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KohlenbahIn this paper we extend A![X; : : :℄ by a strong uniform boundedness priniple9-UBX whih states the above uniformity as an impliation (rather than arule). Despite the fat that this priniple allows one to derive many onse-quenes whih are only true for ompat spaes (and ontinuous funtions),for a large lass K of onsequenes the orretness in arbitrary bounded metriresp. hyperboli spaes an be proved. 9-UBX extends the priniple �01-UB(introdued in [12℄ and further studied in [14,5℄) for the Cantor spae C byinluding abstrat bounded metri spaes X in addition to C: �01-UB hasproved to be useful in the ause of proof mining in the ontext of ompatPolish spaes (see [13℄ and [1℄) as it allows one to give very short and odingfree proofs of many of the usual appliations of weak K�onig's lemma WKL.In addition �01-UB proves various lassially false theorems suh as the uni-form ontinuity (with modulus of ontinuity) of all extensional funtionals� : 2IN ! IN whih makes it possible to treat ontinuous funtions withoutexpliitly having to refer to moduli of ontinuity. In the ase of 9-UBX ; whihapplies even in the absene of ompatness onditions so that WKL is not ap-pliable at all, the bene�ts are even bigger. As one of the appliations we willshow that it proves (relative to the extension of A! by the axioms for an ab-strat bounded hyperboli spae (X; d;W )) that every nonexpansive funtionf : X ! X has �xed points, where `nonexpansive' means that8x; y 2 X(d(f(x); f(y)) � d(x; y)):Although in general it is only true that suh funtions have approximate �xedpoints (but not neessarily �xed points) this allows one to make free use of�xed points to failitate proofs of sentenes in K and nevertheless obtainorret results (see [15℄ for a disussion of the relevane of this point). Toahieve similar bene�ts, often ultrapowers of spaes X are used in funtionalanalysis whih, however, in ontrast to our method usually prevent one fromgetting e�etive bounds on the onlusion.2 Basi notionsDe�nition 2.1 1) The set T of all �nite types over 0 is de�ned indutivelyby the lauses (i) 0 2 T; (ii) �; � 2 T ) (�! �) 2 T:2) The set TX of all �nite types over the two ground types 0 and X isde�ned by (i) 0; X 2 TX ; (ii) �; � 2 TX ) (�! �) 2 TX :3) A type � 2 T has degree (�)1 if � = 0! : : :! 0 (inluding � = 0).A type � 2 TX has degree (0; X) if � = 0 ! : : : ! 0 ! X (inluding� = X).A type � 2 TX has degree (1; X) if it has the form �1 ! : : : ! �k ! X(inluding � = X), where �i has degree 1 or (0; X).2



KohlenbahA type � 2 TX has degree (�; X) if it has the form �1 ! : : : ! �k ! X(inluding � = X), where �1; : : : ; �k 2 TX are arbitrary.A type � 2 TX has degree (�; 0) if it has the form �1 ! : : : ! �k ! 0(inluding � = 0), where �1; : : : ; �k 2 TX are arbitrary.In the following we often denote tuples x�11 ; : : : ; x�nn by x�:De�nition 2.2 For � 2 TX with � = �1 ! : : :! �k ! 0 (i.e. for � of degree(�; 0)) we de�ne a funtional min� of type �! �! � bymin�(x�; y�) := �v�11 ; : : : ; v�kk :min0(xv; yv)and a relation �� between objets of type � byx �� y :� 8v�11 ; : : : ; v�kk (xv �0 yv)with the usual primitive reursively de�ned min0 and �0 :The theory A! for lassial analysis is the extension of the weakly exten-sional Peano arithmeti in all types WE-PA! by the shemata of quanti�er-free hoie QF-AC and dependent hoie DC for all types in T (formulated fortuples of variables). 