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1. Introduction

This paper provides a quantitative analysis of a seminal Tseng-type splitting algorithm intro-
duced by Combettes and Pesquet [4] for simultaneously solving a primal together with a dual
inclusion problem, both being formulated using very general composite operators involving a
mixture of sums, linear compositions and parallel sums of monotone set-valued and Lipschitzian
operators.

Concretely, we show that if the individual sums of the operators involved are uniformly
monotone, then one has a simple effective simultaneous full rate for the strong convergence
for the individual components of the sequence produced by the algorithm, which respectively
correspond to the primal and the dual inclusion problem, which is moreover highly uniform in
the way that it only depends (in addition to a given error of precision) on certain norm bounds
on the starting parameters, a rate of convergence for the sum of the error terms involved in the
method and moduli witnessing the uniform monotonicity (in the sense of [8]) for the operators
(cf. Theorem 4.7).

Without any uniform monotonicity assumption the algorithm converges weakly (as shown in
[4]) but even in the finite dimensional case, there is in general no computable rate of convergence
as one can show using results from computability theory due to Specker [15] (see also the
discussions in [10, 13]). In such a situation, the next best thing is to construct an effective so-
called rate of metastability of a sequences (xn) in question, namely a function ∆(ε, g) bounding
the n in the expression1

(−) ∀ε > 0 ∀g ∈ NN ∃n ∈ N ∀i, j ∈ [n;n+ g(n)] (‖xi − xj‖ < ε)

in terms of ε and g. This metastability property (−), where the name was coined through the
work of Tao [16, 17] on finitary aspects of analysis, is a (noneffectively) equivalent phrasing of

Date: December 25, 2024.
1Here, and in the following, we write [n;m] := [n,m] ∩ N.
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the usual Cauchy property for the sequence (xn). In that way, we then construct a simultaneous
rate of metastability for all the components of the algorithm in the finite dimensional case which
does not use any uniform monotonicity but which depends on a modulus witnessing the total
boundedness of bounded balls in the space(s) at hand, which can be in particular computed
from the dimension(s) (cf. Theorem 4.2).

Such a rate of metastability is also obtainable (for arbitrary Hilbert spaces) for the compo-
nents of the sequence produced by the algorithm individually if the sums of the corresponding
operators related to the individual component are uniformly monotone while no such require-
ment is placed on the other operators involved in the problem. (cf. Theorem 4.6).

The central paradigm pioneered in the work of Combettes and Pesquet [4] for approaching
such complex composite primal-dual inclusion problems is to transfer the problem to a higher-
dimensional composite space where all individual components are operated on simultaneously
and the primal-dual inclusion is rephrased as the zero problem of a sum of a suitably defined
monotone and a Lipschitzian operator. This perspective allows one to reduce the algorithm
developed in [4] to a special instance corresponding to these two defined operators of an inexact
version of the usual seminal splitting method of Tseng [19] augmented with error terms and
variable scalars as introduced in [3]. Hence, in this paper we actually first analyze that latter
algorithm in its full abstract generality, similarly providing rates of convergence under a uniform
monotonicity assumption for the sum of the two operators (cf. Theorem 3.19) and a rate of
metastability under a relative compactness assumption (cf. Theorem 3.13). For the extraction
of the rate of convergence of that algorithm under the uniform monotonicity assumption, we in
particular built upon the recent work [18] where such a rate was recently established in the sit-
uation without error terms and constant scalars. Here it turns out that the quantitative nature
of the extended version of Tseng’s algorithm can actually be understood through to general
macros for quasi-Fejér monotone algorithms for both constructing rates of convergence under
a metric regularity assumption as developed in [11] (see also [14]) and for constructing rates of
metastability in the locally compact case as developed in [10]. As this reductive paradigm of
approaching composite primal-dual monotone inclusions has, since the work of Combettes and
Pesquet, become very influential in the literature over the last years (spawning in particular
further seminal works like [2, 20] due to Boţ and Hendrich as well as Vũ where this paradigm is
utilized to also provide Douglas-Rachford-type and forward-backward-type methods for solving
related primal-dual monotone inclusion problems), we believe that a quantitative perspective
on such reductive approaches as first given in this paper will be beneficial in providing similar
results also for these methods (in particular in combination with previous works on the quanti-
tative nature of the underlying Douglas-Rachford and forward-backward splitting methods as
given in [18]).

Lastly, we want to remark that the aforementioned macros for quantitative results on quasi-
Fejér monotone sequences, as well as the other results utilized and developed in this paper,
have been established using the logic-based methodology of proof mining (see [6] for a com-
prehensive book treatment until 2008 and [7] for a survey of further more recent applications
to, in particular, nonlinear analysis). However, as common in proof mining, all the results and
proofs given in this work are formulated in a way which avoids any reference to mathematical
logic.

The paper is now organized as follows: In Section 2, we briefly discuss the minimal necessary
background from convex analysis and monotone operator theory required for this paper. In
Section 3, we then provide the previously discussed quantitative results for the inexact variant
of Tseng’s algorithm from [3]. These are then used in Section 4 to obtain corresponding results
for the primal-dual splitting algorithm from [4].
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2. Preliminaries

In this brief section, we shortly survey the necessary notions and notations for this paper.
We begin with the (very minimal) background in set-valued monotone operator theory over
Hilbert spaces.

Over a (real) Hilbert space H with inner product 〈·, ·〉 and norm ‖·‖, a set-valued operator
A : H → 2H is called monotone if

〈x− y, u− v〉 ≥ 0 for all (x, u), (y, v) ∈ A

and maximally monotone if any monotone operator B ⊇ A satisfies A = B. The resolvent of
an operator A is the mapping JA := (Id + A)−1, which, if A is monotone, is single-valued and
firmly nonexpansive (see e.g. [1]) and, by the well-known theorem of Minty, the resolvent is
additionally total if, and only if, A is further maximally monotone. The operator A is called
uniformly monotone at a point x if there exists an increasing function φ : [0,∞) → [0,∞)
vanishing only at 0 such that

〈x− y, u− v〉 ≥ φ(‖x− y‖) for all (x, u), (y, v) ∈ A.

Given two set-valued operators A,B : H → 2H, their parallel sum is the operator A�B :=
(A−1 + B−1)−1. Further, if L : H → G is a bounded linear operator for another (real) Hilbert
space G, we denote by L∗ : G → H its adjoint which is uniquely defined by 〈Lx, y〉 = 〈x, L∗y〉.
Also, for a finite collection of Hilbert spaces Gi, i = 1, . . . ,m, we denote by G1 ⊕ · · · ⊕ Gm their
direct sum, that is their product space equipped with the inner product

〈(xi)1≤i≤m, (yi)1≤i≤m〉 :=
m∑
i=1

〈xi, yi〉

as well as the induced norm. Note that for a tuple (xi)1≤i≤m ∈ G1 ⊕ · · · ⊕ Gm, we have

‖xj‖ =

√
‖xj‖2 ≤

√√√√ m∑
i=1

‖xi‖2 = ‖(xi)1≤i≤m‖

for any j = 1, . . . ,m. Lastly, given a point x ∈ H and a radius r > 0, we write Br(x) for the
closed ball around x with radius r.

Further, for quantitative aspects of the convergence of series, let (an) ⊆ [0,∞) be such that∑∞
n=0 an <∞. We call α : (0,∞)→ N a Cauchy modulus for

∑∞
n=0 an <∞ if

∀ε > 0

 ∞∑
n=α(ε)

an < ε

 .

3. Tseng’s splitting algorithm with error terms and variables parameters

We begin with the fundamental splitting method of Tseng [19], also often called the forward-
backward-forward method. Concretely, let H be a Hilbert space and let A : H → 2H and
B : H → H be two mappings such that A is maximally monotone and B is monotone and
1
β
-Lipschitzian for some β ∈ (0,∞). In these data, Tseng’s splitting algorithm proceeds via the
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following iterative scheme for a given starting point x0 ∈ H:
yn := xn − γBxn,
zn := JγAyn,

rn := zn − γBzn,
xn+1 := xn − yn + rn.

As (essentially) shown in [19] (see also e.g. [1]), under the assumption that zer(A + B) 6= ∅,
it follows that the iteration (xn) weakly converges to a solution x ∈ zer(A + B) and if A or
B is assumed to be uniformly monotone, then (xn) and (zn) strongly converge to a solution in
x ∈ zer(A+B).

To model errors in the evaluation of the operators B and JA, and simultaneously allow for
regularization parameters in the resolvent of A, a slight modification of Tseng’s method was
proposed in the work of Briceño-Arias and Combettes [3]. Concretely, for operators A and B
as well as a starting point x0 ∈ H as above, the iteration proposed in [3] takes following form:

(∗)


yn := xn − γn(Bxn + an),

zn := JγnAyn + bn,

rn := zn − γn(Bzn + cn),

xn+1 := xn − yn + rn,

where now (an), (bn), (cn) ⊆ H are additional error sequences which are absolutely summable,
i.e.

