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Abstract

Let (X,Y ) be a IRd × IN0-valued random vector where the conditional distribution of Y

given X = x is a Poisson distribution with mean m(x). We estimate m by a local poly-

nomial kernel estimate defined by maximizing a localized log-likelihood function. Using

this estimate of m(x) we estimate the conditional distribution of Y given X = x by a

corresponding Poisson distribution and use this distribution to construct confidence inter-

vals of level α of Y given X = x. Under mild regularity assumption on m(x) and on the

distribution of X we show that the corresponding confidence interval has asymptotically

(i.e., for sample size tending to infinity) level α, and that the probability that the length
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of this confidence interval deviates from the optimal length by more than one converges

to zero with the number of samples tending to infinity.

Key words and phrases: Poisson regression, local polynomial kernel estimate, confidence

interval.

1 Introduction

Let (X,Y ) be a IRd × IR-valued random variable. In regression analysis the dependency

of the value of Y on the value of X is studied, e.g. by considering the so-called regression

function m(x) = E{Y |X = x}. Usually in applications there is little or no a priori

knowledge on the structure of m and therefore nonparametric methods for analyzing m

are of interest. For a general introduction to nonparametric regression see, e.g., Györfi et

al. (2002) and the literature cited therein. In this paper we are interested in the special

case that Y takes on with probability one only values in the set of nonnegative integers

IN0, and we assume that the conditional distribution of Y given X = x is a Poisson

distribution, i.e., we assume

P{Y = y|X = x} =
m(x)y

y!
· e−m(x) (y ∈ IN0, x ∈ IRd).

In case of a linear function m this is the well-known generalized linear model (cf. McCul-

lagh and Nelder (1983)) with Poisson likelihood. In the sequel we do not want to make any

parametric assumption on m. In this situation we want to use the observed value of X to

make some inference about the value of Y , in particular we are interested in constructing

confidence intervals for Y given X = x.

To do this we assume that a sample (X1, Y1), . . . , (Xn, Yn) of the distribution of (X,Y )

is given, where (X,Y ), (X1, Y1), (X2, Y2), . . . are independent and identically distributed.
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In a first step we use the given data

Dn = {(X1, Y1), . . . , (Xn, Yn)}

to construct an estimate mn(x) = mn(x,Dn) of m(x) and estimate the above conditional

probabilities of Y=y given X = x by

P̂n{Y = y|X = x} =
mn(x)y

y!
· e−mn(x). (1)

Of course, any of the standard nonparametric regression estimates (like local polynomial

kernel estimates, least squares estimates, or smoothing spline estimates) could be used to

estimate the regression function m at this point. However, we are not so much interested

in good estimates of m but instead in good estimates of P{Y = y|X = x}. Our main aim

is to construct estimates such that the integrated L1 distance between P{Y = y|X = x}

and P̂n{Y = y|X = x} converges to zero. Since convergence of the L1 distance between

densities to zero is equivalent to convergence to zero of the total variation distance between

the corresponding distributions (cf., e.g., Devroye and Györfi (1985)), this automatically

implies that the level of confidence regions of Y given X = x based on P̂n{Y = y|X = x}

converges in the average and for sample sizes tending to infinity to the nominal value (cf.

Corollary 1 below).

We define regression estimates with this property similarly to Fan, Farmen and Gij-

bels (1998) by maximizing a localized log-likelihood function with respect to polynomials.

This kind of estimate can be considered as an adaptation of the famous local polynomial

kernel regression estimate (cf., e.g., Fan and Gijbels (1996)) to Poisson regression. The

main result of this paper is that we show (under some mild conditions on the underly-

ing distribution) almost sure convergence to zero of the integrated L1 distance between

P{Y = y|X = x} and its estimate (1).

Automatic methods for the choice of the bandwidth of the Nadaraya-Watson kernel es-

timate (cf. Nadaraya (1964), Watson (1964)) in Poisson regression have been investigated
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in Climov, Hart and Simar (2002) and Hannig and Lee (2003), when in the first paper, in

addition, the estimation of a direction vector in a single index model is considered. The

Nadaraya-Watson kernel estimate can be also defined as localized log-likelihood estimate

provided polynomials of degree zero are used. Related penalized log-likelihood estimates

have been investigated (in particular in view of automatic choice of the parameters) in

O‘Sullivan, Yandell and Raynor (1986) and Yuan (2003). For related local maximum like-

lihood estimates the choice of the bandwidth was investigated in Fan, Farmen and Gijbels

(1998) in particular in the context of nonparametric logistic regression.

In the proof of the main results we use ideas developed in empirical process theory for

the analysis of local-likelihood density estimates as described in Chapter 4 of van de Geer

(2000) (see also Le Cam (1970, 1973), Birgé (1983) and Birgé and Massart (1993)) and

apply them to Poisson regression.

The definition of the estimate is given in Section 2, the main results are described in

Section 3, an outline of the proof of the main theorem is given in Section 4, and Section

5 contains the proofs.

