximations. The objective of the bottom layer is to represent big chunks
of a computation tree as single nodes by providing a function that encapsulates
a lower-level version of the code of the same operation. This is made possible
by the bottom-up approach for evaluation and the theoretical model, which
also gives us representations of all computable real functions on the level of
approximations in a modular way. The latter allows the approximations layer
to look as if it is working on complete real numbers.

The bottom layer does not store any additional information about the tem-
porary real numbers other than their approximations and performs computation
exactly in the order and locality given by the programmer and compiler. More-
over, the bottom layer functions are always defined as template functions, so
that a very fast double precision step can be used for the first approximation.

This “function” layer is used to define functions that can be used directly on
the numbers layer. For example, it is easy to define a new function computing
the Riemann ζ of a complex number, and use this function repeatedly with
both the top and bottom layer interface.

An actual computation starts when an object is created on the top layer
and a request for a property of it is given (such as e.g. a 10-digit decimal
approximation). The request triggers a recursive evaluation on the description
of the number at a chosen precision, which in turn executes the bottom layer
functions used in the definition. They may be executed more than once, since an
end result may turn out to be insufficient to show the property, or the functions
may be abruptly terminated by an exception requesting higher precision from
a function used in their body (such as division when the current approximation
of the divisor does not separate it from zero).

With the combination of the two layers we have a mixed implementation in
which the results can be extracted via the more convenient type-2 interfaces,
while the bulk of the computations can be carried on the much more efficient
approximations level. We still have full descriptions of all temporary objects
used in the numbers level, but they do not need to be as many since a single
node can encompass a multitude of simple operations. In this case, the program
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code written on the function layer of the system becomes part of the description
of the term used to obtain a real number.

In clean type-2 implementations of real arithmetic, the single nodes can only
be representations of the functions that are built into the system. Even if the
system allows it, adding a new function to the set is not a trivial task, since the
approach requires a careful control over the accuracy which is not automatically
available. With RealLib in many cases adding a function to the set of objects
working on the fast layer of approximations is achieved by simply changing a
function’s header and using a linking macro (as the examples in Section 8.5
show).

A type-2 interface is the most convenient method of working with real num-
bers, but unfortunately it is not very efficient unless a huge library of predefined
functions is available. While we are not able to provide that library for RealLib,
we have made it as easy as possible for the user to add new functions that run
as close to the hardware as possible.

8.4 Limit computation and approximate comparisons

The results of applications of most interesting functions in analysis are given
numerically as limits of computably converging sequences of computable num-
bers. One of the ways to define a computably converging sequence is by giving
a sequence together with an estimation of the amount of error in all the approx-
imations of the sequence. This corresponds to giving a partial approximation
representation (see [75]) of the limit.

The method used in RealLib to define limits follows this idea. A function
written on the level of approximation can add to the amount of uncertainty in
an approximation to cover for uncalculated portions of the result. Every such
function is given a parameter prec that specifies a precision; if a function needs
to compute the limit of a sequence it needs to

• generate members of the sequence for different values of prec,

• indicate the distance within which the limit must be contained for every
member of the sequence,

• make sure that for every target accuracy ε as prec grows there will be a
point after which the distance is always smaller than ε.

For example, if one tries to compute the number e by evaluating its Taylor
series expansion, one can choose to evaluate the first prec number of elements
and find a bound for the remainder sum which is to be added to the error in the
approximation of the result. Since as prec grows this function gives improved
approximations to the number, the third condition is also satisfied.

The same method is used in the implementations of real number functions
that need to compute a limit. The only difference is that prec is no longer
explicitly given as an argument to the function. In exact correspondence with
the theoretical model, this parameter is recovered from the approximation to
one of the real number arguments of the function.
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Examples of defining a function that requires limitation are given in the
library’s manual [78].

Another operation which is a requirement for the completeness of a real
number package, is the presence of approximate comparisons, i.e. a method
of showing either x < b or a < x for an arbitrary x when a < b. This is
not directly given in our library, but the approximations level of RealLib in-
cludes comparisons that only evaluate to true if the current approximation is
sufficiently accurate to prove the fact. Using a combination of two such com-
parisons and forced reiteration if neither of them is true, one can easily achieve
the approximate comparison operation.

In addition to this, the library provides “weak” operations which can be
used to choose more efficient execution paths. A weak operation only evaluates
properties of the center of an approximation and is not guaranteed to give
consistent results in consecutive iterations through the same code. A weak round
operation, for example, can be used to reduce an argument to a periodic function
to its primary domain. Although the same real number may round to different
values in different iterations, this does not lead to problems as all possibilities
will ultimately lead to the same result as a real number.

8.5 Examples and performance comparison

We will give a few sample programs written for the library, starting with two
cases where it is known a-priorily that the computations cannot be correctly
handled in machine precision, and finishing with a case which shows the strength
of the library in dealing with the situations that more often appear in practice:
where the need for high-precision computations may be suspected, but hardware
floating point actually suffices.

The first example is a very simple demonstration of a feature all exact
real number systems share: the possibility to request arbitrarily precise ap-
proximations to a number. In this case, we choose to display a 10000-digit
approximation to the value of π:
001 #include <iostream>
002 #include <iomanip>
003 #include "Real.h"
004 using namespace std;
005 using namespace RealLib;
006
007 int main(int argc, char ∗∗argv) {
008 InitializeRealLib();
009 {
010 cout << setprecision(10000) << Pi;
011 }
012 FinalizeRealLib();
013 return 0;

014 }
The actual work of this code is done at Line 10, the rest of the file in-

cludes the appropriate headers, makes the definitions in the std and RealLib
namespaces local, and takes care of the necessary initialization and finalization
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of the library. At Line 10, Pi is a predefined value for the library and represents
the exact value of the real number π via a function that computes approxima-
tions to it for any given precision. To display the result with the number of
digits specified by setprecision, the library will call this function, possibly more
than once, to get an approximation accurate enough to display 10000 digits
which are no further than a unit in the last place from the actual value.

We will not print the result here, instead we will measure the time5 it
takes to complete this program and compare it to two other exact real number
systems, XRC by Keith Briggs [7] and iRRAM by Norbert Müller [86]:

RealLib3 iRRAM 2004 02 XRC 1.1
730 ms 230 ms 364 s

iRRAM has had the reputation of the fastest exact real number library, using
highly optimized GMP [116] for the higher precisions that are required for this
example. It does not fail it in this case, producing the approximation three
times faster than RealLib, which still uses a portable custom multi-precision
library written entirely in C++.

XRC, on the other hand, is too slow.
For the next example, we will use the logistic sequence example from [86].

We will compute the iteration xi+1 = 3.75(1 − xi)xi with x0 = 0.5 and print
6 digits of x100, x1000 and x10000. This time, we will use two different versions
of the program. One that uses only RealLib’s mechanism for dealing with real
numbers as entities, and one that uses RealLib’s mechanism for constructing
functions that operate on the efficient approximations layer.

We will encapsulate the computation in the following function:
007 template <class TYPE>
008 TYPE Logistic(unsigned int prec, UserInt len)
009 {
010 TYPE s(0.5);
011 TYPE coeff(3.75);
012 TYPE one(1.0);
013 for (int i=1;i<=len;++i)
014 s = coeff ∗ (one - s) ∗ s;
015 return s;
016 }
017 CreateIntRealFunction(Logistic)

This is a template function that has an unused argument prec. This form,
along with the declaration at Line 17, is required by the library for functions
that work on the approximations layer of the library. This example does not use
the argument prec, because we are not computing a limit of a sequence. Other
than that, it’s a pretty standard code for the iteration, and, being a template, it
can also be used to try the direct implementation of the computation using the
type Real, which is the basic type in the library for working with real numbers
as entities. We will make use of this in the following main function (not much
different from the one in the previous example):
019 int main(int argc, char ∗∗argv) {
020 InitializeRealLib();
021 {

5using a Pentium-M 1.8GHz and GCC 3.3 in Cygwin environment
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022 cout << Logistic(1000) << endl;
023 }
024 FinalizeRealLib();
025 return 0;
026 }

Line 22 is the important one, which in this case calls the real number func-
tion object constructed at Line 17 from the template function Logistic. This
object has a single argument, because it makes no sense to specify precisions
for exact computations. In the table that follows this will be reflected in the
column “RealLib3, function”. For the column “RealLib3, direct” we will use the
same code with Line 22 changed to
022 cout << Logistic<Real>(0, 1000) << endl;

which runs an instantiation of the template function directly using the type
Real, and for the column “double” we will use
022 cout << Logistic<double>(0, 1000) << endl;

Timing these6 and corresponding code for the other two exact real number
systems results in the following table:

iterations RealLib3, RealLib3, iRRAM 2004 02 XRC 1.1 double
function direct

100 1 ms 3 ms 625 ms 383 ms 0.6 µs
1000 150 ms 188 ms 12 ms 143 s 6 µs

10000 48 s 50 s 5.5 s – 60 µs
For unknown reasons iRRAM did not want to compute the 100 iterations

as fast as we would expect, thus we suggest that the reader ignore the first
value in iRRAM’s column7. XRC apparently was not expected to be used for
heavily nested computations and its recursive evaluation mechanism failed for
more than several thousand nested operations.

iRRAM is again the fastest, and XRC is disappointingly slow. All libraries
compute the correct values in contrast to the double precision implementation,
which runs really fast, but is completely wrong.

What is interesting in this example, is that the overhead of using the top-
level interface of the library in comparison to the approximations interface, is
clearly visible. It may be little or negligible at high precision (only 2 out of
the 50 seconds required to compute the 10000 iterations), but it is quite a big
portion of the time for a lower precision computation, and dominates the time
in the simplest case, taking twice as much time as the actual computation!

Because of the problems inherent in a type-2 approach to exact real arith-
metic, we do not believe that there is a chance to improve the type-2 overheads
much further than what has already been done in RealLib. Instead, seeing results
similar to the ones above, we opted for incorporating user functions that use
an interval approach as an option that could combine the ease-of-use of higher-
type access to the numbers with the efficiency of lower-type user functions.
This decision was also influenced by the fact that iRRAM already employed an
approach that works on approximations and was displaying its strengths.

6To measure execution times in the order of microseconds, the timing is done using a
modification of this code that executes Line 22 many times.

7The author of iRRAM could not supply an explanation or remedy for the problem.



108 Chapter 8. Efficient Implementation of Real-Number Arithmetic

For the next example, we will do a computation that does not require high
precision: the first 6 digits of the sum of the first 1000, 10000, 100000 and
1000000 members of the harmonic series

∑n
i=1

1
i . These values can be correctly

computed in double precision. We will use the following function:
007 template <class TYPE>
008 TYPE Harmonic(unsigned int prec, UserInt len)
009 {
010 TYPE s(0.0);
011 TYPE one(1.0);
012 for (int i=1;i<=len;++i)
013 s += one / i;
014 return s;
015 }
016 CreateIntRealFunction(Harmonic)

Similarly to the previous example, we measure the time needed when a
function object is used and the time needed when the function is directly in-
stantiated to the types Real and double, as well as corresponding code for the
other two libraries. Let us see how exact real number packages compare to
hardware floating point:

members RealLib3, RealLib3, iRRAM 2004 02 XRC 1.1 double
function direct

1000 91 µs 27 ms 1.3 ms 22 ms 21 µs
10000 580 µs 275 ms 12.5 ms – 212 µs

100000 5.5 ms 2.85 s 118 ms – 2.23 ms
1000000 54 ms 28 s 1.2 s – 22 ms

Again, XRC failed to produce result with 10000 or more nested operations.
iRRAM was about 60 times slower than hardware floating point.

The two layers of RealLib show radically different results. While the high
level approach has performance as disappointing as a factor of 1000 slower, the
implementation of the computation as a function using the library’s approxi-
mation interfaces achieves a performance which is not that different from the
hardware double precision and significantly faster than any other previous im-
plementation. Moreover, the implementations of the same function on the two
levels only differ in the types used in the definition of the function (Real vs.
a template argument), an unused argument in the header of the function, and
the use of a declaration to link the two layers.

If we switch to a better compiler89, the distance between exact real numbers
using RealLib and hardware floating point disappears completely:

members RealLib3, RealLib3, double
function direct

1000 22.5 µs 3 ms 18.5 µs
10000 186 µs 30 ms 185 µs

100000 1.75 ms 1.05 s 1.85 ms
1000000 17.8 ms 5 s 18.5 ms

Although the current version of RealLib is slower than iRRAM when higher

8Pentium-M 1.8, Intel C++ Compiler 8.0, Windows XP
9unfortunately, GMP, XRC and iRRAM do not support Windows natively
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precisions are needed, running in a general context it will achieve significantly
better performance on average, because the majority of the problems that show
up in practice are easy, and the performance of the library in the error-sensitive
cases is of the order of magnitude of the fastest alternative, much closer to it
that any other implementation.

8.6 Relation with iRRAM

Although it is commonly viewed as an implementation of the TTE model for
computable analysis, which is a typical type-2 model, one can easily see that
the iRRAM cannot be called a type-2 implementation in any sense used in this
paper. We do not believe it can be called type-2 in any sense whatsoever, since
the only connection is using a theoretical foundation which is equivalent to
TTE.