∑∞
n=0 ‖an‖ ,

∑∞
n=0 ‖bn‖ ,

∑∞
n=0 ‖cn‖ < ∞, and (γn) ⊆ (0,∞) is an additional sequence of

parameters.
For that method, the following convergence result was obtained:

Theorem 3.1 ([3]). Let H be a Hilbert space and let A : H → 2H and B : H → H be two
mappings such that A is maximally monotone and B is monotone and 1

β
-Lipschitzian for some

β ∈ (0,∞). Suppose that zer(A + B) 6= ∅. Let (xn), (zn) be defined as in (∗) for sequences
(an), (bn), (cn) ⊆ H with

∞∑
n=0

‖an‖ ,
∞∑
n=0

‖bn‖ ,
∞∑
n=0

‖cn‖ <∞,

and a parameter sequence (γn) ⊆ [ 1
k
, (1− 1

k
)β] for some k ∈ N \ {0}. Then:

(1) The sequences (xn) and (zn) weakly converge to a point x ∈ zer(A+B).
(2) If A or B is uniformly monotone at a point x ∈ zer(A+B), then (xn) and (zn) strongly

converge to x.

In this section, we provide a quantitative study of this inexact version of Tseng’s splitting
algorithm. Concretely, we give both a rate of metastability of this method in finite dimensional
Hilbert spaces as well as a rate of convergence of the method even in infinite dimensional Hilbert
spaces, however in the context of a uniform monotonicity assumption. This latter result extends
the previous quantitative analysis of Tseng’s method under uniform monotonicity assumptions
carried out in [18] to this inexact and parametrized version (where it however should be noted
that the assumption of the totality of the operator B is relaxed in [18], as is common with
exact variants of Tseng’s method).
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To begin, as in [3], we define the auxiliary sequences
ỹn := xn − γnBxn,
z̃n := JγnAỹn,

r̃n := z̃n − γnBz̃n,
and

{
en := yn − rn − ỹn + r̃n,

un := γ−1n (xn − z̃n) +Bz̃n −Bxn.

Throughout this section, if not stated otherwise, we assume that
∞∑
n=0

‖an‖,
∞∑
n=0

‖bn‖,
∞∑
n=0

‖cn‖ ≤ R.

Further, we take b ≥ β for some b ∈ N \ {0} and, defining dn := 3b‖an‖ + 2‖bn‖ + b‖cn‖, we
take α : (0,∞)→ N to be a Cauchy modulus for

∑∞
n=0 dn <∞. Further, we let M,N ∈ N be

such that2 ‖x0 − z̃0‖, ‖ỹ0 − z̃0‖ ≤M and ‖Bx0‖ ≤ N .
The next part of this section now lists necessary basic results for the two quantitative con-

vergence results for Tseng’s method that we present afterwards.

3.1. Basic lemmas.

Lemma 3.2. It holds that
∑∞

n=0 ‖en‖ ≤ (4b+2)R and α is a Cauchy modulus for
∑∞

n=0 ‖en‖ <
∞.

Proof. As in [3] one shows that

‖en‖ ≤ 3β‖an‖+ 2‖bn‖+ β‖cn‖ ≤ 3b‖an‖+ 2‖bn‖+ b‖cn‖ = dn

using b ≥ β. From this, the claims follow immediately using that R is a bound for
∑∞

n=0 ‖an‖,∑∞
n=0 ‖bn‖,

∑∞
n=0 ‖cn‖ and using that α is a Cauchy modulus for

∑∞
n=0 dn <∞. �

Lemma 3.3. Let x ∈ zer(A+B). Then for any n ∈ N, it holds that

‖xn+1 − x‖ ≤ ‖xn − ỹn + r̃n − x‖+ ‖en‖ ≤ ‖xn − x‖+ ‖en‖.
Hence, ‖xn − x‖ and ‖xn − ỹn + r̃n − x‖ are bounded and in particular

‖xn − x‖ , ‖xn − ỹn + r̃n − x‖ ≤ L := d+ (4b+ 2)R

for all n ∈ N where ‖x0 − x‖ ≤ d.

Proof. The first two inequalities are established as (2.13) in [3]. From that, we get

‖xn − x‖ , ‖xn − ỹn + r̃n − x‖ ≤ ‖x0 − x‖+
∞∑
n=0

‖en‖

whereby the bounds then follows using Lemma 3.2. �

Lemma 3.4. Let x ∈ zer(A+B). Then for any n ∈ N, it holds that

‖xn+1 − x‖2 ≤ ‖xn − x‖2 −
1

k2
‖xn − z̃n‖2 + εn

where εn := 2µ‖en‖+ ‖en‖2, provided that µ ≥ sup{‖xn − ỹn + r̃n − x‖ | n ∈ N}. Furthermore
∞∑
n=0

εn ≤ 2µ(4b+ 2)R + (4b+ 2)2R2

and for ‖x0 − x‖ ≤ d, µ can be taken as µ = L = d+ (4b+ 2)R.

2To have a bound on ‖ỹ0 − z̃0‖ is convenient but actually redundant as we have ‖ỹ0 − z̃0‖ ≤ ‖ỹ0 − x0‖ +
‖x0 − z̃0‖ ≤ γ0‖Bx0‖+M ≤ bN +M.
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Proof. The first inequality is shown as (2.14) in [3]. The bound on µ follows from Lemma 3.3
and the bound on

∑∞
n=0 εn follows using Lemma 3.2. �

Lemma 3.5. For any n ∈ N, it holds that ‖zn − z̃n‖ ≤ dn. Furthermore, α is a rate of
convergence for ‖zn − z̃n‖ → 0, i.e.

∀ε > 0 ∀n ≥ α(ε) (‖zn − z̃n‖ < ε) .

Proof. By definition of zn, z̃n as well as yn, ỹn together with the nonexpansivity of the resolvents,
we get

‖zn − z̃n‖ = ‖JγnAyn + bn − JγnAỹn‖
≤ ‖yn − ỹn‖+ ‖bn‖
= ‖xn − γn(Bxn + an)− (xn − γnBxn)‖+ ‖bn‖
= γn ‖an‖+ ‖bn‖
≤ b ‖an‖+ ‖bn‖ ≤ dn.

As α is a Cauchy modulus for
∑∞

n=0 dn <∞, we have

‖zn − z̃n‖ ≤ dn ≤
∞∑
k=n

dn ≤
∞∑

k=α(ε)

dn < ε

for any n ≥ α(ε) and any ε > 0. �

Lemma 3.6. For any n ∈ N, it holds that ‖JγnAỹ0 − Jγ0Aỹ0‖ ≤ (1 + bk)M .

Proof. Using [1] and the nonexpansivity of the resolvent, we get

‖JγnAỹ0 − Jγ0Aỹ0‖ =

∥∥∥∥JγnAỹ0 − JγnA(γnγ0 ỹ0 +

(
1− γn

γ0

)
Jγ0Aỹ0

)∥∥∥∥
≤
∥∥∥∥ỹ0 − (γnγ0 ỹ0 +

(
1− γn

γ0

)
Jγ0Aỹ0

)∥∥∥∥
≤
∣∣∣∣1− γn

γ0

∣∣∣∣ ‖ỹ0 − Jγ0Aỹ0‖
≤ (1 + bk)M.

�

Lemma 3.7. Let x ∈ zer(A+B) and ‖x0 − x‖ ≤ d. Then for any n ∈ N, it holds that

‖z̃n − x‖ ≤ H := 2L+ bN + (2 + bk)M + 3d

where L := d+ (4b+ 2)R as before.

Proof. For any n ∈ N, we have (using Lemma 3.6)

‖z̃n − x‖ = ‖JγnAỹn − x‖
= ‖JγnAỹn − JγnAỹ0 + JγnAỹ0 − x0 + x0 − x‖
≤ ‖JγnAỹn − JγnAỹ0‖+ ‖Jγ0Aỹ0 − x0‖︸ ︷︷ ︸

=‖z̃0−x0‖

+ ‖Jγ0Aỹ0 − JγnAỹ0‖+ ‖x0 − x‖

≤ ‖ỹn − ỹ0‖+ (2 + bk)M + d

= ‖xn − γnBxn − x0 + γ0Bx0‖+ (2 + bk)M + d.
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Now, using that B is 1
β
-Lipschitz continuous, we get for all n ∈ N that

‖xn − γnBxn − x0 + γ0Bx0‖ ≤ ‖xn − x0‖+ γn‖Bxn −Bx0‖+ bN

≤
(

1 +
γn
β

)
‖xn − x0‖+ bN

≤ 2‖xn − x+ x− x0‖+ bN

≤ 2‖xn − x‖+ bN + 2d

≤ 2L+ bN + 2d,

where we have used Lemma 3.3 to infer ‖xn − x‖ ≤ L. Combining this with the above yields
the result. �

The next lemma is then a quantitative version of the quasi-Fejér monotonicity of the sequence
established as (2.13) in [3] (recall Lemma 3.3).

Lemma 3.8. Let x ∈ zer(A + B) and ‖x0 − x‖ ≤ d and define L := d + (4b + 2)R as well as
H := 2L+ bN + (2 + bk)M + 3d. Let (x∗, y∗) ∈ A+B be given such that ‖x− x∗‖ ≤ H as well
as

‖y∗‖ < ε2

4bH

for ε > 0. Then, for any n ∈ N, we have

‖xn+1 − x∗‖ < ‖xn − x∗‖+ ‖en‖+ ε.

Proof. Let n ∈ N be given. As (x∗, y∗) ∈ A+B, we have (x∗, γny
∗) ∈ γnA+ γnB with

‖γny∗‖ ≤ b ‖y∗‖ < ε2

4H
.

