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1 Introduction

Deep Learning are methods, which fit deep (neural) networks to data. These methods

have achieved tremendous success in applications in the last ten years in the areas

1. mastering of games (AlphaGo from Google DeepMind won in 2015 against European

champion in Go),

2. image classification,

3. text classification,

4. machine translation,

5. simulation of human conversation (ChatGPT).

The reason for this success is twofold:

1. availability of huge data sets,

2. massive increasement of computing power.

The nowadays most popular deep (neural) networks are

1. feedforward neural networks,

2. convolutional neural networks,

3. transformer networks,

which will be introduced next.

1.1 Feedforward neural networks

Feedforward neural networks are biological motivated and try to mimic the human brain.

They use a very simple modeling of nerve cells by functions of the form

f : Rd → R, f(o1, . . . , od) = σ (w0 + w1 · o1 + · · ·+ wd · od) ,

where w0, . . . , wd ∈ R are the weights and σ : R→ R is the activation function.

Traditionally, functions which make a kind of thresholding are used for the activation

function, which can be described as follows:

Definition 1.1 A function σ : R→ R is called a squashing function if it is nondecreasing

and satisfies

lim
x→−∞

σ(x) = 0 and lim
x→∞

σ(x) = 1.
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Figure 1: Simple modelling of nerve cell

The simplest example of a squashing function is the treshold squasher

σ(x) = I{x∈[0,∞)},

which is not differentiable. A popular example of a differentiable squashing function is

the logistic squasher

σ(x) =
1

1 + exp(−x)
.

Nowadays often the so-called ReLU activation function (rectified linear unit) is used as

activation function:

σ(x) = max{x, 0}.

Using the above functions as building blocks, feedforward neural networks model networks

of nerve cells by functions fw : Rd → R of the form

(1) fw(x) =
r∑

k=1

w
(L)
k · f

(L)
w,k(x)

where

(2) f
(l)
w,i(x) = σ

(
r∑
j=1

w
(l−1)
i,j · f (l−1)

w,j (x) + w
(l−1)
i,0

)

(i ∈ {1, . . . , r}, l ∈ {2, . . . , L}) and

(3) f
(1)
w,i(x) = σ

(
d∑
j=1

w
(0)
i,j · x(j) + w

(0)
i,0

)

(i ∈ {1, . . . , r}).
Here σ is again the activation function, r ∈ N is the width of the network and L ∈ N is

the depth of the network. The vector w ∈ RK consists of all weights

w
(L)
k , w

(l−1)
i,j ,

i.e., w has

K = r + (L− 1) · r · (r + 1) + r · (d+ 1)

many components.
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Figure 2: Modelling of network of nerve cells

Definition 1.2 The space

F(L, r) = {fw : w ∈ RK}

of all functions fw defined by (1)-(3), where the topology (i.e., the structure) and the

activation function of the networks are fixed and where the weights vary, is called the

space of feedforward neural networks with depth L, width r and activation function σ.

Remark. a) The above function space is useful for regression, where the neural network

is used to predict a real number. For pattern recognition and classification, where one of

a finite number is to be predicted, the last layer of the network is often modified.

b) The above topology of the networks (L layers of hidden neurons with r neurons in each

layer) can be modified, e.g., by using layers with varying widths or by using sparse neural

networks where not all neurons of one layer have connections to all neurons in the next

layer, or by using skip connections between the layers (i.e., connections between layer l

and layers 0, . . . , l − 2).

1.2 Convolutional neural networks

Convolutional networks are applied to input which has some structure. In the sequel we

introduce them in connection which images, where the image is described by some d1×d2

dimensional matrix x with values in [0, 1]d1×d2 and the entry xi,j at position (i, j) describes

the grey scale value of the image at position (i, j).

Convolutional neural networks can be considered as feedforward neural networks where

1. The neurons are arranged in planes with positions corresponding to positions in

the image. In each layer there are several neurons for each position in the image,

and each neuron is connected only with neurons from the previous layer which

correspond to positions ”close” to its position.
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2. The weights are shared, more precisely: the same weights are used for neurons with

correspond to different positions.

3. There are additional pooling and subsampling layers.

We describe this as follows:

Let σ be the activation function, e.g. the ReLU function σ(x) = max{x, 0}. We next give

an example for an convolutional neural network. We start with

o
(0)
(i,j),1 = xi,j

((i, j) ∈ D = {1, . . . , d1} × {1, . . . , d2}), and then compute the output of L convolutional

layers by

o
(l)
(i,j),s2

= σ

kl−1∑
s1=1

∑
t1,t2∈{1,...,Ml}

(i+t1−1,j+t2−1)∈D

w
(l)
t1,t2,s1,s2o

(l−1)
(i+t1−1,j+t2−1),s1

+ w(l)
s2


for (i, j) ∈ D, s2 ∈ {1, . . . , kl} and l ∈ {1, . . . , L}, where k0 = 1, k1, . . . , kL−1 ∈ N are the

number of channels and M1, . . . ,Ml ∈ {1, 2, . . . ,min{d1, d2}} are the filter sizes.

Here one may see that weights generating the feature map o
(l)
(:,:),s2

are shared, which has

the advantage that it can reduce the model complexity and the duration of the networks’

training.

Finally we apply a global max-pooling layer:

fw,wbias,wout(x) = max

{ kL∑
s2=1

ws2 · o
(L)
(i,j),s2

: i ∈ {1, . . . , d1 −B + 1}

, j ∈ {1, . . . , d2 −B + 1}
}
,

where B ∈ {1, 2, . . . ,min{d1, d2}} is an output bound and where

w =
(
w

(l)
t1,t2,s1,s2

)
1≤t1,t2≤Ml,s1∈{1,...,kl−1},s2∈{1,...,kl},l∈{1,...,L}

,

wbias = (w(l)
s2

)s2∈{1,...,kr},l∈{1,...,L}

and

wout = (ws)s∈{1,...,kL}

are the weights of our convolutional network. To the output of this convolutional network

we can then apply a feedforward neural network.

Alternatively we could also insert a subsampling layer (or a local max-pooling layer) at

some point in the computation, which reduces the resultion of the image, e.g., (in case of

a subsampling layer) by choosing r ∈ {1, . . . ,min{d1, d2}} and by setting

o
(l)
(i,j),s2

= o
(l+1)
(1+(i−1)·r,1+(j−1)·r),s2
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for

(i, j) ∈
{

1, . . . , dd1

r
e
}
×
{

1, . . . , dd2

r
e
}

=: D′

at some layer l and by using D′ instead of D after this layer.

There exists various modifications of the above topology of a convolutional neural network.

1.3 Transformer networks

Transformer networks are applied to data which consists of sequences of data points. We

describe them next in the context of text data, i.e., our data is a sequence of words (which

we want, e.g., to translate in another language or which we want to classify, e.g., as hate

speech or not hate speech).

The first step is to transform the sequence of words in a sequences of real numbers, where

each word is decoded by a vector in Rd (word to vector conversion). Here the text is first

tokenized, then shared subword units are learned by starting with a symbol vocabulary

in which successively the most frequent occuring pairs of symbols within the tokens are

merged and are replaced by some newly introduced symbol until the final vocabulary size

(e.g., 32,000) is reached. Then each symbol in the vocabulary is assigned to a vector in

Rdmodel (either using values from some pretraining or using random values), and the text

to be considered is replaced by the sequence of vectors corresponding to its symbols. Here

often some additional coding of the position in the text (consisting of values from sinus

and cosinus) are added.

From now on we assume that each data point is of the form

x = (x1, . . . , xl) ∈ Rdmodel×l.

In principle, we could try to apply a feedforward neural network to such data. But since

dmodel · l might be rather large, this network will need too many parameters. One solution

is to use recurrent neural network, which see successively x1, x2, . . . , xl and use some of the

outputs they have computed just after seeing xi as additional inputs for the computation

of its output for xi+1. So these networks have recurrent connections as in Figure 3.

The problem with this approach is, that in text data there might by long ranging depen-

dencies between the words. Consider the following two examples of the occurence of the

word ”bank”:

1. I do not like this bank. The reason is that each time I walk into it, there is a long

queue at the counter.

2. I do not like this bank. The reason is that each time I sit on it my back hurts.

Here you cannot determine the meaning of ”bank” before you have seen words which

come long after the word ”bank”.
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Figure 3: Example of a recurrent network.

Instead of feedforward neural layers the transformer networks use another mechanism to

compute their output, the so-called maximal attention layers.

Starting with the above new representation

z0 = (z0,1, . . . , z0,l) ∈ Rdmodel×l

of the original input the transformer network computes successively representations

(4) zr = (zr,1, . . . , zr,l) ∈ Rdmodel×l

of the input for r = 1, . . . , N , and applies a feedforward neural network to zN . Here zr is

the representation of the input in level r. It depends on l parts which correspond to x1,

. . . , xl. And N is the number of pairs of attention and pointwise feedforward layers of

our transformer encoder.

Given zr−1 for some r ∈ {1, . . . , N} we compute zr by applying first a multi-head attention

and afterwards a pointwise feedforward neural network with one hidden layer. Both times

we will use an additional residual connection.

The computation of the multi-head attention depends on matrices

Wquery,r,s,Wkey,r,s ∈ Rdkey×dmodel and Wvalue,r,s ∈ Rdv×dmodel (s = 1, . . . , h),

where h ∈ N is the number of attention heads which we compute in parallel, where

dkey ∈ N is the dimension of the queries and the keys, and where dv = dmodel/h is the

dimension of the values. Here it is assumed that dmodel/h is a natural number and each of

the h attention heads will be used to compute a new part of length dv of the representation

zr,i of xi for i = 1, . . . , l. We use the above matrices to compute for each component zr−1,i

of zr−1 (i.e., for each representation of xi at level r−1 (i = 1, . . . , l)) corresponding queries

qr−1,s,i = Wquery,r,s · zr−1,i,

keys

kr−1,s,i = Wkey,r,s · zr−1,i
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and values

vr−1,s,i = Wvalue,r,s · zr−1,i

(s ∈ {1, . . . , h}, i ∈ {1, . . . , l}). Then the so-called attention between the component i of

zr−1 and the component j of zr−1 (i.e., between the representations of xi and xj at level

r − 1) is defined as the scalar product

(5) < qr−1,s,i, kr−1,s,j >

of the corresponding query and key, and the index ĵr−1,s,i for which the maximal value

occurs, i.e.,

ĵr−1,s,i = arg max
j∈{1,...,l}

< qr−1,s,i, kr−1,s,j >,

is determined. The value corresponding to this index is multiplied with the maximal

attention in (5) in order to define

ȳr,s,i = vr−1,s,ĵr−1,s,i
· max
j∈{1,...,l}

< qr−1,s,i, kr−1,s,j >

= vr−1,s,ĵr−1,s,i
· < qr−1,s,i, kr−1,s,ĵr−1,s,i

>

(s ∈ {1, . . . , h}, i ∈ {1, . . . , l}). Using a residual connection we compute the output of the

multi-head attention by

(6) yr = zr−1 + (ȳr,1, . . . , ȳr,l)

where

ȳr,i = (ȳr,1,i, . . . , ȳr,h,i) ∈ Rdv ·h = Rdmodel (i ∈ {1, . . . , l}).

Here yr ∈ Rdmodel×l has the same dimension as zr−1.

The output of the pointwise feedforward neural network depends on parameters

Wr,1 ∈ Rdff×dmodel , br,1 ∈ Rdff ,Wr,2 ∈ Rdmodel×dff , br,2 ∈ Rdmodel ,

which describe the weights in a feedforward neural network with one hidden layer and

dff ∈ N hidden neurons. This feedforward neural network is applied to each component

of (6) (which is analogous to a convolutionary neural network), i.e., to each representation

of x1, . . . , xl computed up to this point on level r, and computes

zr,i = yr,i +Wr,2 · σ (Wr,1 · yr,i + br,1) + br,2 (i ∈ {1, . . . , l}),

where we use again a residual connection. Here

σ(x) = max{x, 0}

is the ReLU activation function, which is applied to a vector by applying it to each

component of the vector separately. After computing zr,i (i ∈ {1, . . . , l}) we define zr by

(4).
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Given the output zN of the sequence of N multi-head attention and pointwise feedforward

layers, we can apply a feedforward neural network to this output to compute the output

of our transformer network.

In applications the maximal attention is defined by using the so–called softmax function.

Here we set for nonnegative real numbers u1, . . . , uK

softmax(u1, . . . , uK) =

(
eu1∑K
k=1 e

uk
, . . . ,

euK∑K
k=1 e

uk

)
,

which is a vector in [0, 1]K which ideally has a one in the maximal component of (u1, . . . , uK)

and zeros in all other components. Using this function one defines the maximal attention

by

ȳr,s,i =
e<qr−1,s,i,kr−1,s,1>∑l
j=1 e

<qr−1,s,i,kr−1,s,j>
· vr−1,s,1 + · · ·+ e<qr−1,s,i,kr−1,s,l>∑l

j=1 e
<qr−1,s,i,kr−1,s,j>

· vr−1,s,l.

Above we have described a Transformer encoder. In applications like machine translation

an encoder-decoder structure is used.

1.4 Learning of deep (neural) networks

In statistical applications of deep learning the aim is to fit a deep (neural) network

fw : Rd → R

to data

(x1, y1), . . . , (xn, yn),

where the data points can be, e.g., points from Rd × R or from Rd × {−1, 1}. Here fw is

computed by

(7) fw(x) =
r∑

k=1

w
(L)
1,k · o

(L)
k ,

(8) o
(l)
k = σ(a

(l)
k ) for l ∈ {1, . . . , L},

(9) a
(l)
i =

r∑
j=1

w
(l−1)
i,j · o(l−1)

j + w
(l−1)
i,0

for l ∈ {2, . . . , L} and

(10) a
(1)
i =

d∑
j=1

w
(0)
i,j · x(j) + w

(0)
i,0 .
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From (7)-(10) we see that the input is propagated through the network in order to compute

the function value, i.e., we compute successively

a
(1)
1 , . . . , a

(1)
d

o
(1)
1 , . . . , o

(1)
d

a
(2)
1 , . . . , a(2)

r

o
(2)
1 , . . . , o(2)

r

...

a
(L)
1 , . . . , a(L)

r

o
(L)
1 , . . . , o(L)

r

fw(x).

In order to compute the weight vector w of our network, we first choose a so–called loss

function

l(y, z) ≥ 0,

e.g.,

l(y, z) =
1

2
· (y − z)2

(least squares loss) for y, z ∈ R or

l(y, z) = log(1 + exp(−y · z))

(logistic loss) for y ∈ {−1, 1}, z ∈ R. Then we try to choose w such that the empirical

risk

(11) r̂(w) =
1

n

n∑
i=1

l(yi, fw(xi))

is small.

Since l(y, fw(x)) depends nonlinearly on w, we use gradient descent to achieve this: We

choose a starting value

w(0)

(e.g., randomly from some proper distribution), and set

w(t+1) = w(t) − λ · ∇w

(
r̂(w(t))

)
for t = 0, 1, . . . , T − 1, where λ > 0 is the stepsize and T ∈ N is the number of gradient

descent steps.

Here the gradient ∇w (r̂(w)) is the vector of all partial derivatives

(12)
∂

∂w
(l)
i,j

r̂(w),
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so in order to compute the gradient we need to be able to compute the partial derivatives

in (12).

This is possible by a simple algorithm (so-called backpropagation), which we derive next

by an application of the chain rule.

We have
∂

∂w
(l)
i,j

r̂(w) =
1

n

n∑
s=1

∂

∂z
l(ys, fw(xs)) ·

∂

∂w
(l)
i,j

fw(xs),

where
∂

∂w
(L)
1,j

fw(xs) =
∂

∂w
(L)
1,j

(
r∑

k=1

w
(L)
1,k · o

(L)
k

)
= o

(L)
j ,

and for l < L
∂

∂w
(l)
i,j

fw(xs) =
r∑
s=1

w
(L)
1,s · σ′(a(L)

s ) · ∂

∂w
(l)
i,j

(a(L)
s ).

Furthermore, for l ∈ {2, . . . , L} we have

∂

∂w
(l−1)
k,j

(a
(l)
k ) = o

(l−1)
j ,

∂

∂w
(l−1)
i,j

(a
(l)
k ) = 0 (i 6= k)

(with o
(l−1)
0 = 1), and in case m < l − 1

∂

∂w
(m)
i,j

(a
(l)
k ) =

r∑
s=1

w
(l−1)
k,s · σ′(a(l−1)

s ) · ∂

∂w
(m)
i,j

(a(l−1)
s ).

In addition, it holds

∂

∂w
(0)
i,j

(a
(1)
i ) = x(j),

∂

∂w
(0)
i,j

(a
(1)
k ) = 0 (i 6= k)

(with x(0) = 1).

In case of l(y, z) = 1
2
· (y − z)2 we have

∂

∂z
l(ys, fw(xs)) = (ys − fw(xs)) · (−1),

and we see that with the formulas above the so–called residual error

ys − fw(xs)

of the neural network is propagated back through the network during the computation of

the gradient. More precisely, if we recursively compute

δ
(L+1)
1 = fw(xs)− ys,

δ
(L)
i = σ′(a

(L)
i ) · w(L)

1,i · δ
(L+1)
1 (i = 1, . . . , r)

and

δ
(l)
i = σ′(a

(l)
i ) ·

r∑
j=1

w
(l)
j,i · δ

(l+1)
j (i = 1, . . . , r, l = 1, . . . , L− 1)
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then we have

(fw(xs)− ys) ·
∂fw(xs)

∂w
(l)
i,j

= δ
(l+1)
i · o(l)

j .

Here the above formulas can be either verified by the formulas derived above, or directly

derived from the chain rule provided we set

δ
(l)
j =

∂fw(xs)

∂a
(l)
j

.

To see this observe
∂fw(xs)

∂w
(l)
i,j

=
∂fw(xs)

∂a
(l+1)
i

· ∂a
(l+1)
i

∂w
(l)
i,j

and
∂fw(xs)

∂a
(m)
i

=
r∑

k=1

∂fw(xs)

∂a
(m+1)
k

· ∂a
(m+1)
k

∂a
(m)
i

for m < L.
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2 Neural network approximation

2.1 Introduction

In this chapter we investigate how well smooth functions f : Rd → R can be approximated

by neural networks. We consider only ReLU networks, neural networks with squashing

functions as activation functions will be considered in the practicing course.

We use the following definition in order to describe what are the smooth functions which

we want to approximate by neural networks:

Definition 2.1 Let p = k+β for some k ∈ N0 and 0 < β ≤ 1, and let C > 0. A function

f : Rd → R is called (p, C)-smooth, if for every α = (α1, . . . , αd) ∈ Nd
0 with

∑d
j=1 αj = k

the partial derivative ∂kf
∂α1x(1)...∂αdx(d)

exists and satisfies∣∣∣∣ ∂kf

∂α1x(1) . . . ∂αdx(d)
(x)− ∂kf

∂α1x(1) . . . ∂αdx(d)
(z)

∣∣∣∣ ≤ C · ‖x− z‖β

for all x, z ∈ Rd, where N0 is the set of non-negative integers.

