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1 Introduction

One of the main tasks in statistics is to estimate a distribution from a given sample. Let

µ be a probability distribution on IRd and let X1, X2, . . . be independent and identically

distributed random variables with distribution µ. A simple but powerful estimate of µ is

the empirical distribution

µn(A) =
1
n

n∑
i=1

IA(Xi),

where IA denotes the indicator function of the set A. By the strong law of large numbers

we have

µn(A) → µ(A) a.s. (1)

for each Borel set A. If we want to make some statistical inference about µ it is not enough

to have (1) for each set individually, instead we need convergence of µn to µ uniformly

over classes of sets. By the Glivenko-Cantelli theorem the empirical distribution satisfies

sup
x∈IRd

|µn((−∞, x])− µ((−∞, x])| → 0 a.s., (2)

where (−∞, x] = (−∞, x(1)] × . . . × (−∞, x(d)] for x = (x(1), . . . , x(d)) ∈ IRd. This is

great in case that we want to make some statistical inference about intervals, but for more

general investigations it would be much nicer if we are able to control the error in total

variation defined as

sup
B∈Bd

|µn(B)− µ(B)| , (3)

where Bd are the Borel-sets in IRd. Clearly, for the empirical distribution the error (3)

does not converge to zero in general, since if µ has a continuous distribution function we

have µ({X1, . . . , Xn}) = 0 and µn({X1, . . . , Xn}) = 1.

If we are able to construct estimates µ̂n of µ such that

sup
B∈Bd

|µ̂n(B)− µ(B)| → 0 a.s., (4)
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then it is easy to construct confidence sets B̂n for the values of X1 such that they have

asymptotically level α for given α ∈ (0, 1), i.e. such that

lim inf
n→∞

µ(B̂n) ≥ 1− α a.s.

Indeed, any set B̂n with

µ̂n(B̂n) ≥ 1− α

has this property since

µ(B̂n) = µn(B̂n)− (µn(B̂n)− µ(B̂n))

≥ 1− α− sup
B∈Bd

|µn(B)− µ(B)|.

Unfortunatley, as was shown in Devroye and Györfi (1990), it is impossible to construct

estimates µ̂n such that (4) holds for all distributions µ. However, it follows from Barron

et al. (1992) that in case we restrict ourselves to distributions where the nonatomic part

is absolutely continuous with respect to a known dominating measure, it is possible to

construct estimates such that (4) holds for all such distributions. Special cases include

discrete measures (where we assume for notational convenience that µ(IN0) = 1) and

measures which have a density with respect to the Lebesgue-Borel-measure. By Scheffe‘s

theorem it suffices in these cases to construct estimates (µ̂n({k}))k∈IN0 of (µ({k}))k∈IN0

and estimates f̂n of the density f of µ, resp., which satisfy

∞∑
k=0

|µ̂n({k})− µ({k})| → 0 a.s. (5)

and ∫
|fn(x)− f(x)|λ(dx) → 0 a.s., (6)

where λ denotes the Lebesgue-Borel-measure. Here one estimates µ(B) by

µ̂n(B) =
∑

k∈IN0

µ̂n({k}) and µ̂n(B) =
∫

B
f̂n(x) dx, resp.
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Many estimates which satisfy (6) universally for all densities are constructed in Devroye

and Györfi (1985a).

In this paper we want to apply the above ideas in the regression context. Here we have

given independent and identically distributed random vectors (X, Y ), (X1, Y1), . . . with

values in IRd × IRd′ . Given the sample

Dn = {(X1, Y1), . . . , (Xn, Yn)}

of the distribution of (X, Y ) we want to construct estimates P̂n{B|x} of the conditional

distribution P{Y ∈ B|X = x} of Y given X such that∫
sup

B∈Bd

∣∣∣P̂n{B|x} −P{Y ∈ B|X = x}
∣∣∣ µ(dx) → 0 a.s., (7)

where µ denotes again the distribution of X. In contrast to standard regression, where

d′ = 1 and where only the mean E{Y |X = x} of the conditional distribution is estimated