2 The theories A![X; d℄ and A![X; d;W ℄ result by extend-ing A! to all types in TX and adding axioms for an abstrat bounded metri(in the ase of A![X; d℄) resp. bounded hyperboli (in the ase of A![X; d;W ℄)spae. A![X; d;W;CAT(0)℄ is the extension by an abstrat bounded CAT(0)-spae. For details see [15℄ whih also treats the ase of normed spaes. Corre-sponding theories for general (not neessarily bounded) metri and hyperbolispaes are studied in [8℄ (similar extensions by hyperboli spaes in the senseof Gromov and by IR-trees have reently been de�ned in [17℄). Sine the re-sults in this paper are most natural and useful in the bounded ase we do notonsider these latter theories here.That our theories are `weakly extensional' means that we only have Spe-tor's quanti�er-free extensionality rule. In partiular, for the de�ned equalityx =X y :� (dX(x; y) =IR 0IR), we do not havex =X y ! fX!X(x) =X f(y)but only from a proof of s =X t an infer that f(s) =X f(t): As disussed ingreat detail in [15℄, this restrition is ruial for our results. In pratie, weusually an prove the extensionality of f for those funtions we onsider, e.g.for nonexpansive funtions, so that this issue only oasionally matters.De�nition 2.3 A formula F in L(A![X; d℄) or L(A![X; d;W ℄) is alled 8-formula (resp. 9-formula) if it has the form F � 8a�Fqf(a) (resp. F �9a�Fqf(a)) where Fqf does not ontain any quanti�er and the types in � areof degree 1 or (1; X): We all a formula a generalized 9-formula, if there areno restritions imposed on the types �:2 For DC the form with tuples is not stated in [15℄ but the proofs immediately work alsoin the presents of tuples. 3



KohlenbahReal numbers are represented as Cauhy sequenes of rationals with �xed rate2�n of onvergene whih in turn are enoded as number theoreti funtionsf 1, where an equivalene relation f =IR g expresses that f 1; g1 denote the samereal numbers and �IR; <IR; j � jIR express the obvious relations and operationson the level of these odes. Here =IR;�IR2 �01 whereas <IR2 �01: Again detailsan be found in [15℄.3 Main resultsDe�nition 3.1 The uniform boundedness shema 9-UBX for generalized 9-formulas and bounded abstrat metri spaes is de�ned as follows 39-UBX :� 8<:8y0!�(8k0; x�; z�9n0A9(y; k;min�(x; yk); z; n)!9�18k0; x�; z�9n �0 �k A9(y; k;min�(x; yk); z; n));where � is of degree (�; 0), � = �1; : : : ; �m is a tuple of types in TX of degree(�; X) and A9 is a generalized 9-formula whih may in addition to the variablesindiated may have arbitrary further parameters of arbitrary types.Remark 3.2 If A9(y; k; x; z; n) is extensional in x w.r.t.x1 =� x2 :� 8v(x1v =0 x2v), i.e. if8y; k; z; n; x1; x2(x1 =� x2 ^ A9(y; k; x1; z; n)! A9(y; k; x2; z; n));then 9-UBX an be rewritten equivalently as follows8<:8y0!�(8k08x �� yk8z�9n0A9(y; k; x; z; n)!9�18k08x �� yk8z�9n �0 �kA9(y; k; x; z; n));De�nition 3.3 Let � be as before.FX :� 8�; y9X � y9Z8k0; x�; z�(�(k;Xk; Zk) �0 �(k;min�(x; yk); z)):Here X has type 0! �, Zi has type 0! �i and � has type0! �! �1 ! : : :! �m ! 0:Lemma 3.4 A![X; d℄ + FX ` 9-UBX :Analogously for A![X; d;W ℄ and the other extensions we onsider.Proof: Assume 8k0; x�; z�9n0A9(y; k;min�(x; yk); z; n):3 For notational simpliity for formulate the priniple only for a single variable x but wean here (and in the proofs below) also allow tuples as in the ase of z whih we do formulatefor tuples as it is used this way in our appliations. Using appropriate ontrations of tuplesof variables of degree (�; 0) into a single variable of degree (�; 0) one, alternatively, an alsoredue the ase with tuples x to the one we formulate.4