So (p, C)–smooth functions are functions whose derivatives of order k are Hölder continu-

ous with exponent β and Hölder constant C. In particular, (p, C)–smooth functions with

p ≤ 1 are Hölder continuous with Hölder exponent p.

The aim in the sequel is to derive for given spaces F of neural networks upper bounds on

d(g,F , ‖ · ‖∞,[−A,A]d) = inf
f∈F
‖g − f‖∞,[−A,A]d

for (p, C)–smooth functions g : Rd → R. Here we are particularly interested how the

derived upper bound depends on the number of nonzero weights in the space F of neural

networks.

In order to understand what we can expect as a result we first derive a result for a space

of piecewise polynomials. To do this, we use the next lemma.

Lemma 2.1 Let p = k + β for some k ∈ N0 and 0 < β ≤ 1, and let C > 0. Let

f : Rd → R be a (p, C)–smooth function, let x0 ∈ Rd and let pk be the Taylor polynomial

of f of total degree k around x0, i.e.,

pk(x) =
∑

j1,...,jd∈{0,1,...,k},
j1+···+jd≤k

1

j1! · · · jd!
· ∂j1+···+jdf

∂j1x(1) . . . ∂jdx(d)
(x0) · (x(1) − x(1)

0 )j1 · · · (x(d) − x(d)
0 )jd .

Then we have for any x ∈ Rd

|f(x)− pk(x)| ≤ c1 · C · ‖x− x0‖p

for some constant c1 ∈ R depending only on k and on d.
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Proof. We start the proof with a repition of some basic facts about Taylor polynomials.

Let f : R → R be (k + 1)–times differentiable function, then integration by parts shows

the standard integral form of the remainder of the Taylor polynomial:

f(x) = f(x0) +
f (1)(x0)

1!
· (x− x0)1 + · · ·+ f (k)(x0)

k!
· (x− x0)k +

∫ x

x0

f (k+1)(t)

k!
· (x− t)kdt.

Next let f : Rd → R be (p, C)–smooth and define

h(s) = f(x0 + s · (x− x0)) (s ∈ R).

Then the above formula implies

f(x) = h(1) = h(0) +
h(1)(0)

1!
· (1− 0)1 + · · ·+ h(k)(0)

k!
· (1− 0)k +

∫ 1

0

h(k+1)(t)

k!
· (1− t)kdt.

Using the chain rule we get

h(k)(s)

k!
=

1

k!
·

d∑
j1=1

· · ·
d∑

jk=1

∂kf

∂x(j1) . . . ∂x(jk)
(x0 + s · (x− x0)) · (x(j1) − x(j1)

0 ) · · · (x(jk) − x(jk)
0 )

=
∑

j1,...,jd∈{0,1,...,k},
j1+···+jd=k

1

j1! · · · jd!
· ∂j1+···+jdf

∂j1x(1) . . . ∂jdx(d)
(x0 + s · (x− x0))

·(x(1) − x(1)
0 )j1 · · · (x(d) − x(d)

0 )jd .

Combining this with the previous result we get the integral form of the remainder of the

multivariate Taylor polynomial of order k − 1:

f(x) =
∑

j1,...,jd∈{0,1,...,k−1},
j1+···+jd≤k−1

1

j1! · · · jd!
· ∂j1+···+jdf

∂j1x(1) . . . ∂jdx(d)
(x0) · (x(1) − x(1)

0 )j1 · · · (x(d) − x(d)
0 )jd

+
∑

j1,...,jd∈{0,1,...,k},
j1+···+jd=k

k

j1! · · · jd!
·
∫ 1

0

(1− t)k−1 ∂j1+···+jdf

∂j1x(1) . . . ∂jdx(d)
(x0 + t · (x− x0)) dt

·(x(1) − x(1)
0 )j1 · · · (x(d) − x(d)

0 )jd .

Now we start our proof. The definition of pk and the above integral form of the remainder

of a Taylor series imply

15



f(x)− pk(x)

= f(x)− pk−1(x)−
∑

j1,...,jd∈{0,1,...,k},
j1+···+jd=k

1

j1! · · · jd!
· ∂j1+···+jdf

∂j1x(1) . . . ∂jdx(d)
(x0)

·(x(1) − x(1)
0 )j1 · · · (x(d) − x(d)

0 )jd

=
∑

j1,...,jd∈{0,1,...,k},
j1+···+jd=k

k

j1! · · · jd!
·
∫ 1

0

(1− t)k−1 · ∂j1+···+jdf

∂j1x(1) . . . ∂jdx(d)
(x0 + t · (x− x0)) dt

·(x(1) − x(1)
0 )j1 · · · (x(d) − x(d)

0 )jd

−
∑

j1,...,jd∈{0,1,...,k},
j1+···+jd=k

k

j1! · · · jd!
·
∫ 1

0

(1− t)k−1 ∂j1+···+jdf

∂j1x(1) . . . ∂jdx(d)
(x0) dt

·(x(1) − x(1)
0 )j1 · · · (x(d) − x(d)

0 )jd

=
∑

j1,...,jd∈{0,1,...,k},
j1+···+jd=k

k

j1! · · · jd!
· (x(1) − x(1)

0 )j1 · · · (x(d) − x(d)
0 )jd

·
∫ 1

0

(1− t)k−1

(
∂j1+···+jdf

∂j1x(1) . . . ∂jdx(d)
(x0 + t · (x− x0))− ∂j1+···+jdf

∂j1x(1) . . . ∂jdx(d)
(x0)

)
dt.

Using the triangle inequality and the (p, C)–smoothness of f we conclude

|f(x)− pk(x)|

≤
∑

j1,...,jd∈{0,1,...,k},
j1+···+jd=k

k

j1! · · · jd!
· ‖x− x0‖k ·

∫ 1

0

(1− t)k−1 · C · tβ · ‖x− x0‖β dt

≤ c1 · C · ‖x− x0‖k+β,

which completes the proof. 2
Let A > 0, K ∈ N and consider a partition of [−A,A]d in Kd cubes of side length

(2 · A)/K. Let F be the set of all functions which are on each set of this partition equal

to a polynomial of total degree k or less. Let g be an arbitrary (p, C)–smooth function.

By choosing f on each set in the partition as the Taylor polynomial to g of Lemma 2.1

with x0 arbitrary chosen from the considered set, we get by Lemma 2.1

‖g − f‖∞,[−A,A]d ≤ c1 · C ·
(√

d · 2A

K

)p
,

so we see that the above space of piecewise polynomials (which has c2 ·Kd many param-

eters) satisfies

d(g,F , ‖ · ‖∞,[−A,A]d) ≤ c3 ·
1

Kp

for any (p, C)–smooth function. This implies, that with a suitable space of piecewise

polynomials with K parameters we get

d(g,F , ‖ · ‖∞,[−A,A]d) = O
(
K−

p
d

)
16



for any (p, C)–smooth function g : Rd → R.

In the sequel we will show a similar result for deep neural networks.

2.2 Approximation power of deep neural networks

Let A > 0 be fixed. We define a local convex combination of Taylor polynomials, which

we will later approximate by deep neural networks.

For K ∈ N and i = (i(1), . . . , i(d)) ∈ {0, . . . , K}d set

xi =

(
−A+ i(1) · 2A

K
, . . . ,−A+ i(d) · 2A

K

)
and let

{i1, . . . , i(K+1)d} = {0, . . . , K}d.

For k ∈ {1, . . . , (K + 1)d} let

pik(x) =
∑

j1,...,jd∈{0,...,q}
j1+···+jd≤q

1

j1! · · · jd!
· ∂j1+···+jdg

∂j1x(1) · · · ∂jdx(d)
(xik) · (x(1) − x(1)

ik
)j1 · · · (x(d) − x(d)

ik
)jd

be the the Taylor polynomial of g with order q around xik and set

P (x) =

(K+1)d∑
k=1

pik(x) ·
d∏
j=1

(
1− K

2A
· |x(j) − x(j)

ik
|
)

+

=

(K+1)d∑
k=1

∑
j1,...,jd∈{0,...,q}
j1+···+jd≤q

1

j1! · · · jd!
· ∂j1+···+jdg

∂j1x(1) · · · ∂jdx(d)
(xik) ·

d∏
i=1

(x(i) − x(i)
ik

)ji

·
d∏
j=1

(
1− K

2A
· |x(j) − x(j)

ik
|
)

+

,(13)

where z+ = max{z, 0} (z ∈ R).

Because of

d∏
j=1

(
1− K

2A
· |x(j) − x(j)

ik
|
)

+

≥ 0 and

(K+1)d∑
k=1

d∏
j=1

(
1− K

2A
· |x(j) − x(j)

ik
|
)

+

= 1

for x ∈ [−A,A]d (where the equality holds because of

(K+1)d∑
k=1

d∏
j=1

(
1− K

2a
· |x(j) − x(j)

ik
|
)

+

=
K∑
k=0

(
1− K

2A
· |x(1) − (−A+ k · 2A

K
)|
)

+

· . . . ·
K∑
k=0

(
1− K

2A
· |x(d) − (−A+ k · 2A

K
)|
)

+

17



and
K∑
k=0

(
1− K

2A
· |u− (−A+ k · 2A

K
)|
)

+

= 1

for all u ∈ [−A,A]), and

d∏
j=1

(
1− K

2A
· |x(j) − x(j)

ik
|
)

+

= 0

if ‖x − xik‖∞ ≥ 2A/K, P (x) is a local convex combination of Taylor polynomials of

m. Consequently we can conclude from Lemma 2.1 that for any (p, C)–smooth function

g : Rd → R (where p = q + β for some q ∈ N0 and 0 < β ≤ 1) and for any x ∈ [−A,A]d

we have

|P (x)− g(x)|

=

∣∣∣∣∣∣
(K+1)d∑
k=1

(pik(x)− g(x))
d∏
j=1

(
1− K

2A
· |x(j) − x(j)

ik
|
)

+

∣∣∣∣∣∣
≤

(K+1)d∑
k=1

|pik(x)− g(x)|
d∏
j=1

(
1− K

2A
· |x(j) − x(j)

ik
|
)

+

=
∑

k=1,...,(K+1)d,‖x−xik‖∞<2A/K

|pik(x)− g(x)|
d∏
j=1

(
1− K

2A
· |x(j) − x(j)

ik
|
)

+

≤ c1 ·
1

Kp
·

∑
k=1,...,(K+1)d,‖x−xik‖∞<2A/K

d∏
j=1

(
1− K

2A
· |x(j) − x(j)

ik
|
)

+

≤ c1 ·
1

Kp
.

In the sequel we derive a neural network with ReLU activation function which approxi-

mates (13).

Our starting point is the following approximation of the square function by a deep ReLU

network.

Lemma 2.2 (Yarotsky (2017)) Let σ : R → R be the ReLU activation function σ(x) =

max{x, 0}. Then for any R ∈ N and any a ≥ 1 a neural network

f̂sq ∈ F(R, 9)

exists such that ∣∣∣f̂sq(x)− x2
∣∣∣ ≤ a2 · 4−R

holds for x ∈ [−a, a].

Proof. We consider the ”tooth” function g : [0, 1]→ [0, 1]

g(x) =

2x , x ≤ 1
2

2 · (1− x) , x > 1
2

18



and the iterated function

gs(x) = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
s times

(x).

In a first step of the proof we show by induction that

gs(x) =

2s
(
x− 2k

2s

)
, x ∈

[
2k
2s
, 2k+1

2s

]
, k = 0, 1, . . . , 2s−1 − 1

2s
(

2k
2s
− x
)

, x ∈
[

2k−1
2s
, 2k

2s

]
, k = 1, 2, . . . , 2s−1

.

For s = 1 this follows directly from the definition of g and g1. For the induction step

we remark that (gs ◦ g)(x) = gs(2x) whenever x ∈ [0, 1
2
] and that g(x) = g(1 − x). This

combined with the symmetry of gs (by the inductive hypothesis) implies that for every

x ∈ [0, 1
2
]

gs+1(x) = gs(g(x)) = gs(2x) = gs(1− 2x) = gs

(
2 · (1

2
− x)

)
= gs

(
g

(
1

2
− x
))

= gs

(
g

(
x+

1

2

))
= gs+1

(
x+

1

2

)
.

Consequently it suffices to consider x ∈ [0, 1
2
] which means

(gs ◦ g)(x) = gs(2x)

and together with the inductive hypothesis we have

(gs ◦ g)(x) =

2s · (2x− 2k
2s

) , 2x ∈ [2k
2s
, 2k+1

2s
], k = 0, 1, . . . , 2s−1 − 1

2s · (2k
2s
− 2x) , 2x ∈ [2k−1

2s
, 2k

2s
], k = 1, 2, . . . , 2s−1

=

2s+1 · (x− 2k
2s+1 ) , x ∈ [ 2k

2s+1 ,
2k+1
2s+1 ], k = 0, 1, . . . , 2s − 1

2s+1 · ( 2k
2s+1 − x) , x ∈ [2k−1

2s+1 ,
2k

2s+1 ], k = 1, 2, . . . , 2s,

which shows the assertion.

In a second step of the proof we show that the function f(x) = x2, x ∈ [0, 1] can be

approximated by linear combinations of functions gs. Let SR be a piecewise linear inter-

polation of f with 2R + 1 uniformly distributed breakpoints k
2R

, k = 0, . . . , 2R

SR

(
k

2R

)
=

(
k

2R

)2

.

To determine the error of that piecewise linear interpolation we define the auxiliary func-

tion

F (z) = f(z)− SR(z) +
SR(x)− f(x)

(x− k
2R

)(x− k+1
2R

)
· (z − k

2R
)(z − k + 1

2R
)

for x ∈ [ k
2R
, k+1

2R
] and k = 0, . . . , 2R − 1.

We note that F ( k
2R

) = 0, F (k+1
2R

) = 0 and F (x) = 0. According to Rolle’s theorem, there
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must be a point z1, where k
2R

< z1 < x and F ′(z1) = 0 and there must be a point z2,

where x < z2 <
k+1
2R

and F ′(z2) = 0. Using Rolle’s theorem again, there must be a point

η where z1 < η < z2 and F ′′(η) = 0. Thus we get for any x ∈ [ k
2R
, k+1

2R
]

0 = F ′′(η) = f ′′(η) +
Sr(x)− f(x)

(x− k
2R

) · (x− k+1
2R

)
,

which implies

|f(x)− SR(x)| =
∣∣∣∣−f ′′(η)

2
· (x− k

2R
)(x− k + 1

2R
)

∣∣∣∣
≤
∣∣∣∣(x− k

2R
)(x− k + 1

2R
)

∣∣∣∣ ≤ 2−2R−2,

where the last inequality follows since the maximum of

h(x) := (x− k

2R
)(
k + 1

2R
− x)

is given by h
(
k

2R
+ 1

2
· 1

2R

)
.

Furthermore refining the interpolation from SR−1 to SR amounts to adjusting it by a

function proportional to a sawtooth function:

SR−1(x)− SR(x) =
gR(x)

22R
.

To see this, consider let k ∈ {0, 1, . . . , 2R−1 − 1} and assume x ∈ [k/2R−1, (k + 1)/2R−1].

Since SR−1(x) − SR(x) and gR(x) are on both intervals [k/2R−1, (k + 1/2)/2R−1] and

[(k + 1/2)/2R−1, (k + 1)/2R−1] linear, vanish at k/2R−1 and (k + 1)/2R−1 and

gR((k + 1/2)/2R−1) = 1,

we have for all x ∈ [k/2R−1, (k + 1)/2R−1]:

SR−1(x)− SR(x) = (SR−1((k + 1/2)/2R−1)− SR((k + 1/2)/2R−1)) · gR(x).

By definition of SR−1 and SR we have

SR−1((k + 1/2)/2R−1) =
(k/2R−1)2 + ((k + 1)/2R−1)2

2

and

SR((k + 1/2)/2R−1)) = ((k + 1/2)/2R−1)2.

Using
a2 + b2

2
− ((a+ b)/2)2 =

a2 − 2 · a · b+ b2

4
=

(a− b)2

4
we get

(SR−1((k + 1/2)/2R−1)− SR((k + 1/2)/2R−1)) =
((k + 1)/2R−1 − (k/2R−1)2

4
=

1/22R−2

4

=
1

22R
,
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which implies the assertion.

Since S0(x) = x we can recursively conclude that

SR(x) = x−
R∑
s=1

gs(x)

22s

with

|SR(x)− x2| ≤ 2−2R−2

for x ∈ [0, 1].

In a third step of the proof we show, that there exists a feedforward neural network that

computes SR(x) for x ∈ [0, 1]. The function g(x) can be implemented by the network

f̂g(x) = 2 · σ(x)− 4 · σ(x− 1

2
) + 2 · σ(x− 1)

and the function gs(x) can be implemented by a network

f̂gs ∈ F(s, 3)

with

f̂gs(x) = f̂g(f̂g(. . . (f̂g︸ ︷︷ ︸
s

(x))).

Let

f̂id(z) = σ(z)− σ(−z)

with

f̂ 0
id(z) = z (z ∈ R)

f̂ t+1
id (z) = f̂id(f̂

t
id(z)) (z ∈ R, t ∈ N0)

be the network satisfying

f̂ tid(z) = z.

By combining the networks above we can implement the function SR(x) by a network

f̂sq[0,1] ∈ F(R, 7)

recursively defined as follows: We set f̂1,0(x) = f̂2,0(x) = x and f̂3,0(x) = 0. Then we set

f̂1,i+1(x) = f̂id(f̂1,i(x)),

f̂2,i+1(x) = f̂g(f̂2,i(x))

and

f̂3,i+1(x) = f̂id(f̂3,i(x))− f̂g(f̂2,i(x))/22(i+1)

for i ∈ {0, 1, . . . , R− 2} and

f̂sq[0,1](x) = f̂id(f̂1,R−1(x) + f̂3,R−1(x))− f̂g(f̂2,R−1(x))/22R.
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By induction it is easy to see that we have

f̂1,i(x) = x, f̂2,i(x) = gi(x) and f̂3,i(x) = −
i∑

r=1

gr(x)

22r

which implies

f̂sq[0,1](x) =x−
R−1∑
r=1

gr(x)

22r
− gR(x)

22R
= SR(x),

hence f̂sq[0,1](x) satisfies

(14) |f̂sq[0,1](x)− x2| ≤ 2−2R−2

for x ∈ [0, 1]. It is easy to see that f̂sq[0,1] can be computed by a ReLU neural network

with R layers and 2 + 3 + 2 = 7 neurons per layer.

In a last step of the proof we show that we can also approximate the function f(x) = x2

by a neural network, if x ∈ [−a, a]. Therefore let ftran : [−a, a]→ [0, 1] with

ftran(z) =
z

2a
+

1

2

be the function that transfers the value of x ∈ [−a, a] in the interval, where (14) holds.