(cf., e.g., Györfi et al. (2002)), we can use estimates with the property (7) not only for

prediction of the value of Y for given value of X, but also to construct confidence regions

for the value of Y given the value of X. Indeed, similarly as above one gets that (7) implies

that any set Cn(x) with

P̂n{Cn(x)|x} ≥ 1− α

satisfies

lim inf
n→∞

P{Y ∈ Cn(X)|Dn} ≥ 1− α a.s.,

since we have with P∗{·} = P{·|Dn}

P{Y ∈ Cn(X)|Dn}

=
∫

P∗{Y ∈ Cn(x)|X = x}µ(dx)

≥
∫

P̂n{Cn(x)|x}µ(dx)−
∫ ∣∣∣P̂n{Cn(x)|x} −P∗{Y ∈ Cn(x)|X = x}

∣∣∣ µ(dx)

≥ 1− α−
∫

sup
B∈Bn

∣∣∣P̂n(B|x)−P{Y ∈ B|X = x}
∣∣∣ µ(dx).
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In order to construct estimates with the property (7), we consider two special cases:

In the first case the conditional distribution of Y given X is discrete (and for notational

convenience we assume again that the support is contained in IN0). In the second case

the conditional distribution of Y given X = x has a density f(·|x) with respect to the

Lebesgue-Borel-measure. In both cases Scheffe‘s theorem implies that in order to have (7)

we have to construct estimates of P{Y = k|X = x} and f(·|x) such that

∫ ∞∑
k=0

∣∣∣P̂n{k|x} −P{Y = k|X = x}
∣∣∣ µ(dx) → 0 a.s. (8)

and ∫ ∫
|fn(y|x)− f(y|x)|λ(dy)µ(dx) → 0 a.s., (9)

resp.

In order to construct in the first case estimates with the property (8) we use two

different approaches: In the first approach we consider for each y ∈ IN0

P{Y = y|X = x} = E{I{Y =y}|X = x}

as a regression function and estimate it by applying a partitioning estimate to a sample

of (X, I{Y =y}). In the second approach we consider Poisson regression, i.e., we make a

parametric assumption on the way the conditional distribution of Y given X = x depends

on m(x) and assume that

P{Y = y|X = x} =
m(x)y

y!
· e−m(x) (y ∈ IN0)

for some m : IRd → (0,∞), where m is completely unknown. In this case we estimate

m(x) = E{Y |X = x} by a partitioning estimate mn(x) applied to a sample of (X, Y ), and

consider the plug-in estimate

P̂n{Y = y|X = x} =
mn(x)y

y!
· e−mn(x) (y ∈ IN0).
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In both approaches we present results concerning universal consistency, i.e. we show (8) for

all corresponding discrete conditional distributions, and we analyze the rate of convergence

of the estimates.

Estimates of the conditional density in the second case are defined as suitable parti-

tioning estimates. We present results concerning universal consistency, i.e., we show (9)

for all conditional distributions with density, and we analyze the rate of convergence under

regularity assumptions on the smoothness of the conditional density.

The paper is organized as follows: Our main results concerning estimation of discrete

conditional distributions and conditional densities are described in Section 2 and 3, resp.

The proofs are given in Section 4.

2 The estimation of discrete conditional distributions

In this section we study partitioning estimates of discrete conditional distributions. In our

first two theorems each conditional probability P{Y = y|X = x} is estimated separately.

We have the following result concerning consistency of the estimate.

Theorem 1 Let Pn = {An,j : j} be a partition of IRd and for x ∈ IRd denote by An(x)

that cell An,j of Pn that contains x. Let

P̂n{y|x} =

∑n
i=1 IAn(x)(Xi) · I{Yi=y}∑n

j=1 IAn(x)(Xj)

be the partitioning estimate of P{Y = y|X = x}. Assume that the underlying partitioning

Pn = {An,j : j} satisfies for each sphere S centered at the origin

lim
n→∞

max
j:An,j∩S

diam(An,j) = 0 (10)

and

lim
n→∞

|{j : An,j ∩ S 6= ∅}|
n

= 0, (11)
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where diam(A) denotes the diameter of the set A. Then

∫ ∞∑
y=0

∣∣∣P̂n{y|x} −P{Y = y|X = x}
∣∣∣ µ(dx) → 0 a.s.

