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Abstract

We extend the principle E?—UB of uniform E?—boundedness introduced earlier by

the author to a uniform boundedness principle 3-UB¥ for abstract bounded metric
and hyperbolic spaces which are not assumed to be compact. Despite the fact that
this principle implies numerous results which in general are true only for compact
spaces (and continuous functions) we can prove that for a large class IC of such
consequences A the conclusion A is true in arbitrary bounded spaces even when
3-UBY is used to facilitate the proof of A. For a somewhat more restricted class of
sentences A even effective uniform bounds can be extracted from such proofs.

1 introduction

In [15] and [8] general metatheorems are proved which have the form of rules
of the following type: If certain Vd-sentences are proved in classical analy-
sis A“ augmented by abstract structures X (A“[X,...]) as ‘Urelements’ such
as metric, hyperbolic (in the sense of Kirk and Reich see [15]) or CAT(0)
spaces (in the sense of Gromov),! then from a given proof one can extract
an effective uniform bound which holds in arbitrary such structures and only
depends on parameters from X via bounds on the metric ([15]) or even just
the distances of some relevant elements ([8]). So whereas for the general class
of Polish spaces as well as for individual effectively represented Polish spaces
such a uniformity is guaranteed only under a compactness assumption (essen-
tially due to the separability of the space involved, see below and [16]), in the
case of proofs from general axioms for abstract classes of spaces as the ones
mentioned above, metric boundedness is sufficient.

L These papers also treat normed, uniformly convex and inner product spaces (and in [17]
this has been adapted also to hyperbolic spaces in the sense of Gromov and R-trees) but
in the present article we restrict ourselves due to the limited space to the ones mentioned.
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In this paper we extend A“[X ...] by a strong uniform boundedness principle
J-UBY which states the above uniformity as an implication (rather than a
rule). Despite the fact that this principle allows one to derive many conse-
quences which are only true for compact spaces (and continuous functions),
for a large class KC of consequences the correctness in arbitrary bounded metric
resp. hyperbolic spaces can be proved. 3-UB¥ extends the principle X°-UB
(introduced in [12] and further studied in [14,5]) for the Cantor space C by
including abstract bounded metric spaces X in addition to C. ¥9-UB has
proved to be useful in the cause of proof mining in the context of compact
Polish spaces (see [13] and [1]) as it allows one to give very short and coding
free proofs of many of the usual applications of weak Konig’s lemma WKIL.
In addition $¢-UB proves various classically false theorems such as the uni-
form continuity (with modulus of continuity) of all extensional functionals
® : 2N — IN which makes it possible to treat continuous functions without
explicitly having to refer to moduli of continuity. In the case of 3-UBX, which
applies even in the absence of compactness conditions so that WKL is not ap-
plicable at all, the benefits are even bigger. As one of the applications we will
show that it proves (relative to the extension of A“ by the axioms for an ab-
stract bounded hyperbolic space (X, d, W)) that every nonexpansive function
f X — X has fixed points, where ‘nonexpansive’ means that

Vi,y € X(d(f(x)a f(y)) < d(xay))'

Although in general it is only true that such functions have approximate fixed
points (but not necessarily fixed points) this allows one to make free use of
fixed points to facilitate proofs of sentences in I and nevertheless obtain
correct results (see [15] for a discussion of the relevance of this point). To
achieve similar benefits, often ultrapowers of spaces X are used in functional
analysis which, however, in contrast to our method usually prevent one from
getting effective bounds on the conclusion.

2 Basic notions

Definition 2.1 1) The set T of all finite types over 0 is defined inductively
by the clauses

(i)0e T, (it) pre T = (p—71)€ T.

2) The set TX of all finite types over the two ground types 0 and X is
defined by

(i) 0,X € TY, (ii) p,7 € T = (p = 7) € T*.
3) A type p € T has degree (<)1if p=0— ... = 0 (including p = 0).
A type p € T has degree (0,X)if p=0— ... = 0 — X (including
p=X).
A type p € TX has degree (1, X) if it has the form 7, — ... = 7, — X
(including p = X)), where 7; has degree 1 or (0, X).
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A type p € T* has degree (-, X) if it has the form 7, — ... = 7, = X
(including p = X)), where 71,...,7, € T¥ are arbitrary.
A type p € TY has degree (-,0) if it has the form 7, — ... — 7, — 0
(including p = 0), where 71, ..., 7 € T are arbitrary.