KohlenbahBy the shema of quanti�er-free hoie QF-AC from A![X; d℄ (whih is for-mulated for tuples of variables) it follows that there exists a funtional � suhthat 8k0; x�; z�A9(y; k;min�(x; yk); z;�kxz):Sine A![X; d℄ ` min�(min�(x; yk); yk) =� min�(x; yk)we an use the quanti�er-free extensionality rule QF-ER from A![X; d℄ toonlude that8k0; x�; z�A9(y; k;min�(x; yk); z;�(k;min�(x; yk); z)):FX applied to � and y yields X(� y) and Z with8k0; x�; z�(�(k;Xk; Zk) �0 �(k;min�(x; yk); z)):Now de�ne �(k) := �(k;Xk; Zk): 2Theorem 3.5 1) Let �; � be types of degree 1 and � be a type of degree(1; X): Let s�!� be a losed term of A![X; d℄ and B8(x�; y�; z� ; u0)(C9(x�; y�; z� ; v0)) be a 8-formula ontaining only x; y; z; u free (resp. an9-formula ontaining only x; y; z; v free).If 8x�8y �� s(x)8z� (8u0B8(x; y; z; u)! 9v0C9(x; y; z; v))is provable in A![X; d℄ + 9-UBX , then one an extrat a omputablefuntional � : ININ�:::�IN� IN! IN suh that for all x 2 ININ�:::�IN and allb 2 IN8y �� s(x)8z� [8u � �(x; b)B8(x; y; z; u)! 9v � �(x; b)C9(x; y; z; v)℄holds 4 in any (non-empty) b-bounded metri spae (X; d) (where bX isto be interpreted by the integer upper bound b on d). 5The omputational omplexity of � an be estimated in terms of thestrength of the A!-priniple instanes atually used in the proof (seeremark 3.6 below).2) If the premise is proved in `A![X; d;W ℄+9-UBX' instead of `A![X; d℄+9-UBX ', then the onlusion holds in all (non-empty) b-bounded hyperbolispaes.3) If the premise is proved in `A![X; d;W;CAT(0)℄ + 9-UBX ' instead of`A![X; d℄ + 9-UBX ', then the onlusion holds in all (non-empty) b-bounded CAT(0)-spaes.Instead of single variables x; y; z; u; v we may also have �nite tuples of variablesx; y; z; u; v as long as the elements of the respetive tuples satisfy the sametype restritions as x; y; z; u; v. Moreover, instead of a single premise of theform `8u0B8(x; y; z; u)' we may have a �nite onjuntion of suh premises.4 See [15℄ for the preise de�nition of `holds'.5 Here bX is the onstant of type 0 from A! [X; d℄ representing an upper bound on dX .5



KohlenbahRemark 3.6 1) The proof of theorem 3.5 whih we will give below is basedon the proof of theorem 3.7 in [15℄ and will atually provide an extrationalgorithm for �. The funtional � is given by a losed term of WE-PA!+BR where BR refers to Spetor's shema of bar reursion ([23℄),i.e. � is a so-alled bar reursive funtional. However, for onrete proofsusually only small fragments of A![X; d;W ℄ (orresponding to fragmentsof A! suh as WE-PA!+QF-AC+WKL) will be needed to formalize theproof so that � will be of muh lower omplexity.2) Without the addition of the non-standard axiom 9-UBX the theorem isproved in [15℄ and again in [8℄ as a orollary to a more re�ned metathe-orem.Remark 3.7 The most important aspets of theorem 3.5 are that the bound�(x; b) does not depend on y; z nor does it depend on X; d or W and thatthe onlusion is true in all b-bounded metri spaes (X; d), hyperboli spaes(X; d;W ) and CAT(0)-spaes, respetively, although the axiom 9-UBX is not(see below).Proof of theorem 3.5: 1. By the previous lemma, the assumption impliesthat A![X; d℄ + FX proves that8x�8y �� s(x)8z� (8u0B8(x; y; z; u)! 