Set

f̂sq(x) = 4a2f̂sq[0,1](ftran(x))− 2a · f̂Rid(x)− a2.

Since

x2 = 4a2 ·
(
x

2a
+

1

2

)2

− 2ax− a2

we have

|f̂sq(x)− x2|
≤4a2 · |f̂sq[0,1](ftran(x))− (ftran(x))2|+ 2a|f̂Rid(x)− x|
≤4a2 · 2−2R−2 = a2 · 4−R.

2
We can use the network of Lemma 2.2 to construct a network which approximates the

product of two numbers.

Lemma 2.3 Let σ : R → R be the ReLU activation function σ(x) = max{x, 0}. Then

for any R ∈ N and any a ≥ 1 a neural network

f̂mult ∈ F(R, 18)

exists such that

|f̂mult(x, y)− x · y| ≤ 2 · a2 · 4−R

holds for all x, y ∈ [−a, a].
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Proof. Let

f̂sq ∈ F(R, 9)

be the neural network from Lemma 2.2 satisfying

|f̂sq(x)− x2| ≤ 4 · a2 · 4−R

for x ∈ [−2a, 2a], and set

f̂mult(x, y) =
1

4
·
(
f̂sq(x+ y)− f̂sq(x− y)

)
.

Since

x · y =
1

4

(
(x+ y)2 − (x− y)2

)
we have

|f̂mult(x, y)− x · y| ≤ 1

4
·
∣∣∣f̂sq(x+ y)− (x+ y)2

∣∣∣+
1

4
·
∣∣∣(x− y)2 − f̂sq(x− y)

∣∣∣
≤ 1

4
· 2 · 4 · a2 · 4−R

≤ 2 · a2 · 4−R

for x, y ∈ [−a, a]. 2

Next we extend the previous lemma such that the network computes the product of finitely

many numbers.

Lemma 2.4 Let σ : R → R be the ReLU activation function σ(x) = max{x, 0}. Then

for any a ≥ 1 and any R ∈ N with R ≥ log4(2 · 42d · a2d) a neural network

f̂mult,d ∈ F(R · dlog2(d)e, 18d)

exists such that ∣∣∣∣∣f̂mult,d(x)−
d∏
i=1

x(i)

∣∣∣∣∣ ≤ 44d+1 · a4d · d · 4−R

holds for all x ∈ [−a, a]d.

Proof.

We set q = dlog2(d)e. The feedforward neural network f̂mult,d with L = R ·q hidden layers

and r = 18d neurons in each layer is constructed as follows: Set

(15) (z1, . . . , z2q) =

x(1), x(2), . . . , x(d), 1, . . . , 1︸ ︷︷ ︸
2q−d

 .
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In the construction of our network we will use the network f̂mult of Lemma 2.3, which

satisfies

(16) |f̂mult(x, y)− x · y| ≤ 2 · (4dad)2 · 4−R

for x, y ∈ [−4dad, 4dad]. In the first R layers we compute

f̂mult(z1, z2), f̂mult(z3, z4), . . . , f̂mult(z2q−1, z2q),

which can be done by R layers of 18 · 2q−1 ≤ 18 · d neurons. E.g., in case in case zl = x(d)

and zl+1 = 1 we have

f̂mult(zl, zl+1) = f̂mult(x
(d), 1).

As a result of the first R layers we get a vector of outputs which has length 2q−1. Next

we pair these outputs and apply f̂mult again. This procedure is continued until there is

only one output left. Therefore we need L = Rq hidden layers and at most 18d neurons

in each layer.

By (16) and R ≥ log4

(
2 · 42·d · a2·d) we get for any l ∈ {1, . . . , d} and any z1, z2 ∈

[−(4l − 1) · al, (4l − 1) · al]

|f̂mult(z1, z2)| ≤ |z1 · z2|+ |f̂mult(z1, z2)− z1 · z2| ≤ (4l − 1)2a2l + 1 ≤ (42l − 1) · a2l.

From this we get successively that all outputs of layer l ∈ {1, . . . , q − 1} are contained in

the interval [−(42l − 1) · a2l , (42l − 1) · a2l ], hence in particular they are contained in the

interval [−4dad, 4dad] where inequality (16) does hold.

Define f̂2q recursively by

f̂2q(z1, . . . , z2q) = f̂mult(f̂2q−1(z1, . . . , z2q−1), f̂2q−1(z2q−1+1, . . . , z2q))

and

f̂2(z1, z2) = f̂mult(z1, z2),

and set

∆l = sup
z1,...,z2l∈[−a,a]

|f̂2l(z1, . . . , z2l)−
2l∏
i=1

zi|.

Then

|f̂mult,d(x)−
d∏
i=1

x(i)| ≤ ∆q

and from

∆1 ≤ 2 · (4d · ad)2 · 4−R
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(which follows from (16)) and

∆q ≤ sup
z1,...,z2q∈[−a,a]

|f̂mult(f̂2q−1(z1, . . . , z2q−1), f̂2q−1(z2q−1+1, . . . , z2q))

−f̂2q−1(z1, . . . , z2q−1) · f̂2q−1(z2q−1+1, . . . , z2q)|
+ sup

z1,...,z2q∈[−a,a]

∣∣∣f̂2q−1(z1, . . . , z2q−1) · f̂2q−1(z2q−1+1, . . . , z2q)

−

(
2q−1∏
i=1

zi

)
· f̂2q−1(z2q−1+1, . . . , z2q)

∣∣∣∣∣
+ sup

z1,...,z2q∈[−a,a]

∣∣∣∣∣
(

2q−1∏
i=1

zi

)
· f̂2q−1(z2q−1+1, . . . , z2q)

−

(
2q−1∏
i=1

zi

)
·

2q∏
i=2q−1+1

zi

∣∣∣∣∣
≤ 2 · (4d · ad)2 · 4−R + 2 · 42q−1 · a2q−1 ·∆q−1

(where the last inequality follows from (16) and the fact that all outputs of layer l ∈
{1, . . . , q − 1} are contained in the interval [−42la2l , 42la2l ]) we get for x ∈ [−a, a]d

|f̂mult,d(x)−
d∏
i=1

x(i)|

≤ ∆q

≤ 2 · (4d · ad)2 · 4−R · 41+2+···+2q−1 · a1+2+···+2q−1 ·
(
1 + 2 + · · ·+ 2q−1

)
≤ (4d · ad)2 · 4−R · 42d+1 · a2d · d
= 44d+1 · a4d · d · 4−R,

where the last inequality was implied by

1 + 2 + · · ·+ 2q−1 = 2q ≤ 2 · d.

2
We can now formulate and prove our main result.

Theorem 2.1 Let p, C > 0, A ≥ 1 and K ∈ N be arbitrary and define the space G of

neural networks by

G =


(K+1)d∑
k=1

∑
j1,...,jd∈{0,...,dpe}

j1+···+jd≤p

fk,j1,...,jd : fk,j1,...,jd ∈ F(L, r)


where F(L, r) is the space of all neural networks with L hidden layers, r neurons per layer

and ReLU activation function, and where

L = max
{
d(p+ d) · log4Ke, dlog4(2 · (8 · A)2p+2d)e

}
· dlog2(p+ d)e+ 1
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and

r = 18 · dpe+ 18 · d.

Then for any (p, C)–smooth function g : Rd → R it holds

d(g,G, ‖ · ‖∞,[−A,A]d) ≤ c1 ·
1

Kp
.

Proof. Let p = q + β for some q ∈ N0 and β ∈ (0, 1], and let

P (x) =

(K+1)d∑
k=1

∑
j1,...,jd∈{0,...,q}
j1+···+jd≤q

1

j1! · · · jd!
· ∂j1+···+jdg

∂j1x(1) · · · ∂jdx(d)
(xik) ·

d∏
i=1

(x(i) − x(i)
ik

)ji

·
d∏
j=1

(
1− K

2A
· |x(j) − x(j)

ik
|
)

+

be the local convex combination of Taylor polynomials of g introduced in (13). It suffices

to show that there exists f ∈ G such that

|P (x)− f(x)| ≤ c1 ·
1

Kp

holds for any x ∈ [−A,A]d.

To show this, it suffices to show that for any k ∈ {1, . . . , (K + 1)d} and j1, . . . , jd ∈
{0, . . . , q} with j1 + · · ·+ jd ≤ q there exists fk,j1,...,jd ∈ F(L, r) such that∣∣∣∣∣ 1

j1! · · · jd!
· ∂j1+···+jdg

∂j1x(1) · · · ∂jdx(d)
(xik) ·

d∏
i=1

(x(i) − x(i)
ik

)ji ·
d∏
j=1

(
1− K

2A
· |x(j) − x(j)

ik
|
)

+

−fk,j1,...,jd(x)

∣∣∣∣∣ ≤ c2

Kp+d

holds for all x ∈ [−A,A]d.

Because of (
1− K

2A
· |x(j) − x(j)

ik
|
)

+

= max

{
0,
K

2A
·
(
x−

(
x

(j)
ik
− 2A

K

))}
− 2 ·max

{
0,
K

2A
·
(
x− x(j)

ik

)}
+ max

{
0,
K

2A
·
(
x−

(
x

(j)
ik

+
2A

K

))}
we can compute with one layer of 2 · q + 3 · d many neurons the values

(x(i) − x(i)
ik

) = max
{

0, x(i) − x(i)
ik

}
+ max

{
0, x

(i)
ik
− x(i)

}
ji-times for each j = 1, . . . , d and the values(

1− K

2A
· |x(j) − x(j)

ik
|
)

+
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for each j = 1, . . . , d. Then we apply Lemma 2.4 (with an obvious modification of the

output layer and with sufficiently large R ≥ log4(Kp+d)) to compute

1

j1! · · · jd!
· ∂j1+···+jdg

∂j1x(1) · · · ∂jdx(d)
(xik) ·

d∏
i=1

(x(i) − x(i)
ik

)ji ·
d∏
j=1

(
1− K

2A
· |x(j) − x(j)

ik
|
)

+

.

Here the modification of the output layer ensures that we only have to compute

d∏
i=1

(x(i) − x(i)
ik

)ji ·
d∏
j=1

(
1− K

2A
· |x(j) − x(j)

ik
|
)

+

,

and we represent
d∏
i=1

(x(i) − x(i)
ik

)ji

by a product of at most q terms of the form x(i) − x
(i)
ik

. These terms take on values

in [−2A, 2A], all the remaining ones are contained in [0, 1] ⊆ [−2A, 2A], so we have

a product of q + d factors contained in [−2A, 2A]. So we can apply Lemma 2.4 with

d = q + d and a = 2 · A. Here the assumption R ≥ log4(2 · 42d · a2d) means that we need

R ≥ log4(2 · (8A)2d+2q). The network has then not R but R · dlog2(d + q)e many layers

and 18 · (q+ d) neurons per layer, and because of our first layer we need to add one more

layer. Application of Lemma 2.4 yields the assertion. 2

Remark. The neural network in the space G in Theorem 2.1 have

c2 ·Kd · logK

many weights and are able to approximate a (p, C)–smooth function with an error of order

1

Kp
.

So up to a logarithmic factor this is the same result as we have shown in Subsection 2.1

for piecewise polynomials. But, as we will see later, the advantage of our result for neural

networks is that due to the network structure we can derive from this result nice results

concerning the approximation of compositions of functions.
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3 Neural network generalization

In this chapter we want to bound the generalization error of neural network estimates,

which is this part of the error which arises because the neural network estimate is adopted

to some empirical risk defined by a sample average instead of the risk defined by an expec-

tation. To do this we will use results from the so–called VC theory (Vapnik-Chervonenkis

theory).

3.1 Motivation

Let (X, Y ), (X1, Y1), . . . , (Xn, Yn) be i.i.d. Rd×R–valued random variables with E{Y 2} <
∞. Let

m : Rd → R, m(x) = E{Y |X = x}

be the corresponding regression function. Because of

E{|Y − f(X)|2} = E{((Y −m(X)) + (m(X)− f(X)))2}

= E{|Y −m(X)|2}+

∫
|f(x)−m(x)|2PX(dx),

where the last equality follows in case E{f(X)2} <∞ from

E{((Y −m(X)) · (m(X)− f(X)))}
= E{E{·|X}} = E{(m(X)− f(X)) · E{(Y −m(X))|X}}
= E{(m(X)− f(X)) · (E{Y |X} −m(X))} = 0

(and trivially holds in case E{f(X)2} = ∞, since then both sides are equal to ∞) we

have

m(·) = arg min
f :Rd→R

E{|f(X)− Y |2}.

Let Fn be a class of functions f : Rd → R, set

Dn = {(X1, Y1), . . . , (Xn, Yn)} ,

and let

mn(·) = mn(·,Dn) = arg min
f∈Fn

1

n

n∑
i=1

|f(Xi)− Yi|2

be the corresponding least squares estimate of the regression function m based on the

sample Dn of (X, Y ).

The aim in the sequel is to bound the so-called L2 error∫
|mn(x)−m(x)|2PX(dx) = E

{
|mn(X)− Y |2

∣∣Dn}− E
{
|m(X)− Y |2

}
of the least squares estimate.
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It is easy to bound an empirical version of it, because by definition of the estimate we

have:

Zn :=
1

n

n∑
i=1

|mn(Xi)− Yi|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2

= min
f∈Fn

1

n

n∑
i=1

|f(Xi)− Yi|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2,

which implies

E{Zn} ≤ min
f∈Fn

E
{
|f(X)− Y |2

}
− E

{
|m(X)− Y |2

}
= min

f∈Fn

∫
|f(x)−m(x)|2PX(dx).

In the sequel we will derive upper bounds on the difference between the L2 error and

(some factor times) its empirical version.

3.2 Uniform exponential inequalities

In Section 3.1 we need upper bounds for terms like

E
{
|mn(X)− Y |2

∣∣Dn}− 1

n

n∑
i=1

|mn(Xi)− Yi|2.

One problem here is, that within the expectation and the sample average there occurs a

random function mn ∈ Fn. To get rid of this problem, one can upper bound the above

term by

sup
f∈Fn

{
E
{
|f(X)− Y |2

}
− 1

n

n∑
i=1

|f(Xi)− Yi|2
}
.

In order to derive upper bounds for terms like this, we need a measure for the ”complexity”

of the function space Fn, which we introduce next.

Definition 3.1 Let ε > 0, let G a set of functions g : Rl → R, let 1 ≤ p < ∞ and let ν

be a probability measure on Rl. For g : Rl → R set

‖g‖Lp(ν) :=

{∫
|g(x)|pν(dx)

} 1
p

.

a) A finite set of functions g1, . . . , gN : Rl → R satisfying

∀g ∈ G ∃j = j(g) ∈ {1, . . . , N} : ‖g − gj‖Lp(ν) < ε

is called ε-cover of G w.r.t. ‖ · ‖Lp(ν).

b) The ε-covering number of G w.r.t. ‖ · ‖Lp(ν)

N (ε,G, ‖ · ‖Lp(ν))
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is defined as the size of the smallest ε-cover of G w.r.t. ‖ · ‖Lp(ν). In case that there does

not exist a finite ε-cover of G w.r.t. ‖ · ‖Lp(ν) we set N (ε,G, ‖ · ‖Lp(ν)) =∞.

c) Let zn1 = (z1, . . . , zn) be n points in Rl. Let νn be the corresponding empirical distribu-

tion, i.e.,

νn(A) =
1

n

n∑
i=1

IA(zi) (A ⊆ Rl),

which implies

‖g‖Lp(νn) =

{
1

n

n∑
i=1

|g(zi)|p
} 1

p

.

Any ε-cover of G w.r.t. ‖ · ‖Lp(νn) is called Lp-ε-cover G on zn1 , and for the ε-covering

number of G w.r.t. ‖ · ‖Lp(νn) we use the notation

Np(ε,G, zn1 ).

Np(ε,G, zn1 ) is called Lp-ε-covering number of G on zn1 .

Theorem 3.1 (Pollard (1984)).

Let Z, Z1, . . . , Zn be i.i.d. Rl-valued random variables. Let B > 0 and let G be a class

of functions g : Rl → [0, B]. Then it holds for every n ∈ N and every ε > 0:

P

{
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

g(Zi)− E{g(Z)}

∣∣∣∣∣ > ε

}

≤ 8 · E {N1(ε/8,G, Zn
1 )} · exp

(
− n · ε2

128 ·B2

)
,

where Zn
1 = (Z1, . . . , Zn).

Remark: In Theorem 3.1 we ignore possible measurability problems (which can occur in

connection with the supremum or in connection with the covering number).

Proof of Theorem 3.1. The proof will be divided into four steps.

Step 1: Symmetrization by a ghost sample

We will replace the expectation inside the above probability by an empirical mean of a

”ghost sample”. To do this, we let Z ′1, . . . , Z ′n be i.i.d. random variables distributed as

Z1 and independent of Zn
1 and set

Z ′
n
1 = (Z ′1 . . . , Z

′
n).

Let g∗ = g∗(Zn
1 ) be a function g ∈ G such that∣∣∣∣∣ 1n

n∑
i=1

g(Zi)− E{g(Z)}

∣∣∣∣∣ > ε

if there exists such a function, and let g∗ be an arbitrary function contained in G otherwise.
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Because of 0 ≤ g∗(Z) ≤ B we have

V{g∗(Z)|Zn
1 } = V

{
g∗(Z)− B

2

∣∣Zn
1

}
≤ E

{∣∣∣∣g∗(Z)− B

2

∣∣∣∣2 ∣∣Zn
1

}
≤ B2

4
.

From this we can conclude by Chebyshev’s inequality

P

{
E{g∗(Z)|Zn

1 } −
1

n

n∑
i=1

g∗(Z ′i) >
ε

2
|Zn

1

}

≤ V{g∗(Z)|Zn
1 }

n ·
(
ε
2

)2 ≤
B2

4

n · ε2
4

=
B2

n · ε2
.

Thus, for n ≥ 2·B2

ε2
, we have

P

{
E{g∗(Z)|Zn

1 } −
1

n

n∑
i=1

g∗(Z ′i) ≤
ε

2
|Zn

1

}
≥ 1

2
,

which implies

P

{
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

g(Zi)−
1

n

n∑
i=1

g(Z ′i)

∣∣∣∣∣ > ε

2

}

≥ P

{∣∣∣∣∣ 1n
n∑
i=1

g∗(Zi)−
1

n

n∑
i=1

g∗(Z ′i)

∣∣∣∣∣ > ε

2

}

≥ P

{∣∣∣∣∣ 1n
n∑
i=1

g∗(Zi)− E{g∗(Z)|Zn
1 }

∣∣∣∣∣ > ε,

∣∣∣∣∣ 1n
n∑
i=1

g∗(Z ′i)− E{g∗(Z)|Zn
1 }

∣∣∣∣∣ ≤ ε

2

}

= E

{
I{| 1n

∑n
i=1 g

∗(Zi)−E{g∗(Z)|Zn1 }|>ε} ·P

{∣∣∣∣∣ 1n
n∑
i=1

g∗(Z ′i)− E{g∗(Z)|Zn
1 }

∣∣∣∣∣ ≤ ε

2

∣∣Zn
1

}}

≥ 1

2
·P

{∣∣∣∣∣ 1n
n∑
i=1

g∗(Zi)− E{g∗(Z)|Zn
1 }

∣∣∣∣∣ > ε

}

=
1

2
·P

{
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

g(Zi)− E{g(Z)}

∣∣∣∣∣ > ε

}
.