The author of the iRRAM defines the library to be a simulation of Brattka
and Hertling’s feasible Real RAM [6], an algebraic definition of the computable
real numbers equivalent to the TTE. Because the programs of the iRRAM actu-
ally operate on simplified interval approximations and must permit reiterations,
the library is a simulation rather than an implementation of the model.

Programs written for the iRRAM operate only on the level of approxima-
tions, using a bottom-up evaluation scheme and modularity on the level of
approximations. As such, they only simulate operations on complete objects,
and at no point in time do they have access to the functions that define real
numbers. Thus iRRAM is, indeed, a type-1 implementation of exact real arith-
metic.

Because of this main characteristic of the iRRAM, it does not suffer from
the performance problems discussed in this paper except the inability to use
compiler optimizations to implement very fast initial approximations.

There are two ways of using iRRAM. Either the user’s program is completely
under the control of the system, or the program uses iRRAM occasionally for
separate computations.

The former can be very difficult to control, because the execution of a user’s
program under iRRAM becomes complicated by possible reiterations and abrupt
termination. In this mode, all user code is executed a multitude of times, not
only the portions that use exact real computations.

The latter mode of using the system is far more inconvenient than having
a type-2 interface to the real numbers. We may be forced to redo the same
computation more than once if, e.g. we want to print a variable as an absolute
value and its base-10 logarithm.

RealLib takes the ideas of the iRRAM and pushes them further. Here is a
comparison of some of the key features of the two libraries:

• Both operate on interval approximations, but the version of iRRAM which
was available at the time of this performance comparison did not include
a fast initial step using hardware floating point. As communicated by
the author, at least the development versions of the iRRAM now include
such a step, but it is realized using run-time choices to switch between
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hardware interval arithmetic and software multi-precision simplified arith-
metic. RealLib makes that a compile-time choice which allows compiler
optimizations and performance very close to hardware floating point. This
also makes it easier for RealLib to include additional optimized step in the
future, such as a double-double or quad-double evaluation [37] as a second
iteration, or possibly a fast implementation using integer arithmetic with
hard-coded precision.

• When incorporated into bigger programs, computations using the iRRAM
do not integrate well; iRRAM has to use tricks such as overriding the
standard C++ input/output streams in order to pretend to operate on
real numbers as complete objects, while in fact the methods used only
have access to approximations. RealLib provides a type-2 interface to
allow exact computations to be used in a program without modifying its
behavior and control flow, while the efficient layer that corresponds to
the mechanisms used in iRRAM is clearly marked as a layer that operates
on approximations. Still, in the cases where a function is a sequence
of already defined operations without conditionals based on the values
of real arguments, the program code on the approximations layer looks
and behaves as if it works on complete entities, because the functions
and operations applied on this layer are in fact implementations of the
corresponding real number functions.

• iRRAM asks for a CF-representation of a computably converging sequence
to define its limit, while RealLib relies on accounting for the error of the
approximation. This is defined by the theoretical model used in the two
systems, but we feel that the latter gives us a more uniform approach,
since the former is in effect a case of top-down evaluation of the limit,
something both libraries try to avoid.

• The template approach of RealLib and the availability of computation
dags allows the library to accommodate separation bounds [84], which in
a future version of the library could allow to decide equality for algebraic
numbers.

• The multiple-precision back-end of iRRAM is GMP, which is very fast
and hand optimized using assembler code. RealLib uses a custom library
which is completely portable, but is much slower. The only thing that
prevents RealLib to use the lowest level functions of the faster GMP as
back-end is the fact that we give higher priority to the computations at
low precision which appear much more often in practice and we have not
yet implemented the link between the library and GMP.

• Intensional (also known as multi-valued) functions are an integral part of
iRRAM and currently not supported in RealLib. They require a theoretical
background which was only recently developed (see [75]) and has not been
realized yet.
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• Unlike other packages that do not allow the computation of limits in user
programs, both RealLib and iRRAM can be shown to be complete, i.e.
able to define all computable real numbers and extensional functions, by
showing that all operations in the feasible Real RAM model are defined.
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Chapter 9

Interval arithmetic with Intel’s SSE2

9.1 Introduction

Interval arithmetic is a very useful tool that can be used to partially solve the
problem of roundoff errors or as part of a complete solution in the form of exact
real arithmetic.

RealLib relies on fast machine precision interval arithmetic for its first stage.
The performance of the library in the cases that most frequently appear in
practice, where machine precision suffices, depends only on the performance of
the first stage. Thus it is crucial to have a very fast implementation of interval
arithmetic.

The IEEE-754 standard for floating point arithmetic [117] has useful fea-
tures to aid fast interval arithmetic, namely the directed rounding modes that
should be present with every IEEE-754 implementation. Unfortunately, in some
processor architectures, notably Intel’s x86, it is non-trivial to effectively use
them, as switching the rounding mode for an operation requires significantly
more time than the operation itself. Even when one takes into account the
fact that one of the directed rounding modes can be emulated by operations
on negated values rounded in the other direction, an interval arithmetic pack-
age has to be aware that users may mix interval with standard floating point
arithmetic and would still require repeatedly switching the rounding modes.

Fortunately, the newer generations of the x86 architecture provide an addi-
tional set of registers with its own rounding control, the SSE2 double-precision
floating point registers [118]. They can coexist with the old x87-style floating
point, which is still the register and instruction set used most widely. Thus,
to serve all purposes, we can reserve the SSE2 register and operation set for
interval arithmetic and leave x87-style floating point for any standard floating
point operations that the user may be performing.

The SSE2 instruction set can also work on packed data, as every SSE2
register can contain and operate on a pair of double-precision floating point
numbers. Since an interval is in fact a pair of bounds, one SSE2 register can
be used to hold an interval, which nullifies the additional register pressure that
interval arithmetic would normally exert.

With this it is possible to develop a very fast machine precision interval

113
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arithmetic implementation. RealLib uses such an implementation which will be
detailed in this chapter of the thesis.

As it is part of an exact real arithmetic package, the objective of this im-
plementation is more oriented towards performance rather than accuracy, i.e.
it prefers overestimating an interval rather than investing too much time in
evaluating it tightly. We believe that this time would be better spent at the
next iteration at higher precision, which would happen only if the computation
actually requires it.

Additionally, the implementation ignores the portions of the argument of an
operation that are outside its domain, e.g. the negative parts of the argument
in a square root, meaning for example that

√
[−1, 4] = [0, 2]. This is the proper

mode of operation to ensure that
√

0 is computable in exact real arithmetic.

9.2 Key ideas

Normally, interval arithmetic based on floating point would use two rounding
operations, ∆ (rounding towards +∞) and ∇ (rounding towards −∞). By
default IEEE-floating point uses rounding to nearest, which is not useful for
our purposes.

We already mentioned that switching the rounding mode has a detrimental
effect on the performance of floating point operations, thus we would want to
avoid all rounding mode switches. We will only do this once, at the beginning
of a computation1, setting the rounding mode to rounding towards −∞. To
compute lower bounds of the results, we will directly use the floating point
operation. To compute upper bounds, we will make sure that the result of the
floating point operation is negated, thus making use of the identity

∆(x) = −∇(−x).

Seeing operations in the form above, compilers are usually overzealous2 to
fold the pair of negations and destroy the effect we want to achieve. To avoid
this, at the same time keeping down the number of required operations, we
make sure that we always keep the high bound of the interval negated, i.e. our
representation of the interval x = [x, x] is the pair 〈x,−x〉. (in the rest of this
chapter we will assume every interval is represented in this fashion and will
simply write x to mean [x, x] and 〈x,−x〉)

Three observations can be made directly from this:

• in this setting, the sum of x and y is evaluated by
〈
∇(x+ y),−∇(−x− y)

〉
which is achieved by a single instruction, mm add pd.

• changing the sign of an interval x is achieved by simply swapping the two
bounds, i.e. 〈−x, x〉, achieved by a single instruction, mm shuffle pd,

1This is accomplished by the construction of a special object that also takes care of restoring
the previous rounding mode after the interval computation has completed.

2The two negations have no effect on the rounding-to-nearest mode which is normally in
place in C/C++ code, and on which many standard functions rely, thus this optimization is
perfectly legal. Only our specific (non-standard) use of floating point makes it unwanted.
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• joining two intervals (i.e. finding an interval containing all numbers in
both, or finding the minimum of the lower bounds and the maximum of
the higher bounds) is performed as

〈
min(x, y),−min((−x), (−y))

〉
in a

single instruction, mm min pd.

The latter is used extensively in the computation of multiplication, division
and other operations.

9.3 Operations

In this section we will give short remarks on our implementation of the ba-
sic operations on intervals. The operations include the arithmetic operators,
including the special cases −x, 1

x , and x2, absolute value and square root.
All the operations give tight bounds (i.e. the best possible enclosures after

rounding).

9.3.1 Addition

Definition:

x+ y = [x+ y, x+ y] ⊆
〈
∇(x+ y),−∇((−x) + (−y))

〉
Addition is implemented as a single mm add pd instruction. The negated

sign of the higher bound ensures the proper direction of the rounding.

9.3.2 Sign change

Definition:
−x = [−x,−x] = 〈−x, x〉

This is a single swap of the two values, implemented as a mm shuffle pd
instruction. No rounding is performed here.

9.3.3 Substraction

Definition:

x− y = [x− y, x− y] ⊆
〈
∇(x+ (−y)),−∇((−x) + y)

〉
Substraction is implemented as x+(−y), which corresponds to two processor

instructions. This is the best that can be achieved with packed SSE2 instruc-
tions, because the formula requires a combination of the high bound of one of
the arguments with the low bound of the other.

9.3.4 Multiplication

Definition:
xy = [min(xy, xy, xy, xy),max(xy, xy, xy, xy)] (9.1)

Unfortunately, the rounding steps are inseparable parts of the operations,
this the equation above requires 8 multiplications. Using the fact that ∆(∇(r)+
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ε) ≥ ∆(r) (for ε being the smallest representable number), one can do with 4
multiplications at the expense of some accuracy.

In our implementation we chose a different approach where we use four
multiplications without sacrificing accuracy, by selecting the multiples based
on the signs of x and x. More specifically, we use these observations:

xy =


[min(xy, xy),max(xy, xy)], if 0 ≤ x ≤ x
[min(xy, xy),max(xy, xy)], if x < 0 ≤ x
[min(xy, xy),max(xy, xy)], if x ≤ x < 0

(9.2)

to conclude that the formula

xy ⊆ 〈min(∇(ax),∇(b(−x))),−min(∇(c(−x)),∇(dx))〉 ,

where

a =
{

y if 0 ≤ x
−(−y) otherwise

b =
{
−y if (−x) ≤ 0

(−y) otherwise

c =
{
−(−y) if (−x) ≤ 0

y otherwise

d =
{

(−y) if 0 ≤ x
−y otherwise

computes the rounded results of the multiplication formula in (9.1). It uses
more instructions than the direct implementation with 8 multiplications, but
achieves better performance.

9.3.5 Multiplication by a positive number

When one of the numbers is known to be positive (e.g. a known constant), one
can use one of the cases in (9.2) directly:

xy
x≥0
= [min(xy, xy),max(xy, xy)]

This is significantly faster than the general case multiplication, involving
only 5 instructions (4 for constants).

9.3.6 Multiplication of two positive numbers

If both multiples are known to be positive, multiplication can be achieved by
simply changing the sign of the higher bound of one of the arguments followed
by mm mul pd. If one of the numbers is a constant, one can prepare it in a
suitable way to avoid the sign change and implement the multiplication as a
single instruction.
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9.3.7 Division

Definition:
x

y
=

[
min

(
x

y
,
x

y
,
x

y
,
x

y

)
,max

(
x

y
,
x

y
,
x

y
,
x

y

)]
,

undefined if 0 ∈ y.
Again, this computation would require 8 divisions. Unfortunately, division

is a rather slow operation, that is why we would prefer to use as few divisions
as possible. One way to do this is to use x

y = x 1
y , using the definition below,

which uses only two divisions but quite a few other operations.
A more efficient (as well as more accurate) approach turns out to be the

use of case distinction similar to (9.2). By examining the divisor, we end up
with fewer possible cases and easy recognition of the exceptional cases. More
specifically, the operation becomes:

x

y
=


[
min

(
x
y ,

x
y

)
,max

(
x
y ,

x
y

)]
, if 0 < y ≤ y

exception, if y ≤ 0 ≤ y[
min

(
x
y ,

x
y

)
,max

(
x
y ,

x
y

)]
, if y ≤ y < 0

(9.3)

The final formula we use is

x

y
⊆

〈
min

(
∇

(
a

y

)
,∇

(
−a

(−y)

))
,−min

(
∇

(
−b

(−y)

)
,∇

(
b

y

))〉
,

where

a =
{

x if (−y) ≤ 0
−(−x) otherwise

b =
{

(−x) if 0 ≤ y
−x otherwise

with an additional check to throw an exception if y ≤ 0 ≤ y.

9.3.8 Reciprocal

Definition:
1
x

=
[

1
x
,
1
x

]
⊆

〈
∇

(
−1

(−x)

)
,∇

(
−1
x

)〉
,

undefined if 0 ∈ x.
This is implemented as a check if the argument contains zero, followed by

division of −1 by the argument and swapping the two components.

