
Repla
e this �le with prent
sma
ro.sty for your meeting,or with ent
sma
ro.sty for your meeting. Both 
an befound at the ENTCS Ma
ro Home Page.A logi
al uniform boundedness prin
iple forabstra
t metri
 and hyperboli
 spa
esUlri
h Kohlenba
hDepartment of Mathemati
s,Darmstadt University of Te
hnology,S
hlossgartenstra�e 7,D-64289 Darmstadt, GermanyAbstra
tWe extend the prin
iple �01-UB of uniform �01-boundedness introdu
ed earlier bythe author to a uniform boundedness prin
iple 9-UBX for abstra
t bounded metri
and hyperboli
 spa
es whi
h are not assumed to be 
ompa
t. Despite the fa
t thatthis prin
iple implies numerous results whi
h in general are true only for 
ompa
tspa
es (and 
ontinuous fun
tions) we 
an prove that for a large 
lass K of su
h
onsequen
es A the 
on
lusion A is true in arbitrary bounded spa
es even when9-UBX is used to fa
ilitate the proof of A. For a somewhat more restri
ted 
lass ofsenten
es A even e�e
tive uniform bounds 
an be extra
ted from su
h proofs.1 introdu
tionIn [15℄ and [8℄ general metatheorems are proved whi
h have the form of rulesof the following type: If 
ertain 89-senten
es are proved in 
lassi
al analy-sis A! augmented by abstra
t stru
tures X (A![X; : : :℄) as `Urelements' su
has metri
, hyperboli
 (in the sense of Kirk and Rei
h see [15℄) or CAT(0)spa
es (in the sense of Gromov), 1 then from a given proof one 
an extra
tan e�e
tive uniform bound whi
h holds in arbitrary su
h stru
tures and onlydepends on parameters from X via bounds on the metri
 ([15℄) or even justthe distan
es of some relevant elements ([8℄). So whereas for the general 
lassof Polish spa
es as well as for individual e�e
tively represented Polish spa
essu
h a uniformity is guaranteed only under a 
ompa
tness assumption (essen-tially due to the separability of the spa
e involved, see below and [16℄), in the
ase of proofs from general axioms for abstra
t 
lasses of spa
es as the onesmentioned above, metri
 boundedness is suÆ
ient.1 These papers also treat normed, uniformly 
onvex and inner produ
t spa
es (and in [17℄this has been adapted also to hyperboli
 spa
es in the sense of Gromov and IR-trees) butin the present arti
le we restri
t ourselves due to the limited spa
e to the ones mentioned.
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Kohlenba
hIn this paper we extend A![X; : : :℄ by a strong uniform boundedness prin
iple9-UBX whi
h states the above uniformity as an impli
ation (rather than arule). Despite the fa
t that this prin
iple allows one to derive many 
onse-quen
es whi
h are only true for 
ompa
t spa
es (and 
ontinuous fun
tions),for a large 
lass K of 
onsequen
es the 
orre
tness in arbitrary bounded metri
resp. hyperboli
 spa
es 
an be proved. 9-UBX extends the prin
iple �01-UB(introdu
ed in [12℄ and further studied in [14,5℄) for the Cantor spa
e C byin
luding abstra
t bounded metri
 spa
es X in addition to C: �01-UB hasproved to be useful in the 
ause of proof mining in the 
ontext of 
ompa
tPolish spa
es (see [13℄ and [1℄) as it allows one to give very short and 
odingfree proofs of many of the usual appli
ations of weak K�onig's lemma WKL.In addition �01-UB proves various 
lassi
ally false theorems su
h as the uni-form 
ontinuity (with modulus of 
ontinuity) of all extensional fun
tionals� : 2IN ! IN whi
h makes it possible to treat 
ontinuous fun
tions withoutexpli
itly having to refer to moduli of 
ontinuity. In the 