This proves

P

{
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

g(Zi)− E{g(Z)}

∣∣∣∣∣ > ε

}
≤ 2 ·P

{
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

g(Zi)−
1

n

n∑
i=1

g(Z ′i)

∣∣∣∣∣ > ε

2

}

for n ≥ 2·B2

ε2
.

Step 2: Introduction of additional randomness by random signs.

Let U1, . . . , Un be independent and uniformly distributed on {−1, 1} and independent of

Z1, . . . , Zn, Z ′1, . . . , Z ′n. Because of Z1, . . . , Zn, Z ′1, . . . , Z ′n i.i.d. the joint distribution of

31



Zn
1 , Z ′n1 is not affected if one randomly interchanges (corresponding) components of Zn

1

and Z ′n1 . Hence

P

{
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

g(Zi)−
1

n

n∑
i=1

g(Z ′i)

∣∣∣∣∣ > ε

2

}

= P

{
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

Ui · (g(Zi)− g(Z ′i))

∣∣∣∣∣ > ε

2

}

≤ P

{
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

Ui · g(Zi)

∣∣∣∣∣ > ε

4

}
+ P

{
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

Ui · g(Z ′i)

∣∣∣∣∣ > ε

4

}

= 2 ·P

{
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

Ui · g(Zi)

∣∣∣∣∣ > ε

4

}
.

Step 3: Conditioning and introduction of a covering.

Because of Un
1 and Zn

1 independent we have

P

{
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

Ui · g(Zi)

∣∣∣∣∣ > ε

4

}

= E

{
P

{
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

Ui · g(Zi)

∣∣∣∣∣ > ε

4

∣∣∣∣∣Zn
1

}}

≤
∫

(Rd)n
P

{
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

Ui · g(zi)

∣∣∣∣∣ > ε

4

}
PZn1

(dzn1 ).

Fix z1, . . . , zn ∈ Rd and let Gε/8 be an L1- ε
8
-cover of G on zn1 of minimal size

|Gε/8| = N1(ε/8,G, zn1 ).

W.l.o.g. we may assume 0 ≤ ḡ(z) ≤ B for all ḡ ∈ Gε/8 (otherwise, truncate ḡ correspond-

ingly).

For any g ∈ G there exists ḡ ∈ Gε/8 such that

1

n

n∑
i=1

|g(zi)− ḡ(zi)| <
ε

8
,

which implies∣∣∣∣∣ 1n
n∑
i=1

Ui · g(zi)

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

Ui · ḡ(zi) +
1

n

n∑
i=1

Ui · (g(zi)− ḡ(zi))

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

Ui · ḡ(zi)

∣∣∣∣∣+
1

n

n∑
i=1

|g(zi)− ḡ(zi)|

≤

∣∣∣∣∣ 1n
n∑
i=1

Ui · ḡ(zi)

∣∣∣∣∣+
ε

8
.
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Using this bound and the union bound we can conclude

P

{
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

Ui · g(zi)

∣∣∣∣∣ > ε

4

}

≤ P

{
sup
g∈Gε/8

∣∣∣∣∣ 1n
n∑
i=1

Ui · g(zi)

∣∣∣∣∣+
ε

8
>
ε

4

}

= P

{
∃g ∈ Gε/8 :

∣∣∣∣∣ 1n
n∑
i=1

Ui · g(zi)

∣∣∣∣∣ > ε

8

}

≤ |Gε/8| · max
g∈Gε/8

P

{∣∣∣∣∣ 1n
n∑
i=1

Ui · g(zi)

∣∣∣∣∣ > ε

8

}

= N1(ε/8,G, zn1 ) · max
g∈Gε/8

P

{∣∣∣∣∣ 1n
n∑
i=1

Ui · g(zi)

∣∣∣∣∣ > ε

8

}
.

Step 4: Application of Hoeffding’s inequality

In this step we bound

P

{∣∣∣∣∣ 1n
n∑
i=1

Ui · g(zi)

∣∣∣∣∣ > ε

8

}
where z1, . . . , zn ∈ Rd, g : Rd → R and 0 ≤ g(z) ≤ B.

Since

U1 · g(z1), . . . , Un · g(zn)

are independent random variables with expectation zero and

−B ≤ Ui · g(zi) ≤ B (i = 1, . . . , n)

we have by Hoeffding’s inequality

P

{∣∣∣∣∣ 1n
n∑
i=1

Ui · g(zi)

∣∣∣∣∣ > ε

8

}
≤ 2 · exp

(
−

2 · n ·
(
ε
8

)2

(2 ·B)2

)
= 2 · exp

(
− n · ε2

128 ·B2

)
.

In case n ≥ 2·B2/ε2 the assertion is now implied by the above four steps. For n < 2·B2/ε2

the bound on the probability trivially holds, since the right-hand side is greater than one.

2

The right-hand side in the upper bound on the probability in Theorem 3.1 does not

converge to zero in case ε ≤ 1/
√
n, which is in view of the optimal rate of convergence of

regression estimates not sufficient. In order to derive upper bounds which converge faster

against zero, one can consider the difference between expectations and a factor greater
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than one times the corresponding sample average, because we have

E
{
|mn(X)− Y |2

∣∣Dn}− E
{
|m(X)− Y |2

}
−2 · 1

n

n∑
i=1

(
|mn(Xi)− Yi|2 − |m(Xi)− Yi|2

)
> t

⇔ E
{
|mn(X)− Y |2

∣∣Dn}− E
{
|m(X)− Y |2

}
− 1

n

n∑
i=1

(
|mn(Xi)− Yi|2 − |m(Xi)− Yi|2

)
>

1

2
·
(
t+ E

{
|mn(X)− Y |2

∣∣Dn}− E
{
|m(X)− Y |2

})
and the following theorem (which we can apply with ε = 1/2 and α = β = t/2).

Theorem 3.2 (Lee, Bartlett and Williamson (1996)).

Let (X, Y ), (X1, Y1), . . . , (Xn, Yn) be i.i.d. Rd×R-valued random variables with |Y | ≤ B

a.s. for some B ≥ 1. Let F be a class of functions f : Rd → [−B,B]. Then we have for

any n ∈ N, α, β > 0 and any 0 < ε ≤ 1/2:

P

{
∃f ∈ F : E

{
|f(X)− Y |2

}
− E

{
|m(X)− Y |2

}
− 1

n

n∑
i=1

(
|f(Xi)− Yi|2 − |m(Xi)− Yi|2

)
> ε ·

(
α + β + E

{
|f(X)− Y |2

}
− E

{
|m(X)− Y |2

})}

≤ 14 · sup
xn1

N1

(
β · ε

20 ·B
,F , xn1

)
· exp

(
− ε2(1− ε) · α · n

214 · (1 + ε) ·B4

)
.

In the proof of Theorem 3.2 we will need the following auxiliary result, which will be

proven in the practising course.

Theorem 3.3 Let B ≥ 1 and let G be a set of functions g : Rd → [0, B]. Let Z, Z1, . . . ,

Zn be i.i.d. Rd–valued random variables. Assume α > 0, 0 < ε > 1, and n ≥ 1. Then

P

{
sup
g∈G

1
n
·
∑n

i=1 g(Zi)− Eg(Z)

α + 1
n
·
∑n

i=1 g(Zi) + Eg(Z)
> ε

}
≤ 4 · EN1

(α · ε
5
,G, Zn

1

)
· exp

(
−3 · ε2 · α · n

40 ·B

)
.

Proof of Theorem 3.2: Let us introduce the following notation

Z = (X, Y ), Zi = (Xi, Yi), i = 1, . . . , n,
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and

gf (x, y) = |f(x)− y|2 − |m(x)− y|2.

Observe that |f(x)| ≤ B, |y| ≤ B and |m(x)| ≤ B imply

−4B2 ≤ gf (x, y) ≤ 4B2.

We can rewrite the probability in the theorem as follows

(17) P

{
∃f ∈ F : Egf (Z)− 1

n

n∑
i=1

gf (Zi) ≥ ε(α + β + Egf (Z))

}
.

The proof will proceed in several steps.

Step 1. Symmetrization by a ghost sample.

Replace the expectation on the left side of inequality in (17) by the empirical mean based

on the ghost sample Z ′n1 of i.i.d. random variables distributed as Z and independent of

Zn
1 . Consider a function fn ∈ F depending upon Zn

1 such that

E{gfn(Z)|Zn
1 } −

1

n

n∑
i=1

gfn(Zi) ≥ ε(α + β) + εE{gfn(Z)|Zn
1 },

if such a function exists in F , otherwise choose an arbitrary function in F . Chebychev’s

inequality together with

V {gfn(Z)|Zn
1 } ≤ E

{
gfn(Z)2|Zn

1

}
= E

{
((fn(X)−m(X)) · (fn(X)− Y +m(X)− Y ))2 |Zn

1

}
≤ 16B2 · E

{
(fn(X)−m(X))2|Zn

1

}
= 16B2 · E

{
|fn(X)− Y |2 − |m(X)− Y |2|Zn

1

}
= 16B2 · E {gfn(Z)|Zn

1 }

imply

P

{
E{gfn(Z)|Zn

1 } −
1

n

n∑
i=1

gfn(Z ′i)

>
ε

2
(α + β) +

ε

2
E{gfn(Z)|Zn

1 }
∣∣∣∣Zn

1

}

≤ V {gfn(Z)|Zn
1 }

n ·
(
ε
2
(α + β) + ε

2
E {gfn(Z)|Zn

1 }
)2

≤ 16B2E {gfn(Z)|Zn
1 }

n ·
(
ε
2
(α + β) + ε

2
E {gfn(Z)|Zn

1 }
)2

≤ 16B2

n ·
(
ε
2

)2 ·
E {gfn(Z)|Zn

1 }(
(α + β) + ε

2
E {gfn(Z)|Zn

1 }
)2

≤ 16B2

ε2(α + β)n
,
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where the last inequality follows from

f(x) =
x

(a+ x)2
≤ f(a) =

1

4a

for all x ≥ 0 and all a > 0 (which holds since the derivative of f changes at x = a its sign

from plus to minus). Thus for n > 128B2

ε2(α+β)

P

{
E{gfn(Z)|Zn

1 } −
1

n

n∑
i=1

gfn(Z ′i) ≤
ε

2
(α + β) +

ε

2
E{gfn(Z)|Zn

1 }

∣∣∣∣∣Zn
1

}
≥ 7

8
.(18)

Hence

P

{
∃f ∈ F :

1

n

n∑
i=1

gf (Z
′
i)−

1

n

n∑
i=1

gf (Zi) ≥
ε

2
(α + β) +

ε

2
Egf (Z)

}

≥ P

{
1

n

n∑
i=1

gfn(Z ′i)−
1

n

n∑
i=1

gfn(Zi) ≥
ε

2
(α + β) +

ε

2
E{gfn(Z)|Zn

1 }

}

≥ P

{
E{gfn(Z)|Zn

1 } −
1

n

n∑
i=1

gfn(Zi) ≥ ε(α + β) + εE{gfn(Z)|Zn
1 },

E{gfn(Z)|Zn
1 } −

1

n

n∑
i=1

gf (Z
′
i) ≤

ε

2
(α + β) +

ε

2
E{gfn(Z)|Zn

1 }

}
= E

{
I{E{gfn (Z)|Zn1 }−

1
n

∑n
i=1 gfn (Zi)≥ε(α+β)+εE{gfn (Z)|Zn1 }}

·E
{
I{E{gfn (Z)|Zn1 }−

1
n

∑n
i=1 gf (Z′i)≤

ε
2

(α+β)+ ε
2
E{gfn (Z)|Zn1 }}|Z

n
1

}}
= E

{
I{··· }P

{
E{gfn(Z)|Zn

1 } −
1

n

n∑
i=1

gf (Z
′
i)

≤ ε

2
(α + β) +

ε

2
E{gfn(Z)|Zn

1 }
∣∣∣∣Zn

1

}}
≥ 7

8
P

{
E{gfn(Z)|Zn

1 } −
1

n

n∑
i=1

gfn(Zi) ≥ ε(α + β) + εE{gfn(Z)|Zn
1 }

}

=
7

8
P

{
∃f ∈ F : Egf (Z)− 1

n

n∑
i=1

gf (Zi) ≥ ε(α + β) + εEgf (Z)

}

where the last inequality follows from (18). Thus we have shown that for n > 128B2

ε2(α+β)

P

{
∃f ∈ F : Egf (Z)− 1

n

n∑
i=1

gf (Zi) ≥ ε(α + β) + εEgf (Z)

}

≤ 8

7
P

{
∃f ∈ F :

1

n

n∑
i=1

gf (Z
′
i)−

1

n

n∑
i=1

gf (Zi)

≥ ε

2
(α + β) +

ε

2
Egf (Z)

}
.(19)
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Step 2. Replacement of the expectation

Egf (Z) ≥ 1

16B2
· E{gf (Z)2}

in (19) by an empirical mean of the ghost sample.

First we introduce additional conditions in the probability (19)

P

{
∃f ∈ F :

1

n

n∑
i=1

gf (Z
′
i)−

1

n

n∑
i=1

gf (Zi) ≥
ε

2
(α + β) +

ε

2
Egf (Z)

}

≤ P

{
∃f ∈ F :

1

n

n∑
i=1

gf (Z
′
i)−

1

n

n∑
i=1

gf (Zi) ≥
ε

2
(α + β) +

ε

2
Egf (Z),

1

n

n∑
i=1

g2
f (Zi)− Eg2

f (Z) ≤ ε

(
α + β +

1

n

n∑
i=1

g2
f (Zi) + Eg2

f (Z)

)
,

1

n

n∑
i=1

g2
f (Z

′
i)− Eg2

f (Z) ≤ ε

(
α + β +

1

n

n∑
i=1

g2
f (Z

′
i) + Eg2

f (Z)

)}

+2P

{
∃f ∈ F :

1
n

∑n
i=1 g

2
f (Zi)− Eg2

f (Z)(
α + β + 1

n

∑n
i=1 g

2
f (Zi) + Eg2

f (Z)
) > ε

}
.(20)

Application of Theorem 3.3 to the second probability on the right–hand side of (20) yields

P

{
∃f ∈ F :

1
n

∑n
i=1 g

2
f (Zi)− Eg2

f (Z)(
α + β + 1

n

∑n
i=1 g

2
f (Zi) + Eg2

f (Z)
) > ε

}

≤ 4EN1

(
(α + β)ε

5
, {gf : f ∈ F}, Zn

1

)
exp

(
−3ε2(α + β)n

40(16B4)
.

)
Now we consider the first probability on the right side of (20). The second inequality

inside the probability implies

(1 + ε)Eg2
f (Z) ≥ (1− ε) 1

n

n∑
i=1

g2
f (Zi)− ε(α + β),

which is equivalent to

1

32B2
Eg2

f (Z) ≥ 1− ε
32B2(1 + ε)

1

n

n∑
i=1

g2
f (Zi)− ε

(α + β)

32B2(1 + ε)
.

We can deal similarly with the third inequality. Using this and the inequality Egf (Z) ≥
1

16B2 Eg
2
f (Z) = 2 1

32B2 Eg
2
f (Z) we can bound the first probability on the right side of (20)

by

P

{
∃f ∈ F :

1

n

n∑
i=1

gf (Z
′
i)−

1

n

n∑
i=1

gf (Zi)

≥ ε(α + β)/2 +
ε

2

(
1− ε

32B2(1 + ε)

1

n

n∑
i=1

g2
f (Zi)−

ε(α + β)

32B2(1 + ε)

+
1− ε

32B2(1 + ε)

1

n

n∑
i=1

g2
f (Z

′
i)−

ε(α + β)

32B2(1 + ε)

)}
.
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This shows

P

{
∃f ∈ F :

1

n

n∑
i=1

gf (Z
′
i)−

1

n

n∑
i=1

gf (Zi) ≥ ε(α + β)/2 + εEgf (Z)/2

}

≤ P

{
∃f ∈ F :

1

n

n∑
i=1

(gf (Z
′
i)− gf (Zi))

≥ ε(α + β)/2− ε2(α + β)

32B2(1 + ε)
+

ε(1− ε)
64B2(1 + ε)

1

n

n∑
i=1

(g2
f (Zi) + g2

f (Z
′
i))

}

+8EN1

(
(α + β)ε

5
, {gf : f ∈ F}, Zn

1

)
exp

(
−3ε2(α + β)n

640B4

)
.(21)

Step 3. Additional randomization by random signs.

Let U1, . . . , Un be independent and uniformly distributed over the set {−1, 1} and in-

dependent of Z1, . . . , Zn, Z
′
1, . . . , Z

′
n. Because of independence and identical distribution

of Z1, . . . , Z
′
n the joint distribution of Zn

1 , Z
′n
1 is not affected by random interchange of

corresponding components in Zn
1 and Z ′n1 . Therefore the first probability on the right side

of inequality (21) is equal to

P

{
∃f ∈ F :

1

n

n∑
i=1

Ui(gf (Z
′
i)− gf (Zi))

≥ ε

2
(α + β)− ε2(α + β)

32B2(1 + ε)
+

ε(1− ε)
64B2(1 + ε)

(
1

n

n∑
i=1

(g2
f (Zi) + g2

f (Z
′
i))

)}

and this in turn, by the union bound, is bounded by

P

{
∃f ∈ F :

∣∣∣∣∣ 1n
n∑
i=1

Uigf (Z
′
i)

∣∣∣∣∣
≥ 1

2

(
ε(α + β)/2− ε2(α + β)

32B2(1 + ε)

)
+

ε(1− ε)
64B2(1 + ε)

1

n

n∑
i=1

g2
f (Z

′
i)

}

+P

{
∃f ∈ F :

∣∣∣∣∣ 1n
n∑
i=1

Uigf (Zi)

∣∣∣∣∣
≥ 1

2

(
ε(α + β)/2− ε2(α + β)

32B2(1 + ε)

)
+

ε(1− ε)
64B2(1 + ε)

1

n

n∑
i=1

g2
f (Zi)

}

= 2P

{
∃f ∈ F :

∣∣∣∣∣ 1n
n∑
i=1

Uigf (Zi)

∣∣∣∣∣
≥ ε(α + β)/4− ε2(α + β)

64B2(1 + ε)
+

ε(1− ε)
64B2(1 + ε)

1

n

n∑
i=1

g2
f (Zi)

}
.(22)

Step 4. Conditioning and using covering.