9v0C9(x; y; z; v)):As in [15℄ one shows that A![X; d℄+FX has a G�odel funtional interpretationin A![X; d;X ;Z℄� + ~FX+(BR), where 6A![X; d;X ;Z℄� := A![X; d;X ;Z℄ n f QF-AC gand~FX :� X � ��; y:y^8�; y; k; x; z�(�(k;X�yk;Z�yk) �0 �(k;min�(x; yk); z):Here (BR) is the shema of (simultaneous) bar reursion of Spetor (see[23,3,18℄) extended to the types TX (see [15℄) and A![X; d;X ;Z℄ results fromA![X; d℄ by adding new onstants X and Z of type (0 ! � ! �1 ! : : : !�m ! 0)! (0! �)! 0! � resp. (0! �! �1 ! : : :! �m ! 0)! (0!�)! 0! �i to the language.In addition to the proof given in [15℄ we only have to onsider the funtionalinterpretation ((FX)0)D of the negative translation (FX)0 of FX : learly (FX)0is intuitionistially implied by FX so that it suÆes to solve the funtionalinterpretation (FX)D of FX : However, (FX)D preisely asks for funtionalsX ;Z satisfying8�; y; k0; x�; z�(X�y � y ^ (�(k;X�yk;Z�yk) �0 �(k;min�(x; yk); z)):6 Even the axiom of dependent hoie an be dropped as it disappears during the interpre-tation. But this is not needed here. 6



KohlenbahBut this is just what we provided for in A![X; d;X ;Z℄ + ~FX :The next step in the proof of theorem 3.7 in [15℄ onsists in establishing thatthe model M!;X of all strongly majorizable funtionals over IN and an arbi-trary nonempty bounded metri spae (X; d) is a model of A![X; d℄�+(BR)and, moreover, that for any losed term t of A![X; d℄�+(BR) one an on-strut a losed term t� of A![X; d℄�+(BR) whih does not ontain dX suhthat M!;X j= t� s-maj t:We now extend this by showing thatM!;X j= A![X; d;X ;Z℄� + ~FX + (BR)for a suitable interpretation of the new onstants X and Z and that for anylosed term t of A![X; d;X ;Z℄�+(BR) we an onstrut a losed term t� ofA![X; d℄�+(BR) whih does not ontain dX suh thatM!;X j= t� s-maj t:Note that t� must not ontain any of the onstants X ;Z :We reason inM!;X: Let �; y; k be inM!;X with types as above and let ��; y�be strong majorants for �; y in M!;X : Sine min�(x; yk) �� yk and � aretypes of degree (�; X) it follows (using the trivial de�nition of s-majX) thaty�k s-maj min�(x; yk) ^ z�i := �v:0X s-maj zifor all k 2 IN and all x; z in M!;X of types � and � and suitable tuples ofvariables v: Hene8x 2 M!;X� ; z 2M!;X� (��(k; y�k; z�) �0 �(k;min�(x; yk); z)):Thus Max�;y;k := maxf�(k;min�(x; yk); z) : x 2M!;X� ^ z 2 M!;X� gexists (not that M!;X� 6= ; for all � 2 TX) and hene(+) 8�; y; k 2 M!;X9x; z 2 M!;X(x �� yk ^ �(k; x; z) =0 Max�;y;k):By the axiom of hoie applied to (+) we obtain funtionals � � ��; y:y and� suh that x := ��yk and z := ��yk satisfy (+): We now put[X ℄M!;X := � ^ [Z℄M!;X := �:In order to show that �;� 2 M!;X we onstrut losed terms X � and Z� suhthat M!;X j= X � s-maj X ^ Z� s-maj Z:The terms X � := ��; y:y; Z�i := �v:0Xdo the job (using thatM!;X j= X � ��; y:y) for a suitable tuple v of variables,where the length of the tuple and the types of its omponents only depend on�i: It is lear that with this interpretation of X ;Z in M!;X the axiom ~FX is7