ase of 9-UBX ; whi
happlies even in the absen
e of 
ompa
tness 
onditions so that WKL is not ap-pli
able at all, the bene�ts are even bigger. As one of the appli
ations we willshow that it proves (relative to the extension of A! by the axioms for an ab-stra
t bounded hyperboli
 spa
e (X; d;W )) that every nonexpansive fun
tionf : X ! X has �xed points, where `nonexpansive' means that8x; y 2 X(d(f(x); f(y)) � d(x; y)):Although in general it is only true that su
h fun
tions have approximate �xedpoints (but not ne
essarily �xed points) this allows one to make free use of�xed points to fa
ilitate proofs of senten
es in K and nevertheless obtain
orre
t results (see [15℄ for a dis
ussion of the relevan
e of this point). Toa
hieve similar bene�ts, often ultrapowers of spa
es X are used in fun
tionalanalysis whi
h, however, in 
ontrast to our method usually prevent one fromgetting e�e
tive bounds on the 
on
lusion.2 Basi
 notionsDe�nition 2.1 1) The set T of all �nite types over 0 is de�ned indu
tivelyby the 
lauses (i) 0 2 T; (ii) �; � 2 T ) (�! �) 2 T:2) The set TX of all �nite types over the two ground types 0 and X isde�ned by (i) 0; X 2 TX ; (ii) �; � 2 TX ) (�! �) 2 TX :3) A type � 2 T has degree (�)1 if � = 0! : : :! 0 (in
luding � = 0).A type � 2 TX has degree (0; X) if � = 0 ! : : : ! 0 ! X (in
luding� = X).A type � 2 TX has degree (1; X) if it has the form �1 ! : : : ! �k ! X(in
luding � = X), where �i has degree 1 or (0; X).2



Kohlenba
hA type � 2 TX has degree (�; X) if it has the form �1 ! : : : ! �k ! X(in
luding � = X), where �1; : : : ; �k 2 TX are arbitrary.A type � 2 TX has degree (�; 0) if it has the form �1 ! : : : ! �k ! 0(in
luding � = 0), where �1; : : : ; �k 2 TX are arbitrary.In the following we often denote tuples x�11 ; : : : ; x�nn by x�:De�nition 2.2 For � 2 TX with � = �1 ! : : :! �k ! 0 (i.e. for � of degree(�; 0)) we de�ne a fun
tional min� of type �! �! � bymin�(x�; y�) := �v�11 ; : : : ; v�kk :min0(xv; yv)and a relation �� between obje
ts of type � byx �� y :� 8v�11 ; : : : ; v�kk (xv �0 yv)with the usual primitive re
ursively de�ned min0 and �0 :The theory A! for 
lassi
al analysis is the extension of the weakly exten-sional Peano arithmeti
 in all types WE-PA! by the s
hemata of quanti�er-free 
hoi
e QF-AC and dependent 
hoi
e DC for all types in T (formulated fortuples of variables). 2 The theories A![X; d℄ and A![X; d;W ℄ result by extend-ing A! to all types in TX and adding axioms for an abstra
t bounded metri
(in the 
ase of A![X; d℄) resp. bounded hyperboli
 (in the 
ase of A![X; d;W ℄)spa
e. A![X; d;W;CAT(0)℄ is the extension by an abstra
t bounded CAT(0)-spa
e. For details see [15℄ whi
h also treats the 
ase of normed spa
es. Corre-sponding theories for general (not ne
essarily bounded) metri
 and hyperboli
spa
es are studied in [8℄ (similar extensions by hyperboli
 spa
es in the senseof Gromov and by IR-trees have re
ently been de�ned in [17℄). Sin
e the re-sults in this paper are most natural and useful in the bounded 
ase we do not
onsider these latter theories here.That our theories are `weakly extensional' means that we only have Spe
-tor's quanti�er-free extensionality rule. In parti
ular, for the de�ned equalityx =X y :� (dX(x; y) =IR 0IR), we do not havex =X y ! fX!X(x) =X f(y)but only from a proof of s =X t 
an infer that f(s) =X f(t): As dis
ussed ingreat detail in [15℄, this restri
tion is 