2 Definition of the estimate

We define the estimate by maximizing a localized version of the log-likelihood-function

L(θ) =
n∑

i=1

log
(
θYi

Yi!
· e−θ

)
of a Poisson distribution. To define such a localized log-likelihood function, let

K : IRd → IR be a so-called kernel function, e.g., K(u) = 1{‖u‖≤1} (where 1A denotes

the indicator function of a set A and ‖u‖ is the Euclidean norm of u ∈ IRd), and let

hn > 0 be the so-called bandwidth, which we will choose later such that

hn → 0 (n→∞).
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The localized log-likelihood of a function g : IRd → IR+ at point x ∈ IRd is defined by

Lloc(g|x) =
n∑

i=1

log
(
g(Xi)Yi

Yi!
· e−g(Xi)

)
·K

(
x−Xi

hn

)
.

We estimate m(x) by maximizing Lloc(g|x) with respect to functions of the form

g(x(1), . . . , x(d)) = exp

 ∑
j1,...,jd=0,...,M

aj1,...,jd
· (x(1))j1 · . . . · (x(d))jd

 .

More precisely, let M ∈ IN0, βn > 1 and set

FM,βn =

{
f : IRd → IR : f(x(1), . . . , x(d)) =

∑
j1,...,jd=0,...,M

aj1,...,jd
· (x(1))j1 · . . . · (x(d))jd

(x(1), . . . , x(d) ∈ IR) for some aj1,...,jd
∈ IR with |aj1,...,jd

| ≤ log(βn)
(M + 1)d

}

and

GM,βn =
{
g : IRd → IR+ : g(x) = exp(f(x)) (x ∈ IRd) for some f ∈ FM,βn

}
.

The bound on the coefficients in the definition of FM,βn implies

1
βn

≤ g(x) ≤ βn for all x ∈ [0, 1]d

for all g ∈ GM,βn . Later we will choose βn such that

βn →∞ (n→∞).

With this notation we define our estimate by

mn(x) = ĝx(x),

where ĝx ∈ GM,βn satisfies

ĝx = arg max
g∈GM,βn

n∑
i=1

log
(
g(Xi)Yi

Yi!
· e−g(Xi)

)
·K

(
x−Xi

hn

)
.

(Here z0 = arg maxz∈D f(z) is the value at which the function f : D → IR takes on

its maximum, i.e., z0 ∈ D satisfies f(z0) = maxz∈D f(z).) For notational simplicity we
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assume here and in the sequel that the maximum above does indeed exist. In case that it

does not exist, it is easy to see that the results below do also hold if we define the value

of the estimate at point x as the value of a function ĝx ∈ GM,βn which satisfies

n∑
i=1

log
(
ĝx(Xi)Yi

Yi!
· e−ĝx(Xi)

)
·K

(
x−Xi

hn

)

≥ sup
g∈GM,βn

n∑
i=1

log
(
g(Xi)Yi

Yi!
· e−g(Xi)

)
·K

(
x−Xi

hn

)
− εn,

provided εn > 0 is chosen such that

εn → 0 (n→∞).

3 Main results

In the next theorem, we formulate our main result which concerns convergence to zero of

the integrated L1 distance between the conditional Poisson distribution and its estimate.

Theorem 1 Let (X,Y ), (X1, Y1), (X2, Y2), . . . be independent and identically distributed

IRd × IN0–valued random vectors which satisfy

P{Y = y|X = x} =
m(x)y

y!
· e−m(x) (y ∈ IN0, x ∈ IRd)

for some function m : IRd → (0,∞). Assume

X ∈ [0, 1]d a.s. (2)

and

|m(x)−m(z)| ≤ Clip(m) · ‖x− z‖ (x, z ∈ IRd) (3)

for some constant Clip(m) ∈ IR, i.e., assume that ‖X‖ is bounded a.s. and m is Lipschitz

continuous with Lipschitz constant Clip(m).

Define the kernel function K : IRd → IR+ by

K(u) = K̃(‖u‖2) (u ∈ IRd)
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for some K̃ : IR+ → IR+ which is monotone decreasing, left-continuous and satisfies for

some r,R, b, B > 0

b · 1[0,r2](v) ≤ K̃(v) ≤ B · 1[0,R2](v) (v ∈ IR+).

Choose βn, hn > 0 such that

βn →∞ (n→∞), (4)

hnβ
5
n exp(c · βn) → 0 (n→∞) (5)

for any constant c > 0, and

n · h2d
n

log(n)6
→∞ (n→∞). (6)

Define the estimate P̂n{Y = y|X = x} as above. Then

∫ ∞∑
y=0

∣∣∣P̂n{Y = y|X = x} −P{Y = y|X = x}
∣∣∣PX(dx) → 0 a.s.

By a discrete version of Scheffe’s theorem (which follows, e.g., from the proof of The-

orem 1.1 in Devroye (1987)) we have for x ∈ IRd

∞∑
y=0

∣∣∣P̂n{Y = y|X = x} −P{Y = y|X = x}
∣∣∣

= 2 sup
A⊆IN0

∣∣∣∣∣∣
∑
y∈A

P̂n{Y = y|X = x} −
∑
y∈A

P{Y = y|X = x}

∣∣∣∣∣∣ , (7)

therefore under the assumptions of Theorem 1 the integrated total variation distance

between P{Y = ·|X = x} and P̂n{Y = ·|X = x} converges to zero almost surely. This

can be used to construct asymptotic confidence intervals for Y givenX = x. Let α ∈ (0, 1).