Next we consider the rate of convergence of the above partitioning estimate. It is well-

known that in order to derive non-trivial rate of convergence results in nonparametric

regression one needs smoothness assumption on the underlying regression function (cf.,

Devroye (1982)). In our next result we assume that the conditional probabilities are

locally Lipschitz continuous, such that the integral over the sum of the Lipschitz constant

is finite.

Theorem 2 Assume X is bounded a.s.,

|P{Y = y|X = x} −P{Y = y|X = z}| ≤ Cy(x) · ‖x− z‖

for all x, z from the bounded support of X and for some local Lipschitz constants Cy(x)

satisfying ∫ ∞∑
y=0

Cy(x)µ(dx) = C∗ < ∞,

and assume
∞∑

y=0

√
P{Y = y} < ∞.

Let P̂n{y|x} be the partitioning estimate of P{Y = y|X = x} with respect to a partition

of IRd consisting of cubes with side-length hn. Then

E
∫ ∞∑

y=0

∣∣∣P̂n{y|x} −P{Y = y|X = x}
∣∣∣ µ(dx)

≤ c1

1 +
∞∑

y=0

√
P{Y = y}

 · 1√
n · hd

n

+
√

d · C∗ · hn,

so for

hn = c2 · n−1/(d+2)
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we get

E
∫ ∞∑

y=0

∣∣∣P̂n{y|x} −P{Y = y|X = x}
∣∣∣ µ(dx) ≤ c3 · n−

1
d+2 .

In the next theorem we consider Poisson regression. Here the conditional distribution

of Y given X is given by

P{Y = y|X = x} =
m(x)y

y!
· e−m(x) (y ∈ IN0)

for some m : IRd → (0,∞). Because of m(x) = E{Y |X = x} we can estimate it by

applying a partitioning estimate to Dn and use a plug-in estimate

P̂n{y|x} =
mn(x)y

y!
· e−mn(x) (y ∈ IN0)

to estimate the conditional distribution of Y given X. For this estimate we have the

following result.

Theorem 3 Assume that E{Y } < ∞ and

P{Y = y|X = x} =
m(x)y

y!
· e−m(x) (y ∈ IN0)

for some m : IRd → (0,∞). Let

mn(x) =


Pn

i=1 IAn(x)(Xi)·YiPn
i=1 IAn(x)(Xi)

if
∑n

i=1 IAn(x)(Xi) > log n

0 otherwise.

be the (modified) partitioning estimate of m with partition Pn = {An,j : j} and set

P̂n{y|x} =
mn(x)y

y!
· e−mn(x) (y ∈ IN0).

a) Assume that the underlying partition Pn satisfies (10) and for each sphere S centered

at the origin

lim
n→∞

|{j : An,j ∩ S 6= ∅}| log n

n
= 0. (12)

Then ∫ ∞∑
y=0

∣∣∣P̂n{y|x} −P{Y = y|X = x}
∣∣∣ µ(dx) → 0 a.s.
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b) Assume X is bounded a.s. and assume that E{Y 2} < ∞ and m is Lipschitz continuous,

i.e.

|m(x)−m(z)| ≤ C · ‖x− z‖

for some constant C ∈ IR+. Choose the underlying partition such that it consists of cubes

of side-length hn. Then

E
∫ ∞∑

y=0

∣∣∣P̂n{y|x} −P{Y = y|X = x}
∣∣∣ µ(dx) ≤ c4√

n · hd
n

+ c5 · hn,

so for

hn = c6 · n−1/(d+2)

we get

E
∫ ∞∑

y=0

∣∣∣P̂n{y|x} −P{Y = y|X = x}
∣∣∣ µ(dx) ≤ c7 · n−

1
d+2 .