ru
ial for our results. In pra
ti
e, weusually 
an prove the extensionality of f for those fun
tions we 
onsider, e.g.for nonexpansive fun
tions, so that this issue only o

asionally matters.De�nition 2.3 A formula F in L(A![X; d℄) or L(A![X; d;W ℄) is 
alled 8-formula (resp. 9-formula) if it has the form F � 8a�Fqf(a) (resp. F �9a�Fqf(a)) where Fqf does not 
ontain any quanti�er and the types in � areof degree 1 or (1; X): We 
all a formula a generalized 9-formula, if there areno restri
tions imposed on the types �:2 For DC the form with tuples is not stated in [15℄ but the proofs immediately work alsoin the presents of tuples. 3



Kohlenba
hReal numbers are represented as Cau
hy sequen
es of rationals with �xed rate2�n of 
onvergen
e whi
h in turn are en
oded as number theoreti
 fun
tionsf 1, where an equivalen
e relation f =IR g expresses that f 1; g1 denote the samereal numbers and �IR; <IR; j � jIR express the obvious relations and operationson the level of these 
odes. Here =IR;�IR2 �01 whereas <IR2 �01: Again details
an be found in [15℄.3 Main resultsDe�nition 3.1 The uniform boundedness s
hema 9-UBX for generalized 9-formulas and bounded abstra
t metri
 spa
es is de�ned as follows 39-UBX :� 8<:8y0!�(8k0; x�; z�9n0A9(y; k;min�(x; yk); z; n)!9�18k0; x�; z�9n �0 �k A9(y; k;min�(x; yk); z; n));where � is of degree (�; 0), � = �1; : : : ; �m is a tuple of types in TX of degree(�; X) and A9 is a generalized 9-formula whi
h may in addition to the variablesindi
ated may have arbitrary further parameters of arbitrary types.Remark 3.2 If A9(y; k; x; z; n) is extensional in x w.r.t.x1 =� x2 :� 8v(x1v =0 x2v), i.e. if8y; k; z; n; x1; x2(x1 =� x2 ^ A9(y; k; x1; z; n)! A9(y; k; x2; z; n));then 9-UBX 
an be rewritten equivalently as follows8<:8y0!�(8k08x �� yk8z�9n0A9(y; k; x; z; n)!9�18k08x �� yk8z�9n �0 �kA9(y; k; x; z; n));De�nition 3.3 Let � be as before.FX :� 8�; y9X � y9Z8k0; x�; z�(�(k;Xk; Zk) �0 �(k;min�(x; yk); z)):Here X has type 0! �, Zi has type 0! �i and � has type0! �! �1 ! : : :! �m ! 0:Lemma 3.4 A![X; d℄ + FX ` 9-UBX :Analogously for A![X; d;W ℄ and the other extensions we 
onsider.Proof: Assume 8k0; x�; z�9n0A9(y; k;min�(x; yk); z; n):3 For notational simpli
ity for formulate the prin
iple only for a single variable x but we
an here (and in the proofs below) also allow tuples as in the 
ase of z whi
h we do formulatefor tuples as it is used this way in our appli
ations. Using appropriate 
ontra
tions of tuplesof variables of degree (�; 0) into a single variable of degree (�; 0) one, alternatively, 
an alsoredu
e the 
ase with tuples x to the one we formulate.4



Kohlenba
hBy the s
hema of quanti�er-free 
hoi
e QF-AC from A![X; d℄ (whi
h is for-mulated for tuples of variables) it follows that there exists a fun
tional � su
hthat 8k0; x�; z�A9(y; k;min�(x; yk); z;�kxz):Sin
e A![X; d℄ ` min�(min�(x; yk); yk) =� min�(x; yk)we 
an use the quanti�er-free extensionality rule QF-ER from A![X; d℄ to
on
lude that8k0; x�; z�A9(y; k;min�(x; yk); z;�(k;min�(x; yk); z)):FX applied to � and y yields X(� y) and Z with8k0; x�; z�(�(k;Xk; Zk) �0 �(k;min�(x; yk); z)):Now de�ne �(k) := �(k;Xk; Zk): 2Theorem 3.5 1) Let �; � be types of degree 1 and � be a type of degree(1; X): Let s�!� be a 
losed term of A![X; d℄ and B8(x�; y�; z� ; u0)(C9(x�; y�; z� ; v0)) be a 8-formula 
ontaining only x; y; z; u free (resp. an9-formula 