Kohlenbahsatis�ed.The onstrution of t� from t now proeeds as in [15℄ with the additionallauses that all ourrenes of X ;Z are replaed by X �;Z�: The rest of theproof is exatly as in [15℄.2. and 3. are proved analogously. 2De�nition 3.8 The lass K of formulas onsists of all formulas F that are log-ially equivalent to a prenex normal form F 0 � 9x�11 8y�11 : : : 9x�nn 8y�nn F9(x; y)where F9 is an 9-formula, the types �i are of degree 0 and the types �i are ofdegree 1 or (1; X). If �i; : : : ; �n are of degree (1; X), then �i might even be ofdegree (�)1 or (0; X):Corollary 3.9 1) Let A be a sentene in K: IfA![X; d℄ + 9-UBX ` A;then A holds in any (non-empty) b-bounded metri spae (X; d):If A does not ontain bX ; then it holds in any (non-empty) boundedmetri spae.2) If the premise is proved in `A![X; d;W ℄+9-UBX' instead of `A![X; d℄+9-UBX ', then the onlusion holds in all (non-empty) b-bounded hyperbolispaes.3) If the premise is proved in `A![X; d;W;CAT(0)℄ + 9-UBX ' instead of`A![X; d℄ + 9-UBX ', then the onlusion holds in all (non-empty) b-bounded CAT(0)-spaes.Proof: 7 Let A be in prenex normal form of the form guaranteed by A 2 K:Consider the Herbrand normal formAH :� 8Y1; : : : ; Yn9x1; : : : ; xnA9(x1; : : : ; xn; Y1x1; : : : ; Ynx1 : : : xn)of A: Sine A! AH holds by logi, the assumption implies thatA![X; d℄ + 9-UBX ` AH :Sine the types of Y are of degree 1 or (1; X) and those of x of degree 1 or(0; X) (and hene a-fortiori of degree 1 or (1; X) so that9x1; : : : ; xnA9(x1; : : : ; xn; Y1x1; : : : ; Ynx1 : : : xn is an 9-formula) we an applytheorem 3.5 to onlude that AH holds in any (non-empty) b-bounded metrispae (X; d). By logi and the axiom of hoie AH implies A so that theorollary follows.2) and 3) are proved analogously. 24 Appliations of 9-UBXIn this setions we fous on appliations of 9-UBX involving the types �: Ofourse, sine 9-UBX entails �01-UB, it also overs all the appliations of the7 A similar argument is used already in [8℄.8



Kohlenbahlatter (see [13℄).4.1 Appliation 1:We now show that 9-UBX strengthens the assumption of separability of thebounded metri spae (X; d) to total boundedness. This puts into fous thephenomenon impliit already in the ounterexample presented in [15℄ (p.91)to the possibility of a metatheorem orresponding to theorem 3.5 for separablespaes.De�nition 4.1 Let (X; d) be a totally bounded metri spae. A funtion� : IN! IN satisfying9(an)n inX8k 2 IN8x 2 X9n � �(k)(d(x; an) < 2�k)is alled a modulus to total boundedness.Proposition 4.2 A![X; d℄ + 9-UBX proves the following:`If (X; d) is separable, then (X; d) is totally bounded and has a modulus oftotal boundedness �'.More preiselyA![X; d℄ + 9-UBX ` 8f 0!X(8k0; xX9n0(dX(f(n); x) <IR 2�k)!9�18k0; xX9n � �(k)(dX(f(n); x) <IR 2�k)):Proof: 9-UBX applied to8k0; xX9n0(dX(f(n); x) <IR 2�k)yields (notiing that `dX(f(n); x) <IR 2�k' is an 9-formula) that9�18k0; xX9n � �(k)(dX(f(n); x) <IR 2�k): 24.2 Appliation 2:The next proposition shows that 9-UBX implies that every fX!X that rep-resents a funtion : X ! X, i.e. that respets =X , is uniformly ontinuouswith a modulus of uniform ontinuity !. Moreover from the assumption thatall fX!X represent funtions, 9-UBX allows one to derive that all funtionsf : X ! X have a ommon modulus of uniform ontinuity. This orrespondsto the ounterexample from [15℄ (p.115) to the possibility to add full exten-sionality in theorem 3.5: If full extensionality is used in a proof it has tofollow as a onsequene of uniform equi-ontinuity in order to permit theextration of uniform bounds. This is the ase e.g. for nonexpansive fun-tions but (as disussed in [15,8℄) not for diretionally nonexpansive or weaklyquasi-nonexpansive funtions where only the use of the quanti�er-rule of ex-tensionality is allowed. 9