Assume that given X we want to find an interval I(X) of the form I(X) = [0, u(X)], which

is as small as possible and satisfies

P{Y ∈ I(X)} ≈ 1− α.
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To construct such a confidence interval we choose the smallest value un(x) ∈ IR such that

∑
y∈IN0,y≤un(x)

P̂n{Y = y|X = x} ≥ 1− α, (8)

and set In(x) = [0, un(x)]. From Theorem 1 we can conclude

Corollary 1 Under the assumptions of Theorem 1 we have

lim inf
n→∞

P{Y ∈ In(X)|Dn} ≥ 1− α a.s.

Proof. By (8) we have

P{Y ∈ In(X)|Dn}

=
∫ ∑

y∈In(x)∩IN0

P{Y = y|X = x}PX(dx)

≥ 1− α−

∣∣∣∣∣
∫ ∑

y∈In(x)∩IN0

P̂n{Y = y|X = x}PX(dx)

−
∫ ∑

y∈In(x)∩IN0

P{Y = y|X = x}PX(dx)

∣∣∣∣∣.
Because of∣∣∣∣∣∣

∫ ∑
y∈In(x)∩IN0

P̂n{Y = y|X = x}PX(dx)−
∫ ∑

y∈In(x)∩IN0

P{Y = y|X = x}PX(dx)

∣∣∣∣∣∣
≤
∫

sup
A⊆IN0

∣∣∣∣∣∣
∑
y∈A

P̂n{Y = y|X = x} −
∑
y∈A

P{Y = y|X = x}

∣∣∣∣∣∣PX(dx),

(7) and Theorem 1 yield the assertion. �

Next we investigate whether the length un(X) of the confidence interval In(X) con-

verges to the optimal length u(X), where for x ∈ IRd we define u(x) as the smallest natural

number which satisfies

∑
y∈IN0,y≤u(x)

P{Y = y|X = x} ≥ 1− α.
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If the case ∑
y∈IN0,y≤u(x)

P{Y = y|X = x} = 1− α

occurs, a very small error in the estimate of m(x) may result in |un(x) − u(x)| ≥ 1.

Therefore, in general we cannot expect that un(X) converges to u(X). Instead we show

below, that the probability that un(X) deviates from u(X) by more than one converges

to zero.

Corollary 2 Under the assumptions of Theorem 1 we have

P {|un(X)− u(X)| > 1} → 0 (n→∞).

Proof. Set

P̂n{Y = y|X} =
mn(X)y

y!
· e−mn(X) and P{Y = y|X} =

m(X)y

y!
· e−m(X).

Since m is bounded away from zero and infinity on [0, 1]d we can conclude that u(x) is

bounded and that

P{Y = y|X = x} > c1 for y ≤ u(x) + 1

for some constant c1 > 0. Assume that |un(x) − u(x)| > 1. In case un(x) > u(x) + 1 we

have

∑
y∈IN0,y≤u(x)+1

P̂n{Y = y|X = x} −
∑

y∈IN0,y≤u(x)+1

P{Y = y|X = x}

≤ (1− α)−
∑

y∈IN0,y≤u(x)

P{Y = y|X = x} −P{Y = u(x) + 1|X = x}

≤ (1− α)− (1− α)− c1 = −c1.

In case u(x) > un(x) + 1 we have u(x)− 2 ≥ un(x) which implies

∑
y∈IN0,y≤u(x)−2

P̂n{Y = y|X = x} −
∑

y∈IN0,y≤u(x)−2

P{Y = y|X = x}

≥ (1− α)−
∑

y∈IN0,y≤u(x)−1

P{Y = y|X = x}+ P{Y = u(x)− 1|X = x}

≥ (1− α)− (1− α) + c1 = c1.
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From this we conclude that

|un(X)− u(X)| > 1

implies

max
k∈{u(X)−2,u(X)+1}

∣∣∣∣∣∣
∑

y∈IN0,y≤k

P̂n{Y = y|X} −
∑

y∈IN0,y≤k

P{Y = y|X}

∣∣∣∣∣∣ > c1.

From this we get

P{|un(X)− u(X)| > 1} ≤ P

 sup
A⊆IN0

∣∣∣∣∣∣
∑
y∈A

P̂n{Y = y|X} −
∑
y∈A

P{Y = y|X}

∣∣∣∣∣∣ > c1

 .

By (7) and Theorem 1 we have

2 ·E sup
A⊆IN0

∣∣∣∣∣∣
∑
y∈A

P̂n{Y = y|X} −
∑
y∈A

P{Y = y|X}

∣∣∣∣∣∣
= E

∞∑
y=0

∣∣∣P̂n{Y = y|X} −P{Y = y|X}
∣∣∣

≤ E
∞∑

y=0

∫ ∣∣∣P̂n{Y = y|X = x} −P{Y = y|X = x}
∣∣∣PX(dx)

→ 0 (n→∞),

which implies the assertion. �

Remark 1. We would like to stress that in the above results there is no assumption on

the distribution of X besides X ∈ [0, 1]d a.s. In particular it is not required that X have

a density with respect to the Lebesgue-Borel measure.