ontaining only x; y; z; v free).If 8x�8y �� s(x)8z� (8u0B8(x; y; z; u)! 9v0C9(x; y; z; v))is provable in A![X; d℄ + 9-UBX , then one 
an extra
t a 
omputablefun
tional � : ININ�:::�IN� IN! IN su
h that for all x 2 ININ�:::�IN and allb 2 IN8y �� s(x)8z� [8u � �(x; b)B8(x; y; z; u)! 9v � �(x; b)C9(x; y; z; v)℄holds 4 in any (non-empty) b-bounded metri
 spa
e (X; d) (where bX isto be interpreted by the integer upper bound b on d). 5The 
omputational 
omplexity of � 
an be estimated in terms of thestrength of the A!-prin
iple instan
es a
tually used in the proof (seeremark 3.6 below).2) If the premise is proved in `A![X; d;W ℄+9-UBX' instead of `A![X; d℄+9-UBX ', then the 
on
lusion holds in all (non-empty) b-bounded hyperboli
spa
es.3) If the premise is proved in `A![X; d;W;CAT(0)℄ + 9-UBX ' instead of`A![X; d℄ + 9-UBX ', then the 
on
lusion holds in all (non-empty) b-bounded CAT(0)-spa
es.Instead of single variables x; y; z; u; v we may also have �nite tuples of variablesx; y; z; u; v as long as the elements of the respe
tive tuples satisfy the sametype restri
tions as x; y; z; u; v. Moreover, instead of a single premise of theform `8u0B8(x; y; z; u)' we may have a �nite 
onjun
tion of su
h premises.4 See [15℄ for the pre
ise de�nition of `holds'.5 Here bX is the 
onstant of type 0 from A! [X; d℄ representing an upper bound on dX .5



Kohlenba
hRemark 3.6 1) The proof of theorem 3.5 whi
h we will give below is basedon the proof of theorem 3.7 in [15℄ and will a
tually provide an extra
tionalgorithm for �. The fun
tional � is given by a 
losed term of WE-PA!+BR where BR refers to Spe
tor's s
hema of bar re
ursion ([23℄),i.e. � is a so-
alled bar re
ursive fun
tional. However, for 
on
rete proofsusually only small fragments of A![X; d;W ℄ (
orresponding to fragmentsof A! su
h as WE-PA!+QF-AC+WKL) will be needed to formalize theproof so that � will be of mu
h lower 
omplexity.2) Without the addition of the non-standard axiom 9-UBX the theorem isproved in [15℄ and again in [8℄ as a 
orollary to a more re�ned metathe-orem.Remark 3.7 The most important aspe
ts of theorem 3.5 are that the bound�(x; b) does not depend on y; z nor does it depend on X; d or W and thatthe 
on
lusion is true in all b-bounded metri
 spa
es (X; d), hyperboli
 spa
es(X; d;W ) and CAT(0)-spa
es, respe
tively, although the axiom 9-UBX is not(see below).Proof of theorem 3.5: 1. By the previous lemma, the assumption impliesthat A![X; d℄ + FX proves that8x�8y �� s(x)8z� (8u0B8(x; y; z; u)! 9v0C9(x; y; z; v)):As in [15℄ one shows that A![X; d℄+FX has a G�odel fun
tional interpretationin A![X; d;X ;Z℄� + ~FX+(BR), where 6A![X; d;X ;Z℄� := A![X; d;X ;Z℄ n f QF-AC gand~FX :� X � ��; y:y^8�; y; k; x; z�(�(k;X�yk;Z�yk) �0 �(k;min�(x; yk); z):Here (BR) is the s
hema of (simultaneous) bar re
ursion of Spe
tor (see[23,3,18℄) extended to the types TX (see [15℄) and A![X; d;X ;Z℄ results fromA![X; d℄ by adding new 
onstants X and Z of type (0 ! � ! �1 ! : : : !�m ! 0)! (0! �)! 0! � resp. (0! �! �1 ! : : :! �m ! 0)! (0!�)! 0! �i to the language.In addition to the proof given in [15℄ we only have to 
onsider the fun
tionalinterpretation ((FX)0)D of the negative translation (FX)0 of FX : 
learly (FX)0is intuitionisti
ally implied by FX so that it suÆ
es to solve the fun
tionalinterpretation (FX)D of FX : However, (FX)D pre
isely asks for fun
tionalsX ;Z satisfying8�; y; k0; x�; z�(X�y � y ^ (�(k;X�yk;Z�yk) �0 �(k;min�(x; yk); z)):6 Even the axiom of dependent 