In particular, we get γny
∗ = γnz

∗ + γnBx
∗ for some z∗ ∈ Ax∗ and so

γny
∗ − γnBx∗ = γn(y∗ −Bx∗) ∈ γnAx∗.

By the definition of the resolvent, we further have ỹn − z̃n = ỹn − JγnAỹn ∈ γnAz̃n and so in
particular

un = γ−1n (xn − z̃n) +Bz̃n −Bxn
= γ−1n (xn − γnBxn − z̃n) +Bz̃n

= γ−1n (ỹn − z̃n) +Bz̃n ∈ (A+B)z̃n.

By the monotonicity of γnA, we have 〈z̃n − x, z̃n − ỹn − γnBx
∗ + γny

∗〉 ≤ 0, and by the
monotonicity of γnB, we have 〈z̃n− x∗, γnBx∗− γnBz̃n〉 ≤ 0. Adding these inequalities, we get

〈z̃n − x∗, z̃n − ỹn − γnBz̃n〉 ≤ ‖z̃n − x∗‖ ‖γny∗‖
≤ (‖z̃n − x‖+ ‖x− x∗‖) ‖γny∗‖
≤ 2H ‖γny∗‖
< ε2/2
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using Lemma 3.7. Now, we further have (reasoning similarly as in [3]) that3

2γn〈z̃n − x∗, Bxn −Bz̃n〉 =2〈z̃n − x∗, z̃n − ỹn − γnBz̃n〉
+ 2〈z̃n − x∗, γnBxn + ỹn − z̃n〉

<2〈z̃n − x∗, γnBxn + ỹn − z̃n〉+ ε2

=2〈z̃n − x∗, xn − z̃n〉+ ε2

= ‖xn − x∗‖2 − ‖z̃n − x∗‖2 − ‖xn − z̃n‖2 + ε2.

This yields

‖xn − ỹn + r̃n − x∗‖2 = ‖γnBxn + z̃n − γnBz̃n − x∗‖2

= ‖z̃n − x∗‖2 + 2γn〈z̃n − x∗, Bxn −Bz̃n〉+ γ2n ‖Bxn −Bz̃n‖
2

< ‖xn − x∗‖2 − ‖xn − z̃n‖2 + γ2n ‖Bxn −Bz̃n‖
2 + ε2

≤ ‖xn − x∗‖2 −
(

1− γ2n
β2

)
‖xn − z̃n‖2 + ε2

≤ ‖xn − x∗‖2 + ε2

≤ (‖xn − x∗‖+ ε)2

as γn ≤
(
1− 1

k

)
β and so 0 ≤ 1− γ2n

β2 . Combined, we thus have

‖xn+1 − x∗‖ = ‖xn − yn + rn − x∗‖
≤ ‖xn − ỹn + r̃n − x∗‖+ ‖en‖
< ‖xn − x∗‖+ ‖en‖+ ε.

�

Lemma 3.9. Let (an) ⊆ [0,∞) be given such that
∑∞

n=0 an ≤ K. Then for any ε > 0, N ∈ N
and g : N→ N:

∃n0 ∈
[
N ; ĝ(d

K
ε e)(N)

]
∀n ∈ [n0;n0 + g(n0)] (an < ε)

where ĝ(n) := n+ g(n) + 1.

Proof. Suppose on the contrary that there are ε > 0, N ∈ N and g : N→ N such that

∀n0 ∈
[
N ; ĝ(d

K
ε e)(N)

]
∃n ∈ [n0;n0 + g(n0)] (an ≥ ε) .

Define g̃(n) := n+ g(n). Then, as

ĝ(i)(N) ∈
[
N ; ĝ(d

K
ε e)(N)

]
for all i ≤

⌈
K
ε

⌉
, we have

∞∑
n=0

an ≥
dKε e∑
i=0

g̃(ĝ(i)(N))∑
n=ĝ(i)(N)

an ≥
dKε e∑
i=0

ε >

⌈
K

ε

⌉
· ε ≥ K,

which is a contradiction. �

3The last equality here follows from the Hilbert space identity ‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2 (cf. Lemma
2.12 in [1]) by taking x = z̃n − x∗ and y = xn − z̃n.
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Lemma 3.10. Let x ∈ zer(A + B) and d ≥ ‖x0 − x‖. Then, for any ε > 0, N ∈ N and
g : N→ N:

∃n0 ∈ [N ;ϕN(ε, g)] ∀n ∈ [n0;n0 + g(n0)] (‖xn − z̃n‖ , ‖un‖ < ε)

where

ϕN(ε, g) := ĝ

(⌈
K(2k−1)2

ε2

⌉)
(N)

for ĝ(n) := n+g(n)+1 and L := d+(4b+2)R as well as K := k2(d2+2L(4b+2)R+(4b+2)2R2).

Proof. For any n ∈ N, we have

‖un‖ ≤ γ−1n ‖xn − z̃n‖+ ‖Bz̃n −Bxn‖
≤
(
γ−1n + β−1

)
‖xn − z̃n‖

≤ (k + k(1− k−1)) ‖xn − z̃n‖
= (2k − 1) ‖xn − z̃n‖

since 1/k ≤ (1− 1/k)β and so β−1 ≤ k(1− k−1). Using Lemma 3.4, we get

‖xn+1 − x‖2 ≤ ‖xn − x‖2 −
1

k2
‖xn − z̃n‖2 + εn

for εn = 2L ‖en‖+ ‖en‖2. Also using Lemma 3.4, we have

∞∑
n=0

εn ≤ 2L(4b+ 2)R + (4b+ 2)2R2.

Therefore, we obtain

∞∑
n=0

‖xn − z̃n‖2 ≤ k2 ‖x0 − x‖2 + k2
∞∑
n=0

εn

≤ k2(d2 + 2L(4b+ 2)R + (4b+ 2)2R2) = K.

Take ε > 0 and N ∈ N as well as g : N→ N. By Lemma 3.9, there exists an n0 ∈ [N ;ϕN(ε, g)]
such that

∀n ∈ [n0;n0 + g(n0)]
(
‖xn − z̃n‖2 < ε2/(2k − 1)2

)
and so for any such an n, we have ‖xn − z̃n‖ < ε/(2k− 1) ≤ ε and by the above ‖un‖ < ε. �

As a corollary, we immediately get the following lemma (by setting g(n) := 0 in the above
Lemma 3.10):

Lemma 3.11. Let x ∈ zer(A+B) and d ≥ ‖x0 − x‖. Then, for any ε > 0 and N ∈ N:

∃n ∈ [N ;ϕ′(ε,N)] (‖xn − z̃n‖ , ‖un‖ < ε)

where

ϕ′(ε,N) := N +

⌈
K(2k − 1)2

ε2

⌉
and L := d+ (4b+ 2)R as well as K := k2(d2 + 2L(4b+ 2)R + (4b+ 2)2R2).
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3.2. Rates of metastability under a relative compactness assumption. We now give
our first quantitative rendering of Theorem 3.1 in the form of a joint rate of metastability for
the sequences (xn), (zn) under the assumption that the set {z̃n | n ∈ N} is totally bounded.
As this set is in particular bounded, this assumption is in particular satisfied if H is finite
dimensional.

As we are concerned with quantitative results, we will also rely on a quantitative rendering
of this total boundedness assumption which we express here using the notion of a modulus of
total boundedness introduced in [5] (called a II-modulus of total boundedness in [10]).

Definition 3.12 (essentially [5]). For A ⊆ H, a function γ : (0,∞)→ N is called a modulus of
total boundedness for A if for all ε > 0 and any (xn) ⊆ A:

∃0 ≤ i < j ≤ γ(ε) (‖xi − xj‖ < ε) .

Such a modulus can for example be easily given for any bounded set in a finite dimensional
Hilbert space H (cf. Example 2.8 in [10]): If H is finite dimensional with dimension d and
A ⊆ H is bounded with b > 0 such that ‖a‖ ≤ b for any a ∈ A, then

γ(ε) :=
⌈
2(d2/εe+ 1)

√
db
⌉d

is a modulus of total boundedness for A.
Our first main quantitative result then takes the form of the next theorem. Note for this, that

under the assumptions of Theorem 3.1, the operator A + B is actually maximally monotone
(as B is a total, single-valued and maximally monotone mapping, see e.g. Corollaries 20.28 and
25.5 in [1]) and so the corresponding resolvent JA+B is single-valued, total, nonexpansive and
satisfies Fix(JA+B) = zer(A+B).

Theorem 3.13. Assume that zer(A+ B) 6= ∅ and let x ∈ zer(A+ B). Let d ∈ N be such that
‖x0 − x‖ ≤ d. Assume that BH(x) is totally bounded with a modulus of total boundedness γ.
Then for any ε > 0 and g : N→ N:

∃n ≤ ∆(ε, g) ∀i, j ∈ [n;n+ g(n)] (‖xi − xj‖ , ‖xi − JA+Bxi‖ < ε)

where ∆(ε, g) := ∆0(Pε/3, ε/3, g) for Pε = γ(ε/8) + 1 and{
∆0(0, ε, g) := 0,

∆0(n+ 1, ε, g) := ϕ′
(
χMg (∆0(n, ε, g), ε/8), α(ε/8)

)
with

ϕ′(ε,N) := N +

⌈
K(2k − 1)2

ε2

⌉
and χ(n,m, ε) := min

{
ε

2
,

ε2

16m2bH

}
as well as

χg(n, ε) := χ(n, g(n), ε) and χMg (n, ε) := min{χg(i, ε) | i ≤ n}
and with L := d + (4b + 2)R and K := k2(d2 + 2L(4b + 2)R + (4b + 2)2R2) as well as H :=
2L+ bN + (2 + bk)M + 3d.