9.3.9 Absolute value

Definition:

|x| = [max(x,−x, 0),max(−x, x)] = 〈max(0, x, (−x))),−min(x, (−x))〉 .
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9.3.10 Square

Implemented as x2 = |x||x|, using multiplication of positive numbers.

9.3.11 Square root

Definition: √
x =

[√
x,
√
x
]

only defined if 0 ≤ x.
Since the rounding is an integral part of the square root operation, and in

this case we cannot achieve a negated result, we need to use another method
to ensure rounding in the correct direction. We use the fact already mentioned
in the subsection on multiplication, ∆(r) ≤ −∇(−ε−∇(r)).

The formula we use is:

√
x ⊆


〈
∇

(√
x
)
,−∇

(√
−(−x)

)〉
, if ∇

(
∇

(√
−(−x)

))2
= −(−x)〈

∇
(√
x
)
,∇

(
∇

(
−ε−

√
−(−x)

))〉
, otherwise

(where ε is the smallest representable positive number).
The condition for making the first choice in this formula is only satisfied if

the result of
√
−(−x) is exactly representable, in which case ∇

(√
−(−x)

)
=

∆
(√
−(−x)

)
. Otherwise the second choice adjusts the high bound to the next

representable number.
Note that if we don’t require tight bounds, using only the second choice in

the equation above is sufficient to implement interval square root.
If the argument is entirely negative, the implementation will raise an excep-

tion. If it contains a negative part, the implementation will crop it to only its
non-negative part, to allow that computations such as

√
0 can be carried on in

exact real arithmetic.

9.4 Transcendental functions

If the implementations of transcendental functions in the standard C/C++ li-
braries satisfied the requirements of IEEE-754 rounding, interval versions of
them could be implemented in a manner similar to above. Unfortunately, the
accuracy of these libraries (or hardware implementations) is notoriously un-
reliable. Moreover, it is almost never possible to find information about the
error bounds of these functions, which vary from architecture to architecture
and even with different compilers and different compiler versions on the same
machine.

Thus we decided to implement transcendental functions on intervals that
produce certified bounds enclosing the result. They do not try to give tight
(correctly rounded) bounds, instead prefer to overestimate but compute quickly.
The elaborate theory and complicated implementation required to give tight
bounds are beyond the scope of the intended application of our interval arith-
metic implementation.
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All the implementations rely on polynomial approximations generated using
an implementation of the Remez algorithm (see e.g. [10]) with exact computa-
tion and certified error bounds. However, instead of finding the best Chebyshev
approximation and using interval coefficients containing the real ones, we use
multi-step approximation (suggested by [31]) where we approximate, round the
highest-order coefficient to a double-precision number and then approximate
again with a lower-degree polynomial using this rounded value as a fixed coef-
ficient. The final coefficient is taken as an interval, expanded to accommodate
the approximation error and rounded outwards.

With this the approximation of the function in its primary interval only
requires the computation of this polynomial with interval arithmetic (in fact
we do a little bit better, discussed below). The fact that all coefficients except
the final additive are double-precision numbers helps to reduce the growth of
the intervals. We choose our primary intervals to contain only non-negative
numbers, so that multiplication of intervals can be performed as the special case
that requires only two multiplications in a single instruction. For an additional
speed-up, the polynomial evaluation is done using Estrin’s algorithm (see [52])
to maximize parallelism.

For a monotone function, we know that if P (x) = cnx
n+ ...+c1x+c0 chosen

so that P (x)−e ≤ f(x) ≤ P (x)+e for all x in some non-negative interval [a, b],

P (x)− e ≤ f(x) ≤ P (x) + e

P (x)− e ≤ f(x) ≤ P (x) + e

but for any x ∈ [x, x], f(x) ≤ f(x) ≤ f(x), thus

P (x) ≤ P (x)− e ≤ f(x) ≤ P (x) + e ≤ P (x),

i.e. f [x] ⊆
[
P (x), P (x)

]
, where P (and P ) is P computed in such a way that

it gives a lower bound for P (x)− e (resp. a higher bound for P (x) + e). If all
the coefficients are positive, this can be accomplished by simply rounding all
coefficients down (resp. up), with the exception of c0, which would also have to
accommodate e, i.e. c0 = ∇(c0 − e) (resp. c0 = ∆(c0 + e)). In our special case
where all coefficients except c0 are exactly represented in double precision, the
coefficients of P and P coincide with the coefficients of P except for the very
last one, c0.

Unfortunately, in the presence of inexact operations, the evaluation of the
polynomial is not so easy to do if the coefficients are not all positive. A negative
coefficient requires an upper bound for xi, which would be a nuisance to compute
and would add up to the uncertainty of the result. However, in the cases we
actually use we have patterns that can be exploited, e.g. alternation between
positive and negative coefficient. In the latter case, in the computation of P we
can assume x is given exactly, thus we can compute pairs ci+1x+ ci rounded in
the correct direction (these pairs are actually required by Estrin’s algorithm).
If we, additionally, know that all these pairs are positive (e.g. if 0 < x ≤ 1 and
−ci+1 ≤ ci), the computation can proceed from there using only lower bounds
for the even powers of x.
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The transcendental functions in the current implementation of the interval
arithmetic package of RealLib are not very precise, i.e. they overestimate the
output intervals. The main reason for this is the use of Estrin’s algorithm, which
was chosen for its superior performance. At the moment we are considering
improving the accuracy of these functions whenever such improvements would
not drastically influence their performance.

On the other hand, since the functions do provide correct enclosures in
very little time, and overestimation is one of the principles on which the ex-
act real number library RealLib is based, the current transcendental functions
completely serve their purpose as part of the library.

9.4.1 Sine and cosine

Sine and cosine are non-monotonic functions, which means that one cannot
simply use sinx = [sinx, sinx]. Instead, we use the fact that both functions are
non-expansive and thus

sinx =
[
sin

[
x+ x

2

]
+
x− x

2
, sin

[
x+ x

2

]
+
x− x

2

]
,

where by sin[x] we mean evaluation of sin on the interval [x, x], returning an
interval containing the result.

The latter we compute by a polynomial approximation of the function sin x
3

on the interval [−π, π] by an 8-coefficient polynomial, such that sin x
3 ≈ xP (x2).

Before we can apply this, we use range reduction (which can be safely performed
as x is a real number and not an interval) to make sure x ∈ [−π, π]. To get the
final value of sinx, we use the identity sin(3x) = (3 sin2 x− 4) sinx.

The computation of cosine is done in a very similar manner, the only sig-
nificant difference is that the approximation used is cos x

3 ≈ P (x2), i.e. the
computation requires one multiplication less.

9.4.2 Arctangent

Two versions of this function are used in practice, one is the simple arctangent
and the other one takes two arguments and gives a result that depends on
the signs of both of them so that it can be directly used to compute polar
coordinates or arguments of complex numbers.

Both are implemented using case distinctions and a common function that
computes the arctangent for the primary interval [0, 1]. For the cases that
contain numbers on the boundaries (e.g. [−0.9, 1.1]), we use the fact that
arctangent is lipschitz continuous with constant one, this we simply return a
constant interval expanded to accommodate the width of the input interval.

The computation on the primary interval is done simply by a polynomial
approximation with 20 coefficients of alternating sign.

9.4.3 Exponent

Since the floating point representation of numbers uses a base-2 exponent, the
easiest way to perform exponentiation is to transform the argument to base
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2 (i.e. simply multiply by log2 e), separate the integer and fractional part,
use some bit operations to construct a number with the integer part as the
exponent, approximate the exponent of the fractional part and combine the
two components using multiplication.

We do this separately for the lower and upper bounds of the interval. The
extraction of integer and fractional part is an exact operation, but any other
step in the computation requires that we round in the appropriate direction.
The 12-coefficient polynomial approximation of 2x for x ∈ [0, 1) we use contains
only positive coefficients, thus it presents no problem. The initial and final
multiplication are done according to the rules of interval multiplication with
one (resp. two) positive multiples.

9.4.4 Logarithm

The range reduction in the logarithm case is the inverse of the work done for
exponentiation, with a few additional steps.

The mantissa and exponent are separated using a few bit operations, to pro-
duce a mantissa in the range [0.5, 1). Unfortunately the direct approximation
of the function lnx on this interval does not give us a polynomial which can be
safely evaluated separately for the lower and upper bounds of an interval.

Instead, we approximate ln(1 − x) where x ∈ (0, 1 − 2−
1
4 ], using two steps

of range reduction to limit the number of coefficients to 14 (all positive). The
range reduction is accomplished by choosing x or x22−i

(for i = 1, 2) depending
on whether the latter is smaller than one, adjusting the exponent by adding
2−i if that is the case.

The result of the polynomial approximation is finally added to the (adjusted)
exponent, multiplied by ln 2.

9.5 Performance

We compare the performance of this implementation to the performance of
two other packages for interval arithmetic freely available on the internet: the
interval part of the Boost project (version 1.33.0, [115]) and the library filib++
(version 2.0, [40]). For the latter, we tried the macro version as well as two
of the available rounding policies, multiplicative and native onesided global, the
latter corresponding most closely to our method of rounding.

The results of the benchmark are summarized in the following table, showing
the ratio between the performance of the respective library and double precision
floating point:
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operation filib++, filib++, filib++, Boost RealLib3
macro onesided multiplicative

+ 6.52 2.64 6.84 10.72 1.11
* 7.86 3.40 7.93 113.47 5.50
/ 12.42 3.98 10.06 9.60 3.80√
· 25.43 63.97 63.17 16.54 2.00
| · | 27.11 20.23 20.21 1.61 2.62
sin 2.91 2.63 2.73 - 0.63
cos 2.92 2.75 2.74 - 0.58
arctan 2.26 6.20 6.42 - 1.27
e· 3.45 22.25 40.30 - 0.86
ln 3.86 5.91 6.13 - 0.94∑1000000

i=1
1
i 3.19 1.51 2.74 4.80 1.53

(Pentium-M 1.8GHz, Windows XP + Cygwin, GCC 3.4.4)
Several cells are blank, because Boost does not provide transcendental op-

erations.
RealLib is faster almost everywhere, with the notable exception of multipli-

cation in filib++’s native onesided global mode. In this case filib++ uses a case
distinction, which in our test only reaches the shortest of the 9 possible paths.
We prefer not to explore the performance of filib++’s multiplication in cases
where the signs of the arguments change in an unpredictable manner. Our im-
plementation does not have such a problem as it only uses one execution path
for all multiplications, thus the ratio given in the table is both best and worst
case performance.

9.6 Intel’s SSE3

The latest multimedia extension set introduced by Intel, the SSE3 [120], aimed
at improving complex number computations, does not provide any benefit for
interval computations. Intel chose to improve complex multiplications and divi-
sions by introducing the instruction mm addsub pd, which combines two packed
registers by adding one of the two components and subtracting the other [119].
Unfortunately, the use of this instruction leads to incorrect results if a directed
rounding mode is in effect, because the multiplication that precedes the sub-
straction is rounded in the wrong direction.

A better handling of complex multiplications would have been the intro-
duction of a multiplication instruction “mulpn” (for multiply positive negative)
that changes the sign of one of the components of one of the arguments. This
would require the same effort that the instruction mm addsub pd required,
but would have the correct behavior in directed rounding modes, i.e. complex
multiplication code using mulpn would yield upper bounds for the result of the
multiplication if rounding towards +∞ is in effect, and lower bounds in the
case of rounding towards −∞.

Unlike mm addsub pd, a mulpn instruction would have been useful and ad-
vantageous for interval arithmetic. Multiplication of two positive numbers could
be implemented as a single mulpn, which would also speed up the implementa-
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tions of transcendental interval functions.

9.7 Suggestions for a hardware implementation

We hope that the presentation until this point has convinced the reader that
the use of the storage 〈x,−x〉 for intervals in SSE2 registers is clearly superior
to the traditional method of storing intervals as simply the pair of the two
bounds. This mode of storage avoids the need for special rounding modes
in a hardware implementation, and even turns some existing instructions into
meaningful interval operations.

We propose this storage to be adopted as the preferred storage format for
intervals in hardware implementations.

To further speed up computations on intervals, we propose the introduction
of a special selection instruction we call ivchoice (for interval choice) that can
be used to prepare the arguments for multiplication and division. The action
of this instruction should correspond to the following function:

__m128d ivchoice(__m128d a, __m128d b) {
a = _mm_xor_pd(a, _mm_set_pd(0.0, -0.0));
a = _mm_shuffle_pd(a, a, _mm_movemask_pd(b));
return a;

}

This is pseudocode, because mm shuffle pd cannot be performed based on
a non-const integer. A software implementation of the above requires a switch
statement, which can slow the execution considerably, especially in cases where
the signs of the multiples cannot be predicted.

If such an instruction is available, the multiplication algorithm becomes:

__m128d IntervalMul(__m128d x, __m128d y) {
__m128d a = _mm_shuffle_pd(x, x, 1);
__m128d b = _mm_shuffle_pd(y, y, 1);
__m128d c = ivchoice(b, x);
__m128d d = ivchoice(y, a);
__m128d e = _mm_mul_pd(c, x);
__m128d f = _mm_mul_pd(d, a);
__m128d g = _mm_min_pd(e, f);
return g;

}

If the latency of the proposed instruction can be the same as the latency
of mm shuffle pd, this sequence of instructions will run about 30% faster than
the current implementation.