In the following we often denote tuples z{', ..., 22" by z~.

Definition 2.2 For p € TX with p=p; — ... = pr — 0 (i.e. for p of degree
(-,0)) we define a functional min, of type p — p — p by

min, (27, y?) := Mof*, ..., vpk. ming (v, yv)
and a relation <, between objects of type p by
r <,y :=Vol', ... otk (zu <o yv)

with the usual primitive recursively defined miny and <, .

The theory A% for classical analysis is the extension of the weakly exten-
sional Peano arithmetic in all types WE-PA“ by the schemata of quantifier-
free choice QF-AC and dependent choice DC for all types in T (formulated for
tuples of variables).? The theories A“[X, d] and A“[X, d, W] result by extend-

ing A“ to all types in T* and adding axioms for an abstract bounded metric
(in the case of A“[X, d]) resp. bounded hyperbolic (in the case of A“[X, d, W)
space. A“[X,d, W, CAT(0)] is the extension by an abstract bounded CAT(0)-
space. For details see [15] which also treats the case of normed spaces. Corre-
sponding theories for general (not necessarily bounded) metric and hyperbolic
spaces are studied in [8] (similar extensions by hyperbolic spaces in the sense
of Gromov and by IR-trees have recently been defined in [17]). Since the re-
sults in this paper are most natural and useful in the bounded case we do not
consider these latter theories here.

That our theories are ‘weakly extensional’ means that we only have Spec-
tor’s quantifier-free extensionality rule. In particular, for the defined equality
r=x 1y = (dx(z,y) =r Or), we do not have

v=xy— [N e) =x f(y)
but only from a proof of s =y t can infer that f(s) =x f(¢). As discussed in
great detail in [15], this restriction is crucial for our results. In practice, we
usually can prove the extensionality of f for those functions we consider, e.g.
for nonexpansive functions, so that this issue only occasionally matters.

Definition 2.3 A formula F' in L(AY[X,d]) or L(AY[X,d,W]) is called V-
formula (resp. 3-formula) if it has the form F' = Va2F,;(a) (resp. F =
Ja%F,(a)) where Fj; does not contain any quantifier and the types in o are
of degree 1 or (1, X). We call a formula a generalized 3-formula, if there are
no restrictions imposed on the types o.

2 For DC the form with tuples is not stated in [15] but the proofs immediately work also
in the presents of tuples.
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Real numbers are represented as Cauchy sequences of rationals with fixed rate
27" of convergence which in turn are encoded as number theoretic functions
f', where an equivalence relation f =g ¢ expresses that f', g' denote the same
real numbers and <R, <R, | - |r express the obvious relations and operations

on the level of these codes. Here =g, <ge€ I1{ whereas <g€ X!. Again details
can be found in [15].

3 Main results

Definition 3.1 The uniform boundedness schema 3-UB¥ for generalized 3-
formulas and bounded abstract metric spaces is defined as follows 3

V0= (VRO 22, 28300 A5 (y, k, ming (z, yk), z,n) —
IX'VEC, 2%, 2830 <o xk A3(y, k, min,(z, yk), z,n)),

J-UBY =

where « is of degree (-,0), 8 = fB1,..., Bm is a tuple of types in T of degree

(-, X) and Az is a generalized 3-formula which may in addition to the variables
indicated may have arbitrary further parameters of arbitrary types.

Remark 3.2 If A5(y, k,z,z,n) is extensional in x w.r.t.
T =4 To 1= Yo(r10 =0 T20), i.e. if

Yy, k,z,n,x1, x29(x1 =4 22 A A3(y, k, 1, 2,n) = As(y, k, 9, 2,1)),
then 3-UBX can be rewritten equivalently as follows
Vy' o (VEOVr <, ykV223n’As(y, k, x, z,n) —
INVEVr <, ykV223In <o Yk As(y, k, 2, 2, n)),
Definition 3.3 Let ( be as before.

FX :=V®,y3aX < y3AZVE°, 2%, 22(®(k, Xk, Zk) >¢ ®(k, ming(z, yk), 2)).

Here X has type 0 — «, Z; has type 0 — (; and ® has type
0—>a— 01— ...= By — 0.

Lemma 3.4
A“IX,d] + F* - 3-UB™.
Analogously for A“[X,d, W] and the other extensions we consider.