Proof. We apply the general and abstract macros for deriving rates of metastability for the
convergence of quasi-Fejér monotone sequences in totally bounded metric spaces as developed
in [10] (see in particular Theorem 6.4 therein). While the notions therein actually work with
natural numbers as representatives for errors ε via expressions of the form 1/(k + 1), we here
follow the general theme of the paper and present all bounds and moduli using generic reals ε
as errors, which of course naturally arise through suitable modifications of the bounds resulting
from [10] (the calculations of which we do not spell out any further as they are rather trivial,
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but perhaps tedious). Now, to instantiate said results, we define sets of approximate solutions
AFε ⊆ BH(x), given ε > 0, via

v ∈ AFε :≡ ∃w ∈ BH(x) ∃u ∈ (A+B)(w) (‖v − w‖ , ‖u‖ < ε)

for v ∈ BH(x). By Lemma 3.11 (and using Lemmas 3.7 and 3.3 as well), ϕ′ is a (monotone)
so-called lim inf bound for (xn) relative to AFε in the sense of [10], that is for all ε > 0 and all
N ∈ N:

∃n ∈ [N ;ϕ′(ε,N)] (xn ∈ AFε) .
Lemma 3.8 implies that χ is a modulus of uniform quasi-Fejér monotonicity for (xn) relative
to AFε in the sense of [10], that is for all ε > 0 and all n,m ∈ N:

∀v ∈ AFχ(n,m,ε) ∀l ≤ m

(
‖xn+l − v‖ < ‖xn − v‖+

n+l−1∑
i=n

‖ei‖+ ε

)
.

To see this, note that for v ∈ AFχ(n,m,ε) there exists a w ∈ BH(x) and u ∈ (A + B)(w) such
that

‖v − w‖ < ε

2
and ‖u‖ < ε2

16m2bH
.

For l ≤ m, Lemma 3.8 then implies that

‖xn+l − w‖ < ‖xn − w‖+
n+l−1∑
i=n

‖ei‖+
ε

2

which then yields

‖xn+l − v‖ ≤ ‖xn+l − w‖+
ε

4

< ‖xn − w‖+
n+l−1∑
i=n

‖ei‖+
ε

2
+
ε

2

≤ ‖xn − v‖+
n+l−1∑
i=n

‖ei‖+ ε.

Theorem 6.4 of [10], over the space X := BH(x), then yields the existence of an n ≤ ∆0(Pε, ε, g)
such that ‖xi − xj‖ < ε for all i, j ∈ [n;n + g(n)]. To see that for the corresponding n ≤
∆(ε, g) = ∆0(Pε/3, ε/3, g), we also have ‖xi − JA+Bxi‖ < ε for all i ∈ [n;n + g(n)] for that
n, note that as in the proof of Theorem 6.4 in [10], the point n can actually be chosen such
that xn ∈ AFχM

g (m,ε/24) for some m, i.e. there are w ∈ BH(x) and u ∈ (A+B)(w) such that in

particular ‖xn − w‖ , ‖u‖ < ε/9. Thereby, we have

‖JA+Bxn − xn‖ ≤ ‖JA+Bxn − JA+Bw‖+ ‖JA+Bw − w‖+ ‖w − xn‖
≤ ‖u‖+ 2 ‖w − xn‖ < ε/3.

This in turn implies

‖JA+Bxi − xi‖ ≤ ‖JA+Bxn − xn‖+ 2 ‖xn − xi‖ < ε.

for all i ∈ [n;n+ g(n)]. �

Remark 3.14. It should be noted that if we are only interested in deriving a rate of metastability
for the sequence (xn), then the maximal monotonicity of A+B is not required in the above proof
and it in fact applies, mutatis mutandis, to the exact version of Tseng’s method as commonly
formulated (and where B is only assumed to be defined on some suitable convex subset of H).
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A similar observation that the maximal monotonicity of A + B can be avoided for the exact
version of Tseng’s method, in the context of a uniform monotonicity assumption, has already
been made in [18] (see the discussion at the beginning of Section 2 therein).

A rate of metastability for (zn) can then be derived by “joining” a rate of metastability for
‖xn − zn‖ → 0 (as e.g. given by a combination of Lemma 3.10 and Lemma 3.5).

Theorem 3.15. Assume that zer(A+ B) 6= ∅ and let x ∈ zer(A+ B). Let d ∈ N be such that
‖x0 − x‖ ≤ d. Assume that BH(x) is totally bounded with a modulus of total boundedness γ.
Then for any ε > 0 and g : N→ N:

∃n ≤ ∆̂(ε, g) ∀i, j ∈ [n;n+ g(n)] (‖xi − xj‖ , ‖xi − zi‖ , ‖xi − JA+Bxi‖ < ε)

where
∆̂(ε, g) := max {∆(ε, g̃n), ψ(ε, ḡ) | n ≤ ψ(ε, ḡ)} ,

with g̃n(m) := max{n,m}+ g(max{n,m}) and

ḡ(n) := max{n,∆(ε, g̃n)}+ max{g(max{n,m}) | m ≤ ∆(ε, g̃n)}.
Here, ∆(ε, g) is as in Theorem 3.13 and ψ(ε, g) := ϕα(ε/2)(ε/2, g) with ϕ as in Lemma 3.10.

Proof. The proof, together with the bound given above, is similar to that of Theorem 5.8
in [9].4 Concretely, first note that Lemma 3.10 yields that there exists an n ≤ ψ(ε, g) such
that n ≥ α(ε/2) and ‖xi − z̃i‖ < ε/2 for any i ∈ [n;n + g(n)]. As n ≥ α(ε/2), Lemma 3.5
implies that ‖zi − z̃i‖ < ε/2 for all i ≥ n so that we have combined that ‖xi − zi‖ < ε for

all i ∈ [n;n + g(n)]. We now get that ∆̂(ε, g) is a joint rate of metastability as follows: Let
n0 ≤ ψ(ε, g) be such that

∀i ∈ [n0;n0 + ḡ(n0)] (‖xi − zi‖ < ε)

and let n1 ≤ ∆(ε, g̃n0) be such that

∀i, j ∈ [n1;n1 + g̃n0(n1)] (‖xi − xj‖ , ‖xi − JA+Bxi‖ < ε) .

Define n := max{n0, n1}. Then clearly n ≥ n0, n1. Further, we have

n0 + ḡ(n0) ≥ ḡ(n0)

= max{n0,∆(ε, g̃n0)}+ max{g(max{n0,m} | m ≤ ∆(ε, g̃n0)}
≥ max{n0, n1}+ g(max{n0, n1}) = n+ g(n)

as well as

n1 + g̃n0(n1) ≥ g̃n0(n1) = max{n0, n1}+ g(max{n0, n1}) = n+ g(n).

This shows that
[n;n+ g(n)] ⊆ [n0;n0 + ḡ(n0)] ∩ [n1;n1 + g̃n0(n1)]

and so ‖xi − xj‖ , ‖xi − JA+Bxi‖ , ‖xi − zi‖ < ε for all i, j ∈ [n;n + g(n)] follows immediately.
�

Remark 3.16. The above Theorem 3.15 then in particular provides a fully finitary version in the
sense of Tao [17] of the convergence result from Theorem 3.1, (1), in finite dimensional spaces
since metastability is elementarily (albeit noneffectively) equivalent to the Cauchy property of
the sequence in question. In that way, Theorem 3.15 immediately yields that (xn) is Cauchy
and hence convergent as well as that (zn) converges to the same limit and that this limit is a
fixed point of JA+B (as that mapping is in particular nonexpansive and hence continuous), i.e.
it is a zero of A+B.

4Note that [9] is the arXiv-version of the paper [10], containing further supplementary material.
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Remark 3.17. An alternative route for deriving a separate rate of metastability for the se-
quences (z̃n) and (zn) is to employ a novel generalized variant of Fejér monotonicity together
with abstract results for deriving rates of metastability (similar to [10]) as developed in [12].
Concretely, note that for any ε > 0, g : N→ N and n ∈ N as well as (x∗, y∗) ∈ A+B such that
‖x∗ − x‖ ≤ H and

‖y∗‖ < ε2

16(g(n))2bH

for a suitable H defined relative to a solution x ∈ zer(A+B) as in Lemma 3.7, we get

‖z̃n+l − x∗‖ ≤ ‖xn+l − x∗‖+ ‖xn+l − z̃n+l‖

< ‖xn − x∗‖+
n+l−1∑
i=n

‖ei‖+ ‖xn+l − z̃n+l‖+
ε

2

≤ ‖z̃n − x∗‖+
n+l−1∑
i=n

‖ei‖+ ‖xn − z̃n‖+ ‖xn+l − z̃n+l‖+
ε

2

for any l ≤ g(n) using Lemma 3.8. If then n is such that n ≥ α(ε/6) and

∀i ∈ [n;n+ g(n)] (‖xi − z̃i‖ < ε/6) ,

we get ‖z̃n+l − x∗‖ < ‖z̃n − x∗‖ + ε for any such ε, g, n as well as suitable (x∗, y∗) ∈ A + B as
above. Hence, if we define

x∗ ∈ AFε :≡ ∃y∗ ∈ (A+B)(x∗) (‖y∗‖ < ε)

for x∗ ∈ BH(x) similar to before as well as

S(n, ε, g) :≡ ∀i ∈ [n;n+ g(n)] (‖xi − z̃i‖ < ε) and n ≥ α(ε)

we actually have shown that

∀ε > 0 ∀g ∈ NN ∀x∗ ∈ X(
x∗ ∈ AFχ(n,ε,g) and S(n, ε/6, g)→ ∀l ≤ g(n) (‖z̃n+l − x∗‖ < ‖z̃n − x∗‖+ ε)

)
for χ(n, ε, g) := ε2/16(g(n))2bH, i.e. we have shown that (z̃n) is uniformly locally S-relativized
metastable Fejér monotone w.r.t. the approximate solution sets AFε in the sense of Definition
4.6 of [12].5 Further, note that by Lemma 3.10, there exists a function ϕN(ε, g) such that

∀ε > 0 ∀g ∈ NN ∃n0 ≤ ϕα(ε)(ε, g) ∀n ∈ [n0;n0 + g(n0)] (z̃n ∈ AFε and S(n, ε, g)) .