hoi
e 
an be dropped as it disappears during the interpre-tation. But this is not needed here. 6



Kohlenba
hBut this is just what we provided for in A![X; d;X ;Z℄ + ~FX :The next step in the proof of theorem 3.7 in [15℄ 
onsists in establishing thatthe model M!;X of all strongly majorizable fun
tionals over IN and an arbi-trary nonempty bounded metri
 spa
e (X; d) is a model of A![X; d℄�+(BR)and, moreover, that for any 
losed term t of A![X; d℄�+(BR) one 
an 
on-stru
t a 
losed term t� of A![X; d℄�+(BR) whi
h does not 
ontain dX su
hthat M!;X j= t� s-maj t:We now extend this by showing thatM!;X j= A![X; d;X ;Z℄� + ~FX + (BR)for a suitable interpretation of the new 
onstants X and Z and that for any
losed term t of A![X; d;X ;Z℄�+(BR) we 
an 
onstru
t a 
losed term t� ofA![X; d℄�+(BR) whi
h does not 
ontain dX su
h thatM!;X j= t� s-maj t:Note that t� must not 
ontain any of the 
onstants X ;Z :We reason inM!;X: Let �; y; k be inM!;X with types as above and let ��; y�be strong majorants for �; y in M!;X : Sin
e min�(x; yk) �� yk and � aretypes of degree (�; X) it follows (using the trivial de�nition of s-majX) thaty�k s-maj min�(x; yk) ^ z�i := �v:0X s-maj zifor all k 2 IN and all x; z in M!;X of types � and � and suitable tuples ofvariables v: Hen
e8x 2 M!;X� ; z 2M!;X� (��(k; y�k; z�) �0 �(k;min�(x; yk); z)):Thus Max�;y;k := maxf�(k;min�(x; yk); z) : x 2M!;X� ^ z 2 M!;X� gexists (not that M!;X� 6= ; for all � 2 TX) and hen
e(+) 8�; y; k 2 M!;X9x; z 2 M!;X(x �� yk ^ �(k; x; z) =0 Max�;y;k):By the axiom of 
hoi
e applied to (+) we obtain fun
tionals � � ��; y:y and� su
h that x := ��yk and z := ��yk satisfy (+): We now put[X ℄M!;X := � ^ [Z℄M!;X := �:In order to show that �;� 2 M!;X we 
onstru
t 
losed terms X � and Z� su
hthat M!;X j= X � s-maj X ^ Z� s-maj Z:The terms X � := ��; y:y; Z�i := �v:0Xdo the job (using thatM!;X j= X � ��; y:y) for a suitable tuple v of variables,where the length of the tuple and the types of its 
omponents only depend on�i: It is 
lear that with this interpretation of X ;Z in M!;X the axiom ~FX is7



Kohlenba
hsatis�ed.The 
onstru
tion of t� from t now pro
eeds as in [15℄ with the additional
lauses that all o

urren
es of X ;Z are repla
ed by X �;Z�: The rest of theproof is exa
tly as in [15℄.2. and 3. are proved analogously. 2De�nition 3.8 The 
lass K of formulas 
onsists of all formulas F that are log-i
ally equivalent to a prenex normal form F 0 � 9x�11 8y�11 : : : 9x�nn 8y�nn F9(x; y)where F9 is an 9-formula, the types �i are of degree 0 and the types �i are ofdegree 1 or (1; X). If �i; : : : ; �n are of degree (1; X), then �i might even be ofdegree (�)1 or (0; X):Corollary 3.9 1) Let A be a senten
e in K: IfA![X; d℄ + 9-UBX ` A;then A holds in any (non-empty) b-bounded metri
 spa
e (X; d):If A does not 
ontain bX ; then it holds in any (non-empty) boundedmetri
 spa
e.2) If the premise is proved in `A![X; d;W ℄+9-UBX' instead of `A![X; d℄+9-UBX ', then the 
on
lusion holds in all (non-empty) b-bounded hyperboli
spa
es.3) If the premise is proved in `A![X; d;W;CAT(0)℄ + 9-UBX ' instead of`A![X; d℄ + 9-UBX ', then the 
on
lusion holds in all (non-empty) b-bounded CAT(0)-spa
es.Proof: 7 Let A be in prenex normal form of the form guaranteed by A 2 K:Consider the Herbrand normal formAH :� 8Y1; : : : ; Yn9x1; : : : ; xnA9(x1; : : : ; xn; Y1x1; : : : ; Ynx1 : : : xn)of A: Sin