Proof: Assume
VES, 2, 223n° As(y, k, ming, (z, yk), 2, n).

3 For notational simplicity for formulate the principle only for a single variable z but we
can here (and in the proofs below) also allow tuples as in the case of z which we do formulate
for tuples as it is used this way in our applications. Using appropriate contractions of tuples
of variables of degree (-,0) into a single variable of degree (-,0) one, alternatively, can also
reduce the case with tuples z to the one we formulate.
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By the schema of quantifier-free choice QF-AC from A“[X,d] (which is for-
mulated for tuples of variables) it follows that there exists a functional ® such
that

VE?, 2%, 28 As(y, k, ming (z, yk), z, Dkaz).

Since

A“[X,d] b min,(min,(z, yk), yk) =, min,(z, yk)
we can use the quantifier-free extensionality rule QF-ER from A“[X,d] to
conclude that

VE?, 2%, 25 As(y, k, ming (2, yk), 2, ®(k, min, (z, yk), 2)).

F* applied to ® and y yields X (< y) and Z with

VE?, 2%, 25(®(k, Xk, Zk) >o ®(k, min, (2, yk), 2)).
Now define x(k) := ®(k, Xk, Zk). O

Theorem 3.5 1) Let o,p be types of degree 1 and 7 be a type of degree
(1,X). Let s77” be a closed term of A“[X,d] and By(x°,y’, 27, u°)
(C3(27,y”, 27,v%)) be a V-formula containing only x,y, z, u free (resp. an
I-formula containing only x,y, z, v free).

If
Va'Vy <, s(x)V2" (Yu' By (2, y, 2,u) — F0°Cs(x,y, 2,v))

is provable in A“[X,d] + 3-UB¥, then one can extract a computable
functional ® : IN™**N o IN — IN such that for all z € IN™**N and all
be N

Vy <, s(x)Vz"Vu < @(x,b) By(7,y, 2,u) = Jv < &(z,b) C3(2,y, 2,v)]
holds? in any (non-empty) b-bounded metric space (X, d) (where by is
to be interpreted by the integer upper bound b on d).°
The computational complexity of ® can be estimated in terms of the

strength of the A“-principle instances actually used in the proof (see
remark 3.6 below).

2) If the premise is proved in ‘A*[X, d, W]|+3-UB*" instead of ‘A“[X, d] +3-
UBY’, then the conclusion holds in all (non-empty) b-bounded hyperbolic
spaces.

3) If the premise is proved in ‘A“[X,d, W,CAT(0)] + 3-UB*X’ instead of
‘A“[X,d] + F-UBY’, then the conclusion holds in all (non-empty) b-
bounded CAT(0)-spaces.

Instead of single variables x, ¥, z, u, v we may also have finite tuples of variables
Z,Y,2,u,v as long as the elements of the respective tuples satisfy the same
type restrictions as x,v, z,u,v. Moreover, instead of a single premise of the
form ‘Vu’By(x,y, z,u)’ we may have a finite conjunction of such premises.

4 See [15] for the precise definition of ‘holds’.
® Here bx is the constant of type 0 from A“[X, d] representing an upper bound on dx.
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Remark 3.6 1) The proof of theorem 3.5 which we will give below is based
on the proof of theorem 3.7 in [15] and will actually provide an extraction
algorithm for ®. The functional ® is given by a closed term of WE-
PA“+BR where BR refers to Spector’s schema of bar recursion ([23]),
i.e. ® is a so-called bar recursive functional. However, for concrete proofs
usually only small fragments of A“[X, d, W] (corresponding to fragments
of A¥ such as WE-PAY+QF-AC+WKL) will be needed to formalize the
proof so that ® will be of much lower complexity.

2) Without the addition of the non-standard axiom 3-UB* the theorem is
proved in [15] and again in [8] as a corollary to a more refined metathe-
orem.

Remark 3.7 The most important aspects of theorem 3.5 are that the bound
®(x,b) does not depend on y, z nor does it depend on X,d or W and that
the conclusion is true in all b-bounded metric spaces (X, d), hyperbolic spaces
(X, d, W) and CAT(0)-spaces, respectively, although the axiom 3-UB* is not
(see below).