So the approach followed in [12] can be applied to construct a rate of metastability for (z̃n) also
in this case. In particular, a rate of metastability for (zn) can then be derived as before.

3.3. Rates of convergence under a uniform monotonicity assumption. We now give
our second quantitative rendering of Theorem 3.1 in the form of a rate of convergence for the
sequence (xn) under the additional assumption that the operator A+B is uniformly monotone
at a zero x ∈ zer(A+B), which in particular follows already if A or B are uniformly monotone.

To phrase this uniform monotonicity assumption in a suitable, quantitative, way, we here
rely on the notion of a modulus of uniform monotonicity at zero as developed in [8].

5Note that, similarly as in [10], the notions therein actually work with natural numbers as representatives
for errors ε via expressions of the form 1/(k + 1).
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Definition 3.18 (Definition 10 in [8]). Let x ∈ zer(A + B) and let D ⊆ H be a bounded set
with x ∈ D such that ‖x− y‖ ≤ K for all y ∈ D. Then, a function Θ : (0,∞) → (0,∞) is a
modulus uniform monotonicity at the zero x for the operator A+B on the bounded subset D
if

∀ε > 0 ∀y ∈ D ∀u ∈ (A+B)(y) (‖x− y‖ ∈ [ε,K]→ 〈y − x, u〉 ≥ Θ(ε)) .

This latter result extends the previous quantitative analysis of Tseng’s method under uniform
monotonicity assumptions carried out in [18] to this inexact and parametrized version (where it
again should be noted however that the assumption of the totality of the operator B is relaxed
in [18]).

Theorem 3.19. Assume that zer(A+ B) 6= ∅ and let x ∈ zer(A+ B). Let d ∈ N be such that
‖x0 − x‖ ≤ d. Assume we have some modulus Θ of uniform monotonicity at the zero x for the
operator A+B on BH(x), i.e.

∀ε > 0 ∀y ∈ BH(x) ∀u ∈ (A+B)(y) (‖x− y‖ ∈ [ε,H]→ 〈y − x, u〉 ≥ Θ(ε)) .

Then (xn) converges to x with a rate of convergence ρ, i.e.

∀ε > 0∀n ≥ ρ(ε) (‖xn − x‖ < ε) ,

where ρ(ε) := ϕ′(µ(ε/2), α(ε/2)) for

ϕ′(ε,N) := N +

⌈
K(2k − 1)2

ε2

⌉
and µ(ε) := min

{
ε

2
,
Θ(ε/2)

H

}
.

Here: L := d + (4b + 2)R and K := k2(d2 + 2L(4b + 2)R + (4b + 2)2R2) as well as H :=
2L+ bN + (2 + bk)M + 3d.

Proof. We apply the general and abstract macros for deriving rates of convergence for quasi-
Fejér monotone sequences under a metric regularity assumption as developed in [11, 14] (with
[11] phrased “only” for Fejér monotone sequences, while [14] provides the rather trivial mod-
ifications required to treat quasi-Fejér monotone sequences). Concretely, to instantiate said
results, we define

F : BH(x)→ [0,+∞], v 7→ inf
w∈BH(x)

max{‖v − w‖ , inf
u∈(A+B)(w)

‖u‖}.

Note then first that zerF = zer(A + B) as clearly for v ∈ zer(A + B), we have F (v) = 0 and
conversely, if F (v) = 0, we there are sequences (wn) ⊆ BH(x) and (un) with un ∈ (A+B)(wn)
such that wn → v and ‖un‖ → 0. As A is maximally monotone, the graph of A is closed and
as B is continuous and single-valued on a closed domain, its graph is also closed and so A+B
has a closed graph. We hence have 0 ∈ (A + B)(v). Further, by Lemma 3.11 (together with
Lemmas 3.7 and 3.3), ϕ′ satisfies

∃n ∈ [N ;ϕ′(ε,N)] (F (xn) < ε)

for all ε > 0 and all N ∈ N. Also, Lemma 3.3 yields that (xn) is quasi-Fejér monotone w.r.t.
zerF . Lastly, µ is a modulus of regularity for F w.r.t. zerF and BH(x) in the sense of [11] (and
even a modulus of uniqueness, see Definition 1.1 in [11] and the references given there), that is
for all ε > 0 and v ∈ BH(x):

F (v) < µ(ε) implies ‖v − x‖ < ε.

To see that, let F (v) < µ(ε). Thus, there exists a w ∈ BH(x) and a u ∈ (A+B)(w) such that
‖v − w‖ < ε/2 and ‖u‖ < Θ(ε/2)/H. In particular, we have

〈w − x, u〉 ≤ ‖w − x‖ ‖u‖ ≤ H ‖u‖ < Θ(ε/2)
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and so by the properties of Θ we have ‖w − x‖ < ε/2. In particular, we have ‖v − x‖ < ε. The
rates then follow from (the proof of) Theorem 3.2 in [14], over the space X = BH(x). �

Bootstrapped on this rate of convergence for (xn), we can now also give a rate of convergence
for the auxiliary sequence (zn).

Theorem 3.20. Assume that zer(A+ B) 6= ∅ and let x ∈ zer(A+ B). Let d ∈ N be such that
‖x0 − x‖ ≤ d. Assume we have some modulus Θ of uniform monotonicity at the zero x for the
operator A+B on BH(x), i.e.

∀ε > 0 ∀y ∈ BH(x) ∀u ∈ (A+B)(y) (‖x− y‖ ∈ [ε,H]→ 〈y − x, u〉 ≥ Θ(ε)) .

Then (zn) converges to x and further

∀ε > 0 ∀n ≥ ρ′(ε) (‖zn − x‖ < ε) ,

where
ρ′(ε) := max{ρ(ε/3

√
2k), β(ε2/18k2), α(ε/3)})

with β(ε) := max{α(ε/4L), α(
√
ε/
√

2)} and ρ as well as the other constants as in Theorem
3.19.

Proof. Let ε > 0 be given. Note that β is a rate for εn converging to 0 and so, for any n ≥ ρ′(ε),
by Lemma 3.4, we have

‖z̃n − xn‖2 ≤ k2
(
‖xn − x‖2 + εn

)
< k2(ε2/18k2 + ε2/18k2)

and so ‖z̃n − xn‖ < ε/3 for any n ∈ N. By Lemma 3.5 and Theorem 3.19, we get

‖zn − x‖ ≤ ‖zn − z̃n‖+ ‖z̃n − xn‖+ ‖xn − x‖
< ε/3 + ε/3 + ε/3 = ε

for any such n. �

Remark 3.21. Similar as in Remark 3.17, also the rates of convergence for (zn) presented in the
above Theorem 3.20 could actually have been, alternatively, obtained by applying the novel
generalized variant of Fejér monotonicity together with abstract results for deriving rates of
convergence (similar to [11]) as developed in [12]. Concretely, as follows by the discussions in
Remark 3.17, the sequence (z̃n) satisfies

‖z̃n+l − x‖ ≤ ‖z̃n − x‖+
n+l−1∑
i=n

‖ei‖+ ‖xn − z̃n‖+ ‖xn+l − z̃n+l‖

for any n, l ∈ N and any x ∈ zer(A + B). If then n is such that
∑∞

i=n ‖ei‖ < ε/3 and
‖xn+l − z̃n+l‖ < ε/3 for any l ∈ N, then ‖z̃n+l − x‖ < ‖z̃n − x‖+ ε for any l ∈ N. Hence, if we
define

S(n, ε) :≡ n ≥ max{ρ(ε/
√

2k), β(ε2/2k2), α(ε)}
for ρ as in Theorem 3.19, we actually have shown (recall also the argument in the proof of
Theorem 3.20) that

∀ε > 0 ∀x ∈ zer(A+B) ∀n ∈ N
(S(n, ε/3)→ ∀l ∈ N (‖z̃n+l − x‖ < ‖z̃n − x‖+ ε)) ,

i.e. we have shown that (z̃n) is uniformly locally S-relativized Fejér monotone w.r.t. zer(A+B)
in the sense of Definition 3.1 of [12].6 As further discussed in Remark 3.17, (z̃n) contains

6Again, note that the notion therein actually works with natural numbers as representatives for errors via
expressions of the form 1/(k + 1).
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approximate zeros of the operator A+B and together with a modulus of uniform monotonicity
at the zero x for the operator A + B, which can be used to construct a modulus of regularity
in the sense of [11] as before, the corresponding results on rates from [12] can be applied to get
a rate of convergence for (z̃n). A rate of convergence for (zn) then follows using Lemma 3.5.