Remark 2. If we assume that the regression function is bounded by some constant L

and that we know this bound (this assumption is not required in the results above), we

can construct a strong pointwise consistent estimate mn(x) of m, i.e. an estimate which

satisfies for PX–almost all x

mn(x) → m(x) a.s.,

which is bounded by L, too (the last property can be ensured by truncation of the esti-

mate). Since the function f(z) = zy · e−z is Lipschitz continuous on [0, L] with Lipschitz
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constant (y + 1) · Ly, this pointwise consistency implies∫ ∞∑
y=0

∣∣∣∣mn(x)y

y!
· e−mn(x) − m(x)y

y!
· e−m(x)

∣∣∣∣→ 0 a.s.

Therefore for truncated versions of estimates which are strong universal pointwise consis-

tent, the result of Theorem 1 does hold, too, provided a bound on the supremum norm

of the regression function is known a priori. Various strong universal pointwise consistent

estimates have been constructed in Algoet (1999), Algoet and Györfi (1999), Kozek, Leslie

and Schuster (1998) and Walk (2001). For related universal consistency result see, e.g.,

Stone (1977), Spiegelman and Sachs (1980), Devroye et al. (1994), Györfi and Walk (1996,

1997), Lugosi and Zeger (1995) and Kohler and Krzyżak (2001),

In view of this, the main new results in Theorem 1 are, that firstly the bound on m does

not have to be known in advance, and secondly the consistency result in Theorem 1 holds

also for the localized maximimum likelihood estimate which has not been considered in the

papers above, but which seems to be especially suited in the context of this paper where the

main aim is not estimation of the regression function but estimation of P{Y = y|X = x}.

4 Outline of the proof of Theorem 1

In the proof of Theorem 1 we observe first that it suffices to show that the integrated

Hellinger distance∫ ∞∑
y=0

(√
P̂n{Y = y|X = x} −

√
P{Y = y|X = x}

)2

PX(dx)

between the two conditional discrete distributions converges to zero almost surely. Then

we bound this integrated Hellinger distance from above by some constant times

−E

{
log

P̂n{Y |X}+ P{Y |X}
2P{Y |X}

∣∣∣∣∣Dn

}
,

where

P̂n{Y |X} =
mn(X)Y

Y !
· e−mn(X) and P{Y |X} =

m(X)Y

Y !
· e−m(X).
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Using the Lipschitz continuity of m we approximate this term by

−
∫ E

{
log P̂x{Y |X}+Px{Y |X}

2Px{Y |X} ·K
(

x−X
hn

) ∣∣∣∣Dn

}
EK

(
x−X
hn

) PX(dx),

where

P̂x{Y |X} =
ĝx(X)Y

Y !
· e−ĝx(X) and Px{Y |X} =

m(x)Y

Y !
· e−m(x).

By definition of the estimate and concavity of the log-function, the empirical version

1
n

n∑
i=1

log

 ĝx(Xi)
Yi

Yi!
· e−ĝx(Xi) + m(x)Yi

Yi!
· e−m(x)

2m(x)Yi

Yi!
· e−m(x)

 ·K
(
x−Xi

hn

)

of the nominator above is always greater than or equal to zero. Therefore it suffices to show

that the difference between the nominator above and its empirical version is asymptotically

small, which we prove by using results of empirical process theory.

5 Proofs

Proof of Theorem 1. In the first step of the proof we observe that∫ ∞∑
y=0

∣∣∣P̂n{Y = y|X = x} −P{Y = y|X = x}
∣∣∣PX(dx) → 0 a.s. (9)

follows from∫ ∞∑
y=0

(√
P̂n{Y = y|X = x} −

√
P{Y = y|X = x}

)2

PX(dx) → 0 a.s. (10)

For the sake of completeness we repeat a proof of this well-known fact (cf., e.g., Devroye

and Györfi (1985)). Observe that for a, b > 0

|a− b| = |
√
a−

√
b| · |

√
a+

√
b| ≤ (

√
a−

√
b)2 + 2

√
b · |

√
a−

√
b|

and conclude from this and the Cauchy-Schwarz inequality∫ ∞∑
y=0

∣∣∣P̂n{Y = y|X = x} −P{Y = y|X = x}
∣∣∣PX(dx)
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≤
∫ ∞∑

y=0

(√
P̂n{Y = y|X = x} −

√
P{Y = y|X = x}

)2

PX(dx)

+2 ·
∫ ∞∑

y=0

√
P{Y = y|X = x} ·

∣∣∣∣√P̂n{Y = y|X = x} −
√

P{Y = y|X = x}
∣∣∣∣PX(dx)

≤
∫ ∞∑

y=0

(√
P̂n{Y = y|X = x} −

√
P{Y = y|X = x}

)2

PX(dx)

+2 ·
∫ √√√√ ∞∑

y=0

P{Y = y|X = x}

·

√√√√ ∞∑
y=0

(√
P̂n{Y = y|X = x} −

√
P{Y = y|X = x}

)2

PX(dx).

With √√√√ ∞∑
y=0

P{Y = y|X = x} =
√

1 = 1

and ∫ √√√√ ∞∑
y=0

(√
P̂n{Y = y|X = x} −

√
P{Y = y|X = x}

)2

PX(dx)

≤ 1 ·

√√√√∫ ∞∑
y=0

(√
P̂n{Y = y|X = x} −

√
P{Y = y|X = x}

)2

PX(dx)

(which follows from another application of the Cauchy-Schwarz inequality) the assertion

of the first step follows.