Moreover, since the multiplications above only use the results of ivchoice
with the same second argument, it is even possible to fuse ivchoice with the
multiplication that is applied to the result. The extent to which such fusion
can be beneficial depends on the actual hardware implementation. If the latency
of ivchoice can be folded completely (which seems possible) or partially, interval
multiplication using the fused “ivmul” could reach a latency close to the latency
of two dependant double precision multiplications.
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Apart from an additional test if the divisor contains zero and the use of
mm div pd instead of mm mul pd, the division code is identical to the multi-
plication one:

__m128d IntervalDiv(__m128d y, __m128d x) {
if (_mm_movemask_pd(x)==3)

throw exception;
__m128d a = _mm_shuffle_pd(x, x, 1);
__m128d b = _mm_shuffle_pd(y, y, 1);
__m128d c = ivchoice(b, x);
__m128d d = ivchoice(y, a);
__m128d e = _mm_div_pd(c, x);
__m128d f = _mm_div_pd(d, a);
__m128d g = _mm_min_pd(e, f);
return g;

}

Fused ivchoice and division (“ivdiv”) is also possible.
Of course, one would prefer to have a complete hardware implementation of

interval arithmetic that provides instructions for the four basic operations on
intervals. In our mode of operation addition already has a hardware implemen-
tation as a single instruction. Substraction would require a fusion of swapping
and addition (“ivsub”) which should be easy to accomplish in hardware without
extra latency compared to addition.

On the other hand, multiplication and division seem too complex to be di-
rectly implemented. A pure hardware implementation of multiplication may
be able to choose execution paths without the delays associated with incorrect
branch predictions, thus probably the preferable hardware design would exam-
ine the signs of the four components to choose one of 9 possible combinations
and perform a single pair of multiplications in 8 of the possible cases. In the
9’th case, however, the operation would require the same amount of work as
the function IntervalMul above.

Since the worst-case latency would be the same as the algorithm above, the
latter should not be ignored as a possible basis for a pure hardware implemen-
tation of interval multiplication.

To conclude, we suggest that hardware assistance for interval computations
should be provided as the adoption of the 〈x,−x〉 storage format and the in-
troduction of the instructions of one of the following three levels:

basic mulpn, ivsub, ivchoice
advanced mulpn, ivsub, ivmul, ivdiv

full ivsub, IntervalMul, IntervalDiv
The advanced level seems to be the best combination of feasibility and

performance.

9.8 Related work

In [35], von Gudenberg discusses the efficiency of implementations of interval
arithmetic using the multimedia extensions Intel’s SSE, AMD’s 3DNow! and
Motorola’s AltiVec. The paper concludes that the use of multimedia extensions
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only leads to a very modest improvement in multiplication with Intel’s SSE
in comparison to standard floating point, and only due to the fact that four
single-precision operations can be executed in parallel.

Unlike SSE, the double precision second version of the extensions, SSE2, is
a natural candidate for interval arithmetic because the packed registers hold
two double precision values.

Von Gudenberg used a variety of rounding policies, the fastest of which is
global onesided rounding, the method we use, but did not store one of the com-
ponents negated in memory. Consequently, handling the negations required to
perform rounding in the proper direction increases the number of instructions
needed for every operation. If we were to use SSE2 in a similar mode of opera-
tion, the required number of instructions for addition would be four instead of
one, for sign change – two instead of one, for substraction – five instead of two,
and for multiplication of positive intervals – three instead of two.

Additionally, instead of 9-case branching on the signs of the 4 components,
we prefer to use 4 multiplications with selected arguments (the selection is
branch-free), which gives us stable performance that is not affected by branch
mispredictions or longer latency execution paths, although with a slightly worse
best-case performance.

In [70], Kolla, Vodopivec and von Gudenberg discuss the possibility of hard-
ware extensions supporting interval arithmetic similar to the multimedia exten-
sions 3DNow!, via packed storage of single precision numbers in a double pre-
cision register. For addition and substraction they require special instructions
that round each component of the pair in the appropriate direction, and for
multiplication they describe a case selection method that can easily be imple-
mented and be very efficient for 8 of the 9 possible cases and requires a sequence
of operations and longer latency for the (rare) 9’th case.

We are quite skeptical about the chances of such a complicated multiplica-
tion instruction ever being implemented in hardware. Instead, we give a much
more modest proposal that can also lead to very good performance at the cost
of little extra hardware. It also has the benefit that one of the operations,
addition, already has a hardware implementation.

In [21], Ershov and Kashevarova report on implementations of transcen-
dental functions, based on the Chebyshev and Taylor approximations of these
functions. They note that three sources of error have to be accounted for in the
computation of approximating polynomials:

• the error caused by finitely approximating an infinite sequence,

• the error in the approximation of the coefficients of the polynomial,

• the error caused by inexact operations.

The use of rounded coefficients influencing the choice of approximating poly-
nomials in our approach nearly invalidates the need to consider the second
source of error above. Our approximating polynomials only contain coefficients
that are correctly representable as double precision floating point numbers,
with the exception of the first coefficient, whose interval representation could
be modified so that it also covers the first source of error in the list above.
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Appendix A

Introduction to the RealLib library for exact

real arithmetic

A.1 The real numbers interface

The class Real is the main class in the system. It contains the description of a
real number and can be used to extract properties of this real number, as well
as to apply operations to it.

A real number can be constructed in several different ways:

• from a constant entered as a double, taken to be exact, e.g. Real(1.5)
would define the number 1.5 exactly, while Real(0.1) would define the
real number which matches the double precision representation of 0.1,
which is different from 0.1 by about 5.55 · 10−18;

• from a string, e.g. Real(”0.1”) would define the number 0.1 exactly;

• via operations applied to Real arguments, e.g. Real(1)/Real(3) will define
1
3 exactly;

• via functions applied to Real arguments, e.g. sqrt(Real(2)) for
√

2;

• using a predefined (Pi and Ln2) real constant or one be created using the
interfaces described in Section A.2;

• from oracle functions, i.e. functions that can return arbitrarily good dec-
imal approximations to a number.

The use the term “constructing a real number” instead of “assigning a value
to a real variable” here is intentional. Real numbers are represented via struc-
tures that describe the computation through which they were computed. Every
time a new operation is performed, a new object is being created that describes
the operation and contains references to the objects that were arguments to the
operation. In this sense, updating the value of a variable of type Real usually
does not mean that the objects that described the earlier value are destroyed.
The latter only happens if the variable has not been used in other operations.

The main purpose of the real numbers layer is to be able to extract properties
of a number that is constructed. These can be:

127
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• an approximation to the value in double precision, different from the ac-
tual value by at most 1 ulp1;

• a decimal representation of the real number, which is at most different by
1 in the least significant position2;

• strict comparisons, which will loop indefinitely if the numbers are equal.
It is impossible to test two real numbers for equality, thus the system does
not provide the operators ==, <= or >=.

Let us take a closer look at how the system behaves with a few simple
program fragments:

[manual/fragments.cpp]
001 #include <iostream>
002 #include <iomanip>
003 #include "Real.h"
004 using namespace std;
005 using namespace RealLib;
006
007 void main() {
008 InitializeRealLib();
009 Real a, b(4);
010 b = Pi / b;
011 a = sin(b);
012 cout << "sin(Pi/4) is " << a << endl;
...

031 FinalizeRealLib();
032 return 0;

033 }
Lines 1 to 5 include the necessary headers, and lines 8 and 31 perform the

initialization and finalization of the library.
Line 9 declares two variables of type Real . One of them is initialized to

the default value (which is 0), the other to the constant 4. Line 10 updates
b with the result of the division of the constant Pi and b. If we look at this
with more detail, the system constructs a new real number which is the result
of the application of the operation to its arguments (in this case π

4 ), keeping a
reference to the constant Pi and the object that b was assigned to, after which
it removes the link between b and the constant 4 object. Since this object is
still needed as argument to the division operator, it will not be deleted.

Line 11 updates a with the result (sin π
4 =

√
2

2 ) of the function sin applied
to the argument b. That is, the system creates a new object that describes the
operation “sin applied to the object that b links to”, and links a to it. The link
is not to the variable b, but to the object that it linked, i.e. the real number it
held, π

4 . The previous value of a (the zero it was implicitly initialized to) was
not used anywhere, thus it is not needed any more and will be deleted by the
system.

1A correctly rounded approximation according to the IEEE-754 standard is not possible
to achieve because of the undecidability of the equality test for real numbers.

2Correct rounding is impossible to achieve. This may mean all digits are incorrect: in
different scenarios the system may print either of 1.000 and 0.999 for the real number 0.9995.
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Line 12 prints out the result. In order to do this, the system will run through
the objects linked to a and generate an approximation that can be printed on
the screen. This approximation will be cached for possible later use. This
fragment prints

sin(Pi/4) is 0.707107

The next fragment demonstrates a slightly more complicated case:
...

014 Real c(a ∗ 2 / sqrt(Real(2)));
015 for (int i=0; i<1000; ++i)
016 c = sin(c);
017 cout << "sin(sin(...(1)...)) (1000 times) is " << c << endl;

...

Line 14 declares c to be 1 using the fact that the value of b is equal to
√

2
2 . In

a usual floating point environment such a roundabout definition would certainly
introduce a significant accuracy loss. This is not the case here: performance
may suffer, but the accuracy will still be full.

Lines 15 and 16 run a loop in which sin is consecutively applied to c 1000
times. In reality, this means that every run through Line 16 a new object is
created that describes an application of the function sin to the previous object.
In the end of this loop, c will point to a structure that looks like this:

c→ sin→ sin→ . . .→ operator /→

 operator *→

 sin→ operator /→
{

Pi
4

2
sqrt→ 2

At Line 17, this structure is traversed (using the cached value of sin π
4 ) to

construct an approximation to the number which is good enough to be dis-
played:

sin(sin(...(1)...)) (1000 times) is 0.054593

The necessity for the structure comes from the possibility that the approxi-
mation may be not good enough to ensure that the requested number of digits
be displayed. This will happen when we run through the next line, which re-
quests 120 decimal digits of accuracy, well beyond the accuracy of the default
initial precision of the system:
...

019 cout << " or " << scientific << setprecision(120) << c << endl;

...

Here the system will check if the cached value of c (computed in Line 17)
is good enough for the new request. Since it isn’t, this will cause the system to
clear all cached values and run through the description c points to again with
higher precision in order to get better accuracy. The new precision may again
be insufficient, which will trigger another iteration and this process will continue
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until the accuracy is good enough or the maximum precision3 is reached4. As
a result, we see

or 5.45929715101851774031536067239940104010575369617410161283520
7082077700697973467364856621073573888729604355226314181717780e-2

Line 19, along with the following lines, also demonstrates some of the for-
matting manipulators that the system’s output functions respect.
...

021 cout << "the double representation of 0.1 is "
022 << fixed << noshowpoint << Real(0.1) << endl;
023 cout << "and its distance from 0.1 is "
024 << showpos << scientific << uppercase
025 << showpoint << Real(0.1) - Real("0.1") << endl;

...

The output of this fragment:

the double representation of 0.1 is 0.100000000000000005551115123
12578270211815834045410156250000000000000000000000000000000000000
0000000000000000000000000000
and its distance from 0.1 is
+5.55111512312578270211815834045410156250000000000000000000000000
0000000000000000000000000000000000000000000000000000000000E-18

The other ways to extract properties of the real number are shown in the
next few lines, where you can also see that double cannot even print its own
value correctly:
...

026 cout << "double(0.1) < Real(\”0.1\”): "
027 << boolalpha << (Real(0.1) < Real("0.1")) << endl;
028 cout << "0.1 converted to double is "
029 << noshowpos << fixed << Real("0.1").AsDouble() << endl;

...

The output of this fragment:

double(0.1) < Real("0.1"): false
0.1 converted to double is 0.100000000000000005551115123125782702
11815800000000000000000000000000000000000000000000000000000000000
0000000000000000000

The following is a complete program written using only the real numbers
interface to compute the sum of the harmonic series for 1000000 members.
We have added some code to track the time it takes for every stage of the
computation to complete.

[manual/harm.cpp]
001 #include <iostream>
002 #include <iomanip>
003 #include <ctime>
004 #include "Real.h"

3specified as an argument of InitializeRealLib(), see Section B.1 for details
4which will cause an exception that can be caught by the user, see Section B.1
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005
006 using namespace RealLib;
007 using namespace std;
008
009 #define LENGTH 1000000
010 #define MACROTOSTRING2(x) # x
011 #define MACROTOSTRING(x) MACROTOSTRING2(x)
012
013
014 Real Harmonic(const int mcnt)
015 {
016 Real one(1);
017 Real s; // initialized to 0

018 for (int i=1; i<=mcnt; ++i) {
019 s += one/i;
020 }
021 return s;
022 }
023
024
025
026 int main()
027 {
028 clock t starttime, endtime;
029
030 cout << "Computing the sum for " MACROTOSTRING(LENGTH) " members"
<< endl;
031
032 starttime = clock();
033 InitializeRealLib();
034 {
035 Real h(Harmonic(LENGTH));
036 endtime = clock();
037 cout << "construction time: " <<
038 double(endtime - starttime) / CLOCKS PER SEC << endl;
039
040 for (int n=10; n<500; n∗=6) {
041 starttime = clock();
042 cout << unitbuf << fixed << setprecision(n);
043 cout << n <<" digits: \t" << h << endl;
044 endtime = clock();
045 cout << fixed << setprecision(6);
046 cout << "prec: " << GetCurrentPrecision() << " time elapsed: "
<<
047 double(endtime - starttime) / CLOCKS PER SEC << endl;
048 }
049 starttime = clock();
050 }
051 FinalizeRealLib();
052 endtime = clock();
053 cout << "destruction time: " <<
054 double(endtime - starttime) / CLOCKS PER SEC << endl;
055
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056
057 return 0;
058 }
059

The clock() pairs surround the regions of code that do the interesting work.
First we measure the time it takes to initialize the system and to construct
the representation of h, the real number that represents the 1000000-member
sum, then we consecutively time the extraction of representations with different
number of decimal digits, and finally we measure the time needed to destroy
the representation when it goes out of scope. The extraction is the place where
the actual computation is performed, and the accuracies are chosen to require
a single new iteration through the representation.