4. Applications to primal-dual splitting methods for monotone inclusions

In this section, we now apply our abstract and general results established before to the
primal-dual algorithm devised by Combettes and Pesquet [4] to solve monotone inclusions for
operators which are composed of set-valued and Lipschitzian operators generated by a mix of
various operations such as (parallel) sums and linear compositions. In particular, the method
achieves a “wide” split of the problem where all the Lipschitzian components are processed
in a forward style and all the set-valued operators are processed in a backward style via their
resolvents.

Concretely, the problem approached in the work of Combettes and Pesquet is the following:
Given a Hilbert spaceH, let A : H → 2H be a maximally monotone operator and let C : H → H
be a monotone and µ-Lipschitzian operator for some µ ∈ (0,∞). Further, let Gi for i = 1, . . . ,m,
m ≥ 1, be m-many further Hilbert spaces and, for each such i, let ri ∈ Gi, Bi : Gi → 2Gi be
maximally monotone and let Di : Gi → 2Gi be monotone such that D−1i is νi-Lipschitzian for
some νi ∈ (0,∞). Lastly, let Li : H → Gi be a nonzero bounded linear operator for each i.
Then, we want to solve the primal inclusion problem

(P) find x ∈ H s.t. z ∈ Ax+
m∑
i=1

L∗i ((Bi�Di)(Lix− ri)) + Cx

together with the dual inclusion problem

(D) find v1 ∈ G1, . . . , vm ∈ Gm s.t. ∃x ∈ H

{
z −

∑m
i=1 L

∗
i vi ∈ Ax+ Cx

∀i ∈ {1, . . . ,m} (vi ∈ (Bi�Di)(Lix− ri)) .

We refer to the comprehensive discussion in [4] for how this very general problem formulation
unifies and extends various well-known problems involving composite operators in the literature.

To solve the above problem, the following method was then devised in [4]: given

z ∈ ran

(
A+

m∑
i=1

L∗i (Bi�Di)(Li(·)− ri) + C

)
and starting points x0 ∈ H and (v1,0, . . . , vm,0) ∈ G1 ⊕ · · · ⊕ Gm, iteratively define

(+)



y1,n := xn − γn (Cxn +
∑m

i=1 L
∗
i vi,n + a1,n) ,

p1,n := JγnA (y1,n + γnz) + b1,n,

For i = 1, . . . ,m:


y2,i,n := vi,n + γn

(
Lixn −D−1i vi,n + a2,i,n

)
,

p2,i,n := JγnB−1
i

(y2,i,n − γnri) + b2,i,n,

q2,i,n := p2,i,n + γn
(
Lip1,n −D−1i p2,i,n + c2,i,n

)
,

vi,n+1 := vi,n − y2,i,n + q2,i,n,

q1,n := p1,n − γn (Cp1,n +
∑m

i=1 L
∗
i p2,i,n + c1,n) ,

xn+1 := xn − y1,n + q1,n,

where (a1,n), (b1,n) and (c1,n) are absolutely summable sequences inH, (a2,i,n), (b2,i,n) and (c2,i,n)
are absolutely summable sequences in Gi for each i = 1, . . . ,m, and (γn) ⊆ (0,∞) is a sequence
of parameters.
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As highlighted in [4], the advantage of the above method is that it presents a fully split
algorithm for the solving the above problem in the sense that it only employs the operators
A,C and (Li)1≤i≤m, (Bi)1≤i≤m, (Di)1≤i≤m separately and in a parallel fashion, making use of
the single-valued operators C and (Li)1≤i≤m, (D−1i )1≤i≤m through explicit steps.

The main result established about the algorithm given by (+) is the following:

Theorem 4.1 (Theorem 3.1 in [4]). Given a Hilbert space H, let A : H → 2H be a maximally
monotone operator and let C : H → H be a monotone and µ-Lipschitzian operator for some
µ ∈ (0,∞). Further, let Gi for i = 1, . . . ,m, m ≥ 1, be m-many further Hilbert spaces and,
for each such i, let ri ∈ Gi, Bi : Gi → 2Gi be maximally monotone and let Di : Gi → 2Gi be
monotone such that D−1i is νi-Lipschitzian for some νi ∈ (0,∞). Lastly, let Li : H → Gi be a
nonzero bounded linear operator for each i.

Given

z ∈ ran

(
A+

m∑
i=1

L∗i (Bi�Di)(Li(·)− ri) + C

)
,

consider the sequences defined by (+) with absolutely summable sequences (a1,n), (b1,n) and
(c1,n) in H and (a2,i,n), (b2,i,n) and (c2,i,n) in Gi for each i = 1, . . . ,m and a parameter sequence
(γn) ⊆ [ε, (1− ε)/β] for some ε ∈ (0, 1/(β + 1)) where

β := max{µ, ν1, . . . , νm}+

√√√√ m∑
i=1

‖Li‖2.

Then there are solutions x to (P) and (v1, . . . , vm) to (D) such that

(1) the sequences (xn) and (p1,n) weakly converge to x,
(2) the sequences (vi,n) and (p2,i,n) weakly converge to vi,
(3) if A or C is uniformly monotone at x, then (xn) and (p1,n) strongly converge to x,
(4) if, for some i = 1, . . . ,m, B−1i or D−1i is uniformly monotone at vi, then (vi,n) and

(p2,i,n) strongly converge to vi.

The crucial observation made in [4] is that the above algorithm given by (+) reduces to an
instance of (∗), i.e. the extension of Tseng’s splitting method with error terms and variable
parameters, by moving to a suitable composite higher space together with a suitable choice of
instantiating operators.

Concretely, over the composite space K = H⊕ G1 ⊕ · · · ⊕ Gm, we define M : K → 2K by

M(x, v1, . . . , vm) = (−z + Ax)× (r1 +B−11 v1)× · · · × (rm +B−1m vm)

and Q : K → K by

Q(x, v1, . . . , vm) = (Cx+ L∗1v1 + · · ·+ L∗mvm,−L1x+D−11 v1, . . . ,−Lmx+D−1m vm).

In particular, it holds that

(M +Q)(x, v1, . . . , vm) =(Cx+ L∗1v1 + · · ·+ L∗mvm − z + Ax)

× (r1 − L1x+D−11 v1 +B−11 v1)

× . . .
× (rm − Lmx+D−1m vm +B−1m vm)

As shown in [4] (see (3.11) therein), the operator M is maximally monotone and Q is monotone
and β-Lipschitzian for β as in Theorem 4.1.
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Crucially now, setting
xn := (xn, v1,n, . . . , vm,n),

yn := (y1,n, y2,1,n, . . . , y2,m,n),

pn := (p1,n, p2,1,n, . . . , p2,m,n),

qn := (q1,n, q2,1,n, . . . , q2,m,n),

and


an := (a1,n, a2,1,n, . . . , a2,m,n),

bn := (b1,n, b2,1,n, . . . , b2,m,n),

cn := (c1,n, c2,1,n, . . . , c2,m,n),

the assumptions on the sequences (a1,n), (b1,n) and (c1,n) as well as (a2,i,n), (b2,i,n) and (c2,i,n)
imply that (an), (bn) and (cn) are absolutely summable and that the iteration (+) reduces to

yn := xn − γn (Qxn + an) ,

pn := JγnMyn + bn,

qn := pn − γn (Qpn + cn) ,

xn+1 := xn − yn + qn,

which is an instance of (∗) for the operators M and Q. Further, as shown as (3.20) in [4], we
get that

zer(M +Q) = {(x, v1, . . . , vm) | x solves (P) and v1, . . . , vm solve (D) with x = x}
⊆ {(x, v1, . . . , vm) | x solves (P) and v1, . . . , vm solve (D)}.

We can now utilize this compositionality to derive a rate of metastability in the context of
items (1) and (2) from Theorem 4.1, under a suitable relative compactness assumption, as well
as rates of convergence and metastability in the context of items (3) and (4) from Theorem 4.1,
under the uniform monotonicity assumption.

4.1. Rates of metastability under a relative compactness assumption. We begin with
the former, i.e. a rate of metastability in the context of items (1) and (2) in Theorem 4.1.

Theorem 4.2. Let x = (x, v1, . . . , vm) ∈ zer(M + Q). Take d ≥ ‖x0 − x‖. Let b ∈ N \ {0} be
such that b ≥ 1/β for β as in Theorem 4.1 and let M,N ∈ N be such that

‖x0 − p̃0‖ , ‖ỹ0 − p̃0‖ ≤M and ‖Qx0‖ ≤ N

with p̃n, ỹn defined similarly as z̃n, ỹn in Section 3. Further, assume (γn) ⊆ [1/k, (1−1/k)1/β].
Also, let R0 be such that

∞∑
n=0

‖a1,n‖ ,
∞∑
n=0

‖b1,n‖ ,
∞∑
n=0

‖c1,n‖ ,
∞∑
n=0

‖a2,l,n‖ ,
∞∑
n=0

‖b2,l,n‖ ,
∞∑
n=0

‖c2,l,n‖ ≤ R0

for all l ∈ [1;m] and let α0 be a joint Cauchy modulus for all these series. Lastly, let BH(x) be
totally bounded with a modulus of total boundedness γ.