e A! AH holds by logi
, the assumption implies thatA![X; d℄ + 9-UBX ` AH :Sin
e the types of Y are of degree 1 or (1; X) and those of x of degree 1 or(0; X) (and hen
e a-fortiori of degree 1 or (1; X) so that9x1; : : : ; xnA9(x1; : : : ; xn; Y1x1; : : : ; Ynx1 : : : xn is an 9-formula) we 
an applytheorem 3.5 to 
on
lude that AH holds in any (non-empty) b-bounded metri
spa
e (X; d). By logi
 and the axiom of 
hoi
e AH implies A so that the
orollary follows.2) and 3) are proved analogously. 24 Appli
ations of 9-UBXIn this se
tions we fo
us on appli
ations of 9-UBX involving the types �: Of
ourse, sin
e 9-UBX entails �01-UB, it also 
overs all the appli
ations of the7 A similar argument is used already in [8℄.8



Kohlenba
hlatter (see [13℄).4.1 Appli
ation 1:We now show that 9-UBX strengthens the assumption of separability of thebounded metri
 spa
e (X; d) to total boundedness. This puts into fo
us thephenomenon impli
it already in the 
ounterexample presented in [15℄ (p.91)to the possibility of a metatheorem 
orresponding to theorem 3.5 for separablespa
es.De�nition 4.1 Let (X; d) be a totally bounded metri
 spa
e. A fun
tion� : IN! IN satisfying9(an)n inX8k 2 IN8x 2 X9n � �(k)(d(x; an) < 2�k)is 
alled a modulus to total boundedness.Proposition 4.2 A![X; d℄ + 9-UBX proves the following:`If (X; d) is separable, then (X; d) is totally bounded and has a modulus oftotal boundedness �'.More pre
iselyA![X; d℄ + 9-UBX ` 8f 0!X(8k0; xX9n0(dX(f(n); x) <IR 2�k)!9�18k0; xX9n � �(k)(dX(f(n); x) <IR 2�k)):Proof: 9-UBX applied to8k0; xX9n0(dX(f(n); x) <IR 2�k)yields (noti
ing that `dX(f(n); x) <IR 2�k' is an 9-formula) that9�18k0; xX9n � �(k)(dX(f(n); x) <IR 2�k): 24.2 Appli
ation 2:The next proposition shows that 9-UBX implies that every fX!X that rep-resents a fun
tion : X ! X, i.e. that respe
ts =X , is uniformly 
ontinuouswith a modulus of uniform 
ontinuity !. Moreover from the assumption thatall fX!X represent fun
tions, 9-UBX allows one to derive that all fun
tionsf : X ! X have a 
ommon modulus of uniform 
ontinuity. This 
orrespondsto the 
ounterexample from [15℄ (p.115) to the possibility to add full exten-sionality in theorem 3.5: If full extensionality is used in a proof it has tofollow as a 
onsequen
e of uniform equi-
ontinuity in order to permit theextra
tion of uniform bounds. This is the 
ase e.g. for nonexpansive fun
-tions but (as dis
ussed in [15,8℄) not for dire
tionally nonexpansive or weaklyquasi-nonexpansive fun
tions where only the use of the quanti�er-rule of ex-tensionality is allowed. 9



Kohlenba
hProposition 4.3 LetExt(fX!X) :� 8xX ; yX(x =X y ! f(x) =X f(y)):1) A![X; d℄ + 9-UBX proves that8fX!X(Ext(f)!9!18k0; xX ; yX(dX(x; y) <IR 2�!(k) ! dX(f(x); f(y)) <IR 2�k)):2) A![X; d℄ + 9-UBX proves that8fX!X(Ext(f))!9!18fX!X ; k0; xX ; yX(dX(x; y) <IR 2�!(k) ! dX(f(x); f(y)) <IR 2�k):Proof: 1) By the de�nition of =X ; the assumption Ext(f) 
an be written as8xX ; yX(8n0(dX(x; y) �IR 2�n)! 8k0(dX(f(x); f(y)) <IR 2�k))and hen
e as(+) 8xX ; yX8k09n0(dX(x; y) �IR 2�n ! dX(f(x); f(y)) <IR 2�k);where dX(x; y) �IR 2�n ! dX(f(x); f(y)) <IR 2�kis (logi
ally equivalent to) an 9-formula. Hen
e 9-UBX applied to (+) yields9!18k0; xX ; yX(dX(x; y) �IR 2�!(k) ! dX(f(x); f(y)) <IR 2�k)whi
h establishes the 
laim.2) is proved analogously by applying 9-UBX to(++) 8fX!X8xX ; yX8k09n0(dX(x; y) �IR 2�n ! dX(f(x); f(y)) <IR 2�k)noti