The result of the execution5 of this program:

Computing the sum for 1000000 members
construction time: 3.845
9 digits: 14.3927267
prec: 4 time elapsed: 24.806
63 digits: 14.39272672286572363138112749318858767664480001374431
1653418433
prec: 9 time elapsed: 20.049
441 digits: 14.3927267228657236313811274931885876766448000137
44311653418433045812958507517995003568298175947219100708359952136
07981290026416410258693009463300620054961166663914275584326654157
21973078292881951412113312203313304382897271295132146988294859455
10475507976487503260961214407016300353836916111679821767709194682
41716332637224885942289875810284852635189660006527975690853243695
24553274279125894325719391665897396284821635784056446741735506907
586
prec: 48 time elapsed: 23.463
destruction time: 0.942

As you can see from the timings, the computation time did not change much
when we went from the initial precision to 9 32-bit words, and when we more
than quintupled the precision for the 441-digit approximation. This shows that
something is wrong, i.e. that too much time is being spent somewhere else, not
in performing the actual computation.

When the class Real is used to perform computations, the real numbers
are represented as functions and the system acts as a type-2 machine to trans-
form functions into functions. This is the traditional approach for real number
computations, which suffers from serious efficiency problems (see Chapter 8).

To deal with these efficiency problems, the system offers the real functions
interface where the user can create functions that work on the more efficient
approximations level. In the next section we will see how this program can be
changed to make use of this and obtain a dramatic performance improvement.

5machine used: Pentium M 1.8GHz, 2MB Level-2 cache, 512 MB DDR-333 main memory,
GCC 3.3.3 in Cygwin environment
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A.2 The real functions interface

The function Harmonic is the only part of the program we need to change. In
particular, Lines 13-23 change to the following:

[manual/harmfun.cpp]
013 template <class TYPE>
014 TYPE Harmonic(const long prec, const long mcnt)
015 {
016 TYPE one(1);
017 TYPE s; // initialized to 0

018 for (int i=1; i<=mcnt; ++i) {
019 s += one/i;
020 }
021 return s;
022 }
023 CreateIntRealFunction(Harmonic);

When we execute this program, we see identical approximations, but the
timings differ significantly:

Computing the sum for 1000000 members
construction time: 0
9 digits: 14.3927267
prec: 4 time elapsed: 0.17
63 digits: 14.39272672286572363138112749318858767664480001374431
1653418433
prec: 9 time elapsed: 6.079
441 digits: 14.3927267228657236313811274931885876766448000137
44311653418433045812958507517995003568298175947219100708359952136
07981290026416410258693009463300620054961166663914275584326654157
21973078292881951412113312203313304382897271295132146988294859455
10475507976487503260961214407016300353836916111679821767709194682
41716332637224885942289875810284852635189660006527975690853243695
24553274279125894325719391665897396284821635784056446741735506907
586
prec: 48 time elapsed: 9.363
destruction time: 0

You can see that the time it takes to obtain the more accurate approxima-
tions was reduced at least in half. The more important difference is the change
in the time it takes to compute the least accurate approximation: instead of
more than 20 seconds, this computation now takes 170 milliseconds! This is
significantly less than even the time the original program needs to construct or
destroy the number’s representation.

In fact, when the machine precision is sufficient for the computation, this
modified program runs at a speed in the order of magnitude of an identical
computation implemented in double. While it is not easy to evaluate the accu-
racy of the latter, the results obtained using RealLib can be trusted, and the
cost of obtaining them is not as dramatically different as it is with earlier exact
real number systems6.

6A comparison of RealLib with other packages and hardware floating point is given in
Chapter 8.
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The functions layer in RealLib avoids the complex processing needed to
construct term descriptions of the real numbers by using the user’s code as
the description. In order to do this, the user needs to extract the bulk of the
computation into a function that is written in a way appropriate for the function
layer of the system.

Let us look with more detail at the changes we needed to apply to use the
real functions interface:

• the function Harmonic is now a function template;

• its signature is changed to accommodate one extra argument (precision)
which is not used in the function;

• the CreateIntRealFunction macro is used to create a mapping on the level
of real numbers linked to that function.

To make fully efficient use of specialized precision code, the system requires
the user’s functions to be defined as function templates. The template gets
instantiated for two7 different approximation classes that share the same in-
terface, described in detail in Section B.3. Defining the user’s function as a
template allows the system to make full use of the compiler’s optimization abil-
ities, especially in the very fast machine precision stage of the computation.

To be able to compute transcendental functions or numbers, the user func-
tions are supplied with an additional argument that specifies the precision the
system expects from the user’s function. The programmer can use this para-
meter to decide e.g. the length of the series that approximates a number. A
use of this will be shown later– our current example ignores this parameter as
it computes the needed value exactly8.

Our function is a function that takes one integer argument and returns a
real number. In the system such functions are called “nullary real functions”
(as they do not take a real argument), and are declared using this signature:

template < class TYPE >

TYPE name (unsigned int precision, UserInt userarg)

And finally, a function written for the function interface is not very useful
unless it has a representation on the level of the real numbers, where it can
be applied and its results can be examined. This representation is created by
the linking macro, in this case CreateIntRealFunction, which maps a nullary real
function into a function of this signature:

Real name (UserInt arg)

In the rest of the program, this function is used in the same manner as the
original version written on the real numbers layer.

Let us now look at the implementation of a transcendental function that
takes one real argument:

7in the current version, the number may change in the future
8The theoretical model used for the system allows one to define real number functions that

operate on the level of approximations and are modular on that level; since all built-in and
used-defined functions follow the requirements of the model, the computations can be assumed
to be carried out exactly; although in reality they only provide approximations, the error in
these approximations is accounted for and should be ignored by the user.
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[manual/exp.cpp]
001 #include <iostream>
002 #include <iomanip>
003 #include "Real.h"
004
005 using namespace RealLib;
006 using namespace std;
007
008 template <class TYPE>
009 TYPE myexp(const TYPE &arg)
010 {
011 unsigned int prec = arg.GetPrecision();
012 TYPE s(0.0);
013 TYPE m(1.0);
014
015 if (abs(arg) > 1.0) throw DomainException("myexp");
016 if (!(abs(arg) < 1.0)) throw PrecisionException("myexp");
017
018 for (unsigned i=1; i<=prec; ++i) {
019 s += m;
020 m = m∗arg/i;
021 }
022 return s.AddError(m∗3);
023 }
024 CreateUnaryRealFunction(myexp)
025
026 int main()
027 {
028 InitializeRealLib();
029 {
030 Real a(myexp(Real(0.5)));
031 Real b(exp(Real(1)));
032
033 cout << fixed << setprecision(10);
034 cout << "a(myexp(0.5)) =\t" << a << endl;
035 cout << "a∗a =\t\t" << a∗a << endl;
036 cout << "b(exp(1)) =\t" << b << endl;
037 cout << "a∗a/b =\t\t" << setprecision(300) << showpoint
038 << a∗a/b << endl;
039 }
040 cout << "precision used: " << FinalizeRealLib();
041
042 return 0;
043 }
044

The template function myexp defined on Lines 8-23 is the definition of a
function that computes the exponent of numbers in the range (−1, 1).

At Line 11 we extract the precision, given as the approximate number of
correct 32-bit words that we need to achieve from the argument9. For this first

9Theoretically this argument allows the construction of a sequence converging to the result
of the application of the function. To achieve the best performance, functions should try to
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attempts, we will not try to match this request, but will only make sure that
our approximation’s accuracy increases as prec increases.

Line 15 makes sure we reject arguments that are clearly outside the domain
of our function. If the argument is on the boundary, we cannot recognize that
and reject it, but we can wait until the argument is inside our domain. Since
our domain is an open interval, to any real number in it there will always be an
approximating interval that fits inside the domain (when the precision is high
enough). Line 16 makes sure we do not compute the result until we have such
an approximation.

After this, Lines 18-21 compute the Maclaurin expansion of the exponent
function with prec members, and Line 22 adds an error that covers the remain-
der sum, provided that the argument is within (−1, 1), which lines 15 and 16
have ensured.

Line 24 creates a mapping for the function on the level of real numbers that
is in the form

Real myexp(const Real& arg);

When the main function creates a variable of type Real initialized to my-
exp(0.5) on Line 30, the system constructs an object that describes an applica-
tion of the template function myexp to an object that describes the real number
0.5. There is no need for the creation of objects describing the steps of the com-
putation of the Maclaurin sequence: this description is already present as the
code of the template function myexp.

When the value of a is requested on Line 34, the library creates an approx-
imation to the argument and runs an instantiation of the template function
myexp to it. It then examines the error in the approximation the function
returned. If the error is small enough to allow the display of a 10-digit repre-
sentation, this representation is printed.

If it is not, the system will create a better approximation to the argument
and will pass it to myexp (possibly a different instantiation of it), which will
give a better approximation to the end result, because the parameter prec has
increased and the argument is bounded in absolute value by 1. Eventually an
approximation that is good enough will be obtained and will be printed.

Here is the result of the execution of this program:

a(myexp(0.5)) = 1.6487212707
a*a = 2.7182818285
b(exp(1)) = 2.7182818285
a*a/b = 1.000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000
precision used: 272

Let us extend this example a bit. First, since the remainder bound 3m
(which is an upper bound for me) on Line 22 is also valid for the real numbers

make this a rapidly converging sequence by aiming for an accuracy close to the requested.
Unlike other libraries, the correctness of the results does not depend on the whether or not
they succeed as long as the approximation errors are indicated as shown in this section.
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1 and -1, we would like to expand our domain to [−1, 1] to include them. Also,
we want the best possible performance, thus we will try to satisfy the precision
request. To do so, we will evaluate so many members of the sequence that
me ≤ 2−32prec. We have two choices:

• pre-compute a bound for the number of terms needed and run the series
this number of times. This will give the best performance for lower preci-
sions, but may require expensive extra computations for higher precisions;

• run the series until the condition is satisfied. This implies extra computa-
tions for each iteration, but may be significantly faster in higher precisions
if the argument is smaller.

We will use both, choosing by examining the value of the argument. We will
use the inequality

(
n
3

)n
< n! <

(
n
2

)n (for n ≥ 6) to get a the following upper
bound for the number of terms:

n(lnn− ln3) > 32prec ln 2 + 1,

or very roughly n ≥ 23prec terms will be sufficient.
The modified function follows (the rest of the program does not change):

[manual/expimpr.cpp]
008 template <class TYPE>
009 TYPE myexp(const TYPE &a)
010 {
011 unsigned int prec = a.GetPrecision();
012 TYPE s(0.0);
013 TYPE m(1.0);
014
015 TYPE arg(a.TruncateTo(-1.0, 1.0, "myexp"));
016
017 if (abs(arg).weak le(0.75)) {
018 TYPE err = (TYPE(1) >> (32 ∗ prec)) / 3;
019 for (unsigned i=1; abs(m) > err; ++i) {
020 s += m;
021 m = m∗arg/i;
022 }
023 } else {
024 if (prec < 6) prec = 6;
025 unsigned int pc = prec ∗ 23;
026 for (unsigned i=1; i<=pc; ++i) {
027 s += m;
028 m = m∗arg/i;
029 }
030 }
031 return s.AddError(abs(m)∗3);
032 }
033 CreateUnaryRealFunction(myexp)

This code fragment demonstrates the following:

• how we can satisfy the precision request by choosing a suitable length for
the approximating sequence;
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• how we can use the member function TruncateTo to define functions that
have a closed domain;

• how we can use a weak comparison to choose between different control
paths that lead to the same result but may have different performance.

Here is the result of running this example file:

a(myexp(0.5)) = 1.6487212707
a*a = 2.7182818285
b(exp(1)) = 2.7182818285
a*a/b = 1.000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000
precision used: 34

The precision that is needed to compute the ratio is now very close to
optimal, and thus the computation itself runs much faster.



Appendix B

Reference of the classes and functions of

RealLib

All of the library’s functions, constants and operators live in the RealLib namespace
and are included using the header Real.h.