In the second step of the proof we show∫ ∞∑
y=0

(√
P̂n{Y = y|X = x} −

√
P{Y = y|X = x}

)2

PX(dx)

≤ −16 ·E

{
log

(
P̂n{Y |X}+ P{Y |X}

2P{Y |X}

)∣∣∣∣∣Dn

}
(11)

where

P̂n{Y |X} =
mn(X)Y

Y !
· e−mn(X) and P{Y |X} =

m(X)Y

Y !
· e−m(X).

By Lemma 4.2 and Lemma 1.3 in van de Geer (2000) we get

∞∑
y=0

(√
P̂n{Y = y|X = x} −

√
P{Y = y|X = x}

)2
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≤ 16 ·
∞∑

y=0

√P̂n{Y = y|X = x}+ P{Y = y|X = x}
2

−
√

P{Y = y|X = x}

2

≤ 16 ·
∞∑

y=0

log

(
P{Y = y|X = x}

(P̂n{Y = y|X = x}+ P{Y = y|X = x})/2

)
·P{Y = y|X = x}

= −16 ·
∞∑

y=0

log

(
P̂n{Y = y|X = x}+ P{Y = y|X = x}

2 ·P{Y = y|X = x}

)
·P{Y = y|X = x}

= −16 ·EDn

{
log

(
P̂n{Y |X}+ P{Y |X}

2 ·P{Y |X}

)∣∣∣∣∣X = x

}
,

where in EDn{·|X = x} we take the expectation only with respect to Y for fixed X = x

and fixed Dn. By integrating this inequality with respect to PX we get (11).

In the third step of the proof we show

E

{
log

(
P̂n{Y |X}+ P{Y |X}

2 ·P{Y |X}

)∣∣∣∣∣Dn

}

−
∫ E

{
log
(

P̂x{Y |X}+Px{Y |X}
2·Px{Y |X}

)
·K

(
x−X
hn

) ∣∣∣∣∣Dn

}
EK

(
x−X
hn

) PX(dx) → 0 a.s. (12)

where

P̂x{Y |X} =
ĝx(X)Y

Y !
· e−ĝx(X) and Px{Y |X} =

m(x)Y

Y !
· e−m(x).

The first expectation on the left-hand side of (12) can be written as

∫
EDn

{
log

(
P̂n{Y |X}+ P{Y |X}

2 ·P{Y |X}

)∣∣∣∣∣X = x

}
PX(dx)

=
∫ ∞∑

y=0

log

(
P̂n{Y = y|X = x}+ P{Y = y|X = x}

2P{Y = y|X = x}

)
P{Y = y|X = x}PX(dx)

=:
∫
φn(x)PX(dx).

Furthermore

E

{
log
(

P̂x{Y |X}+Px{Y |X}
2·Px{Y |X}

)
·K

(
x−X
hn

) ∣∣∣∣∣Dn

}
EK

(
x−X
hn

) =

∫
φn,x(u) ·K

(
x−u
hn

)
PX(du)∫

K
(

x−u
hn

)
PX(du)

,

14



where

φn,x(u) = EDn

{
log

(
P̂x{Y |X}+ Px{Y |X}

2 ·Px{Y |X}

)∣∣∣∣∣X = u

}

=
∞∑

y=0

log

 ĝx(u)y

y! · e−ĝx(u) + m(x)y

y! · e−m(x)

2m(x)y

y! · e−m(x)

 · m(u)y

y!
· e−m(u).

Because of mn(x) = ĝx(x) we have

φn,x(x) = φn(x).

We will show in Lemma 1 below that there exists cn > 0 with

cnhn → 0 (n→∞)

such that for all x, u, v ∈ [0, 1]d

|φn,x(u)− φn,x(v)| ≤ cn · ‖u− v‖,

(i.e., such that φn,x is Lipschitz continuous with Lipschitz constant cn independent of x).

Using this, we can bound the absolute value of the left-hand side of (12) by∣∣∣∣∣∣
∫
φn,x(x)PX(dx)−

∫ ∫
φn,x(u) ·K

(
x−u
hn

)
PX(du)∫

K
(

x−u
hn

)
PX(du)

PX(dx)

∣∣∣∣∣∣
≤
∫ ∫

|φn,x(x)− φn,x(u)| ·K
(

x−u
hn

)
PX(du)∫

K
(

x−u
hn

)
PX(du)

PX(dx)

≤ cn ·R · hn → 0 (n→∞),

where we have used in the first inequality that the set of all x with∫
K

(
x− u

hn

)
PX(du) = 0

has PX–measure zero (for a related argument see, e.g., the last step in the proof of Lemma

24.5 in Györfi et al. (2002)), and where the second inequality follows from K((x−u)/hn) =

0 for ‖x− u‖ > R · hn.
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In the fourth step of the proof we show

1
n

n∑
i=1

log

 ĝx(Xi)
Yi

Yi!
· e−ĝx(Xi) + m(x)Yi

Yi!
· e−m(x)

2m(x)Yi

Yi!
· e−m(x)

 ·K
(
x−Xi

hn

)
≥ 0 (13)

for n sufficiently large (i.e., whenever log(βn)/(M + 1)d ≥ log(‖m‖∞), where ‖m‖∞ is the

supremum norm of m) and all x ∈ [0, 1]d.