Proof of theorem 3.5: 1. By the previous lemma, the assumption implies
that A“[X,d] + FX proves that

VaoVy <, s(x)V2" (Yu’By(z,y, 2,u) — F°C3(z,y, 2,v)).
As in [15] one shows that A“[X,d]+ F¥ has a Godel functional interpretation
in A“[X,d, X, Z]” + F¥+(BR), where®
A“[X,d, X, 2] = A“[X,d, X, 2]\ { QF-AC }

and
FX = X < \®,yyAY®, y, k, x, 22(®(k, X Dyk, Zdyk) >( ®(k, ming(z, yk), 2).

Here (BR) is the schema of (simultaneous) bar recursion of Spector (see
[23,3,18]) extended to the types T* (see [15]) and A“[X,d, X, Z] results from
A“[X,d] by adding new constants X and Z of type (0 - a — 1 — ... —
fm—0)—=(0—=a)—=>0—aresp. 0 >a— 0 — ... = fn—0) — (0
«) = 0 — (; to the language.

In addition to the proof given in [15] we only have to consider the functional
interpretation ((F*)")” of the negative translation (F*) of FX : clearly (FX)
is intuitionistically implied by FX so that it suffices to solve the functional
interpretation (F~)” of FX. However, (FX)” precisely asks for functionals
X, Z satisfying

Vo, y, k0, 2, 2P (X Dy < y A (D(k, XDyk, Zyk) > ®(k, min,(z, yk), 2)).

6 Even the axiom of dependent choice can be dropped as it disappears during the interpre-
tation. But this is not needed here.
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But this is just what we provided for in A“[X,d, X, Z] + F¥.

The next step in the proof of theorem 3.7 in [15] consists in establishing that
the model M“X of all strongly majorizable functionals over IN and an arbi-
trary nonempty bounded metric space (X, d) is a model of A“[X,d] +(BR)
and, moreover, that for any closed term ¢ of A“[X,d|”+(BR) one can con-
struct a closed term t* of A“[X,d]”+(BR) which does not contain dx such
that

MY =t s-maj t.
We now extend this by showing that
MY = A¥IX,d, X, Z2]” + FX + (BR)

for a suitable interpretation of the new constants X and Z and that for any
closed term t of A¥[X,d, X, Z]"+(BR) we can construct a closed term ¢* of
A“[X,d]”+(BR) which does not contain dx such that

MY =t s-maj t.

Note that t* must not contain any of the constants X', Z :
We reason in M“*~. Let @, y, k be in M“X with types as above and let ®*, y*
be strong majorants for @,y in M“X. Since min,(z,yk) <, yk and § are

types of degree (-, X) it follows (using the trivial definition of s-majy) that
y*k s-maj min,(z,yk) A 2! := Av.0x s-maj z;

for all £ € IN and all z,z in M“¥ of types a and [ and suitable tuples of

variables v. Hence

Vo € MY 2 € ME”X(@*(k,y*k,g*) >0 ®(k, min,(z, yk), 2)).

Thus
Maze . := max{®(k,min,(z, yk),2) : v € MY Az € M5}

exists (not that M2~ # () for all p € TX) and hence

(4+) V@, y,k € MY 3,z € M (x <, yk A ®(k,z,2) =0 Mazs ).

By the axiom of choice applied to (+) we obtain functionals = < A®, y.y and
O such that x := Z®yk and z := OPyk satisfy (+). We now put

[X]pex :==ENA[Z]pex =0,
In order to show that =,© € M“X we construct closed terms X* and Z* such
that
MY = X* s-maj X A Z2F s-maj Z.
The terms
X' =20, gy, Z:=Mlx

do the job (using that M“* = X < \®, y.y) for a suitable tuple v of variables,
where the length of the tuple and the types of its components only depend on

;. Tt is clear that with this interpretation of X, Z in M“~ the axiom FX is
7



KOHLENBACH

satisfied.

The construction of ¢* from ¢ now proceeds as in [15] with the additional
clauses that all occurrences of X', Z are replaced by X*, Z*. The rest of the
proof is exactly as in [15].

2. and 3. are proved analogously. O

Definition 3.8 The class K of formulas consists of all formulas F' that are log-
ically equivalent to a prenex normal form F' = Jz{'Vy;' ... Ja0"Vy» F5(z, y)
where F5 is an 3-formula, the types p; are of degree 0 and the types 7; are of
degree 1 or (1, X). If 7;,..., 7, are of degree (1, X), then p; might even be of
degree (<)1 or (0, X).