Then for any ε > 0 and g : N→ N:

∃n ≤ ∆(ε, g) ∀i, j ∈ [n;n+ g(n)] ∀l ∈ [1;m] (‖xi − xj‖ , ‖vl,i − vl,j‖ < ε)

where ∆(ε, g) := ∆0(Pε/3, ε/3, g) for Pε = γ(ε/8) + 1 and{
∆0(0, ε, g) := 0,

∆0(n+ 1, ε, g) := ϕ′
(
χMg (∆0(n, ε, g), ε/8), α(ε/8)

)
with

ϕ′(ε,N) := N +

⌈
K(2k − 1)2

ε2

⌉
and χ(n,m, ε) := min

{
ε

2
,

ε2

16m2bH

}
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as well as

χg(n, ε) := χ(n, g(n), ε) and χMg (n, ε) := min{χg(i, ε) | i ≤ n}
and with L := d + (4b + 2)R and K := k2(d2 + 2L(4b + 2)R + (4b + 2)2R2) as well as H :=
2L+ bN + (2 + bk)M + 3d. Further, R := (m+ 1)R0 and α(ε) := α0(ε/6b(m+ 1)).

Proof. We apply Theorem 3.13 by appropriately instantiating the moduli. As most of the
instantiations are immediate, we here just note the following: By the properties of R0 we have

∞∑
n=k

‖an‖ =
∞∑
n=k

√√√√‖a1,n‖2 +
m∑
l=1

‖a2,l,m‖2

≤
∞∑
n=k

(
‖a1,n‖+

m∑
l=1

‖a2,l,m‖

)

=
∞∑
n=k

‖a1,n‖+
m∑
l=1

∞∑
n=k

‖a2,l,m‖

and similarly for ‖bn‖, ‖cn‖. By that, we get

∞∑
n=0

‖an‖ ,
∞∑
n=0

‖bn‖ ,
∞∑
n=0

‖cn‖ ≤ (m+ 1)R0 = R

and further we have
∞∑

n=α(ε)

‖an‖ ,
∞∑

n=α(ε)

‖bn‖ ,
∞∑

n=α(ε)

‖cn‖ < ε/6b

for all ε > 0 which entails (as b ≥ 1) that α is a Cauchy modulus for dn := 3b‖an‖ + 2‖bn‖ +
b‖cn‖. Applying Theorem 3.13 then yields the existence of an n ≤ ∆(ε, g) such that ‖xi − xj‖ <
ε, for all i, j ∈ [n;n+ g(n)] and this yields

‖xi − xj‖ , ‖vl,i − vl,j‖ < ε

for all l = 1, . . . ,m and i, j ∈ [n;n+ g(n)] (recall that the product norm bounds the individual
norms, as discussed in Section 2). �

As in Section 3, we can also derive a joint rate of metastability which incorporates the
sequences (p1,n) and (p2,l,n), l = 1, . . . ,m. As the result rather immediately follows from
Theorem 3.15, we just state it and omit any further details on its proof.

Theorem 4.3. Let x = (x, v1, . . . , vm) ∈ zer(M + Q). Take d ≥ ‖x0 − x‖. Let b ∈ N \ {0} be
such that b ≥ 1/β for β as in Theorem 4.1 and let M,N ∈ N be such that

‖x0 − p̃0‖ , ‖ỹ0 − p̃0‖ ≤M and ‖Qx0‖ ≤ N

with p̃n, ỹn defined similarly as z̃n, ỹn in Section 3. Further, assume (γn) ⊆ [1/k, (1−1/k)1/β].
Also, let R0 be such that

∞∑
n=0

‖a1,n‖ ,
∞∑
n=0

‖b1,n‖ ,
∞∑
n=0

‖c1,n‖ ,
∞∑
n=0

‖a2,l,n‖ ,
∞∑
n=0

‖b2,l,n‖ ,
∞∑
n=0

‖c2,l,n‖ ≤ R0

for all l ∈ [1;m] and let α0 be a joint Cauchy modulus for all these series. Lastly, let BH(x) be
totally bounded with a modulus of total boundedness γ.
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Then for any ε > 0 and g : N→ N:

∃n ≤ ∆̂(ε, g) ∀i, j ∈ [n;n+ g(n)] ∀l ∈ [1;m]

(‖xi − xj‖ , ‖vl,i − vl,j‖ , ‖p1,i − xi‖ , ‖p2,l,i − vl,i‖ < ε)

where

∆̂(ε, g) := max {∆(ε, g̃n), ψ(ε, ḡ) | n ≤ ψ(ε, ḡ)} ,
with g̃n(m) := max{n,m}+ g(max{n,m}) and

ḡ(n) := max{n,∆(ε, g̃n)}+ max{g(max{n,m}) | m ≤ ∆(ε, g̃n)}.
Here, ∆(ε, g) and α are as in Theorem 4.2 and ψ(ε, g) := ϕα(ε/2)(ε/2, g) with ϕ as in Lemma
3.10.

4.2. Rates of convergence and metastability under a uniform monotonicity assump-
tion. In this last section, we are now concerned with providing quantitative information for the
convergence of the iteration (+) in the context of uniform monotonicity assumptions. While
this iteration is reduced to the extended form of Tseng’s splitting method (∗) as discussed
and utilized before, the quantitative implications regarding rates of convergence resulting from
this are reasonably subtle. Concretely, while we were able to obtain rates of convergence for
the iteration (∗) in Theorem 3.19, this rested on the quasi-Fejér monotonicity of the itera-
tion as a whole regarding the solution and while that form of monotonicity still holds for the
composite package xn, each component sequence however does not, to our knowledge, satisfy
that monotonicity. As a consequence, we are “only” able to obtain rates of metastability for
the component sequences in the context of partial uniform monotonicity assumptions for the
operators A+B and B−1i +D−1i . However, if all these sums A+B and B−1i +D−1i of the com-
ponent operators are uniformly monotone at the same time, then this transfers to the uniform
monotonicity of the defined operator M +Q and so rates of convergence for the sequences (xn)
and (pn) towards the solution tuple can be derived nonetheless. For that, we begin with the
following results which illustrate the relationship between M+Q and the constituting operators
A+B and B−1i +D−1i .

Lemma 4.4. Let ((x, v), (α,w)) ∈M +Q and ((x′, v′), (α′, w′)) ∈M +Q with

α = Cx+ a+ L∗1v1 + · · ·+ L∗mvm − z and wi = ri − Lix+D−1i vi + bi

for a ∈ Ax and bi ∈ B−1i vi and similarly for α′ and w′i for a′ ∈ Ax′ and b′i ∈ B−1i v′i. Then it
holds that

〈(x− x′, v − v′), (α− α′, w − w′)〉 ≥ 〈x− x′, a+ Cx− (a′ + Cx′)〉
and

〈(x− x′, v − v′), (α− α′, w − w′)〉 ≥ 〈vi − v′i, bi +D−1i vi − (b′i +D−1i v′i)〉
for any i = 1, . . . ,m.

Proof. By definition of M +Q and the inner product on the product space K, we have

〈(x− x′, v − v′), (α− α′, w − w′)〉

≥ 〈x− x′, a+ Cx− (a′ + Cx′)〉+
m∑
i=1

〈x− x′, L∗i vi − L∗i v′i〉

+
m∑
i=1

〈vi − v′i, Lix′ − Lix〉+
m∑
i=1

〈vi − v′i, bi +D−1i vi − (b′i +D−1i v′i)〉.
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As L∗i is the adjoint of Li, we get that

m∑
i=1

(〈x− x′, L∗i vi − L∗i v′i〉+ 〈vi − v′i, Lix′ − Lix〉) = 0

so that

〈(x− x′, v − v′), (α− α′, w − w′)〉

≥ 〈x− x′, a+ Cx− (a′ + Cx′)〉+
m∑
i=1

〈vi − v′i, bi +D−1i vi − (b′i +D−1i v′i)〉.

Now, both A + C and all B−1i + D−1i are monotone operators so that we obtain 〈x − x′, a +
Cx − (a′ + Cx′)〉 ≥ 0 as well as 〈vi − v′i, bi + D−1i vi − (b′i + D−1i v′i)〉 ≥ 0 for any i = 1, . . . ,m
from which the claimed inequalities immediately follow. �

The following lemma, which allows us to transfer moduli of uniform monotonicity from the
composing operators to the operator M +Q is then immediate.

Lemma 4.5. Let x = (x, v1, . . . , vm) ∈ zer(M+Q). Assume that A+C is uniformly monotone
at x on the set K0 with modulus Θ0, i.e.

∀ε > 0 ∀v ∈ (A+ C)(x) ∀y ∈ K0 ∀u ∈ (A+ C)(y)

(‖x− y‖ ∈ [ε,H]→ 〈y − x, u− v〉 ≥ Θ0(ε))

and, for each i = 1, . . . ,m, let B−1i + D−1i be uniformly monotone at vi on the set Ki with
modulus Θi, i.e.

∀ε > 0 ∀v ∈ (B−1i +D−1i )(x) ∀y ∈ Ki ∀u ∈ (B−1i +D−1i )(y)

(‖vi − y‖ ∈ [ε,H]→ 〈y − vi, u− v〉 ≥ Θi(ε)) .