Let n be such that log(βn)/(M + 1)d ≥ log(‖m‖∞). By concavity of the log function

we have

log
a+ b

2b
= log

(
1
2
· a
b

+
1
2
· 1
)
≥ 1

2
· log

a

b
+

1
2
· log 1 =

1
2
· log

a

b

for all a, b > 0 which implies

1
n

n∑
i=1

log

 ĝx(Xi)
Yi

Yi!
· e−ĝx(Xi) + m(x)Yi

Yi!
· e−m(x)

2m(x)Yi

Yi!
· e−m(x)

 ·K
(
x−Xi

hn

)

≥ 1
2
· 1
n

n∑
i=1

log

 ĝx(Xi)
Yi

Yi!
· e−ĝx(Xi)

m(x)Yi

Yi!
· e−m(x)

 ·K
(
x−Xi

hn

)

=
1
2
·

(
1
n

n∑
i=1

log
(
ĝx(Xi)Yi

Yi!
· e−ĝx(Xi)

)
·K

(
x−Xi

hn

)

− 1
n

n∑
i=1

log
(
m(x)Yi

Yi!
· e−m(x)

)
·K

(
x−Xi

hn

))
≥ 0

by definition of ĝx. This proves (13).

In the fifth step of the proof we set

P̂x{Yi|Xi} =
ĝx(Xi)Yi

Yi!
· e−ĝx(Xi) and Px{Yi|Xi} =

m(x)Yi

Yi!
· e−m(x),

and show that

An :=
1
hd

n

· sup
x∈[0,1]d

∣∣∣∣∣ 1n
n∑

i=1

log

(
P̂x{Yi|Xi}+ Px{Yi|Xi}

2 ·Px{Yi|Xi}

)
·K

(
x−Xi

hn

)

−E

{
log

(
P̂x{Y |X}+ Px{Y |X}

2 ·Px{Y |X}

)
·K

(
x−X

hn

) ∣∣∣∣∣Dn

}∣∣∣∣∣→ 0 a.s. (14)

implies the assertion.
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From step 2 we conclude

0 ≤
∫ ∞∑

y=0

(√
P̂n{Y = y|X = x} −

√
P{Y = y|X = x}

)2

PX(dx)

≤ −16 · (Bn − Cn)− 16 · Cn

where

Bn = E

{
log

(
P̂n{Y |X}+ P{Y |X}

2P{Y |X}

)∣∣∣∣∣Dn

}
and

Cn =
∫ E

{
log
(

P̂x{Y |X}+Px{Y |X}
2·Px{Y |X}

)
·K

(
x−X
hn

) ∣∣∣∣∣Dn

}
EK

(
x−X
hn

) PX(dx).

By step 3 we have

Bn − Cn → 0 a.s.,

so by step 1 the assertion of Theorem 1 follows from

lim sup
n→∞

(−Cn) ≤ 0 a.s. (15)

Set

Dn =
∫ 1

n

∑n
i=1 log

(
P̂x{Yi|Xi}+Px{Yi|Xi}

2·Px{Yi|Xi}

)
·K

(
x−Xi

hn

)
EK

(
x−X
hn

) PX(dx).

In step 4 we have shown

Dn ≥ 0,

so

−Cn = (Dn − Cn)−Dn ≤ (Dn − Cn)

and (15) follows from

Dn − Cn → 0 a.s.

But this in turn is implied by (14), since

|Dn − Cn| ≤ An ·
∫

1

E
{

1
hd

n
·K

(
x−X
hn

)}PX(dx)

17



and ∫
1

E
{

1
hd

n
·K

(
x−X
hn

)}PX(dx) <∞

by Lemma 3.1 b) in Kohler (2002).

In the sixth (and final) step of the proof we show (14). Let Hn be the set of all functions

h : IRd × IN0 → IR

which satisfy

h(x, y) = log

 g(x)y

y! · e−g(x) + αy

y! · e
−α

2 · αy

y! · e−α

 ·K
(
u− x

hn

)
for some g ∈ GM,βn , u ∈ IRd and α ∈ [c2, c3], where c2 = minx∈[0,1]d m(x) > 0 and

c3 = maxx∈[0,1]d m(x) <∞. Let kn = dlog ne be the smallest integer greater than or equal

to log n. Then

An ≤
1
hd

n

· sup
h∈Hn

∣∣∣∣∣ 1n
n∑

i=1

h(Xi, Yi)−Eh(X,Y )

∣∣∣∣∣ ≤
3∑

i=1

Ti,n,

where

T1,n =
1
hd

n

· sup
h∈Hn

∣∣∣∣∣ 1n
n∑

i=1

h(Xi, Yi) · 1{Yi≤kn} −E
{
h(X,Y )1{Y≤kn}

}∣∣∣∣∣ ,
T2,n =

1
hd

n

· 1
n

n∑
i=1

sup
h∈Hn

|h(Xi, Yi)| · 1{Yi>kn}

and

T3,n =
1
hd

n

·E
{

sup
h∈Hn

|h(X,Y )|1{Y >kn}

}
.