Remark 1. Assume that the assumptions of Theorem 3 b) hold. The function f(u) =

uye−u/(y!) satisfies for u ∈ [0, B]

|f ′(u)| =
∣∣∣∣y · uy−1

y!
· e−u − uy

y!
· e−u

∣∣∣∣ ≤ (B + 1) · By−1

(y − 1)!
,

so by boundedness of the Lipschitz continuous regression function m we get for y > 0

|P{Y = y|X = x} −P{Y = y|X = z}| ≤ (B + 1) · By−1

(y − 1)!
· C · ‖x− z‖.

This implies that the conditional probabilities are Lipschitz continuous and that the inte-

gral over the sum of the Lipschitz constant is bounded by1 +
∞∑

y=1

(B + 1) · By−1

(y − 1)!

 · C =
(
1 + (B + 1) · eB

)
· C,

hence under the assumption of Theorem 3 b) the estimate in Theorem 2 achieves the same

rate of convergence although it does not depend on the particular form of the conditional

distribution.
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Remark 2. Under more restrictive regularity assumptions on the underlying distribution

consistency of a localized log-likelihood Poisson regression estimate was shown in Kohler

and Krzyżak (2005).

3 The estimation of conditional densities

In this section assume that Y takes values in IRd′ . Our aim is to estimate the conditional

distribution of Y given X consistently in total variation. We assume that Y has absolutely

continuous distribution and the conditional density of Y given X is denoted by

f(y|x).

For estimating f(y|x), introduce a histogram estimate. Let Qn = {Bn,j : j} be a

partition of IRd′ , such that the Lebesgue measure λ of each cell is positive and finite. Let

Bn(y) be the cell of Qn into which y falls. As before let Pn = {An,j : j} be a partition of

IRd and denote the cell into which x falls by An(x).

Put

νn(A,B) =
1
n

n∑
i=1

I{Xi∈A,Yi∈B},

then the histogram estimate is as follows:

fn(y|x) =
νn(An(x), Bn(y))

µn(An(x)) · λ(Bn(y))
.

We will use the following conditions: assume that for each sphere S centered at the

origin we have

lim
n→∞

max
j:Bn,j∩S

diam(Bn,j) = 0 (13)

and

lim
n→∞

|{j : Bn,j ∩ S 6= ∅}|
n

= 0. (14)

The next theorem extends the density-free strong consistency result of Abou-Jaoude

(1976) to conditional density estimation.
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Theorem 4 Assume that the partitions Pn and Qn satisfy (10), (11), (13) and (14), resp.

Then ∫ ∫
|fn(y|x)− f(y|x)|λ(dy)µ(dx) → 0 a.s.

Devroye and Györfi (1985a), and Beirlant and Györfi (1998) calculated the rate of

convergence of the expected L1 error of the histogram. Next we extend these results to

the estimates of conditional densities.

Theorem 5 Assume X and Y are bounded a.s., and

|f(u|x)− f(y|x)| ≤ C1(x) · ‖u− y‖

and

|f(y|z)− f(y|x)| ≤ C2(y) · ‖x− z‖

for all x, z from the bounded support of X and for all y, u from the bounded support of Y

such that ∫
C1(z)µ(dz) < ∞

and ∫
C2(y)λ(dy) < ∞.

Let fn(y|x) be the histogram estimate of f(y|x) with respect to a partitions Pn and Qn

consisiting of cubes with side-lengths hn and Hn, resp. Then

E
∫ ∫

|fn(y|x)− f(y|x)|λ(dy)µ(dx)

≤
√

c8

n · hd
n

+
√

c9

n · hd
n ·Hd′

n

+
√

d · c10 · hn +
√

d′ · c11 ·Hn,

so for

hn = c12 · n−1/(d+d′+2) and Hn = c13 · n−1/(d+d′+2)

we get

E
∫ ∫

|fn(y|x)− f(y|x)|λ(dy)µ(dx) ≤ c14 · n−
1

d+d′+2 .
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4 Proofs

4.1 Proof of Theorem 1

Using

|a− b| = 2(b− a)+ + (a− b)

(where x+ = max{x, 0}) we get∫ ∞∑
y=0

∣∣∣P̂n{y|x} −P{Y = y|X = x}
∣∣∣ µ(dx)

= 2 ·
∞∑

y=0

∫ (
P{Y = y|X = x} − P̂n{y|x}

)
+

µ(dx)

+

∫ ∞∑
y=0

P̂n{y|x}µ(dx)−
∫ ∞∑

y=0

P{Y = y|X = x}µ(dx)

 .