Corollary 3.9 1) Let A be a sentence in K. If
A“[X,d] +3-UB* I A,
then A holds in any (non-empty) b-bounded metric space (X, d).
If A does not contain by, then it holds in any (non-empty) bounded
metric space.

2) If the premise is proved in ‘A“[ X, d, W]+3-UB*” instead of ‘A“[X, d]+3-
UBY’, then the conclusion holds in all (non-empty) b-bounded hyperbolic
spaces.

3) If the premise is proved in ‘A“[X,d, W,CAT(0)] + 3-UB*X’ instead of
‘A“[X,d] + 3-UBY’, then the conclusion holds in all (non-empty) b-
bounded CAT(0)-spaces.

Proof:” Let A be in prenex normal form of the form guaranteed by A € K.
Consider the Herbrand normal form

AT =Yy, Y3, e AT, YiT, . Yam L ay)
of A. Since A — A¥ holds by logic, the assumption implies that
A“[X,d] +3-UBY - A%,

Since the types of Y are of degree 1 or (1, X) and those of z of degree 1 or
(0, X) (and hence a-fortiori of degree 1 or (1, X) so that

Ay, .. xn As(x, .oy 2, Va2, oo Yooy ooy, is an I-formula) we can apply
theorem 3.5 to conclude that A¥ holds in any (non-empty) b-bounded metric
space (X,d). By logic and the axiom of choice A" implies A so that the
corollary follows.

2) and 3) are proved analogously. O

4 Applications of 3-UB¥

In this sections we focus on applications of 3-UB® involving the types B. Of

course, since 3-UBY entails X9-UB, it also covers all the applications of the

T A similar argument is used already in [8].
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latter (see [13]).

4.1  Application 1:

We now show that 3-UB* strengthens the assumption of separability of the
bounded metric space (X, d) to total boundedness. This puts into focus the
phenomenon implicit already in the counterexample presented in [15] (p.91)
to the possibility of a metatheorem corresponding to theorem 3.5 for separable
spaces.

Definition 4.1 Let (X,d) be a totally bounded metric space. A function
a: IN — IN satisfying

J(an)nin XVE € Nz € X3In < a(k)(d(z, a,) < 27F)

is called a modulus to total boundedness.

Proposition 4.2 A“[X,d] + 3-UB¥ proves the following:

‘If (X, d) is separable, then (X,d) is totally bounded and has a modulus of
total boundedness a’.

More precisely

AY[X, d] + 3-UBY = VfOX(VEY, 253 (dx (f(n),z) <gr 27F) —
JaVES, 2% 3n < a(k)(dx(f(n),z) <gr 27F)).

Proof: 3-UBX applied to
VE?, 2X I’ (dx (f(n), ) <r 27")
yields (noticing that ‘dx(f(n),z) <g 27% is an I-formula) that
Ja'VE, 2% 3In < a(k)(dx(f(n),z) <gr 27%).

4.2 Application 2:

The next proposition shows that 3-UB* implies that every fX~* that rep-
resents a function : X — X, i.e. that respects =, is uniformly continuous
with a modulus of uniform continuity w. Moreover from the assumption that
all fX=X represent functions, 3-UB¥ allows one to derive that all functions
f X — X have a common modulus of uniform continuity. This corresponds
to the counterexample from [15] (p.115) to the possibility to add full exten-
sionality in theorem 3.5: If full extensionality is used in a proof it has to
follow as a consequence of uniform equi-continuity in order to permit the
extraction of uniform bounds. This is the case e.g. for nonexpansive func-
tions but (as discussed in [15,8]) not for directionally nonexpansive or weakly
quasi-nonexpansive functions where only the use of the quantifier-rule of ex-
tensionality is allowed.
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Proposition 4.3 Let
Ext(f*%) =Va™ y" (v =x y = f(2) =x f(y)).
1) A°[X,d] +3-UBY proves that
VA2 X(Bxt(f) —
SV, 2,y (dx () <m 20— dy (F(2), F0)) <m 2°5))
2) A“[X,d] +3-UB* proves that

VAR (Eat(f) —
VX 2y (dxe (2, y) <m 2790 = dx(f(2), f(y) <m 27F).