KohlenbahProposition 4.3 LetExt(fX!X) :� 8xX ; yX(x =X y ! f(x) =X f(y)):1) A![X; d℄ + 9-UBX proves that8fX!X(Ext(f)!9!18k0; xX ; yX(dX(x; y) <IR 2�!(k) ! dX(f(x); f(y)) <IR 2�k)):2) A![X; d℄ + 9-UBX proves that8fX!X(Ext(f))!9!18fX!X ; k0; xX ; yX(dX(x; y) <IR 2�!(k) ! dX(f(x); f(y)) <IR 2�k):Proof: 1) By the de�nition of =X ; the assumption Ext(f) an be written as8xX ; yX(8n0(dX(x; y) �IR 2�n)! 8k0(dX(f(x); f(y)) <IR 2�k))and hene as(+) 8xX ; yX8k09n0(dX(x; y) �IR 2�n ! dX(f(x); f(y)) <IR 2�k);where dX(x; y) �IR 2�n ! dX(f(x); f(y)) <IR 2�kis (logially equivalent to) an 9-formula. Hene 9-UBX applied to (+) yields9!18k0; xX ; yX(dX(x; y) �IR 2�!(k) ! dX(f(x); f(y)) <IR 2�k)whih establishes the laim.2) is proved analogously by applying 9-UBX to(++) 8fX!X8xX ; yX8k09n0(dX(x; y) �IR 2�n ! dX(f(x); f(y)) <IR 2�k)notiing that also the type X ! X is admissible as a type � in 9-UBX : 24.3 Appliation 3:The next appliation shows that 9-UBX extends the usual WKL-appliationsfor ompat spaes and ontinuous funtions to bounded spaes and arbitraryfuntions.Proposition 4.4 Let � be of degree (�; X): Then A![X; d℄ + 9-UBX provesthe following 8��!1(8k09y�(j�(y)jIR <IR 2�k)! 9y�(�(y) =IR 0)):This also holds for tuples of variables y� as long as the types � are all of degree(�; X):Proof: Suppose that 8y�(�(y) 6=IR 0):10



KohlenbahThen 8y�9k0(j�(y)jIR >IR 2�k)and hene by 9-UBX 9k08y�(j�(y)jIR >IR 2�k)ontraditing the assumption. 24.4 Appliation 4:In this appliation we show that 9-UBX allows one to make free use of �xedpoints of nonexpansive mappings in proofs (and still obtain orretK-onlusions) despite the fat that suh �xed points in general do not exist(not even for nonexpansive selfmappings of bounded, losed, onvex subsetsof Banah spaes suh as 0; see [22℄).Proposition 4.5 A![X; d;W ℄ + 9-UBX proves the following8fX!X(f nonexpansive ! 9xX(f(x) =X x)):Proof: Sine f(x) =X x $ dX(x; f(x)) =IR 0 we obtain from the previousappliation applied to �(x) := dX(x; f(x)) that it suÆes to show8k09xX(dX(x; f(x)) <IR 2�k):This, however, follows from theorem 1 in [9℄ whose proof an be formalized inA![X; d;W ℄: 2Remark 4.6 The existene of approximate �xed points of nonexpansive map-pings between bounded hyperboli spaes used in the proof above rests stronglyon the presene of the hyperboli struture provided byW and is false for gen-eral bounded metri spaes: onsider IR equipped with the trunated metriD(x; y) := min(jx � yj; 1) and f : IR ! IR with f(x) := x + 1: f is a nonex-pansive (even isometri) selfmapping of the bounded metri spae (IR; D) buthas no "-�xed points for 0 < " < 1:4.5 Appliation 5:There are numerous �xed point theorems for various lasses of funtions of so-alled ontrative type (see [4,19,20,21℄). Often ompatness assumptions areused to ensure ertain uniform versions of ontrativity and the assumptionof ompatness an be replaed by boundedness if the funtions are assumedto satisfy the uniform ontrativity notions. In the ause of proof mining,the need to uniformize ontrativity onditions on f has turned out to beruial as well (see e.g. [7,6,1,2℄). 9-UBX is a general tool for produing suhuniformizations:De�nition 4.7 Let (X; d) be a metri spae and f : X ! X a selfmapping11
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