For arbitrary ε > 0 we get for n sufficiently large (because of

|h(x, y)| ≤ B · log
(

2 ·max
{

(1/2) ·
(
g(x)
α

)y

e−g(x)+α, 1/2
})

≤ B · |y · log(g(x)/α)− g(x) + α|

≤ B · (y · log(βn/c2) + c3 + βn) ≤ c4 · y · log n (16)
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for x ∈ [0, 1]d, y ∈ IN and h ∈ Hn, cf. (4)–(6)) by Markov inequality

P {T2,n > ε}

= P


∞∑

k=kn+1

n∑
i=1

sup
h∈Hn

|h(Xi, Yi)| · 1{Yi=k} > n · hd
n · ε


≤

E
{∑∞

k=kn+1

∑n
i=1 suph∈Hn

|h(Xi, Yi)| · 1{Yi=k}
}

n · hd
n · ε

≤
n ·
∑∞

k=kn+1 c4 · k · log n · supx∈[0,1]d
m(x)k

k! · e−m(x)

n · hd
n · ε

≤ c4 log n
hd

n · ε
· c3 · e−c2 ·

∞∑
k=kn+1

ckn
3

kn!
· ck−1−kn

3

(k − 1− kn)!

=
c5 log n
hd

n · ε
· c

kn
3

kn!

≤ c5 log n
hd

n · ε
· ckn

3 ·
(
kn

2

)− kn
2

≤ c5
ε
· exp

(
log

log n
hd

n

+ kn · log c3 −
kn

2
· log

kn

2

)
.

Since
log log n

hd
n

log(n) · log(log n)
→ 0 (n→∞),

the last term is summable for each ε > 0. Application of the Borel-Cantelli lemma yields

T2,n → 0 a.s.

Similarly we get

T3,n =
1
hd

n

∞∑
k=kn+1

E
{

sup
h∈Hn

|h(X,Y )| · 1{Y =k}

}

≤ c6 log n
hd

n

·
∞∑

k=kn+1

k · sup
x∈[0,1]d

m(x)k

k!
· e−m(x)

≤ c7
log n
hd

n

· c
kn
8

kn!
→ 0 (n→∞).

So it remains to show

T1,n → 0 a.s. (17)
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To do this, we apply Theorem 9.1 in Györfi et al. (2002) and Lemma 2 below. From these

we get for an arbitrary ε > 0

P {T1,n > ε} ≤ 8 ·
(
c9
βkn

n · kn

hd
n · ε

)c10

· exp
(
− n · ε2 · h2d

n

c11 · k2
n · (log n)2

)
.

By the assumptions of Theorem 1 we have

n · hd
n →∞ (n→∞) and

βn

n
→ 0 (n→∞).

Using this we get

P {T1,n > ε} ≤ c12 · exp
(
c13 · kn · log n− c14

n · h2d
n · ε2

log(n)4

)
.

Because of

n · h2d
n

log(n)6
→∞ (n→∞)

the right-hand side above is summable for each ε > 0. Application of the Borel-Cantelli

lemma yields (17). The proof of Theorem 1 is complete. �

Lemma 1 Let φn,x be defined as in the third step of the proof of Theorem 1 and assume

that the assumptions of Theorem 1 are satisfied. Then there exists cn > 0 with

cnhn → 0 (n→∞)

such that for all x, u, v ∈ [0, 1]d

|φn,x(u)− φn,x(v)| ≤ cn · ‖u− v‖.

Proof. The functions in GM,βn are bounded in absolute value by βn and are Lipschitz

continuous on [0, 1]d with Lipschitz constant bounded by

c15 · βn log βn

for some constant c15 depending on M . In addition, the function f(z) = zk · e−z satisfies

|f ′(z)| ≤ (k + 1) · βk
n for z ∈ [0, βn],
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from which we can conclude that the function

u 7→ ĝx(u)ke−ĝx(u) +m(x)ke−m(x)

2m(x)ke−m(x)
=

ĝx(u)ke−ĝx(u)

2m(x)ke−m(x)
+

1
2

(18)

is Lipschitz continuous on [0, 1]d with Lipschitz constant bounded by

c16(k + 1)βk+1
n log βn ·

1
ck2

where c2 = minx∈[0,1]d m(x). Here we have used that m is bounded away from zero and

infinity on [0, 1]d (since it is Lipschitz continuous and always greater than zero).

The function in (18) is always greater than or equal to 0.5. In this range the derivative

of the log-function is bounded, and since with f1 and f2 also f1 ·f2 is Lipschitz continuous

with Lipschitz constant bounded by

(‖f1‖∞ + ‖f2‖∞) · (cLip(f1) + cLip(f2)),

we can conclude that

u 7→ log

(
ĝx(u)ke−ĝx(u) +m(x)ke−m(x)

2m(x)ke−m(x)

)
·m(u)ke−m(u)

is on [0, 1]d continuous with Lipschitz constant bounded by

c17(k · log βn + βn + ck18) · ((k + 1) · βk+2
n · 1

ck2
+ (k + 1) · ck19) ≤ c20(k + 1)2βk+3

n · 1
ck2
.

From this we conclude that φn,x is on [0, 1]d Lipschitz continuous with Lipschitz constant

bounded by

cn =
∞∑

k=0

c20(k + 1)2βk+3
n

ck2k!
≤ c21β

5
ne

βn/c2 .