ing that also the type X ! X is admissible as a type � in 9-UBX : 24.3 Appli
ation 3:The next appli
ation shows that 9-UBX extends the usual WKL-appli
ationsfor 
ompa
t spa
es and 
ontinuous fun
tions to bounded spa
es and arbitraryfun
tions.Proposition 4.4 Let � be of degree (�; X): Then A![X; d℄ + 9-UBX provesthe following 8��!1(8k09y�(j�(y)jIR <IR 2�k)! 9y�(�(y) =IR 0)):This also holds for tuples of variables y� as long as the types � are all of degree(�; X):Proof: Suppose that 8y�(�(y) 6=IR 0):10
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hThen 8y�9k0(j�(y)jIR >IR 2�k)and hen
e by 9-UBX 9k08y�(j�(y)jIR >IR 2�k)
ontradi
ting the assumption. 24.4 Appli
ation 4:In this appli
ation we show that 9-UBX allows one to make free use of �xedpoints of nonexpansive mappings in proofs (and still obtain 
orre
tK-
on
lusions) despite the fa
t that su
h �xed points in general do not exist(not even for nonexpansive selfmappings of bounded, 
losed, 
onvex subsetsof Bana
h spa
es su
h as 
0; see [22℄).Proposition 4.5 A![X; d;W ℄ + 9-UBX proves the following8fX!X(f nonexpansive ! 9xX(f(x) =X x)):Proof: Sin
e f(x) =X x $ dX(x; f(x)) =IR 0 we obtain from the previousappli
ation applied to �(x) := dX(x; f(x)) that it suÆ
es to show8k09xX(dX(x; f(x)) <IR 2�k):This, however, follows from theorem 1 in [9℄ whose proof 
an be formalized inA![X; d;W ℄: 2Remark 4.6 The existen
e of approximate �xed points of nonexpansive map-pings between bounded hyperboli
 spa
es used in the proof above rests stronglyon the presen
e of the hyperboli
 stru
ture provided byW and is false for gen-eral bounded metri
 spa
es: 
onsider IR equipped with the trun
ated metri
D(x; y) := min(jx � yj; 1) and f : IR ! IR with f(x) := x + 1: f is a nonex-pansive (even isometri
) selfmapping of the bounded metri
 spa
e (IR; D) buthas no "-�xed points for 0 < " < 1:4.5 Appli
ation 5:There are numerous �xed point theorems for various 
lasses of fun
tions of so-
alled 
ontra
tive type (see [4,19,20,21℄). Often 
ompa
tness assumptions areused to ensure 
ertain uniform versions of 
ontra
tivity and the assumptionof 
ompa
tness 
an be repla
ed by boundedness if the fun
tions are assumedto satisfy the uniform 
ontra
tivity notions. In the 
ause of proof mining,the need to uniformize 
ontra
tivity 
onditions on f has turned out to be
ru
ial as well (see e.g. [7,6,1,2℄). 9-UBX is a general tool for produ
ing su
huniformizations:De�nition 4.7 Let (X; d) be a metri
 spa
e and f : X ! X a selfmapping11
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hof X.1) f is 
alled 
ontra
tive (see [4℄) if8x; y 2 X(x 6= y ! d(f(x); f(y)) < d(x; y)):2) f is 
alled uniformly 
ontra
tive with modulus � : IN! IN (see [19℄) if8k 2 IN8x; y 2 X(d(x; y) > 2�k ! d(f(x); f(y)) < (1� 2��(k)) d(x; y)):Proposition 4.8 A![X; d℄ + 9-UBX proves the following: `every 
ontra
tivemapping f : X ! X is uniformly 
ontra
tive with some modulus �'.Proof: Assume that8xX ; yX(x 6=X y ! dX(f(x); f(y)) <IR dX(x; y)):Then8xX ; yX; k09n0(dX(x; y) �IR 2�k ! dX(f(x); f(y)) <IR (1� 2�n)dX(x; y));where dX(x; y) �IR 2�k ! dX(f(x); f(y)) <IR (1� 2�n)dX(x; y)is an 9-formula. Hen
e 9-UBX yields9�18k0; xX ; yX(dX(x; y) �IR 2�k ! dX(f(x); f(y)) <IR (1� 2��(k))dX(x; y)):2In a similar way, 9-UBX implies 
orresponding uniform versions of many othermore liberal notions of 
ontra
tivity (see [20,21℄ and [1,2℄).Referen
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