Next we condition the probability on the right–hand side of (22) on Zn
1 , which is equivalent
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to fixing z1, . . . , zn and considering

P

{
∃f ∈ F :

∣∣∣∣∣ 1n
n∑
i=1

Uigf (zi)

∣∣∣∣∣
≥ ε(α + β)/4− ε2(α + β)

64B2(1 + ε)
+

ε(1− ε)
64B2(1 + ε)

1

n

n∑
i=1

g2
f (zi)

}
.

Let δ > 0 and let Gδ be a L1 δ-cover of GF = {gf : f ∈ F} on z1, . . . , zn. Fix f ∈ F .

Then there exists g ∈ Gδ such that

1

n

n∑
i=1

|g(zi)− gf (zi)| < δ.

Without loosing generality we can assume −4B2 ≤ g(z) ≤ 4B2. This implies∣∣∣∣∣ 1n
n∑
i=1

Uigf (zi)

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

Uig(zi) +
1

n

n∑
i=1

Ui(gf (zi)− g(zi))

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

Uig(zi)

∣∣∣∣∣+
1

n

n∑
i=1

|gf (zi)− g(zi)|

<

∣∣∣∣∣ 1n
n∑
i=1

Uig(zi)

∣∣∣∣∣+ δ

and

1

n

n∑
i=1

g2
f (zi) =

1

n

n∑
i=1

g2(zi) +
1

n

n∑
i=1

(g2
f (zi)− g2(zi))

=
1

n

n∑
i=1

g2(zi) +
1

n

n∑
i=1

(gf (zi) + g(zi))(gf (zi)− g(zi))

≥ 1

n

n∑
i=1

g2(zi)− 8B2 1

n

n∑
i=1

|gf (zi)− g(zi)|

≥ 1

n

n∑
i=1

g2(zi)− 8B2δ.
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It follows

P

{
∃f ∈ F :

∣∣∣∣∣ 1n
n∑
i=1

Uigf (zi)

∣∣∣∣∣
≥ ε(α + β)/4− ε2(α + β)

64B2(1 + ε)
+

ε(1− ε)
64B2(1 + ε)

1

n

n∑
i=1

g2
f (zi)

}

≤ P

{
∃g ∈ Gδ :

∣∣∣∣∣ 1n
n∑
i=1

Uig(zi)

∣∣∣∣∣+ δ

≥ ε(α + β)/4− ε2(α + β)

64B2(1 + ε)

+
ε(1− ε)

64B2(1 + ε)

(
1

n

n∑
i=1

g2(zi)− 8B2δ

)}

≤ |Gδ|max
g∈Gδ

P

{∣∣∣∣∣ 1n
n∑
i=1

Uig(zi)

∣∣∣∣∣
≥ ε(α + β)/4− ε2(α + β)

64B2(1 + ε)
− δ − δ ε(1− ε)

8(1 + ε)

+
ε(1− ε)

64B2(1 + ε)

1

n

n∑
i=1

g2(zi)

}
.

Next we set δ = εβ/5. This together with B ≥ 1 and 0 < ε ≤ 1
2

implies

εβ

4
− ε2β

64B2(1 + ε)
− δ − δ ε(1− ε)

8(1 + ε)

=
εβ

20
− ε2β

64B2(1 + ε)
− ε2(1− ε)β

40(1 + ε)
≥ 0.

Thus

P

{
∃f ∈ F :

∣∣∣∣∣ 1n
n∑
i=1

Uigf (zi)

∣∣∣∣∣
≥ ε(α + β)/4− ε2(α + β)

64B2(1 + ε)
+

ε(1− ε)
64B2(1 + ε)

1

n

n∑
i=1

g2
f (zi)

}

≤ |G εβ
5
| max
g∈G εβ

5

P

{∣∣∣∣∣ 1n
n∑
i=1

Uig(zi)

∣∣∣∣∣
≥ εα

4
− ε2α

64B2(1 + ε)
+

ε(1− ε)
64B2(1 + ε)

1

n

n∑
i=1

g2(zi)

}
.

Step 5. Application of Bernstein’s inequality.

In this step we use Bernstein’s inequality to bound

P

{∣∣∣∣∣ 1n
n∑
i=1

Uig(zi)

∣∣∣∣∣ ≥ εα

4
− ε2α

64B2(1 + ε)
+

ε(1− ε)
64B2(1 + ε)

1

n

n∑
i=1

g2(zi)

}
,
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where z1, . . . , zn ∈ Rd × R are fixed and g : Rd × R → R satisfies −4B2 ≤ g(z) ≤ 4B2.

First we relate 1
n

∑n
i=1 g

2(zi) to the variance of Uig(zi)

1

n

n∑
i=1

V(Uig(zi)) =
1

n

n∑
i=1

g2(zi)V(Ui) =
1

n

n∑
i=1

g2(zi).

Thus the probability above is equal to

P

{∣∣∣∣∣ 1n
n∑
i=1

Vi

∣∣∣∣∣ ≥ A1 + A2σ
2

}

where

Vi = Uig(zi), σ2 =
1

n

n∑
i=1

V(Uig(zi)),

A1 =
εα

4
− ε2α

64B2(1 + ε)
, A2 =

ε(1− ε)
64B2(1 + ε)

.

Observe that V1, . . . , Vn are independent random variables satisfying |Vi| ≤ |g(zi)| ≤
4B2, i = 1, . . . , n, and that A1, A2 ≥ 0. We have by Bernstein’s inequality

P

{∣∣∣∣∣ 1n
n∑
i=1

Vi

∣∣∣∣∣ ≥ A1 + A2σ
2

}

≤ 2 exp

(
− n(A1 + A2σ

2)2

2σ2 + 2(A1 + A2σ2)8B2

3

)

= 2 exp

− nA2
2

16
3
B2A2

·

(
A1

A2
+ σ2

)2

A1

A2
+
(

1 + 3
8B2A2

)
σ2


= 2 exp

−3 · n · A2

16B2
·

(
A1

A2
+ σ2

)2

A1

A2
+
(

1 + 3
8B2A2

)
σ2

 .(23)

An easy calculation shows that for arbitrary a, b, u > 0 one has

(a+ u)2

a+ b · u
≥
(
a+ b−2

b
a
)2

a+ b b−2
b
a

= 4a
b− 1

b2
.

Thus setting a = A1/A2, b =
(

1 + 3
8B2A2

)
, u = σ2 and using the bound above we get for

the exponent in (23)

3 · n · A2

16B2
·

(
A1

A2
+ σ2

)2

A1

A2
+
(

1 + 3
8B2A2

)
σ2
≥ 3 · n · A2

16B2
· 4 · A1

A2

3
8B2A2(

1 + 3
8B2A2

)2

= 18n
A1A2

(8B2A2 + 3)2 .
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Substituting the formulas for A1 and A2 and noticing

A1 =
εα

4
− ε2α

64B2(1 + ε)
≥ εα

4
− εα

64
=

15εα

64

we obtain

18n
A1A2

(8B2A2 + 3)2 ≥ 18n
15εα

64
· ε(1− ε)

64B2(1 + ε)
· 1(

ε(1−ε)
8(1+ε)

+ 3
)2

≥ 18n
15 · ε2(1− ε) · α

642B2(1 + ε)
· 1(

1
32

+ 3
)2

=
9 · 15

2 · 97 · 97
· ε

2(1− ε)
1 + ε

· α · n
B2

≥ ε2(1− ε) · α · n
140B2(1 + ε)

.

Plugging the lower bound above into (23) we finally obtain

P

{∣∣∣∣∣ 1n
n∑
i=1

Uig(zi)

∣∣∣∣∣ ≥ εα

4
− ε2α

64B2(1 + ε)
+

ε(1− ε)
64B2(1 + ε)

1

n

n∑
i=1

g2(zi)

}

≤ 2 exp

(
− ε2(1− ε)αn

140B2(1 + ε)

)
.

Step 6. Bounding the covering number.

In this step we construct a L1
εβ
5

-cover of {gf : f ∈ F} on z1, . . . , zn. Let f1, . . . , fl, l =

N1( εβ
20B

,F , xn1 ) be an εβ
20B

-cover of F on xn1 . W.l.o.g. we may assume |fj(x)| ≤ B for all j.

Let f ∈ F be arbitrary. Then there exists an fj such that 1
n

∑n
i=1 |f(xi)− fj(xi)| < εβ

20B
.

We have

1

n

n∑
i=1

|gf (zi)− gfj(zi)|

=
1

n

n∑
i=1

∣∣|f(xi)− yi|2 − |m(xi)− yi|2 − |fj(xi)− yi|2 + |m(xi)− yi|2
∣∣

=
1

n

n∑
i=1

|f(xi)− yi + fj(xi)− yi||f(xi)− yi − fj(xi) + yi|

≤ 4B
1

n

n∑
i=1

|f(xi)− fj(xi)| <
εβ

5
.

Thus gf1 , . . . , gfl is an εβ
5

-cover of {gf : f ∈ F} on zn1 of size N1( εβ
20B

,F , xn1 ). Steps 3
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through 6 imply

P

{
∃f ∈ F :

1

n

n∑
i=1

(gf (Z
′
i)− gf (Zi))

≥ ε

2
(α + β)− ε2(α + β)

32B2(1 + ε)

+
ε(1− ε)

64B2(1 + ε)

1

n

n∑
i=1

(g2
f (Zi) + g2

f (Z
′
i))

}

≤ 4 sup
xn1∈(Rd)n

N1

(
εβ

20B
,F , xn1

)
exp

(
− ε2(1− ε)αn

140B2(1 + ε)

)
.

Step 7. Conclusion.

Steps 1, 2 and 6 imply for n > 128B2

ε2(α+β)

P

{
∃f ∈ F : Egf (Z)− 1

n

n∑
i=1

gf (Zi) > ε(α + β + Egf (Z))

}

≤ 32

7
sup
xn1

N1

(
εβ

20B
,F , xn1

)
exp

(
− ε2(1− ε)αn

140B2(1 + ε)

)
+

64

7
sup
xn1

N1

(
ε(α + β)

20B
,F , xn1

)
exp

(
−3ε2(α + β)n

640B4

)
≤ 14 sup

xn1

N1

(
εβ

20B
,F , xn1

)
exp

(
− ε2(1− ε)αn

214(1 + ε)B4

)
.

For n ≤ 128B2

ε2(α+β)
one has

exp

(
− ε2(1− ε)αn

214(1 + ε)B4

)
≥ exp

(
−128

214

)
≥ 1

14
,

and hence the assertion trivially follows. 2
In the sequel: Derivation of upper bounds on covering numbers.

3.3 Covering numbers and VC dimension

Definition 3.2 Let ε > 0, let G be a set of functions g : Rl → R, let 1 ≤ p <∞ and let

ν be a probability measure on Rl. For g : Rl → R set

‖g‖Lp(ν) :=

{∫
|g(x)|pν(dx)

} 1
p

.

a) A finite set of functions g1, . . . , gN ∈ G with

‖gi − gj‖Lp(ν) ≥ ε for all 1 ≤ i < j ≤ N

is called ε-packing of G w.r.t. ‖ · ‖Lp(ν).
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b) The ε-packing number of G w.r.t. ‖ · ‖Lp(ν)

M
(
ε,G, ‖ · ‖Lp(ν)

)
is defined as the cardinality of the largest ε-packing of G w.r.t. ‖ · ‖Lp(ν). Here we set

M
(
ε,G, ‖ · ‖Lp(ν)

)
= ∞, if for every n ∈ N there exists a ε-packing of G w.r.t. ‖ · ‖Lp(ν)

which contains n elements.

c) The Lp-ε-packing number of G on zn1 is defined by

Mp (ε,G, zn1 ) =M
(
ε,G, ‖ · ‖Lp(νn)

)
,

where νn denotes the empirical distribution corresponding to zn1 = (z1, . . . , zn) ∈ (Rl)n.

Lemma 3.1 Let ε > 0, let G be a set of functions g : Rl → R, let 1 ≤ p < ∞ and let ν

be a probibility measure on Rl. Then it holds:

M
(
2 · ε,G, ‖ · ‖Lp(ν)

)
≤ N

(
ε,G, ‖ · ‖Lp(ν)

)
≤M

(
ε,G, ‖ · ‖Lp(ν)

)
.

Proof. a) If g1, . . . , gN is a 2 · ε-packing of G w.r.t. ‖ · ‖Lp(ν), then each open ball with

radius ε contains at most one of the g1, . . . , gN . This shows that each ε-covering of G
w.r.t. ‖ · ‖Lp(ν) contains at least N functions.

b) If g1, . . . , gN is a ε-packing of G w.r.t. ‖ · ‖Lp(ν) of maximal size, then we have that for

each g ∈ G
g1, . . . , gN , g

is not a ε-packing. Consequently, for each g ∈ G there exist j = j(g) ∈ {1, . . . , N}
satisfying

‖g − gj‖Lp(ν) < ε.

But this implies that g1, . . . , gN is a ε-cover of G w.r.t. ‖ · ‖Lp(ν). 2
In order to derive upper bounds for covering numbers we consider first the special case

that the functions are all indicator functions.

If f = IA, g = IB for A,B ⊆ Rd and z1, . . . , zn ∈ Rd, then{
1

n

n∑
i=1

|f(zi)− g(zi)|p
} 1

p

≤ max
i=1,...,n

|f(zi)− g(zi)|

=

{
1, if A ∩ {z1, . . . , zn} 6= B ∩ {z1, . . . , zn}
0, else.

Consequently, for G = {1A : A ∈ A} for A ⊆ P(Rd) and ε > 0, we have:

Np(ε,G, zn1 ) ≤ |{A ∩ {z1, . . . , zn} : A ∈ A}| .
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Definition 3.3 Let A be a class of sets A ⊆ Rd and let n ∈ N.

a) For z1, . . . , zn ∈ Rd

s (A, {z1, . . . , zn}) := |{A ∩ {z1, . . . , zn} : A ∈ A}|

describes the number of subsets of {z1, . . . , zn}, which can be ”picked out” by sets from A.

b) Let G be a finite subset of Rd. We say that A shatters G, if

s(A, G) = 2|G|,

i.e., if each subset of G can be represented in the form A ∩G for some A ∈ A.

c) The n-th shatter coefficient of A

S(A, n) := max
z1,...,zn∈Rd

s (A, {z1, . . . , zn})

is the maximal number of different subsets of n points that can be picked out by A.

Examples: a) The set of all interval of the form (−∞, a], a ∈ R, shatters all subsets of

R of cardinality one, but it fails to shatter any subset of R of cardinality two (since it

fails to pick out only the larger of two numbers).

b) The sets of all intervals of the form (a, b], a, b ∈ R, shatters all subsets of R of cardinality

two, but it fails to shatter any subset of R of cardinality three.

c) The set of all half spaces in R2 shatter three suitably chosen points in R2.

d) The set of all convex sets in R2 shatters n (suitably chosen) points in R2 for any n ∈ N
(choose points on a circle, and consider convex hulls of subsets of these points).

A set of sets which does not shatter a set G can not shatter any superset of G. Conse-

quently we have:

S(A, k) < 2k ⇒ S(A, n) < 2n for all n > k.

The largest n with S(A, n) = 2n is the so–called VC dimension of A.

Definition 3.4 Let A be a class of subsets of Rd with A 6= ∅. The VC dimension

(Vapnik-Chervonenkis-dimension) VA of A is defined by

VA = sup {n ∈ N : S(A, n) = 2n} ,

i.e., VA is the maximal number of points, which can be shatterd by A.

Examples: a) A = {(−∞, a] : a ∈ R} ⇒ VA = 1

b) A = {(a, b] : a, b ∈ R} ⇒ VA = 2

c) A = {A : A konvex} ⇒ VA =∞

Our next theorem implies:

Either we have S(A, n) = 2n for all n ∈ N, or S(A, n) is bounded by some polynomial in

n of degree VA.
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Theorem 3.4 (Vapnik and Chervonenkis (1971)).

Let A be a set of subsets of Rd with VC dimension VA. Then we have for all n ∈ N:

S(A, n) ≤
VA∑
i=0

(n
i

)
.

Corollary 3.1 Let A be a set of subsets of Rd with VC dimension VA.

a)

S(A, n) ≤ (n+ 1)VA for all n ∈ N.

b)

S(A, n) ≤
(
e · n
VA

)VA
for all n ≥ VA.

Proof: a) By Theorem 3.4 and the binomial theorem it holds:

S(A, n) ≤
VA∑
i=0

(n
i

)
=

VA∑
i=0

n · (n− 1) · · · · · (n− i+ 1) · 1

i!

≤
VA∑
i=0

ni · VA!

(VA − i)!
· 1

i!

=

VA∑
i=0

ni ·
(
VA
i

)
= (n+ 1)VA .

b) If VA/n ≤ 1, then Theorem 3.4 implies:(
VA
n

)VA
· S(A, n) ≤

VA∑
i=0

(
VA
n

)VA
·
(n
i

)
≤

n∑
i=0

(
VA
n

)i
·
(n
i

)
=

(
1 +

VA
n

)n
≤ eVA ,

where the last inequality follows from 1 + x ≤ ex (x ∈ R). Consequently,

S(A, n) ≤
(
n

VA

)VA
· eVA =

(
e · n
VA

)VA
.

2
Proof of Theorem 3.4: W.l.o.g. we can assume VA < n, because otherwise the right-

hand side is equal to 2n and thus trivially greater or equal to the left-hand side.

Let z1, . . . , zn ∈ Rd. In the sequel we show:

|{A ∩ {z1, . . . , zn} : A ∈ A}| ≤
VA∑
i=0

(n
i

)
.
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To show this, let F1, . . . , Fk with k =
(

n
VA+1

)
be all subsets of {z1, . . . , zn} of size (VA+1).

The definition of VA implies that for each i ∈ {1, . . . , k} there exists Hi ⊆ Fi such that

A ∩ Fi 6= Hi for all A ∈ A

(since A does not shatter Fi because of |Fi| > VA).

Hi ⊆ Fi ⊆ {z1, . . . , zn} implies

(A ∩ {z1, . . . , zn}) ∩ Fi 6= Hi for all A ∈ A.

Consequently,

{A ∩ {z1, . . . , zn} : A ∈ A}
⊆ {C ⊆ {z1, . . . , zn} : C ∩ Fi 6= Hi for all i ∈ {1, . . . , k}} =: C0.

Hence it suffices to show:

|C0| ≤
VA∑
i=0

(n
i

)
.

This is easy in case Hi = Fi for all i ∈ {1, . . . , k}. Because F1, . . . , Fk are all subsets of

size VA + 1 of {z1, . . . , zn}, and for C ⊆ {z1, . . . , zn} the fact

C ∩ Fi 6= Hi = Fi for all i ∈ {1, . . . , k},

implies in this case that C contains at most VA many elements, from which we can

conclude:

|C0| ≤
VA∑
i=0

(n
i

)
.

In the sequel we will reduce the general case to the special case just treated.

To do this we set

H ′i = (Hi ∪ {z1}) ∩ Fi.

Because of Hi ⊆ Fi we augment Hi in the case z1 ∈ Fi and z1 /∈ Hi by z1, and otherwise

Hi does not change at all (so if Hi changes, we have z1 /∈ Hi).