B.1 Initialization and finalization, exceptions

The system must be initialized prior to use and finalized afterwards.

void InitializeRealLib(
unsigned precStart = MachineEstimatePrecision,
unsigned precMax = 100000,

unsigned numEstAtStart = 1000);

Initializes the library. The starting precision is specified in the first ar-
gument. If nothing is specified, the system will start with machine precision
floating point approximations.

precMax specifies the maximum working precision. If the system cannot
decide a property after reaching this maximum precision, it will abort with a
PrecisionException that can be caught by the user.

numEstAtStart specifies the amount of space the library will reserve for ap-
proximations at initialization. If more space is needed, the library will increase
the storage appropriately. In such a case, specifying a higher numEstAtStart
may save a few memory reallocations.

#define MachineEstimatePrecision 4

A value that is used to indicate interval arithmetic with double precision.
This is the default initial precision in the system.

unsigned FinalizeRealLib();

Finalizes the library. All cached approximations are destroyed, the memory
allocated is freed and the current precision is returned.

unsigned ResetRealLib(

unsigned precStart);

Resets the library, setting a new working precision. Useful when one com-

139
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putation is complete, and another must start from the initial precision to avoid
working with unnecessarily high precision.

unsigned GetCurrentPrecision();

Returns the current precision in 32-bit words. A value of MachineEstimate-
Precision means that the system is currently working with interval arithmetic
with double precision.

class RealLibException : public std::exception {
char m what[128];

public:
RealLibException(const char ∗what = NULL) throw();
virtual const char ∗what() const throw();

};
Base class for the exception classes used in the system. The constructor

takes one string argument specifying a text message for the place the exception
originated, and the what member function returns a pointer to this string. The
following two classes share this interface:

class PrecisionException : public RealLibException {
public:

PrecisionException(const char ∗what = NULL) throw();

};
Raised by functions when the current approximation was not sufficient to

know anything about the resulting approximation. Indicates the system must
start a new iteration with higher precision.

If this exception is passed on to the user, this means that the maximum
precision specified in InitializeRealLib has been reached and was not sufficient to
extract the wanted property.

class DomainException : public RealLibException {
public:

DomainException(const char ∗what = NULL) throw();

};
Raised by functions to indicate the argument is certainly outside the domain

of the function.

B.2 Class Real

The real numbers interface is realized by the class Real .

B.2.1 Construction, destruction, assignment

The following constructors are available to the user:

Real::Real(const double src = 0);

Constructs a Real from a value in double precision, also acting as a default
constructor for the value 0. The argument is taken to be exact, i.e. for example
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the real number constructed by Real(0.1) is not the same as the real number
0.1, but rather to what the compiler thinks is its the closest double to 0.1.

Use for constants when you are certain they are correctly represented in
double precision (e.g. integers up to 253 are all correctly representable). If in
doubt, use the string initialization form.

Real::Real(const char ∗src);
Constructs a Real from a decimal string. The string is taken to be ex-

act. Real(”0.1”) will define the correct value, but Real(”3.1415926”) or even a
1000000-digit decimal representation will not define the number π (and neither
would Real(M PI )).

If a rational number is not correctly representable as a decimal, use division
of real numbers to define it. For example, 1

3 should be constructed as Real(1)/31.

typedef const char∗ (∗OracleFunction) (unsigned precision);

Real::Real(OracleFunction oracle);

This constructor can be used to construct real numbers by an user-supplied
function that can give decimal approximations of a real number for any precision
(i.e. an “oracle” function).

This constructor is provided to give the system the possibility to work with
numbers supplied from an external source (e.g. a human or a random number
generator), which can possibly be non-computable. Other uses of the construc-
tor are also possible2, but those are covered by the more convenient and efficient
real functions layer.

The oracle function is being called for increasing values of the precision para-
meter, which specifies that the function should try to present an approximation
with this precision in 32-bit words, or roughly 10 decimal digits per unit of
precision.

The function may choose to provide more or less accurate values, and the
system takes them to be correct up to a unit in the last place (ulp) of the string
the function returns. The requirement for the function is to represent one real
number, i.e. to make sure that the intervals [x − ulp, x + ulp] overlap for all
values x that the function returns with ulp defined by the length of the decimal
representation after the decimal point, and that the ulp values returned for
different precision converge to zero, i.e. the for every k there is a value n such
that for all precision ≥ n, the length of the decimal representations returned by
the oracle function is at least k.

The behavior of the system is not defined if the oracle function does not
satisfy these requirements.

Real::Real(const Real &src);

Copy constructor, used to make a copy of a real value.

1It suffices to have one Real in the division to force division of real numbers. Division of a
real number by an integer is faster and will be correct as long as the divisor can be represented
as a 32-bit integer.

2e.g. defining real numbers by limitation
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Real::~Real();

Destructor, called when a variable goes out of scope or a pointer is deleted.

Real& Real::operator = (const Real &rhs);

Assignment operator. Updates a real variable with a new value.

B.2.2 Operators

Real Real::operator - () const;

Negation.

Real operator + (const Real &lhs, const Real &rhs);
Real operator - (const Real &lhs, const Real &rhs);
Real operator ∗ (const Real &lhs, const Real &rhs);

Addition, substraction and multiplication.

Real operator / (const Real &lhs, const Real &rhs);

Division. Not defined for rhs == 0.

Real operator ∗ (const Real &lhs, int rhs);
Real operator ∗ (int lhs, const Real &rhs);
Real operator / (const Real &lhs, int rhs);
Real operator / (int lhs, const Real &rhs);

Faster versions of multiplication and division by integer. The division by
integer will cause a DomainException if rhs is zero, and the division of integer
by real is not defined for rhs == 0.

Real::Real& operator += (const Real &rhs);
Real::Real& operator -= (const Real &rhs);
Real::Real& operator ∗= (const Real &rhs);
Real::Real& operator /= (const Real &rhs);

Real::Real& operator ∗= (int rhs);
Real::Real& operator /= (int rhs);

Updating versions of the operators. All of them are just shorthand forms
for the operator followed by assignment.

B.2.3 Built-in constants and functions

extern const Real Pi;

The constant π.

extern const Real Ln2;

The constant ln 2.

Real recip(const Real &arg);

Reciprocal, 1
arg . Not defined for arg == 0.

Real abs(const Real &arg);

Absolute value, |arg|. The result is a non-negative real number.
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Real sqrt(const Real &arg);

Square root,
√

arg. Not defined for negative arguments. The result is a
non-negative real number.

Real rsqrt(const Real &arg);

Reciprocal square root, 1√
arg . Not defined for 0 and negative arguments.

The result is a positive real number.

Real log(const Real &arg);

Natural logarithm, ln arg. Not defined for 0 and negative arguments.

Real exp(const Real &arg);

Exponent, earg. The result is a positive real number.

Real sin(const Real &arg);

Sine, sin arg. The result is in the range [−1, 1].

Real cos(const Real &arg);

Cosine, cos arg. The result is in the range [−1, 1].

Real tan(const Real &arg);

Tangent, tan arg = sin arg
cos arg . Not defined for arg == (2k + 1)π

2 for an integer
k.

Real asin(const Real &arg);

Arcsine, arcsin arg. Defined only for arg ∈ [−1, 1]. The result is in the range
[−π

2 ,
π
2 ].

Real acos(const Real &arg);

Arccosine, arccos arg. Defined only for arg ∈ [−1, 1]. The result is in the
range [0, π].

Real atan(const Real &arg);

Arctangent, arctan arg. The result is in the range (−π
2 ,

π
2 ).

Real atan2(const Real &y, const Real &x);

Arctangent of y
x , using the signs of both arguments to compute the angle.

Can be used to compute the argument of a complex number, or the angle
between the origin of the plain and the point with coordinates (x, y).

The function is not defined3 for the ray y == 0, x <= 0. The result is in
the range (−π, π).

3The mathematical function has a discontinuity at these points, which makes it non-
computable. Excluding the points of discontinuity from the domain of the function makes
it computable.
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B.2.4 Comparison and truncation

bool Real::IsNegative() const;

Returns true if the number is negative and false if the number is positive.
Not defined4 if the number is zero.

bool Real::IsPositive() const;

Returns false if the number is negative and true if the number is positive.
Not defined if the number is zero.

bool Real::IsNonZero() const;

Returns true if the argument is non-zero. Not defined if the number is zero.
Can be used to cause the computation to be performed at a certain spot in
the user’s code or to make sure that numbers that are close to zero do not get
printed as “probable zero”.

bool operator < (const Real &lhs, const Real &rhs);
bool operator > (const Real &lhs, const Real &rhs);
bool operator != (const Real &lhs, const Real &rhs);

Comparison between two real numbers. Shorthand forms for substraction
followed by resp. IsNegative, IsPositive and IsNonZero. Not defined if the two
numbers are equal.

The equality test is undecidable, i.e. no function can exist that can always
give a positive answer when two numbers are equal and not complete or give
a negative answer if they are not. The system does not provide this test, nor
the non-strict inequalities which, without the possibility to recognize equality,
coincide with their strict counterparts.

const Real& Real::ForceNonZero() const;

Uses IsNonZero to force computation until the number can be separated
from zero. Will loop indefinitely or cause an exception if the number is an
actual zero. Used to make sure that numbers that are close to zero do not get
printed as “probable zero”.

B.2.5 Conversion to other types

double Real::AsDouble() const;

Conversion to double. Returns a double precision number which is at most
1 ulp away from the real number. The value returned is not always an IEEE-
correct approximation to the number5.

Numbers that are below the exponent range of double are converted to 0
and numbers that are above the range are mapped to ∞ with the appropriate
sign.

4Again, the discontinuity in the discrete function is avoided by removing the points of
discontinuity from its domain.

5The map between real values and their IEEE-correct representations is discontinuous thus
non-computable. Our conversion is computable, but it is not a function in the sense of real
analysis, because it can map different representations of the same real number into different
double values.
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char∗ Real::AsDecimal(char ∗buffer, unsigned len) const;

Creates a decimal approximation of the real number that fits in len charac-
ters, which is at most 1 ulp away from the number, and returns a pointer to
buffer. The representation is not always correctly rounded6, nor the first len
digits of the number’s infinite decimal representation7.

Scientific notation is used if the number does not fit in the space provided.
This also includes the cases where the number is smaller than the smallest
number that can be written in fixed notation in the space provided (i.e.
10−len). Because this can lead to infinite re-iteration if the number is 0, the
system will return “probable zero” if the number is smaller than 10−2len and is
not distinguishable from zero at the current working precision. If this
behavior is not desired (i.e. is the user knows the number is not zero), use
ForceNonZero to make sure the computation is performed until number is
separated from zero, for example

printf("%s", x.ForceNonZero().AsDecimal(buf, len));

The buffer must have enough space to accommodate len characters, and len
must be at least 10.

B.2.6 Stream input and output

std::istream& operator >>(std::istream &in, Real &r);

Stream input. Reads a string from the input stream and creates a real
number from it. The string can be of arbitrary (finite) length and is taken to
be an exact decimal representation of the number.

std::ostream& operator <<(std::ostream &out, const Real& r);

Stream output. Sends a decimal approximation to r that is at most 1 ulp
away to the output stream. The representation need not be correctly rounded
nor the beginning of the number’s infinite decimal representation8.

If the number is smaller than 10−2prec (for default and scientific notation),
where prec is the output precision (set through setprecision below), and at the
current working precision cannot be distinguished from 0, the system will
print “probable zero” to avoid infinite loops if a real zero needs to be printed.
If this behavior is not wanted, use ForceNonZero to force computation until
separation from zero can be ensured, for example:

cout << x.ForceNonZero();

The output is influenced by the following stream manipulators:

setprecision(x) sets the precision in decimal digits. The digits of the exponent
are not counted. The actual count of the digits depends on the notation

6for the same reasons as above
7e.g. the number 1.01000 . . . can be converted to the decimal representation 1.0 as well as

to 1.1, same reasons as above
8for the same reasons as in AsDecimal above
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fixed sets fixed notation, the number is printed with the specified digits of
precision after the decimal point, regardless how long the string needs to
be to ensure that

scientific scientific (exponent) notation will be used, where the mantissa will
have one non-zero decimal before the decimal point and the specified digits
of precision after the decimal point

(notation not set) (default) prints in fixed notation if the number can fit in
the specified digits of precision. If it cannot, prints in scientific notation.
In both cases, the total number of digits printed (excluding the exponent)
will be as specified

showpoint the trailing zeros and decimal point will be displayed

noshowpoint (default) the trailing zeros and decimal point will not be shown

showpos positive numbers will have a leading ‘+’

noshowpos (default) no leading ‘+’ will be shown

setw(x) sets the field width (only applies to the next thing printed)

setfill(x) sets the character for filling the field

left the number will be left-justified in the field

right the number will be right-justified (default)

internal the sign will remain to the left, while the number will be flushed to
the right

lowercase (default) use lowercase ‘e’ for the exponent

uppercase use uppercase ‘E’ for the exponent.

B.3 The functions interface: Class Estimate

This interface is meant to be used for the implementation of user-defined func-
tions or user-defined real constants. To make the functions useable on the num-
bers level, they have to be defined according to one of the signatures specified
in Section B.4.

On this level the functions are instantiated for different types which share
the same interface. The interface is that of the class Estimate, which we are
describing in this section.