Using the Cauchy-Schwarz inequality and Theorem 23.1 in Györfi et al. (2002) we get for

each fixed y ∈ IN0 ∫ (
P{Y = y|X = x} − P̂n{y|x}

)
+

PX(dx)

≤
∫ ∣∣∣P̂n{y|x} −P{Y = y|X = x}

∣∣∣ µ(dx)

≤

√∫ (
P̂n{y|x} −P{Y = y|X = x}

)2
µ(dx) → 0 a.s.,

which implies together with the dominated convergence theorem, that the first term on

the right–hand side above converges to zero.

Concerning the second term we observe∫ ∞∑
y=0

P̂n{y|x}µ(dx)−
∫ ∞∑

y=0

P{Y = y|X = x}µ(dx)

=
∫  ∞∑

y=0

∑n
i=1 IAn(x)(Xi) · I{Yi=y}∑n

j=1 IAn(x)(Xj)
− 1

 µ(dx)

=
∫ (

I{Pn
j=1 IAn(x)(Xj)>0} − 1

)
µ(dx)

= −
∞∑

j=0

InPn
i=1 IAn,j

(Xi)=0
o · µ{An,j}.
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Together with (11), it implies that∣∣∣∣∣∣
∫ ∞∑

y=0

P̂n{y|x}µ(dx)−
∫ ∞∑

y=0

P{Y = y|X = x}µ(dx)

∣∣∣∣∣∣
≤

∞∑
j=0

|µ{An,j} − µn{An,j}|

→ 0

a.s. (cf. Lemma 1 in Devroye and Györfi (1985b) or, with better constant in the expo-

nential upper bound, cf. the proof of Lemma 23.2 in Györfi et al. (2002)). �

4.2 Proof of Theorem 2

In the sequel we use the notation

νy,n(A) =
1
n

n∑
i=1

I{Yi=y,Xi∈A},

and with this notation the partition estimate is given by

P̂n{y|x} =
νy,n(An(x))
µn(An(x))

.

Thus, ∫ ∞∑
y=0

|P̂n{y|x} −P{Y = y|X = x}|µ(dx)

=
∞∑

y=0

∫ ∣∣∣∣νy,n(An(x))
µn(An(x))

−P{Y = y|X = x}
∣∣∣∣ µ(dx)

=
∞∑

y=0

∑
A∈Pn

∫
A

∣∣∣∣νy,n(A)
µn(A)

−P{Y = y|X = x}
∣∣∣∣ µ(dx)

≤
∞∑

y=0

∑
A∈Pn

∫
A

∣∣∣∣νy,n(A)
µn(A)

− νy,n(A)
µ(A)

∣∣∣∣ µ(dx)

+
∞∑

y=0

∑
A∈Pn

∫
A

∣∣∣∣νy,n(A)
µ(A)

− P{Y = y, X ∈ A}
µ(A)

∣∣∣∣ µ(dx)

+
∞∑

y=0

∑
A∈Pn

∫
A

∣∣∣∣P{Y = y, X ∈ A}
µ(A)

−P{Y = y|X = x}
∣∣∣∣ µ(dx)
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≤
∞∑

y=0

∑
A∈Pn

∣∣∣∣νy,n(A)
µn(A)

− νy,n(A)
µ(A)

∣∣∣∣ µ(A)

+
∞∑

y=0

∑
A∈Pn

∣∣∣∣νy,n(A)
µ(A)

− P{Y = y, X ∈ A}
µ(A)

∣∣∣∣ µ(A)

+
∞∑

y=0

∑
A∈Pn

∫
A

∣∣∣∣P{Y = y, X ∈ A}
µ(A)