Define

C1 := {C ⊆ {z1, . . . , zn} : C ∩ Fi 6= H ′i for all i ∈ {1, . . . , k}} .

We show next

(24) |C0| ≤ |C1|.

Therefore it suffices to show

|C0 \ C1| ≤ |C1 \ C0|,

which we show by proving that the mapping

f : C0 \ C1 → C1 \ C0, f(C) = C \ {z1}
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is well defined and one-to-one.

Let C ∈ C0 \ C1. Then

C ∩ Fi 6= Hi for all i ∈ {1, . . . , k}

and

C ∩ Fi0 = H ′i0 for some i0 ∈ {1, . . . , k}.

Consequently we have for some i0 ∈ {1, . . . , k} :

H ′i0 = C ∩ Fi0 6= Hi0 .

By definition of H ′i, this set differs from Hi at most by z1, hence we can conclude

z1 ∈ H ′i0 = C ∩ Fi0 ⊆ C.

This implies that for C ∈ C0 \ C1 we always have z1 ∈ C, and consequently the above

mapping is one-to-one, provided it is well defined.

So it remains to show that f is well defined, i.e., for all C ∈ C0 \ C1 the relation

C \ {z1} ∈ C1 \ C0

holds.

We have:

1. As seen above, C ∈ C0 \ C1 implies H ′i0 = Hi0 ∪ {z1}, z1 /∈ Hi0 and C ∩ Fi0 = H ′i0 ,

thus

C \ {z1} ∩ Fi0 = (C ∩ Fi0) \ {z1} = H ′i0 \ {z1} = Hi0 .

This shows C \ {z1} /∈ C0.

2. In case z1 /∈ Fi, we have Hi = H ′i, and because of C ∈ C0 we can conclude

(C \ {z1}) ∩ Fi = C ∩ Fi 6= Hi = H ′i.

In case z1 ∈ Fi, we have z1 ∈ H ′i, which implies

C \ {z1} ∩ Fi 6= H ′i,

since the left-hand side does not contain z1, and the right-hand side contains z1.

Consequently we have in both cases: C \ {z1} ∈ C1.

This proves (24).

By augmenting in the same way H ′i by z2, z3, . . . , zn, we get

|C0| ≤ |C1| ≤ · · · ≤ |Cn|,
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and for Cn all the sets H
(n)
i satisfy the conditions of the special case above, which implies

the assertion. 2

In order to upper bound the packing number of a set G of functions g : Rl → R, it is

helpful to consider the VC dimension of the set

G+ :=
{{

(z, t) ∈ Rl × R : t ≤ g(z)
}

: g ∈ G
}

of all subgraphs of functions of G helpful as can be seen from our next result.

Theorem 3.5 Let l ∈ N, B > 0 and let G be a set of functions g : Rl → [0, B] with

VG+ ≥ 2. Then we have for any probability measure ν on Rl and any 0 < ε < B/4:

M
(
ε,G, ‖ · ‖L1(ν)

)
≤ 3 ·

(
2 · e ·B

ε
· log

3 · e ·B
ε

)VG+
.

Proof. We will show

(25) M
(
ε,G, ‖ · ‖L1(ν)

)
≤ 3 · S

(
G+,

⌊
B

ε
· log

(
2 · M

(
ε,G, ‖ · ‖L1(ν)

))⌋)
.

This implies the assertion, because in case⌊
B

ε
· log

(
2 · M

(
ε,G, ‖ · ‖L1(ν)

))⌋
< VG+

the assertion trivially holds, because in this case we have

log
(
2 · M

(
ε,G, ‖ · ‖L1(ν)

))
<

ε

B
· (VG+ + 1) <

ε

B
· 2VG+ ≤ VG+ ,

and in case ⌊
B

ε
· log

(
2 · M

(
ε,G, ‖ · ‖L1(ν)

))⌋
≥ VG+

we can conclude by Corollary 3.1 b) that (25) implies

M
(
ε,G, ‖ · ‖L1(ν)

)
≤ 3 ·

(
e ·B
ε · VG+

· log
(
2 · M

(
ε,G, ‖ · ‖L1(ν)

)))VG+
.

From the last inequality we get the assertion of Theorem 3.5 by using the elementary

relation

x ≤ 3 ·
(a
b
· log(2 · x)

)b
=⇒ x ≤ 3 · (2 · a · log(3 · a))b .

Next we prove the above elementary relation. Let a ∈ R+, b ∈ N with a ≥ e and b ≥ 2.

We will show that

x ≤ 3
{a
b

log(2x)
}b

implies

(26) x < 3(2a log(3a))b.
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Note that

x ≤ 3
{a
b

log(2x)
}b

is equivalent to

(2x)1/b ≤ 61/ba

b
log(2x) = 61/ba log((2x)1/b).

Set u = (2x)1/b and c = 61/ba. Then e ≤ a ≤ c and the last inequality can be rewritten

(27) u ≤ c log(u).

We will show momentarily that this implies

(28) u ≤ 2c log(c).

From (28) one easily concludes (26)

x =
1

2
ub ≤ 1

2
(2c log c)b =

1

2
(2 · 61/ba log(61/ba))b ≤ 3(2a log(3a))b,

where the last inequality follows from 61/b ≤ 3 for b ≥ 2.

In conclusion we will show that (27) implies (28). Set f1(u) = u and f2(u) = c log(u).

Then it suffices to show

f1(u) > f2(u)

for u > 2c log(c). Because

f ′1(u) = 1 ≥ 1

2 log(e)
≥ 1

2 log(c)
=

c

2c log(c)
≥ c

u
= f ′2(u)

for u > 2c log(c), this is equivalent to

f1(2c log(c)) > f2(2c log(c)).

This in turn is equivalent to

2c log(c) > c log(2c log(c)) ⇔ 2c log(c) > c log(2) + c log(c) + c log(log(c))

⇔ c log(c)− c log(2)− c log(log(c)) > 0

⇔ log

(
c

2 log(c)

)
> 0

⇔ c > 2 log(c).(29)

Set g1(v) = v and g2(v) = 2 log(v). Then

g1(e) = e > 2 log(e) = g2(e)

and for v ≥ e one has

g′1(v) = 1 ≥ 2

v
= g′2(v).

This proves

g1(v) > g2(v)
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for v ≥ e, which together with c ≥ e implies (29).

In order to prove (25) we choose

Ḡ = {g1, . . . , gm}

as ε-packing of G w.r.t. ‖ · ‖L1(ν) with maximal size

m =M
(
ε,G, ‖ · ‖L1(ν).

)
(In fact it suffices to show (25) withM

(
ε,G, ‖ · ‖L1(ν).

)
replaced by the size m of a packing

for an arbitrary packing, which shows that the case of an infinite packing cannot occur).

Let Q1, . . . , Qk, T1, . . . , Tk be independent random variables with Q1, . . . , Qk identically

distributed with distribution ν and T1, . . . , Tk identically uniformly on [0, B]. We set

Ri = (Qi, Ti) (i = 1, . . . , k)

Rk
1 = (R1, . . . , Rk)

and

Gf = {(z, t) : t ≤ f(z)} for f ∈ G.

Then we have (where the first equality follows from the definition of the shatter coeffi-

cient):

S(G+, k)

≥ E
{
s
(
G+, Rk

1

)}
≥ E

{
s
(
{Gf : f ∈ Ḡ}, Rk

1

)}
≥ E

{
s
({
Gf : f ∈ Ḡ and Gf ∩Rk

1 6= Gg ∩Rk
1 for all g ∈ Ḡ \ {f}

}
, Rk

1

)}
= E

∑
f∈Ḡ

I{Gf∩Rk1 6=Gg∩Rk1 for all g∈Ḡ\{f}}


=
∑
f∈Ḡ

P
{
Gf ∩Rk

1 6= Gg ∩Rk
1 for all g ∈ Ḡ \ {f}

}
=
∑
f∈Ḡ

(
1−P

{
∃g ∈ Ḡ \ {f} : Gf ∩Rk

1 = Gg ∩Rk
1

})
≥
∑
f∈Ḡ

(
1−m · max

g∈Ḡ\{f}
P
{
Gf ∩Rk

1 = Gg ∩Rk
1

})
.

For arbitrary f, g ∈ Ḡ with f 6= g we have because of R1, . . . , Rk independent and

identically distributed

P
{
Gf ∩Rk

1 = Gg ∩Rk
1

}
= P {Gf ∩ {R1} = Gg ∩ {R1}, . . . , Gf ∩ {Rk} = Gg ∩ {Rk}}
= (P {Gf ∩ {R1} = Gg ∩ {R1}})k .
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T1 uniformly distributed on [0, B], g(Q1), f(Q1) ∈ [0, B], the choice of Q1 and Ḡ ε-packing

w.r.t. ‖ · ‖L1(ν) imply

P {Gf ∩ {R1} = Gg ∩ {R1}}
= 1−P {Gf ∩ {R1} 6= Gg ∩ {R1}}
= 1− E

{
P
{
Gf ∩ {R1} 6= Gg ∩ {R1}

∣∣Q1

}}
= 1− E

{
P
{
g(Q1) < T1 ≤ f(Q1) or f(Q1) < T1 ≤ g(Q1)

∣∣Q1

}}
= 1− E

{
|f(Q1)− g(Q1)|

B

}
= 1− 1

B

∫
|f(x)− g(x)|ν(dx)

≤ 1− ε

B
.

Using 1 + x ≤ ex (x ∈ R) we can conclude

P
{
Gf ∩Rk

1 = Gg ∩Rk
1

}
≤
(

1− ε

B

)k
≤ exp

(
−ε · k

B

)
,

from which we get by using the lower bound on S(G+, k) derived above

S(G+, k) ≥ m ·
(

1−m · exp

(
−ε · k

B

))
.

Next we set

k = bB
ε
· log(2 ·m)c.

Then

1−m · exp

(
−ε · k

B

)
≥ 1−m · exp

(
− ε

B
·
(
B

ε
· log(2 ·m)− 1

))
= 1−m · 1

2m
· exp

( ε
B

)
= 1− 1

2
· exp

( ε
B

)
≥ 1− 1

2
· exp

(
1

4

)
≥ 1

3

and hence

S

(
G+, bB

ε
· log(2 ·m)c

)
≥ 1

3
·m,

which proves (25). 2

Any application of Theorem 3.5 requires a bound on VG+ . Our next result contains such

a bound.
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Theorem 3.6 Let G be a r-dimensional vector space of real functions on Rd, and set

A = {{z : g(z) ≥ 0} : g ∈ G} .

Then

VA ≤ r.

If G satisfies the assumptions of Theorem 3.6, then

G+ =
{{

(z, t) ∈ Rd × R : t ≤ g(z)
}

: g ∈ G
}

⊆
{{

(z, t) ∈ Rd × R : g(z) + α · t ≥ 0
}

: g ∈ G, α ∈ R
}

and by Theorem 3.6 we get

VG+ ≤ r + 1.

Proof of Theorem 3.6: Let z1, . . . , zr+1 be (r + 1) distinct points of Rd. We will show

that

{{z : g(z) ≥ 0} : g ∈ G}

does not shatter these points.

To do this, we set

L : G → Rr+1, L(g) = (g(z1), . . . , g(zr+1))T .

Then L is a linear mapping, and the image LG of the r-dimensional vector space G is a

subspace of dimension less than or equal to r of Rr+1. Hence there exists a nonzero vector

that is orthogonal to LG, i.e., there exist γ1, . . . , γr+1 ∈ Rr+1 with γi 6= 0 for some i and

(30) γ1 · g(z1) + · · ·+ γr+1 · g(zr+1) = 0

for all g ∈ G. W.l.o.g. we have γi < 0 for some i ∈ {1, . . . , r + 1}.
Assume that there exists g ∈ G such that

{z : g(z) ≥ 0}

picks from {z1, . . . , zr+1} exactly those zj with γj ≥ 0. Then g(zj) always has the same

sign as γj, hence it holds

γj · g(zj) ≥ 0 (j ∈ {1, . . . , r + 1}).

Because of

γi · g(zi) > 0

this implies

γ1 · g(z1) + · · ·+ γr+1 · g(zr+1) > 0

which is a contradiction to (30). 2
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3.4 VC dimension of sets of deep neural networks

Sets of deep neural networks are nonlinear spaces in their weights, hence Theorem 3.6

cannot be used to bound their VC dimension. But for these sets the following bound

holds:

Theorem 3.7 (Bartlett et al. (2019)) Let σ(z) = max{z, 0} be the ReLU activation

function, and let F be a set of neural networks of some fixed topology with depth L and

W ≥ 2 many (possibly nonzero) weights. Then

VF+ ≤ c1 · L ·W · logW

for some c1 > 0 which does not depend on L, W , or the number of neurons in the network.

In the proof we will need the following auxiliary results.

Lemma 3.2 Suppose W ≤ m and let f1, ..., fm be polynomials of degree at most D in W

variables. Define

K = |{(sgn(f1(a)), . . . , sgn(fm(a))) : a ∈ RW}|,

where

sgn(z) =

1 if z ≥ 0,

0 if z < 0.

Then we have

K ≤ 2 ·
(

2 · e ·m ·D
W

)W
.

Proof. See Theorem 8.3 in Anthony and Bartlett (1999). A sketch of the proof goes as

follows:

By slightly pertubating the fi it is poosible to show

K = |{(sgn(f1(a)), . . . , sgn(fm(a))) : a ∈ RW \ ∪mi=1{ā ∈ RW : fi(ā) = 0}}|.

Let CC(A) be the number of connected components of A ⊆ RW (where all points are

connected by a continuous curve with image inside each connected component). Since

inside any connected component of

RW \ ∪mi=1{ā ∈ RW : fi(ā) = 0},

a sign change of any of the f1(a), . . . , fm(a) is not possible, we get

K ≤ CC(RW \ ∪mi=1{ā ∈ RW : fi(ā) = 0}).

Now it can be shown that the right-hand side is bounded from above by∑
S⊆{1,...,m},|S|≤W

CC(∩i∈S{ā ∈ RW : fi(ā) = 0}).
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This in turn is equal to ∑
S⊆{1,...,m},|S|≤W

CC({ā ∈ RW :
∑
i∈S

fi(ā)2 = 0}).

Since ∑
i∈S

fi(ā)2

is a polynomial in W variables of degree 2D, and since it can be shown that for any

polynomial f : Rd → R of degree l we have

CC({a ∈ Rd : f(a) = 0}) ≤ ld−1 · (l + 2),

we get

K ≤
∑

S⊆{1,...,m},|S|≤W

(2D)W−1 · (2D + 2)

≤ 2 · (2D)W ·
W∑
i=0

(m
i

)
≤ 2 · (2D)W ·

(e ·m
W

)W
,

where the last inequality follows from(
W

m

)W
·
W∑
i=0

(m
i

)
≤

m∑
i=0

(m
i

)
·
(
W

m

)i
≤
(

1 +
W

m

)m
≤ eW .

2

Lemma 3.3 Suppose that 2m ≤ 2L · (m · R/w)w for some R ≥ 16 and m ≥ w ≥ L ≥ 0.

Then,

m ≤ L+ w · log2(2 ·R · log2(R)).

Proof. Let R ≥ 16 and m ≥ w ≥ L ≥ 0. We have to show

m > L+ w · log2(2 ·R · log2(R)) =⇒ m > L+ w · log2

(
m ·R
w

)
.

Set

f(x) = x− L− w · log2

(
x ·R
w

)
.

Then it suffices to show:

(I) f(L+ w · log2(2 ·R · log2(R))) ≥ 0.

(II) f ′(x) > 0 for all x > L+ w · log2(2 ·R · log2(R)).
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Proof of (I): (I) means

L+ w · log2(2 ·R · log2(R))− L− w · log2

(
(L+ w · log2(2 ·R · log2(R))) ·R

w

)
≥ 0,

which is equivalent to

2 ·R · log2(R)) ≥ L+ w · log2(2 ·R · log2(R))

w
·R,

which in turn is equivalent to

R2 ≥ 2L/w · 2 ·R · log2(R)

or
R

log2(R)
≥ 2 · 2L/w.

Because of L/w ≤ 1 and R ≥ 16 the last inequality is satisfied (since for R ≥ 16 we have

R ≥ 4 · log2R).

Proof of (II): The derivative of

f(x) = x− L− w · 1

ln 2
· ln x ·R

w

is given by

f ′(x) = 1− w

ln 2
· w

x ·R
· R
w

= 1− w

ln 2
· 1

x
.

So (II) is implied by

x >
w

ln 2
for all x > L+ w · log2(2 ·R · log2(R)), which holds since R ≥ 16 implies

log2(2 ·R · log2(R)) ≥ 1

ln 2
.

2
Proof of Theorem 3.7. Let H be the set of all functions h defined by

h : Rd × R→ R, h(x, y) = g(x)− y

for some g ∈ F . Let (x1, y1), . . . (xm, ym) ∈ Rd × R be such that

(31) |{(sgn(h(x1, y1)), . . . , sgn(h(xm, ym))) : h ∈ H}| = 2m,

which is equivalent to F+ shatters (x1, y1), . . . (xm, ym).

W.l.o.g. we assume m ≥ W . It suffices to show

(32) m ≤ c1 · L ·W · logW.

To show this we partition F in subsets such that for each subset all

g(xi) (i = 1, . . . ,m)
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are polynomials of some fixed degree and use Lemma 3.2 in order to derive an upper

bound on the left-hand side of (31). This upper bound will depend polynomially on m

which will enable us to conclude (32) by an application of Lemma 3.3.

Let

θ ∈ RW

be the vector of all weights which determine a function g ∈ F . Then we can write

F = {g(·, θ) : Rd → R : θ ∈ RW}.

In the sequel we construct a partition PL+1 of RW such that for all S ∈ PL+1 we have

that

g(x1, θ), . . . , g(xm, θ)

(considered as functions of θ) are polynomials of degree at most L+ 1 for θ ∈ S.

In order to construct this partition we construct recursively partions P1, . . . , PL+1 of RW

such that for each l ∈ {1, . . . , L+ 1} and all S ∈ Pl all activations

a
(l)
i (xj) (i = 1, . . . , ri, j = 1, . . . ,m)

in level l (considered as a function of θ) are polynomials of degree at most l in θ for θ ∈ S.

Since all activations on level 1 (which are just linear combinations of the input variables)

are linear polynomials as functions of θ this holds if we set P1 = {RW}.
Let l ∈ {2, . . . , L+ 1} and assume that for all S ∈ Pl−1 all activations

(33) a
(l−1)
i (i = 1, . . . , rl−1, j = 1, . . . ,m)

in level l − 1 (considered as a function of θ) are polynomials of degree at most l − 1 in θ

for θ ∈ S. Application of Lemma 3.1 yields that (33) takes on in each set of Pl−1 at most

2 ·
(

2 · e ·m · rl−1 · (l − 1)

W

)W
≤ 2 · (2 · e ·m · (l − 1))W

many different sign patterns. (Here we ignore neurons which have no nonzero weight and

hence assume w.l.o.g. that W ≥ rl−1.)