With (5) we get the assertion. �

To formulate our next lemma we need the notion of covering numbers. Let x1, . . . , , xn ∈

IRd and set xn
1 = (x1, . . . , xn). Define the distance d1(f, g) between f, g : IRd → IR by

d1(f, g) =
1
n

n∑
i=1

|f(xi)− g(xi)|.
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Let F be a set of functions f : IRd → IR. An ε–cover of F (w.r.t. the distance d1) is a set

of functions f1, . . . , fk : IRd → IR with the property

min
1≤j≤k

d1(f, fj) < ε for all f ∈ F .

Let N (ε,F , xn
1 ) denote the size k of the smallest ε–cover of F w.r.t. the distance d1, and

set N (ε,F , xn
1 ) = ∞ if there does not exist any ε–cover of F of finite size.

Lemma 2 Assume that the assumptions of Theorem 1 are satisfied. Set kn = dlog ne and

let Hn,1 be the set of all functions h : IRd × IN0 → IR which satisfy

h(x, y) = log

 g(x)y

y! · e−g(x) + αy

y! · e
−α

2 · αy

y! · e−α

 ·K
(
u− x

hn

)
· 1{y≤kn} (x ∈ IRd, y ∈ IN0)

for some g ∈ GM,βn, u ∈ [0, 1]d and α ∈ [c2, c3]. Then we have for any (x, y)n
1 ∈ (IRd×IN0)n

and any ε > 0

N
(
hd

nε

8
,Hn,1, (x, y)n

1

)
≤
(
c22

βkn
n · kn

hd
n · ε

)c23

for some constants c22, c23 ∈ IR.

Proof. Let Hn,2 be the set of all functions hn,2 : IRd × IN0 → IR which satisfy

hn,2(x, y) = K

(
u− x

hn

)
(x ∈ IRd, y ∈ IN0)

for some u ∈ [0, 1]d, and let Hn,3 be the set of all functions hn,3 : IRd × IN0 → IR which

satisfy

hn,3(x, y) = log

 g(x)y

y! · e−g(x) + αy

y! · e
−α

2 · αy

y! · e−α

 · 1{y≤kn} (x ∈ IRd, y ∈ IN0)

for some g ∈ GM,βn and α ∈ [c2, c3]. The functions in Hn,2 and Hn,3 are bounded in

absolute value by B and c4 · kn · log n (cf. (16)) for n sufficiently large, resp. By Lemma

16.5 in Györfi et al. (2002) we have

N
(
hd

nε

8
,Hn,1, (x, y)n

1

)
≤ N

(
hd

nε

16 · c4 · kn · log n
,Hn,2, (x, y)n

1

)
· N

(
hd

nε

16B
,Hn,3, (x, y)n

1

)
.
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By the results of the eighth step in the proof of Theorem 2.1 in Kohler (2002) we have

N
(

hd
nε

16c4 · kn · log n
,Hn,2, (x, y)n

1

)
≤
(
c24kn log n

hd
nε

)2(d+3)

.

Let y ≤ kn and consider the function

φ(u, v) = log

(
uy

y! e
−u + vy

y! e
−v

2vy

y! e
−v

)
= log

(
1
2
· uy · v−y · ev−u +

1
2

)
(u ∈ [1/βn, βn], v ∈ [c2, c3]).

The partial derivatives of the function inside the log-function are for y ≤ kn bounded in

absolute value by

c25 · kn · β2kn
n .

Since the log-function is on [1/2,∞) Lipschitz continuous with Lipschitz constant 2, we

can conclude that φ is for y ≤ kn on [1/βn, βn]×[c2, c3] Lipschitz continuous with Lipschitz

constant

c26 · kn · β2kn
n .

From this we get

N
(
hd

nε

16B
,Hn,3, (x, y)n

1

)
≤ N

(
hd

nε

c27 · kn · β2kn
n

,Hn,4, (x, y)n
1

)
·N
(

hd
nε

c27 · kn · β2kn
n

,Hn,5, (x, y)n
1

)
,

where Hn,4 and Hn,5 are the sets of all functions

hn,4(x, y) =
g(x)y

y!
· e−g(x) (x ∈ IRd, y ∈ IN0)

with g ∈ GM,βn , and

hn,5(x, y) =
αy

y!
· e−α (x ∈ IRd, y ∈ IN0)

with α ∈ [c2, c3], resp., and we can assume w.l.o.g. (x, y)n
1 ∈ (IRd × {0, 1, . . . , kn})n in the

covering numbers on the right-hand side.

It is easy to see that for y ≤ kn the derivative of ψ(z) = zye−z/(y!) is on [0, βn] bounded

in absolute value by some constant times knβ
kn
n , which implies

N
(

hd
nε

c27 · kn · β2kn
n

,Hn,4, (x, y)n
1

)
≤ N

(
hd

nε

c28 · k2
n · β3kn

n

,GM,βn , (x, y)
n
1

)
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≤

(
c29βn

hd
nε/(k2

n · β3kn
n )

)2(M+1)d+2

,

where the last inequality followed from monotonicity of the exponential function and

Lemma 9.2, Theorem 9.4, Theorem 9.5 and Lemma 16.3 in Györfi et al. (2002).

Similarly we get

N
(

hd
nε

c27 · kn · β2kn
n

,Hn,5, (x, y)n
1

)
≤ c30

hd
nε/(k2

n · β3kn
n )

.

Putting together the above results we get the assertion. �
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