The functions on this level work with approximations to the number. They
return approximations to the result of the application of the function or oper-
ator. The nullary functions (constants or functions on integers) take an addi-
tional precision argument which indicates how precise the approximation should
try to be. This argument is implicit in the functions that take real arguments
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and can be recovered through Estimate::GetPrecision() on one of the real argu-
ments. The precision indicates the approximation should try to be accurate to
the specified number of 32-bit words of relative precision. The built-in functions
try to achieve this9.

The correctness requirement for the user functions is that they produce
overlapping intervals, and that the error in the produced approximations as a
function of the precision converges to zero, i.e. every function should satisfy the
requirement that for every ε there are numbers n and δ, such that whenever the
function is applied to arguments satisfying GetPrecision() ≥ n and GetError() ≤
δ, the returned interval satisfies GetPrecision() ≥ n and GetError() ≤ ε. In
order to achieve the best possible efficiency in the system, the user should try
to produce approximations according to the precision specification.

From a user’s point of view, functions that satisfy the correctness require-
ment (this includes the built-in functions), can be assumed to compute real
numbers exactly. The errors they produce are handled automatically. The only
errors that the user needs to address are the result of finitely approximating
an infinite sequence. An upper bound for such an error should be explicitly
specified via a call to Estimate::AddError .

Some of the operations on this level are called “weak” operations. This is
to signify that they extract properties of the current approximations, which
are not necessarily properties of the real number being approximated. Still,
the weak operations can be useful to choose a control path when both control
paths return the same end result, e.g. a weak lt is used to switch between a
control path that computes sin in the range [0, π

2 ] and one that computes it for
the range [π2 , π]. Both can compute the approximation even if the number is
slightly outside that range, but use different algorithms and will yield results
with different accuracy.

B.3.1 Conversion from other types

Estimate::Estimate(double v = 1.0);
Estimate::Estimate(const char ∗val);
Conversion from double or a decimal string. The argument is taken to be

correct, and the resulting Estimate will be an approximation to that number
(exact in the case of double and with decreasing error value as the precision
increases in the case of a decimal string).

B.3.2 Error manipulation

Estimate Estimate::GetError() const;
Estimate& Estimate::SetError(const Estimate &err);
Estimate& Estimate::AddError(const Estimate &err);

Get, set and add to the error value in the approximation. The most often
used function is AddError , which can be used to add the error resulting from im-
perfectly approximating a transcendental number via a finite part of an infinite
sequence (see Section A.2 for example).

9but lose a few bits due to rounding errors of the basic operators
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GetError returns an exact approximation (i.e. one having error 0), and the
other functions use a value which is not smaller than the largest one within the
argument interval.

Example: if a represents the real number interval [0, 1], a.GetError() will
return the interval [0.5, 0.5], a.SetError(1) will make a representation of the
interval [−0.5, 1.5], and a.AddError(a) would return the interval [−1, 2].

i32 Estimate::GetRelativeError() const;

Returns a lower bound for the number of digits in the mantissa of the
approximation that are within 1-ulp of the real number. Used by the system
in the process of obtaining approximations for conversion to double or decimal
string.

u32 Estimate::GetPrecision() const;
Estimate& Estimate::SetPrecision(u32 prec);

Get and set the current working precision of the number in 32-bit words.
This value controls how precise functions working on this argument should try
to be (see Section A.2 for example).

B.3.3 Interval truncation

The truncation functions that follow are useful to compute functions that have
domains with closed ends. They remove the specified parts of the approximating
interval, leaving only the part that is a valid argument for the function. They
raise an exception if the argument lies entirely in the unwanted part of the real
line.

Estimate TruncateNegative(const char ∗origin = "Truncate") const;

Truncates the negative part of the interval. For example, [−1, 2] will be
truncated to [0, 2], [−2,−1] will raise a DomainException(origin), and [1, 2] will
remain unchanged.

Estimate TruncateBelow(double l,
const char ∗origin = "Truncate") const;

Estimate TruncateBelow(const Estimate &l,
const char ∗origin = "Truncate") const;

Truncates the parts below a certain lower limit. The error in l will appear
in the result, e.g. if a is [0, 2] and l is [0.75, 1.25], a.TruncateBelow(l) will be
[0.75, 2.25]. To make sure the limit is exact, use a double value for l.

Estimate TruncateAbove(double u,
const char ∗origin = "Truncate") const;

Estimate TruncateAbove(const Estimate &u,
const char ∗origin = "Truncate") const;

Truncates the parts above a certain upper limit. Use a double constant for
u to avoid introducing extra error in the result.

Estimate TruncateTo(double l, double u,
const char ∗origin = "Truncate") const;
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Estimate TruncateTo(const Estimate &l, const Estimate &u,
const char ∗origin = "Truncate") const;

Truncates the input interval to fit into the specified interval.

B.3.4 Operators

Estimate operator - (const Estimate &arg);

Estimate operator + (const Estimate &lhs, const Estimate &rhs);
Estimate operator - (const Estimate &lhs, const Estimate &rhs);
Estimate operator ∗ (const Estimate &lhs, const Estimate &rhs);
Estimate operator / (const Estimate &lhs, const Estimate &rhs);

Estimate operator ∗ (const Estimate &lhs, i32 rhs);
Estimate operator ∗ (i32 lhs, const Estimate &rhs);
Estimate operator / (const Estimate &lhs, i32 rhs);
Estimate operator / (i32 lhs, const Estimate &rhs);

Negation, addition, substraction, multiplication and division, the last two
also in a faster form with one integer argument.

Division needs the argument to be non-zero, thus it will raise a PrecisionEx-
ception if the right-hand side is an interval that contains zero.

The division by integer form will raise a DomainException if the integer
divisor is zero.

Estimate Estimate::operator << (i32 howmuch) const;
Estimate Estimate::operator >> (i32 howmuch) const;

Binary shift by howmuch bits, i.e. a << n = a2n and a >> n = a2−n. Very
fast multiplication by a power of two.

B.3.5 Built-in constants and functions

Estimate pi(unsigned int prec);

The constant π. Returns an approximation which has close to prec correct
32-bit words.

Estimate ln2(unsigned int prec);

The constant ln 2.

Estimate recip(const Estimate &arg);

Reciprocal, 1
arg . Raises a PrecisionException if the argument is an interval

that contains 0.

Estimate abs(const Estimate &arg);

Absolute value, |arg|. The resulting interval may contain zero, but no neg-
ative real number.

Estimate sqrt(const Estimate &arg);

Square root,
√

arg. If the argument interval does not intersect the domain
of the function, raises a DomainException. Otherwise, the interval is truncated
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only to its valid part, i.e. the intersection of the domain of the function and
the argument interval.

Estimate rsqrt(const Estimate &arg);

Reciprocal square root, 1√
arg . Raises a DomainException for argument inter-

vals that do not intersect the domain, and a PrecisionException for arguments
that contain zero.

Estimate log(const Estimate &arg);

Natural logarithm, ln arg. Raises a DomainException for argument intervals
that do not intersect the domain, and a PrecisionException for arguments that
contain zero.

Estimate exp(const Estimate &arg);

Exponent, earg.

Estimate sin(const Estimate &arg);

Sine, sin arg. The resulting interval may contain numbers outside the range
[−1, 1].

Estimate cos(const Estimate &arg);

Cosine, cos arg. The resulting interval may contain numbers outside the
range [−1, 1].

Estimate tan(const Estimate &arg);

Tangent, tan arg = sin arg
cos arg . Raises a PrecisionException for arguments that

contain (2k + 1)π
2 for an integer k.

Estimate asin(const Estimate &arg);

Arcsine, arcsin arg. Raises a DomainException for intervals that do not in-
tersect [−1, 1] and truncates the argument interval to fit the domain.

Estimate acos(const Estimate &arg);

Arccosine, arccos arg. Raises a DomainException for intervals that do not
intersect [−1, 1] and truncates the argument interval to fit the domain.

Estimate atan(const Estimate &arg);

Arctangent, arctan arg.

Estimate atan2(const Estimate &y, const Estimate &x);

Arctangent of y
x , using the signs of both arguments to compute the angle.

Can be used to compute the argument of a complex number, or the angle
between the origin of the plain and the point with coordinates (x, y).

Raises a PrecisionException if the arguments contain points with y == 0
and x <= 0.
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B.3.6 Strong comparisons

Strong comparisons return true if the comparison is true for any real number
in the interval, i.e. if the approximated real number satisfies the inequality.

bool Estimate::IsPositive() const;

Returns true if this ⊆ (0,+∞), and false otherwise.

bool Estimate::IsNegative() const;

Returns true if this ⊆ (−∞, 0), and false otherwise.

bool Estimate::IsNonZero() const;

Returns false if 0 ∈ this, and true otherwise.

bool Estimate::operator < (const Estimate &rhs) const;
bool Estimate::operator > (const Estimate &rhs) const;
bool Estimate::operator != (const Estimate &rhs) const;

Comparison operators, shorthand forms for substraction followed by resp.
IsNegative, IsPositive, IsNonZero.

If a value of true is returned, the real numbers satisfy the inequality, but a
value of false means that either they do not satisfy it, or that this cannot be
shown from the current approximation.

B.3.7 Weak discrete functions

Weak functions work with the current approximation, more specifically, with
the center of the approximating interval. They ignore the error information and
may give information that would be wrong for the approximated real number.

They are all discrete functions that would be non-computable on the real
numbers level, but have a clearly defined meaning for its current approximation.

They are to be used to differentiate between control paths that compute
the same thing via different algorithms (possibly with different accuracy), or
for debugging or progress reports.

bool Estimate::weak IsPositive() const;
bool Estimate::weak IsNegative() const;
bool Estimate::weak IsNonZero() const;

bool Estimate::weak lt(const Estimate &rhs) const;
bool Estimate::weak eq(const Estimate &rhs) const;
bool Estimate::weak gt(const Estimate &rhs) const;

bool Estimate::weak le(const Estimate &rhs) const;
bool Estimate::weak ne(const Estimate &rhs) const;
bool Estimate::weak ge(const Estimate &rhs) const;

Weak comparisons: positivity test, negativity test, non-zero10, less-than,
equal, greater-than, less-than-or-equal, not-equal, greater-than-or-equal.

10Some implementations define this to be always true, because they do not allow a zero to
be the center of an approximation.
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Estimate Estimate::weak round() const;

Rounding. Returns an exact Estimate, which is the integer closest to the
center of the interval. Can be used to compute the value of periodic functions.

i32 Estimate::weak normalize() const;

Normalization: returns an integer such that a >> a.Normalize() is within
[0.5, 1). Used to compute logarithms.

double Estimate::weak AsDouble() const;

Returns a double approximation to the center of the interval, at most 1
2 ulp

away from it, correctly rounded according to the IEEE-754 specification11.

char ∗Estimate::weak AsDecimal(char ∗buffer, u32 buflen) const;

Returns a decimal representation of the center of the interval which fits in
buflen characters and is at most 1

2 ulp away. Fixed notation is normally used,
switched to scientific if the number cannot fit in the space provided (buflen has
to be 10 characters minimum).

std::ostream& operator <<(std::ostream &os, const Estimate &e);

Stream output, prints a number which is at most 1
2 ulp away from the center

of the interval. Influenced by the same set of format manipulators as the stream
output for real numbers.

B.4 Macros linking the functions and numbers in-
terfaces

In order to use functions defined on the functions layer on Real arguments, the
user must create a mapping of the function using one of the linking macros.

There are linking macros for the following types of functions:

• nullary functions, i.e. real constants

• nullary functions with int, i.e. functions taking one integer argument and
returning a real number

• unary real functions

• unary functions with int, i.e. functions taking one real and one integer
arguments

• binary real functions

• binary functions with int, i.e. functions taking two real and one integer
arguments

• real functions on arrays

• real functions on arrays with an additional integer argument
11This specification is not correctly implemented in the current version.



B.4. Macros linking the functions and numbers interfaces 153

The user’s functions have to be function templates parameterized by the
type of the approximation object. The approximation objects for which they
will be instantiated all share the interface of Estimate, described in Section B.3.

B.4.1 Nullary functions (constants)

Defined using this form:
template <class TYPE>
TYPE name (unsigned int prec);
The macro CreateNullaryRealFunction(name) maps such a function to the

following real function:
Real name ();
Alternatively, the macro CreateRealConstant(const name, fun name) maps

the function fun name into the constant const name defined as
const Real const name ;

For example, CreateRealConstant(Pi , pi) is used in the code of the system
to define the built-in constant Pi from the function pi .

B.4.2 Nullary functions with integer argument

Defined using this form:
template <class TYPE>
TYPE name (unsigned int prec, UserInt uint);
The macro CreateIntRealFunction(name) maps such a function to the

following real function:
Real name (UserInt uint);

B.4.3 Unary functions

Defined using this form:
template <class TYPE>
TYPE name (const TYPE &arg);
The macro CreateUnaryRealFunction(name) maps such a function to the

following real function:
Real name (const Real& arg);

For example, CreateUnaryRealFunction(sin) is used in the source code of the
system to define the real number function sin from the function-layer sin.

B.4.4 Unary functions with integer argument

Defined using this form:
template <class TYPE>
TYPE name (const TYPE& arg, UserInt uint);
The macro CreateUnaryAndIntRealFunction(name) maps such a function to

the following real function:
Real name (const Real& arg, UserInt uint);

B.4.5 Binary functions

Defined using this form:
template <class TYPE>
TYPE name (const TYPE &lhs, const TYPE &rhs);
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The macro CreateBinaryRealFunction(name) maps such a function to the
following real function:

Real name (const Real& lhs, const Real& rhs);

For example, CreateBinaryRealFunction(atan2) is used in the source of the
system to define the real number function atan2 from the function-layer atan2 .