−P{Y = y|X = x}
∣∣∣∣ µ(dx)

=
∑

A∈Pn

∞∑
y=0

νy,n(A) ·
∣∣∣∣ 1
µn(A)

− 1
µ(A)

∣∣∣∣ µ(A)

+
∞∑

y=0

∑
A∈Pn

|νy,n(A)−P{Y = y, X ∈ A}|

+
∞∑

y=0

∑
A∈Pn

∫
A

∣∣∣∣P{Y = y, X ∈ A}
µ(A)

−P{Y = y|X = x}
∣∣∣∣ µ(dx)

≤
∑

A∈Pn

|µn(A)− µ(A)|

+
∞∑

y=0

∑
A∈Pn

|νy,n(A)−P{Y = y, X ∈ A}|

+
∞∑

y=0

∑
A∈Pn

∫
A

∣∣∣∣P{Y = y, X ∈ A}
µ(A)

−P{Y = y|X = x}
∣∣∣∣ µ(dx),

where we have used for the last inequality that

∞∑
y=0

νy,n(A) = µn(A).

Since n·µn(A) is binomially distributed with parameters n and µ(A) we get by Cauchy-

Schwarz inequality

∑
A∈Pn

E{|µn(A)− µ(A)|} ≤
∑

A∈Pn

√
E{(µn(A)− µ(A))2}

≤
∑

A∈Pn

√
µ(A)

n
.

By Jensen inequality we have(
a1 + . . . + al

l

)2

≤
a2

1 + . . . a2
l

l
,
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which implies

a1 + . . . + al ≤
√

l · (a2
1 + . . . a2

l ).

Using this inequality in the sum above for the c15/hd
n many cells A ∈ Pn contained in the

bounded support of X (which are the only ones with µ(A) 6= 0) we conclude

∑
A∈Pn

E{|µn(A)− µ(A)|} ≤
√

c15

hd
n

·
∑

A∈Pn

(√
µ(A)/n

)2

=
√

c15

n · hd
n

·
∑

A∈Pn

µ(A)

≤
√

c15

n · hd
n

.

Similarly we get

∞∑
y=0

∑
A∈Pn

E{|νy,n(A)−P{Y = y, X ∈ A}|}

≤
∞∑

y=0

∑
A∈Pn

√
E{(νy,n(A)−P{Y = y, X ∈ A})2}

≤
∞∑

y=0

∑
A∈Pn

√
P{Y = y, X ∈ A}

n

≤
∞∑

y=0

√
c15

∑
A∈Pn

P{Y = y, X ∈ A}
n · hd

n

=
∞∑

y=0

√
c15P{Y = y}

n · hd
n

=
√

c15

n · hd
n

∞∑
y=0

√
P{Y = y}.

Finally

∞∑
y=0

∑
A∈Pn

∫
A

∣∣∣∣P{Y = y, X ∈ A}
µ(A)

−P{Y = y|X = x}
∣∣∣∣ µ(dx)

≤
∞∑

y=0

∑
A∈Pn

∫
A

∣∣∣∣
∫
A P{Y = y|X = z}µ(dz)

µ(A)
−

∫
A P{Y = y|X = x}µ(dz)

µ(A)

∣∣∣∣ µ(dx)

≤
∞∑

y=0

∑
A∈Pn

∫
A

∫
A |P{Y = y|X = z} −P{Y = y|X = x}|µ(dz)

µ(A)
µ(dx)

15



≤
∞∑

y=0

∑
A∈Pn

∫
A

Cy(x) · diam(A) · µ(A)
µ(A)

µ(dx)

≤
√

d · hn ·
∞∑

y=0

∫
Cy(x)µ(dx)

≤
√

d · hn · C∗.

Summarizing the above results, the assertion follows. �

4.3 Proof of Theorem 3

In the proof we will use the following lemma.

Lemma 1 For arbitrary u, v ∈ IR+ we have

∞∑
j=0

∣∣∣∣uj

j!
· e−u − vj

j!
· e−v

∣∣∣∣ ≤ 2 · |u− v|.