If we partiton each set in Pl−1 according to these sign patterns in

∆ ≤ 2 · (2 · e ·m · L)W

subsets, then on each set in the new partition all outputs of neurons in level l − 1 are

polynomials of degree at most l − 1 (since they are one each set either equal to zero or

equal to their activation). Consequently, on each set in this new partition all activations

in level l are polynomials of degree at most l. We call this refined partion Pl.
Using PL+1 = PL we have constructed a partition with

|PL+1| =
L∏
l=2

|Pl|
|Pl−1|

≤ 2L · (2 · e ·m · L)W ·L

57



such that for each set in this partition for all (x, y) ∈ {(x1, y1), . . . , (xm, ym)}

g(x) and h(x, y) = g(x)− y

(considered as a function of θ) are polynomials of degree at most L+ 1 in θ for θ ∈ S.

Using

|{(sgn(h(x1, y1)), . . . , sgn(h(xm, ym))) : h ∈ H}|
≤

∑
S∈PL+1

|{(sgn(g(x1, θ)− y1), . . . , sgn(g(xm, θ)− ym)) : θ ∈ S}|

we can apply one more time Lemma 3.1 to conclude

2m = |{(sgn(h(x1, y1)), . . . , sgn(h(xm, ym))) : h ∈ H}|

≤ |PL+1| · 2 ·
(

2 · e ·m · (L+ 1)

W

)W
≤ 2L · (2 · e ·m · L)W ·L · 2 ·

(
2 · e ·m · (L+ 1)

W

)W
≤ 2L ·

(
2 · e ·m ·W · (L+ 1)2

W · (L+ 1)

)W ·(L+1)

.

Application of Lemma 3.3 with w = W · (L+ 1) and R = 2 · e ·W · (L+ 1)2 ≥ 16 (since

W ≥ 2) yields

m ≤ L+W · (L+ 1) · log2

(
2 · 2 · e ·W · (L+ 1)2 · log2

(
2 · e ·W · (L+ 1)2

))
≤ c1 · L ·W · logW,

where we have used

L ≤ W,

which holds w.l.o.g. because otherwise the neural network has a layer with no connection

to the previous layer. 2
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4 Least squares neural network regression estimates

4.1 A general result

Let (X, Y ), (X1, Y1), (X2, Y2), . . . be i.i.d. Rd × R–valued random variables with

E{Y 2} <∞, let

m : Rd → R, m(x) = E{Y |X = x}

be the corresponding regression function, and let Fn be a set of functions f : Rd → R.

Set

Dn = {(X1, Y1), . . . , (Xn, Yn)}.

In the sequel we use the results from Chapter 3 to derive a bound on the expected L2

error of the least squares estimates

(34) mn(x) = mn(x,Dn) = Tβnm̃n(x)

where

(35) m̃n(·) = m̃n(·,Dn) = arg min
f∈Fn

1

n

n∑
i=1

|f(Xi)− Yi|2

and

Tβn(z) = max{min{z, βn},−βn}

for z ∈ R.

Our main result is the following theorem.

Theorem 4.1 Let β ≥ 1 and assume

(36) |Y | ≤ β a.s.

Set βn = β and define the estimate mn as above. Then

E

∫
|mn(x)−m(x)|2PX(dx)

≤ c1 · β4 ·
1 + supxn1∈(Rd)n logN1

(
1

80·β·n , TβFn, x
n
1

)
n

+ 2 · inf
f∈Fn

∫
|f(x)−m(x)|2PX(dx),

where TβFn = {Tβf : f ∈ Fn} and (Tβf)(x) = Tβ(f(x)).
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Proof. We use the error decomposition∫
|mn(x)−m(x)|2PX(dx)

= E
{
|mn(X)− Y |2

∣∣Dn}− E
{
|m(X)− Y |2

}
=

(
E
{
|mn(X)− Y |2

∣∣Dn}− E
{
|m(X)− Y |2

}
−2 ·

(
1

n

n∑
i=1

|mn(Xi)− Yi|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
))

+2 ·

(
1

n

n∑
i=1

|mn(Xi)− Yi|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
)

=: T1,n + T2,n.

Because of |Tβz − y| ≤ |z − y| for |y| ≤ β the definition of mn implies

T2,n ≤ 2 ·

(
1

n

n∑
i=1

|m̃n(Xi)− Yi|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
)

= 2 ·

(
inf
f∈Fn

1

n

n∑
i=1

|f(Xi)− Yi|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
)

which implies

ET2,n ≤ 2 · inf
f∈Fn

E

(
1

n

n∑
i=1

|f(Xi)− Yi|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
)

= 2 · inf
f∈Fn

∫
|f(x)−m(x)|2PX(dx).

Hence it suffices to show

ET1,n ≤ c1 ·
1 + supxn1∈(Rd)n logN1

(
1

80·β·n , TβFn, x
n
1

)
n

.

To show this choose δn ≥ 1
n
. Then

ET1,n ≤ E{(T1,n)+} =

∫ ∞
0

P{(T1,n)+ > t} dt =

∫ ∞
0

P{T1,n > t} dt

≤ δn +

∫ ∞
δn

P{T1,n > t} dt.
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We have

P{T1,n > t}

≤ P

{
∃f ∈ TβFn : E

{
|f(X)− Y |2

}
− E

{
|m(X)− Y |2

}
−2 ·

(
1

n

n∑
i=1

|f(Xi)− Yi|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
)
> t

}

= P

{
∃f ∈ TβFn : E

{
|f(X)− Y |2

}
− E

{
|m(X)− Y |2

}
−

(
1

n

n∑
i=1

|f(Xi)− Yi|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
)

>
1

2
·

(
t

2
+
t

2
+ E

{
|f(X)− Y |2

}
− E

{
|m(X)− Y |2

})}
.

Application of Theorem 3.2 yields for t ≥ δn ≥ 1
n

P{T1,n > t} ≤ 14 · sup
xn1

N1

(
1

80 · β · n
, TβFn, xn1

)
· exp

(
− t · n

16 · 214 · 3/2 · β4

)
which implies

ET1,n ≤ δn +

∫ ∞
δn

14 · sup
xn1

N1

(
1

80 · β · n
, TβFn, xn1

)
· exp

(
− t · n

16 · 214 · 3/2 · β4

)
dt

= δn +
16 · 214 · 3/2 · β4

n
· 14 · sup

xn1

N1

(
1

80 · β · n
, TβFn, xn1

)
· exp

(
− δn · n

16 · 214 · 3/2 · β4

)
.

With

δn =
16 · 214 · 3/2 · β4

n
· sup
xn1

logN1

(
1

80 · β · n
, TβFn, xn1

)
we get the assertion. 2
Remark. It can be shown that if (36) does not hold the assertion of Theorem 4.1 still

holds provided

E exp(c2 · Y 2) <∞ and ‖m‖∞ <∞

hold and we set β = βn = c3 · log n.

4.2 Rate of convergence of least squares neural network esti-

mates

Let σ be the ReLU activation function, let F(L, r) be the corresponding space of neural

networks with L layers and r neurons per layer, and set

Gn =

{
Kn∑
k=1

fk : fk ∈ F(Ln, rn) (k = 1, . . . , Kn)

}
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for some Kn, Ln, rn ∈ N. Let βn > 0 and set

m̃n(·) = arg min
g∈Gn

1

n

n∑
i=1

|g(Xi)− Yi|2

and

mn(x) = mn(x,Dn) = Tβnm̃n(x),

i.e., mn is the truncated least squares estimate of m corresponding to Gn.

Theorem 4.2 Let p, C, A, β > 0, let (X, Y ), (X1, Y1), . . . , (Xn, Yn) be i.i.d. [−A,A]d×
[−β, β] valued random variables, and assume that the corresponding regression function

m(x) = E{Y |X = x} is (p, C)–smooth.

Set

βn = β, Kn = dc1 · n
d

2p+d e, Ln = dc2 · log ne and rn = c3.

Then we have for c1, c2 and c3 sufficiently large

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c4 · (log n)4 · n−

2p
2p+d .

Proof. By Theorem 4.1 we know

E

∫
|mn(x)−m(x)|2PX(dx)

≤ c1 · β4 ·
1 + supxn1∈(Rd)n logN1

(
1

80·β·n , TβGn, x
n
1

)
n

+ 2 · inf
f∈Gn

∫
|f(x)−m(x)|2PX(dx).

By Theorem 3.7 we know

VTβG+n ≤ VG+n ≤ c5 · Ln ·Kn · Ln · r2
n · log

(
Kn · Ln · r2

n

)
≤ c6 · (log n)3 · n

d
2p+d .

(Here we have used

VTβnF+ ≤ VF+ ,

where TβnF = {Tβnf : f ∈ F} for a set F of functions f : Rd → R. This holds because if

TβnF+ shatters (x1, y1), . . . , (xn, yn), then |yi| ≤ βn (i = 1, . . . , n) holds and consequently

F+ shatters these points, too.)

Using Lemma 3.1 and Theorem 3.5 we can conclude

1 + supxn1∈(Rd)n logN1

(
1

80·β·n , TβGn, x
n
1

)
n

≤ c6 · (log n)3 · n
d

2p+d · c7 · log n

n

≤ c8 · (log n)4 · n
−2p
2p+d .

And by Theorem 2.1 we get

inf
f∈Gn

∫
|f(x)−m(x)|2PX(dx) ≤

∣∣d(m,Gn, ‖ · ‖∞,[−A,A]d)
∣∣2 ≤ c9 ·

1

K
2p
d
n

≤ c10 · n
−2p
2p+d .
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2
Remark. Modifying the estimate as in the remark after the proof of Theorem 4.1 we see

that the assertion also holds if (X, Y ) is a Rd×R-valued random variable with supp(PX)

compact,

E
{
ec1·Y

2
}
<∞

and m (p, C)–smooth.

4.3 Lower bounds on the rate of convergence

In this section we show that the rate of convergence in Theorem 4.2 is optimal up to the

logarithmic factor (log n)4.

Definition 4.1 Let D be a class of distributions of (X, Y ) and let (an)n∈N be a sequence

of positive real numbers.

a) (an)n∈N is called lower minimax rate of convergence of D, if

lim inf
n→∞

inf
mn

sup
(X,Y )∈D

E
∫
|mn(x)−m(x)|2PX(dx)

an
= C1 > 0.

b) (an)n∈N is called upper minimax rate of convergence of D, if there exists an

estimate mn such that

lim sup
n→∞

sup
(X,Y )∈D

E
∫
|mn(x)−m(x)|2PX(dx)

an
= C2 <∞.

c) (an)n∈N is called optimal minimax rate of convergence of D, if (an)n∈N is a lower

and an upper minimax rate of convergence of D.

From the previous section we know: Let p, C > 0 and let D be the class of all distributions

of (X, Y ) such that X ∈ [0, 1]d a.s., E{ec1·Y 2} < ∞ and m(x) = E{Y |X = x} is (p, C)–

smooth. Then (
(log n)4 · n−

2p
2p+d

)
n∈N

is an upper minimax rate of convergence of D.

In the sequel we will show that

(37)
(
n−

2p
2p+d

)
n∈N

is a lower minimax rate of convergence of D, hence the rate of convergence in Theorem

4.2 cannot be improved by more than (log n)4 (in fact it can be shown that (37) is in fact

the optimal minimax rate of convergence, cf. Stone (1982)).

It suffices to show that
(
n−

2p
2p+d

)
n∈N

is a lower minimax rate of convergence of some

suitable D̃ ⊆ D.
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Definition 4.2 For p, C > 0 let D(p,C) be the class of all distributions of (X, Y ) satisfying:

1. X ∼ U([0, 1]d)

2. Y = m(X) +N where N ∼ N(0, 1) and X,N independent.

3. m (p, C)-smooth.

4. |m(x)| ≤ 1 for all x ∈ [0, 1]d.

The main result of this subsection is:

Theorem 4.3 Let p, C > 0 and define D(p,C) as above. Then

(38)
(
n−

2p
2p+d

)
n∈N

is a lower minimax rate of convergence of D(p,C).

In the proof we will need:

Lemma 4.1 Let u ∈ Rl and let C be a random variable with values in {−1, 1} satisfying

P{C = 1} =
1

2
= P{C = −1}.

Let N be an l-dimensional standard normally distributed random variable which is inde-

pendent of C, i.e., N = (N (1), . . . , N (l)) where N (1), . . . , N (l) are independent standard

normally distributed real-valued random variables which are independent of C. Set

Z = C · u+N

and consider the problem of predicting the value of C from the observed value of Z. Then

L∗ := min
g:Rl→{−1,1}

P{g(Z) 6= C} = Φ(−‖u‖),

where Φ is the cdf. of N(0, 1).

Proof. For arbitrary g : Rl → {−1, 1} the independence of N and C implies

P {g(Z) 6= C}
= P {g(C · u+N) 6= C}
= P {g(C · u+N) 6= C,C = 1}+ P {g(C · u+N) 6= C,C = −1}
= P {g(u+N) = −1, C = 1}+ P {g(−u+N) = 1, C = −1}
= P {g(u+N) = −1} ·P {C = 1}+ P {g(−u+N) = 1} ·P {C = −1}

=
1

2
·P {g(u+N) = −1}+

1

2
·P {g(−u+N) = 1} .
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Let ϕ be the density of N , i.e., for v = (v(1), . . . , v(l)) we have

ϕ(v) =
l∏

i=1

1√
2 · π

· e−
|v(i)|2

2 = (2 · π)−l/2 · e−‖v‖2/2.

u + N has the density ϕ(v − u), and −u + N has the density ϕ(v + u) (which can be

shown by derivating the corresponding cdf).

Hence

P {g(Z) 6= C}

=
1

2
·
∫
I{g(z)=−1} · ϕ(z − u) dz +

1

2
·
∫
I{g(z)=1} · ϕ(z + u) dz

=
1

2
·
∫ (

I{g(z)=−1} · ϕ(z − u) + I{g(z)=1} · ϕ(z + u)
)
dz.

The right-hand side above is minimal for

g∗(z) =

{
1, if ϕ(z − u) > ϕ(z + u),

−1, else.

Because of

ϕ(z − u) > ϕ(z + u) ⇔ (2 · π)−l/2 · e−‖z−u‖2/2 > (2 · π)−l/2 · e−‖z+u‖2/2

⇔ ‖z + u‖2 > ‖z − u‖2

⇔ < z, u > > 0

we get

g∗(z) =

{
1, if < z, u > > 0,

−1, else

and as above we get

L∗ = P {g∗(Z) 6= C}
= P {g∗(Cu+N) 6= C,C = 1}+ P {g∗(Cu+N) 6= C,C = −1}

=
1

2
·P {g∗(u+N) = −1}+

1

2
·P {g∗(−u+N) = 1}

=
1

2
·P {< u+N, u > ≤ 0}+

1

2
·P {< −u+N, u > > 0}

=
1

2
·P
{
‖u‖2+ < u,N > ≤ 0

}
+

1

2
·P
{
−‖u‖2+ < u,N > > 0

}
=

1

2
·P
{
< u,N > ≤ −‖u‖2

}
+

1

2
·P
{
< u,N > > ‖u‖2

}
.

In case u = 0 we have

L∗ =
1

2
· 1 +

1

2
· 0 =

1

2
= Φ(−‖u‖).

In case ‖u‖ 6= 0 we have that

<
u

‖u‖
, N >
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is as a linear combination of independent normally distributed random variables normally

distributed, and because of E{< u
‖u‖ , N >} = 0 and V{< u

‖u‖ , N >} = ‖u‖2/‖u‖2 = 1

this random variable is standard normally distributed. Hence

L∗ =
1

2
·P
{
<

u

‖u‖
, N > ≤ −‖u‖

}
+

1

2
·P
{
<

u

‖u‖
, N > > ‖u‖

}
=

1

2
· Φ(−‖u‖) +

1

2
· (1− Φ(‖u‖))

= Φ(−‖u‖).

2
Proof of Theorem 4.3: We prove Theorem 4.3 only in case d = 1, the general case will

be considered in the practising course.

1. Step: Depending on n we define a subclass of D(p,C).

Let p = k + β with k ∈ N0 and β ∈ (0, 1] and set

Mn = d(C2 · n)
1

2p+1 e

(where dxe = inf{z ∈ Z : z ≥ x}) and partition [0, 1] into Mn intervals An,j of length

1/Mn. Let an,j be the center of An,j.

Choose a bounded function ḡ : R→ R satisfying

supp(ḡ) ⊆ (−1/2, 1/2),

∫
ḡ2(x) dx > 0 and ḡ (p, 2β−1)-smooth

(where we can achieve the last condition by rescaling a sufficiently smooth function), and

set

g(x) = C · ḡ(x) (x ∈ R).

Then

supp(g) ⊆ (−1/2, 1/2),

∫
g2(x) dx = C2 ·

∫
ḡ2(x) dx > 0

and

g (p, C · 2β−1)-smooth.

For cn = (cn,1, . . . , cn,Mn) ∈ {−1, 1}Mn =: Cn set

m(cn)(x) =
Mn∑
j=1

cn,j · gn,j(x)

where

gn,j(x) = M−p
n · g(Mn(x− an,j)).

Then m(cn) is (p, C)-smooth, which we can show as follows:
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(i) For x, z ∈ An,i we have∣∣∣∣∣
(
d

dx

)k
m(cn)(x)−

(
d

dx

)k
m(cn)(z)

∣∣∣∣∣
= |cn,i| ·

∣∣∣∣∣
(
d

dx

)k
gn,i(x)−

(
d

dx

)k
gn,i(z)

∣∣∣∣∣
= 1 ·M−p

n ·Mk
n · C · 2β−1 |Mn(x− an,i)−Mn(z − an,i)|β

≤ C · 2β−1 · |x− z|β ≤ C · |x− z|β.

(This also shows that gn,i is (p, C)–smooth on whole R.)

(ii) For x ∈ An,i and z ∈ An,j with i 6= j let x̃ and z̃, resp. be points on the border of

An,i bzw. An,j in direction of z and x, resp. Since gn,i and gn,j are (p, C)-smooth

(see above) and zero on the border we have(
d

dx

)k
gn,i(x̃) = 0 =

(
d

dx

)k
gn,j(z̃).

Using the result of step (i) we get∣∣∣∣∣
(
d

dx

)k
m(cn)(x)−

(
d

dx

)k
m(cn)(z)

∣∣∣∣∣
=

∣∣∣∣∣cn,i ·
(
d

dx

)k
gn,i(x)− cn,j ·

(
d

dx

)k
gn,j(z)

∣∣∣∣∣
≤ |cn,i| ·

∣∣∣∣∣
(
d

dx

)k
gn,i(x)

∣∣∣∣∣+ |cn,j| ·

∣∣∣∣∣
(
d

dx

)k
gn,j(z)

∣∣∣∣∣
=

∣∣∣∣∣
(
d

dx

)k
gn,i(x)−

(
d

dx

)k
gn,i(x̃)

∣∣∣∣∣+

∣∣∣∣∣
(
d

dx

)k
gn,j(z)−

(
d

dx

)k
gn,j(z̃)

∣∣∣∣∣
≤ C · 2β−1 · |x− x̃|β + C · 2β−1 · |z − z̃|β

= C · 2β ·
(

1

2
· |x− x̃|β +

1

2
· |z − z̃|β

)
≤ C · 2β ·

(
|x− x̃|

2
+
|z − z̃|

2

)β
≤ C · (|x− x̃|+ |z − z̃|)β ≤ C · |x− z|β ,

where the third inequality follows from the inequality of Jensen and the fact that

u 7→ uβ is on R+ \ {0} concave.