Then M +Q is uniformly monotone at the zero x on the set K := K0 ×K1 × · · · ×Km with a
modulus

Θ(ε) := min{Θ0(ε/
√
m+ 1),Θ1(ε/

√
m+ 1), . . . ,Θm(ε/

√
m+ 1)},

i.e.

∀ε > 0 ∀y ∈ K ∀u ∈ (M +Q)(y) (‖x− y‖ ∈ [ε,H]→ 〈y − x,u〉 ≥ Θ(ε)) .

We now begin with the result where we get a rate of metastability for each composite
iteration individually under the respective uniform monotonicity assumption for the opera-
tors corresponding to that component. For that, we presuppose the decomposition BH(x) =
B0 ×B1 × · · · ×Bm.

Theorem 4.6. Let x = (x, v1, . . . , vm) ∈ zer(M + Q). Take d ≥ ‖x0 − x‖. Let b ∈ N \ {0} be
such that b ≥ 1/β for β as in Theorem 4.1 and let M,N ∈ N be such that ‖x0 − p̃0‖ , ‖ỹ0 − p̃0‖ ≤
M and ‖Qx0‖ ≤ N with p̃n, ỹn defined similarly as z̃n, ỹn in Section 3. Further, assume
(γn) ⊆ [1/k, (1− 1/k)1/β]. Also, let R0 be such that

∞∑
n=0

‖a1,n‖ ,
∞∑
n=0

‖b1,n‖ ,
∞∑
n=0

‖c1,n‖ ,
∞∑
n=0

‖a2,l,n‖ ,
∞∑
n=0

‖b2,l,n‖ ,
∞∑
n=0

‖c2,l,n‖ ≤ R0

for all l ∈ [1;m] and let α0 be a joint Cauchy modulus for all these series.
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(1) If A+ C is uniformly monotone at x with modulus Θ, i.e.

∀ε > 0 ∀v ∈ (A+ C)(x) ∀y ∈ B0 ∀u ∈ (A+ C)(y)

(‖x− y‖ ∈ [ε,H]→ 〈y − x, u− v〉 ≥ Θ(ε))

then (xn) and (p1,n) converge to x and further for any ε > 0 and any g : N→ N:

∃n0 ≤ ρ(ε, g) ∀n ∈ [n0;n0 + g(n0)] (‖xn − x‖ , ‖p1,n − x‖ < ε) .

(2) For any l ∈ [1;m], if B−1l +D−1l is uniformly monotone at vl with modulus Θ, i.e.

∀ε > 0 ∀v ∈ (B−1l +D−1l )(x) ∀y ∈ Bl ∀u ∈ (B−1l +D−1l )(y)

(‖vl − y‖ ∈ [ε,H]→ 〈y − vl, u− v〉 ≥ Θ(ε)) .

then (vl,n) and (p2,l,n) converge to vl and further for any ε > 0 and any g : N→ N:

∃n0 ≤ ρ(ε, g) ∀n ∈ [n0;n0 + g(n0)] (‖vln − vl‖ , ‖p2,l,n − vl‖ < ε) .

In any of these cases, we have

ρ(ε, g) := ĝ

(⌈
K(2k−1)2

ε̃2

⌉)
(α(ε/3))

for ĝ(n) := n + g(n) + 1 and ε̃ := min{Θ(ε/6)/H, ε/6}. Here: L := d + (4b + 2)R and
K := k2(d2 + 2L(4b+ 2)R+ (4b+ 2)2R2) as well as H := 2L+ bN + (2 + bk)M + 3d. Further,
R := (m+ 1)R0 and α(ε) := α0(ε/6b(m+ 1)).

Proof. We only discuss (1) as (2) follows similarly. Fix ε > 0 and g : N→ N. We have

∃n0 ∈ [α(ε/3); ρ(ε, g)] ∀n ∈ [n0;n0 + g(n0)] (‖xn − p̃n‖ , ‖un‖ < ε̃)

using Lemma 3.10, where un is defined analogous to Section 3. Applying the Cauchy-Schwartz
inequality yields

〈p̃n − x,un〉 ≤ ‖p̃n − x‖‖un‖ ≤ H‖un‖ < Θ(ε/6)

for any such n. As have 0 ∈ (M +Q)(x) and un ∈ (M +Q)(p̃n), we get

〈sn − x, an + Csn − (a′ + Cx)〉 ≤ 〈p̃n − x,un〉 < Θ(ε/6)

for any such n by Lemma 4.4, where sn is the first component of p̃n and an, a
′ are such that

an+Csn ∈ (A+C)(sn) and a′+Cx ∈ (A+C)(x) as in Lemma 4.4. As Θ is a modulus of uniform
monotonicity for A + C, we get ‖sn − x‖ < ε/6 for any such n as ‖sn − x‖ ≤ ‖p̃n − x‖ ≤ H.
This in particular yields

‖xn − x‖ ≤ ‖xn − sn‖+ ‖sn − x‖ < ‖xn − p̃n‖+ ε/6 < ε̃+ ε/6 ≤ ε/3 ≤ ε

as well as

‖p1,n − x‖ ≤ ‖p1,n − sn‖+ ‖sn − xn‖+ ‖xn − x‖
≤ ‖pn − p̃n‖+ ‖p̃n − xn‖+ ‖xn − x‖
< ε/3 + ε/3 + ε/3 = ε

for any such n, as in particular n ≥ n0 ≥ α(ε/3) and so ‖pn − p̃n‖ < ε/3. �

As mentioned before, if all these assumptions are satisfied simultaneously, we get the following
result on a rate of convergence:
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Theorem 4.7. Let x = (x, v1, . . . , vm) ∈ zer(M + Q). Take d ≥ ‖x0 − x‖. Let b ∈ N \ {0} be
such that b ≥ 1/β for β as in Theorem 4.1 and let M,N ∈ N be such that ‖x0 − p̃0‖ , ‖ỹ0 − p̃0‖ ≤
M and ‖Qx0‖ ≤ N with p̃n, ỹn defined similarly as z̃n, ỹn in Section 3. Further, assume
(γn) ⊆ [1/k, (1− 1/k)1/β]. Also, let R0 be such that

∞∑
n=0

‖a1,n‖ ,
∞∑
n=0

‖b1,n‖ ,
∞∑
n=0

‖c1,n‖ ,
∞∑
n=0

‖a2,l,n‖ ,
∞∑
n=0

‖b2,l,n‖ ,
∞∑
n=0

‖c2,l,n‖ ≤ R0

for all l ∈ [1;m] and let α0 be a joint Cauchy modulus for all these series. Lastly, let A + C
be uniformly monotone at x with modulus Θ0 and, for each l = 1, . . . ,m, let B−1l + D−1l be
uniformly monotone at vl with modulus Θl, all as in the previous Theorem 4.6.

Then (xn) converges to x and (vl,n) to vl with a rate of convergence ρ, i.e.

∀ε > 0 ∀n ≥ ρ(ε) ∀l ∈ [1;m] (‖xn − x‖ , ‖vl,n − vl‖ < ε) ,

where ρ(ε) := ϕ′(µ(ε/2), α(ε/2)) for

ϕ′(ε,N) := N +

⌈
K(2k − 1)2

ε2

⌉
and µ(ε) := min

{
ε

2
,
Θ(ε/2)

H

}
.

with

Θ(ε) := min{Θ0(ε/
√
m+ 1),Θ1(ε/

√
m+ 1), . . . ,Θm(ε/

√
m+ 1)}.

Here: L := d + (4b + 2)R for R := (m + 1)R0 and α(ε) := α0(ε/6b(m + 1)) as well as
K := k2(d2 + 2L(4b+ 2)R + (4b+ 2)2R2) and H := 2L+ bN + (2 + bk)M + 3d.

Further, (p1,n) converges to x and (p2,l,n) to vl with a rate of convergence ρ′, i.e.

∀ε > 0 ∀n ≥ ρ′(ε) ∀l ∈ [1;m] (‖p1,n − x‖ , ‖p2,l,n − vl‖ < ε) ,

where

ρ′(ε) := max{ρ(ε/3
√

2k), β(ε2/18k2), α(ε/3)})
with ρ and the other constants as before and β(ε) := max{α(ε/4L), α(

√
ε/
√

2)}.

Proof. We apply Theorems 3.19 and 3.20 by appropriately instantiating the moduli given
therein. For that, we mainly proceed similarly to the proof of Theorem 4.2 and hence here
only focus on the assumption of a modulus of uniform monotonicity. For that, note that the
assumptions on the moduli Θ0,Θ1, . . . ,Θm imply, by Lemma 4.5, that M + Q is uniformly
monotone at the zero x on BH(x) with

∀ε > 0 ∀y ∈ BH(x) ∀u ∈ (M +Q)(y) (‖x− y‖ ∈ [ε,H]→ 〈y − x,u〉 ≥ Θ(ε)) .

In particular, Theorem 3.19 then yields ‖xn − x‖ < ε for all n ≥ ρ(ε) and ε > 0 and this yields

‖xn − x‖ , ‖vl,n − vl‖ < ε

for all such n and for all l = 1, . . . ,m. Further, Theorem 3.20 yields ‖pn − x‖ < ε for all
n ≥ ρ′(ε) which implies that

‖p1,n − x‖ , ‖p2,l,n − vl‖ < ε

for all such n and for all l = 1, . . . ,m. �
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