B.4.6 Binary functions with integer argument

Defined using this form:
template <class TYPE>
TYPE name (const TYPE& lhs, const TYPE &rhs, UserInt uint);
The macro CreateBinaryAndIntRealFunction(name) maps such a function to

the following real function:
Real name (const Real& lhs, const Real& rhs, UserInt uint);

B.4.7 Array functions

Defined using this form:
template <class TYPE, class ARRAY>
TYPE name (ARRAY &arg);
where ARRAY is a type with the following interface:
template <class TYPE>
class ArrayInterface {
public:

long size();
TYPE& operator[] (long index);

};
(indexed array elements can be retrieved or updated; no pointer or prev/next

operations are supported and no bounds checking is performed)
The macro CreateArrayRealFunction(name) maps such a function into the

triple:
void name (Real ∗ptr, long count);
void name (std::valarray<Real> &arr);
void name (std::vector<Real> &arr);

For an example of the use of this, see examples/linear.cpp.

B.4.8 Array functions with integer argument

Defined using this form:
template <class TYPE>
TYPE name (ARRAY &arg, UserInt int);

where ARRAY is as above.
The macro CreateArrayAndIntRealFunction(name) maps such a function

into the triple:
void name (Real ∗ptr, long count, UserInt uint);
void name (std::valarray<Real> &arr, UserInt uint);
void name (std::vector<Real> &arr, UserInt uint);
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Basel-Berlin, x+309 pp. (1991).

[54] Kohlenbach, U., Theory of majorizable and continuous functionals and
their use for the extraction of bounds from non-constructive proofs: effec-
tive moduli of uniqueness for best approximations from ineffective proofs
of uniqueness(german). PhD Dissertation, Frankfurt (1990).

http://www.cs.berkeley.edu/~wkahan/ieee754status/ieee754.pdf
http://www.cs.berkeley.edu/~wkahan/ieee754status/ieee754.pdf


B.4. Macros linking the functions and numbers interfaces 159

[55] Kohlenbach, U., Effective bounds from ineffective proofs in analysis: an
application of functional interpretation and majorization. Journal of Sym-
bolic Logic 57, pp. 1239–1273 (1992).

[56] Kohlenbach, U., Effective moduli from ineffective uniqueness proofs. An
unwinding of de La Vallée Poussin’s proof for Chebycheff approximation.
Annals of Pure and Applied Logic 64 pp. 27–94 (1993).

[57] Kohlenbach, U., Mathematically strong subsystems of analysis with low
rate of growth of provably recursive functionals. Archive for Mathematical
Logic 36, pp. 31–71 (1996).

[58] Kohlenbach, U., Analysing proofs in analysis. W.Hodges, M. Hyland, C.
Steinhorn, J. Truss, editors, Logic: from Foundations to Applications.
European Logic Colloquium (Keele 1993), pp. 225–260, Oxford University
Press (1996)

[59] Kohlenbach, U., Elimination of Skolem functions for monotone formulas
in analysis. Archives for Mathematical Logic 37, pp. 363–390 (1998).

[60] Kohlenbach, U., On the no-counterexample interpretation. Journal of
Symbolic Logic 64, pp. 1491–1511 (1999).

[61] Kohlenbach, U., A quantitative version of a theorem due to Borwein-
Reich-Shafrir. Numer. Funct. Anal. and Optimiz. 22, pp. 641–656 (2001).

[62] Kohlenbach, U., On the computational content of the Krasnoselski and
Ishikawa fixed point theorems. Proceedings of the Fourth Workshop on
Computability and Complexity in Analysis, J. Blanck, V. Brattka, P.
Hertling (eds.), Springer LNCS 2064, pp. 119-145 (2001).

[63] Kohlenbach, U., Uniform asymptotic regularity for Mann iterates. J.
Math. Anal. Appl. 279, pp. 531-544 (2003).

[64] Kohlenbach, U., Leu̧stean, L., Mann iterates of directionally nonexpansive
mappings in hyperbolic spaces. Abstr. Appl. Anal. 2003, no.8, pp. 449-477
(2003).

[65] Kohlenbach, U., Oliva, P., Proof mining: a systematic way of analysing
proofs in analysis. Proc. Steklov Inst. Math. 242, 136-164 (2003).

[66] Kohlenbach, U., Lambov, B., Bounds on iterations of asymptotically
quasi-nonexpansive mappings. Proceedings of the international conference
on Fixed Point Theory and Applications, Valencia 2003, Falset, J.G.,
Fuster, E. L., Sims, B. (eds.), Yokohama Publishers, pp. 143-172 (2004).

[67] Kohlenbach, U., Some logical metatheorems with applications in func-
tional analysis. Trans. Amer. Math. Soc. vol. 357, no. 1, pp. 89-128 (2005).

[68] Kohlenbach, U., Some computational aspects of metric fixed-point theory.
Nonlinear Analysis 61, pp. 823–837 (2005).



160 Chapter B. Reference of the classes and functions of RealLib

[69] Kohlenbach, U., Proof Interpretations and the Computational Content of
Proofs, draft.
Available at http://www.mathematik.tu-darmstadt.de/~kohlenbach/newcourse.ps.gz.

[70] Kolla, R., Vodopivec, A., von Gudenberg, J.W., The IAX Architecture
– Interval Arithmetic Extension. Universität Würzburg, Institut für
Informatik, Techn. Report TR225, April 1999.
available at http://www2.informatik.uni-wuerzburg.de/
mitarbeiter/wvg/Public/iax.ps.gz

[71] Krasnoselski, M. A., Two remarks on the method of successive approxi-
mation. Usp. Math. Nauk (N.S.) 10, pp. 123-127 (1955) (Russian).

[72] Kreisel, G., On the interpretation of non-finitist proofs, part I. Journal of
Symbolic Logic 16, pp. 241–267 (1951).

[73] Kreisel, G., On the interpretation of non-finitist proofs, part II: Interpre-
tation of number theory, applications. Journal of Symbolic Logic 17, pp.
43–58 (1952).

[74] Kreisel, G., Interpretation of analysis by means of constructive function-
als of finite types. In: Constructivity in Mathematics, Heyting, A. (ed.).
North-Holland (Amsterdam), pp. 101–128 (1959).

[75] Lambov, B., Complexity and Intensionality in a Type-1 Framework for
Computable Analysis. Ong, L. (ed.), Computer Science Logic: 19th Inter-
national Workshop, CSL 2005, 14th Annual Conference of the EACSL,
Oxford, UK, August 22-25, 2005. Proceedings. Lecture Notes in Computer
Science 3634, pp. 442–461 (2005).

[76] Lambov, B., Rates of convergence of recursively defined sequences. Pro-
ceedings of the 6th Workshop on Computability and Complexity in Analy-
sis (CCA 2004), Electronic Notes in Theoretical Computer Science, Vol-
ume 120, pp. 125-133 (2005).

[77] Lambov, B., “RealLib, an Efficient Implementation of Exact Real Arith-
metic”, CCA 2005 - Second International Conference on Computability
and Complexity in Analysis, August 25-29, 2005, Kyoto, Japan. Infor-
matik Berichte 326-7/2005 FernUniversität Hagen, Germany (2005).

[78] Lambov, B., RealLib3 Manual,
available at http://www.brics.dk/~barnie/RealLib/

[79] Machado, H.V., A characterization of convex subsets of normed spaces.
Kodai Math. Sem. Rep. 25, pp. 307-320 (1973).

[80] Mann, W.R., Mean value methods in iteration. Proc. Amer. Math. Soc.
4, pp. 506-510 (1953).

http://www.mathematik.tu-darmstadt.de/~kohlenbach/newcourse.ps.gz
http://www2.informatik.uni-wuerzburg.de/mitarbeiter/wvg/Public/iax.ps.gz
http://www2.informatik.uni-wuerzburg.de/mitarbeiter/wvg/Public/iax.ps.gz
http://www.brics.dk/~barnie/RealLib/


B.4. Macros linking the functions and numbers interfaces 161

[81] Matiyasevich, Y. V., A sufficient condition for the convergence of
monotone sequences. Zapiski Nauchnykh Seminarov Leningradskovo Ot-
deleniya Matematicheskogo Instituta imeni V.A. Steklova. Akademii
Nauk SSSR, Vol. 20 (1971), pp. 97–103. English translation in J. Sov.
Math. 1, No. 1, pp. 59–63 (1973).

[82] Mazur, S., Computable Analysis. Razprawy Matematyczne, 33, Warsaw
(1963).

[83] Melhorn, K., Polynomial and abstract subrecursive classes, Journal of
Computer System Science 12 , pp. 147–178 (1976).

[84] Mehlhorn, K. and Schirra, S., Generalized and improved constructive sepa-
ration bound for real algebraic expressions, Research Report, Max-Planck-
Institut für Informatik, November (2000).

[85] Mosses, P. D., Action Semantics. Cambridge Tracts in Theoretical Com-
puter Science 26, Cambridge University Press (1992).

[86] Müller, N., The iRRAM: Exact arithmetic in C++. Computability and
complexity in analysis. (Swansea, 2000). Lecture Notes in Computer Sci-
ence 2064. Springer (2001).
see also http://www.informatik.uni-trier.de/iRRAM/

[87] Naimpally, S.A., Singh, K.L., Whitfield, J.H.M., Fixed points and se-
quences of iterates in locally convex spaces. Topological methods in non-
linear functional analysis. Contemp. Math. 21, Amer. Math. Soc., pp.
159-166 (1983).

[88] Odifreddi, P., Classical Recursion Theory. North-Holland, xvii+668 pp.
(1989).

[89] Odifreddi, P., Classical Recursion Theory, Volume II. Studies in Logic
and the Foundations of Mathematics 143, xvi+949 pp. (1999).

[90] Opial, Z., Weak convergence of the sequence of successive approxima-
tions for nonexpansive mappings. Bull. Amer. Math. Soc. 73, pp. 595-597
(1967).

[91] Orevkov, V.P., A constructive mapping of the square onto itself displacing
every constructive point, Soviet Math. Doklady 4, pp. 1253–1256 (1963).

[92] Parsons, C., Proof theoretic analysis of restricted induction schemata.
Journal of Symbolic Logic vol. 36, p. 361 (1971).

[93] Pour-El, M.B., Richards, J.I., Computability in Analysis and Physics.
Springer, x+206 pp. (1989).

[94] Qihou, L., Iteration sequences for asymptotically quasi-nonexpansive map-
pings. J. Math. Anal. Appl. 259, pp. 1–7 (2001).

http://www.informatik.uni-trier.de/iRRAM/


162 Chapter B. Reference of the classes and functions of RealLib

[95] Qihou, L., Iteration sequences for asymptotically quasi-nonexpansive map-
pings with error member. J. Math. Anal. Appl. 259, pp. 18-24 (2001).

[96] Qihou, L., Iteration sequences for asymptotically quasi-nonexpansive map-
ping with an error member of uniform convex Banach space. J. Math.
Anal. Appl. 266, pp. 468–471 (2002).

[97] Rhoades, B.E., Fixed point iterations for certain nonlinear mappings. J.
Math. Anal. Appl. 183, pp. 118-120 (1994).

[98] Ritchie, R.W., Classes of recursive functions based on Ackermann’s func-
tion. Pacific Journal of Mathematics 15, pp. 1027–1044 (1965).

[99] Schu, J., Iterative construction of fixed points of strictly quasicontractive
mappings. Appl. Anal. 40, pp. 67-72 (1991).

[100] Schu, J., Weak and strong convergence to fixed points of asymptotically
nonexpansive mappings. Bull. Austral. Math. Soc. 43, pp. 153-159 (1991).

[101] Schu, J., Iterative construction of fixed points of asymptotically nonex-
pansive mappings. J. Math. Anal. Appl. 158, pp. 407–413 (1991).

[102] Schwichtenberg, H., Constructive Analysis with Witnesses (Marktober-
dorf ’03)
Available at http://www.mathematik.uni-muenchen.de/~schwicht/
papers/mod03/modart03.ps

[103] Shioji, N., Tanaka, K., Fixed point theory in weak second- order arith-
metic, Annals of Pure and Applied Logic 47, 167-188 (1990).

[104] Simpson, S.G., Subsystems of Second Order Arithmetic. Perspectives in
Mathematical Logic. Springer-Verlag, xiv+445 pp. (1999).

[105] Skordev, D., Characterization of the computable real numbers by means of
primitive recursive functions. Computability and complexity in analysis
(Swansea, 2000), Lecture Notes in Computer Science 2064, pp. 296–309,
Springer (2001).

[106] Specker, E., Nicht konstruktiv beweisbare Sätze der Analysis. The Jornal
of Symbolic Logic, 14(3), pp. 145–158 (1949).

[107] Srivastava, P., Srivastava, S.C., On asymptotically quasinonexpansive
families of mappings. In: Nonlinear analysis and applications (St. Johns,
1981), Lecture Notes in Pure and Appl. Math. 80, pp. 265-270, Dekker
(1982).
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