Proof: 1) By the definition of =y, the assumption Fxt(f) can be written as
Vo, yt (Vo (dx(z,y) <m 2") = VE (dx (f(2), f() <m 2°%)
and hence as
(4+) Vo, g VE I (dx (2, y) <r 27" — dx(f (), f(y)) <r 27F),
where
dx(w,y) <m 27" = dx(f(2), f(y)) <m 27
is (logically equivalent to) an 3-formula. Hence 3-UB¥X applied to (+) yields
3RS, oy (dx (2, y) <w 270 = dx(f(2), £(y) <w 27)

which establishes the claim.
2) is proved analogously by applying 3-UB¥ to

(+4+) VA7 VR I  (dx (z,y) < 27" — dx(f(2), f(y)) <r 2°7")
noticing that also the type X — X is admissible as a type 3 in 3-UBY. O

4.8 Application 3:

The next application shows that 3-UB¥ extends the usual WKL-applications
for compact spaces and continuous functions to bounded spaces and arbitrary
functions.

Proposition 4.4 Let 3 be of degree (-, X). Then A“[X,d] + F-UB* proves
the following

VO (VE Ty (|19 (y) |k <mr 27F) = TP (@(y) =R 0)).
This also holds for tuples of variables y2 as long as the types 3 are all of degree
(-, X). - B
Proof: Suppose that
vy’ (®(y) #r 0).
10
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Then

vy 3K (|2 (y) I >r 277)
and hence by 3-UB¥

IOV (12 (y) Im >r 27")

contradicting the assumption. a

4.4 Application 4:

In this application we show that 3-UB¥ allows one to make free use of fixed
points of nonexpansive mappings in proofs (and still obtain correct
K-conclusions) despite the fact that such fixed points in general do not exist
(not even for nonexpansive selfmappings of bounded, closed, convex subsets
of Banach spaces such as ¢y, see [22]).

Proposition 4.5 A“[X,d, W]+ 3-UB* proves the following

VXX (f nonerpansive — A (f(x) =x 7).

Proof: Since f(z) =x = <> dx(z, f(x)) =r 0 we obtain from the previous
application applied to ®(z) := dx(z, f(x)) that it suffices to show

VEO 3 (dx (o, f(2)) <r 27F).

This, however, follows from theorem 1 in [9] whose proof can be formalized in
A“IX, d, W], 0

Remark 4.6 The existence of approximate fixed points of nonexpansive map-
pings between bounded hyperbolic spaces used in the proof above rests strongly
on the presence of the hyperbolic structure provided by W and is false for gen-
eral bounded metric spaces: consider IR equipped with the truncated metric
D(z,y) := min(Jx — y|,1) and f: R — R with f(z) := 2 + 1. f is a nonex-
pansive (even isometric) selfmapping of the bounded metric space (IR, D) but
has no e-fixed points for 0 < e < 1.

4.5  Application 5:

There are numerous fixed point theorems for various classes of functions of so-
called contractive type (see [4,19,20,21]). Often compactness assumptions are
used to ensure certain uniform versions of contractivity and the assumption
of compactness can be replaced by boundedness if the functions are assumed
to satisfy the uniform contractivity notions. In the cause of proof mining,
the need to uniformize contractivity conditions on f has turned out to be
crucial as well (see e.g. [7,6,1,2]). 3-UB? is a general tool for producing such
uniformizations:

Definition 4.7 Let (X, d) be a metric space and f : X — X a selfmapping
11
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of X.
1) f is called contractive (see [4]) if

Vi,y € X(z 7y — d(f(2), fy)) < d(z,y)).
2) [ is called uniformly contractive with modulus o : IN — IN (see [19]) if

Vk € NVz,y € X(d(z,y) > 27F = d(f(z), f(y)) < (1 —27°®)) d(z, y)).

Proposition 4.8 A“[X,d] + 3-UB¥ proves the following: ‘every contractive
mapping f: X — X is uniformly contractive with some modulus a’.

Proof: Assume that
Vo, yt (o #x oy — dx(f(2), f(y) <m dx(2,7)).

Then

VX, g K03 (dx (1, y) >r 27 = dx (f(2), f(y) <w (1= 27")dx (2, ),
where

dx(z,y) 2r 27" = dx(f(2), (1)) <m (1 = 27")dx (2, y)
is an 3-formula. Hence I-UBY yields
3V, 2,y (dx () 2w 278 = dx (f(2), f(y) <m (1 —27°®)dx(z,1)).
O

In a similar way, 3-UB®¥ implies corresponding uniform versions of many other
more liberal notions of contractivity (see [20,21] and [1,2]).
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