This shows that the set D̄(p,C)
n of all distributions of (X, Y ) satisfying

1. X ∼ U [0, 1],

2. Y = m(cn)(X) + N for some cn ∈ Cn and some N ∼ N(0, 1), where X and N are

independent
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is for n sufficiently large (which ensures ‖m(cn)‖∞ ≤ 1) a subclass of D(p,C), and it suffices

to show:

(39) lim inf
n→∞

inf
mn

sup
(X,Y )∈D̄(p,C)

n

M2p
n

C2
· E
∫ 1

0

|mn(x)−m(cn)(x)|2dx > 0.

2. Step: We use a regression estimate in order to estimate the parameter cn ∈ Cn of a

distribution (X, Y ) ∈ D̄(p,C)
n .

Let mn be an arbitrary regression estimate. By construction we have that the supports of

the gn,j are disjoint, which implies that {gn,j : j ∈ N} are orthogonal in L2. Consequently,

the orthogonal projection of mn to (the linear vector space) {m(cn) : cn ∈ RMn} is given

by

m̂n(x) =
Mn∑
j=1

ĉn,j · gn,j(x)

where

ĉn,j =

∫
An,j

mn(x) · gn,j(x) dx∫
An,j

g2
n,j(x) dx

.

For cn ∈ Cn we have ∫ 1

0

|mn(x)−m(cn)(x)|2dx

≥
∫ 1

0

|m̂n(x)−m(cn)(x)|2dx

=
Mn∑
j=1

∫
An,j

|ĉn,j · gn,j(x)− cn,j · gn,j(x)|2dx

=
Mn∑
j=1

|ĉn,j − cn,j|2 ·
∫
An,j

g2
n,j(x) dx

=

∫
g2(x) dx · 1

M2p+1
n

·
Mn∑
j=1

|ĉn,j − cn,j|2.

Set

c̃n,j =

{
1, if ĉn,j ≥ 0,

−1, else.

Then

|ĉn,j − cn,j| ≥
1

2
· |c̃n,j − cn,j| = I{c̃n,j 6=cn,j},

which can be easily seen by considering the cases c̃n,j = 1, cn,j = −1 and c̃n,j = −1,

cn,j = 1.

Hence ∫ 1

0

|mn(x)−m(cn)(x)|2dx ≥
∫
g2(x) dx · 1

M2p+1
n

·
Mn∑
j=1

I{c̃n,j 6=cn,j},
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and consequently (39) is implied by

(40) lim inf
n→∞

inf
c̃n

sup
c∈Cn

1

Mn

Mn∑
j=1

P {c̃n,j 6= cn,j} > 0.

3. Step: We choose cn ∈ Cn randomly.

Let Cn,1, . . . , Cn,Mn be independent and identically distributed random variables satisfying

P{Cn,1 = 1} =
1

2
= P{Cn,1 = −1},

which are independent of (X1, N1), . . . , (Xn, Nn). Set

Cn = (Cn,1, . . . , Cn,Mn) .

Then

inf
c̃n

sup
cn∈Cn

1

Mn

Mn∑
j=1

P {c̃n,j 6= cn,j}

≥ inf
c̃n

1

Mn

Mn∑
j=1

P {c̃n,j 6= Cn,j} .

Here the optimal predictor is given by

C̄n,j =

{
1, if P{Cn,j = 1|(X1, Y1), . . . , (Xn, Yn)} ≥ 1

2
,

−1, else.

Due to symmetry of the problem we have

P {c̃n,j 6= Cn,j} = E {P {c̃n,j 6= Cn,j|(X1, Y1), . . . , (Xn, Yn)}}
≥ E

{
P
{
C̄n,j 6= Cn,j|(X1, Y1), . . . , (Xn, Yn)

}}
= P

{
C̄n,j 6= Cn,j

}
= P

{
C̄n,1 6= Cn,1

}
and we get

inf
c̃n

sup
cn∈Cn

1

Mn

Mn∑
j=1

P {c̃n,j 6= cn,j} ≥ P
{
C̄n,1 6= Cn,1

}
.

Hence it suffices to show:

(41) lim inf
n→∞

P
{
C̄n,1 6= Cn,1

}
> 0.

(If one does not want to use the symmetry argument above, on can also show this for

each j instead just for j = 1).

4. Step: Proof of (41).

We use

P
{
C̄n,1 6= Cn,1

}
= E

{
P
{
C̄n,1 6= Cn,1

∣∣X1, . . . , Xn

}}
.
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Let Xi1 , . . . , Xil be those Xi satisfying Xi ∈ An,1. Then

(42) (Yi1 , . . . , Yil) = Cn,1 · (gn,1(Xi1), . . . , gn,1(Xil)) + (Ni1 , . . . , Nil) .

All Yj with Xj /∈ An,1 do depend only on Cn,2, . . . , Cn,Mn and

{(Xr, Nr) : r /∈ {i1, . . . , il}}

and are consequently independent of the data in (42) given X1, . . . , Xn. If we also

condition on all those random variables then we can conclude because of

gn,1(Xj) = 0 for Xj /∈ An,1

from Lemma 4.1

P
{
C̄n,1 6= Cn,1

∣∣X1, . . . , Xn

}
= Φ

−
√√√√ l∑

r=1

g2
n,1(Xir)


= Φ

−
√√√√ n∑

i=1

g2
n,1(Xi)

 ,

where Φ is the cdf. of N(0, 1).

It is easy to see (e.g., by computation of the second derivative) that

x 7→ Φ(−
√
x)

is convex. Application of the inequality of Jensen yields

P
{
C̄n,1 6= Cn,1

}
= E

Φ

−
√√√√ n∑

i=1

g2
n,1(Xi)


≥ Φ

−
√√√√E

{
n∑
i=1

g2
n,1(Xi)

}
= Φ

(
−n ·

∫ 1

0

g2
n,1(x)dx

)
= Φ

(
−n ·M−(2p+1)

n · C2

∫ 1

0

ḡ2(x)dx

)
≥ Φ

(
−
∫ 1

0

ḡ2(x)dx

)
,

since

Mn = d(C2 · n)
1

2p+1 e ≥ (C2 · n)
1

2p+1 .

2
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4.4 Deep learning as a remedy against the curse of dimension-

ality

The optimal rate of convergence

n−
2p

2p+d

for estimation of a (p, C)–smooth regression function gets worse in case that d (the dimen-

sion of X) is large compared to p (so-called curse of dimensionality). Since this rate is

optimal, there is no chance to get a better rate regardedless what kind of estimate we use.

The only way to circumvent this problem is to impose additional conditions on the re-

gression function, which enable some estimates to achieve a better rate. In this section we

show that deep neural network can achieve better rates in case that the high-dimensional

regression function is a composition of suitable functions. This effect occurs due to the

network structure of the neural network.

We consider in the sequel functions, which fulfill the following definition:

Definition 4.3 (Kohler and Langer (2021)). Let d ∈ N and m : Rd → R and let P be a

subset of (0,∞)× N.

a) We say that m satisfies a hierarchical composition model of level 1 with order and

smoothness constraint P, if there exists (p,K) ∈ P, a (p, C)–smooth function g : RK → R
and some π : {1, . . . , K} → {1, . . . , d} such that

m(x) = g(x(π(1)), . . . , x(π(K))) for all x = (x(1), . . . , x(d))> ∈ Rd.

b) We say that m satisfies a hierarchical composition model of level l + 1 with order and

smoothness constraint P, if there exist (p,K) ∈ P, C > 0, g : RK → R and f1, . . . , fK :

Rd → R, such that g is (p, C)–smooth, f1, . . . , fK satisfy a hierarchical composition model

of level l with order and smoothness constraint P and

m(x) = g(f1(x), . . . , fK(x)) for all x ∈ Rd.

For l = 1 and some order and smoothness constraint P ⊆ (0,∞) × N our space of

hierarchical composition models becomes

H(1,P) = {h : Rd → R : h(x) = g(x(π(1)), . . . , x(π(K))),where

g : RK → R is (p, C) –smooth for some (p,K) ∈ P ,
C > 0 and π : {1, . . . , K} → {1, . . . , d}}.

For l > 1, we recursively define

H(l,P) := {h : Rd → R : h(x) = g(f1(x), . . . , fK(x)),where

g : RK → R is (p, C)–smooth for some (p,K) ∈ P ,
C > 0 and fi ∈ H(l − 1,P)}.
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Next we introduce sets of sparse neural networks, where we control the number τ of weights

which are nonzero. To do this, let σ be the ReLU activation function. For L, r, τ ∈ N let

Fsparse(L, r, τ)

be the set of all feedforward neural networks with activation function σ, L layers and r

neurons in each layer, where at most τ of its weights are nonzero.

We consider the following truncated least suqares estimate:

(43) mn(x) = mn(x,Dn) = Tβnm̃n(x)

where

(44) m̃n(·) = m̃n(·,Dn) = arg min
f∈Fsparse(Ln,rn,τn)

1

n

n∑
i=1

|f(Xi)− Yi|2.

The main result is the following bound on its expected L2 error.

Theorem 4.4 (Schmidt-Hieber (2020), cf. also Bauer and Kohler (2019)).

Let A, β > 0, let (X, Y ), (X1, Y1), . . . , (Xn, Yn) be i.i.d. [−A,A]d×[−β, β] valued random

variables, and let m(x) = E{Y |X = x} be the corresponding regression function. Let P
be a finite subset of [1,∞) × N, let l ∈ N and assume that m satisfies a hierarchical

composition model of level l with order and smoothness constraint P.

Set

βn = β, Ln = dc1 · log ne, rn = dc2 · max
(p,K)∈P

n
K

2p+K e

and

τn = dc3 · (log n) · max
(p,K)∈P

n
K

2p+K e,

and define the least squares neural network regression estimate mn as above.

Then we have for c1, c2 and c3 sufficiently large that for any sufficiently large n

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c4 · (log n)4 · max

(p,K)∈P
n−

2p
2p+K

holds.

Remark. The rate of convergence in the above theorem does not depend on the di-

mension d of the predictor variable X, hence the above least squares estimate is able

to circumvent the curse of dimensionality in case that the regression function satisfies a

suitable hierarchical composition model.

Proof. By Theorem 4.1 we know

E

∫
|mn(x)−m(x)|2PX(dx)

≤ c5 · β4 ·
1 + supxn1∈(Rd)n logN1

(
1

80·β·n , TβFsparse(Ln, rn, τn), xn1

)
n

+2 · inf
f∈Fsparse(Ln,rn,τn)

∫
|f(x)−m(x)|2PX(dx),
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so it suffices to show

(45)
1 + supxn1∈(Rd)n logN1

(
1

80·β·n , TβFsparse(Ln, rn, τn), xn1

)
n

≤ c6·(log n)4· max
(p,K)∈P

n−
2p

2p+K

and

(46) inf
f∈Fsparse(Ln,rn,τn)

∫
|f(x)−m(x)|2PX(dx) ≤ c6 · (log n)4 · max

(p,K)∈P
n−

2p
2p+K .

If we fix the τn positions where the weights in Fsparse(Ln, rn, τn) are allowed to be nonzero,

then the VC dimension of this function space is bounded by Theorem 3.7 by

c7 · Ln · τn · log(τn),

from which we conclude by Theorem 3.5 that the L1– 1
80·β·n covering number on zn1 of a

truncated version of this function space is bounded by

c9 · (c10 · n)2·c7·Ln·τn·log(Ln·τn).

Since (for n large) there are at most(
rn + 1 + Ln · rn · (rn + 1) + rn · (d+ 1)

τn

)
≤ c11 · n2·τn

many possibilities to choose the positions of these weights we see that we have for n large

sup
xn1∈(Rd)n

logN1

(
1

80 · β · n
, TβFsparse(Ln, rn, τn), xn1

)
≤ log

(
c11 · n2·τn · c9 · (c10 · n)2·c7·Ln·τn·log(Ln·τn)

)
≤ c12 · (log n)3 · τn,

which implies

1 + supxn1∈(Rd)n logN1

(
1

80·β·n , TβFsparse(Ln, rn, τn), xn1

)
n

≤ c13 · (log n)3 · τn
n
≤ c6 · (log n)4 · max

(p,K)∈P
n−

2p
2p+K .

In the remainder of the proof we show (46).

We observe in a first step, that one has to compute different hierarchical composition

models of some level i (i ∈ {1, . . . , l − 1}) to compute a function h
(l)
1 ∈ H(l,P). Let Ñi

denote the number of hierarchical composition models of level i, needed to compute h
(l)
1 .

We denote in the following by

h
(i)
j : Rd → R(47)

the j–th hierarchical composition model of some level i (j ∈ {1, . . . , Ñi}, i ∈ {1, . . . , l}),
that applies a (p

(i)
j , C)–smooth function g

(i)
j : RK

(i)
j → R with p

(i)
j = q

(i)
j + s

(i)
j , q

(i)
j ∈ N0
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and s
(i)
j ∈ (0, 1], where (p

(i)
j , K

(i)
j ) ∈ P . The computation of h

(l)
1 (x) can then be recursively

described as follows:

(48) h
(i)
j (x) = g

(i)
j

(
h

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , h
(i−1)∑j
t=1K

(i)
t

(x)

)
for j ∈ {1, . . . , Ñi} and i ∈ {2, . . . , l} and

(49) h
(1)
j (x) = g

(1)
j

(
x

(
π(
∑j−1
t=1 K

(1)
t +1)

)
, . . . , x

(
π(
∑j
t=1K

(1)
t )

))
for some function π : {1, . . . , Ñ1} → {1, . . . , d}. Furthermore for i ∈ {1, . . . , l − 1} the

recursion

Ñl = 1 and Ñi =

Ñi+1∑
j=1

K
(i+1)
j(50)

holds. Set

gmax := max

 max
i∈{1,...,l}
j∈{1,...,Ñi}

‖g(i)
j ‖∞, A

 .

For the approximation of g
(i)
j we will use the networks

f̂
g
(i)
j
∈ G

described in Theorem 2.1, where

K =

⌈
c14 · n

1

2·p(i)
j

+K
(i)
j

⌉
, L = dc15 · log ne, r = 36 · dp(i)

j e+ 54 ·K(i)
j

for j ∈ {1, . . . , Ñi} and i ∈ {1, . . . , l}, which satisfies

‖f̂
g
(i)
j
− g(i)

j ‖
∞,[−gmax,gmax]

K
(i)
j
≤ c17 · n

−
p
(i)
j

2·p(i)
j

+K
(i)
j .

To compute the values of h
(1)
1 , . . . , h

(1)

Ñ1
we use the networks

ĥ
(1)
1 (x) = f̂

g
(1)
1

(
x(π(1)), . . . , x(π(K

(1)
1 ))
)

...

ĥ
(1)

Ñ1
(x) = f̂

g
(1)

Ñ1

(
x(π(

∑Ñ1−1
t=1 K

(1)
t +1)), . . . , x(π(

∑Ñ1
t=1K

(1)
t ))

)
.
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To compute the values of h
(i)
1 , . . . , h

(i)

Ñi
(i ∈ {2, . . . , l}) we use the networks

ĥ
(i)
j (x) = f̂

g
(i)
j

(
ĥ

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , ĥ
(i−1)∑j
t=1K

(i)
t

(x)

)
for j ∈ {1, . . . , Ñi}. Finally we set

t1(x) = ĥ
(l)
1 (x).

Since each ĥ
(i)
j (j ∈ {1, . . . , Ñi}) needs dc15 · log ne many layers and at most

c18 · max
(p,K)∈P

n
K

2p+K

neurons per layer, this composed network is contained in the class

Fsparse(Ln, rn, τn).

Next we use an induction on i to show that t1 satisfies

‖t1 −m‖∞,[−A,A]d ≤ c19 max
(p,K)∈P

n−
p

2p+K ,(51)

which implies (46).

Since each g
(i)
j satisfies the assumptions of Theorem 2.1, we can conclude that

∣∣∣f̂
g
(i)
j

(x)− g(i)
j (x)

∣∣∣ ≤ c17 · n
−

p
(i)
j

2·p(i)
j

+K
(i)
j ≤ c20 · max

(p,K)∈P
n−

p
2p+K(52)

for x ∈ [−2gmax, 2gmax]K
(i)
j .

We show by induction that we have for all x ∈ [−A,A]d∣∣∣ĥ(i)
j (x)− h(i)

j (x)
∣∣∣ ≤ c17 · i · (Kmax · CLip)i−1 · max

(p,K)∈P
n−

p
2p+K .(53)

By (52) we can conclude that∣∣∣ĥ(1)
j (x)− h(1)

j (x)
∣∣∣ ≤ c17 · 1 · (Kmax · CLip)1−1 · max

(p,K)∈P
n−

p
2p+K

for j ∈ {1, . . . , Ñ1}. Assume now that (53) holds for some i−1 and every j ∈ {1, . . . , Ñi−1}.
Then for n sufficiently large∣∣∣ĥ(i−1)

j (x)
∣∣∣ ≤ ∣∣∣ĥ(i−1)

j (x)− h(i−1)
j (x)

∣∣∣+ gmax ≤ 2 · gmax

follows directly by the induction hypothesis. Using (52) and the Lipschitz continuity of

g
(i)
j we can conclude that∣∣∣ĥ(i)

j (x)− h(i)
j (x)

∣∣∣
≤
∣∣∣∣f̂wide,g(i)j

(
ĥ

(i−1)∑j−1
t=1 K

(i)
t +1

, . . . , ĥ
(i−1)∑j
t=1K

(i)
t

)
− g(i)

j

(
ĥ

(i−1)∑j−1
t=1 K

(i)
t +1

, . . . , ĥ
(i−1)∑j
t=1K

(i)
t

)∣∣∣∣
+

∣∣∣∣g(i)
j

(
ĥ

(i−1)∑j−1
t=1 K

(i)
t +1

, . . . , ĥ
(i−1)∑j
t=1K

(i)
t

)
− g(i)

j

(
h

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , h
(i−1)∑j
t=1K

(i)
t

(x)

)∣∣∣∣
≤ c17 · max

(p,K)∈P
n−

p
2p+K +K

(i)
j · CLip · c17 · (i− 1) · (Kmax · CLip)i−2 · max

(p,K)∈P
n−

p
2p+K

≤ c17 · i · (Kmax · CLip)i−1 · max
(p,K)∈P

n−
p

2p+K .
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The proof is complete. 2
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