Proof. W.l.o.g. assume u < v. Then

∞∑
j=0

∣∣∣∣uj

j!
e−u − vj

j!
e−v

∣∣∣∣
≤

∞∑
j=0

∣∣∣∣uj

j!
e−u − uj

j!
e−v

∣∣∣∣ +
∞∑

j=0

∣∣∣∣uj

j!
e−v − vj

j!
e−v

∣∣∣∣
=

∞∑
j=0

(
uj

j!
e−u − uj

j!
e−v

)
+

∞∑
j=0

(
vj

j!
e−v − uj

j!
e−v

)
= eu

(
e−u − e−v

)
+ eve−v − eue−v

= 2
(
1− e−(v−u)

)
≤ 2|v − u|,

since 1 + x ≤ ex (x ∈ IR). �

Proof of Theorem 3. Proof of a): By Lemma 1 we get∫ ∞∑
y=0

∣∣∣P̂n{y|x} −P{Y = y|X = x}
∣∣∣ µ(dx)

=
∫ ∞∑

y=0

∣∣∣∣mn(x)y

y!
· e−mn(x) − m(x)y

y!
· e−m(x)

∣∣∣∣ µ(dx)

16



≤ 2 ·
∫
|mn(x)−m(x)|µ(dx) (15)

→ 0

a.s. by Györfi (1991) (see also Theorems 23.3 in Györfi et al. (2002)).

Proof of Part b): Using (15),

E


∫ ∞∑

y=0

∣∣∣P̂n{y|x} −P{Y = y|X = x}
∣∣∣ µ(dx)

 ≤ 2 ·

√
E

{∫
|mn(x)−m(x)|2µ(dx)

}
≤ c4√

n · hd
n

+ c5 · hn,

where the last step can be done in a similar way as the proof of Theorem 4.3 in Györfi et

al. (2002). �

4.4 Proof of Theorem 4

Introduce the notation

ν(A,B) = E{νn(A,B)} = P{X ∈ A, Y ∈ B},

then

∫ ∫
|fn(y|x)− f(y|x)|λ(dy)µ(dx)

=
∑

A∈Pn

∑
B∈Qn

∫
A

∫
B

∣∣∣∣ νn(A,B)
µn(A) · λ(B)

− f(y|x)
∣∣∣∣ λ(dy)µ(dx)

≤
∑

A∈Pn

∑
B∈Qn

∫
A

∫
B

∣∣∣∣ νn(A,B)
µn(A) · λ(B)

− νn(A,B)
µ(A) · λ(B)

∣∣∣∣ λ(dy)µ(dx)

+
∑

A∈Pn

∑
B∈Qn

∫
A

∫
B

∣∣∣∣ νn(A,B)
µ(A) · λ(B)

− ν(A,B)
µ(A) · λ(B)

∣∣∣∣ λ(dy)µ(dx)

+
∑

A∈Pn

∑
B∈Qn

∫
A

∫
B

∣∣∣∣ ν(A,B)
µ(A) · λ(B)

− f(y|x)
∣∣∣∣ λ(dy)µ(dx)

=
∑

A∈Pn

∑
B∈Qn

∣∣∣∣ νn(A,B)
µn(A) · λ(B)

− νn(A,B)
µ(A) · λ(B)

∣∣∣∣ µ(A)λ(B)

17



+
∑

A∈Pn

∑
B∈Qn

∣∣∣∣ νn(A,B)
µ(A) · λ(B)

− ν(A,B)
µ(A) · λ(B)

∣∣∣∣ µ(A)λ(B)

+
∑

A∈Pn

∑
B∈Qn

∫
A

∫
B

∣∣∣∣ ν(A,B)
µ(A) · λ(B)

− f(y|x)
∣∣∣∣ λ(dy)µ(dx),

therefore ∫ ∫
|fn(y|x)− f(y|x)|λ(dy)µ(dx)

≤
∑

A∈Pn

∑
B∈Qn

νn(A,B)
∣∣∣∣ 1
µn(A)

− 1
µ(A)

∣∣∣∣ µ(A)

+
∑

A∈Pn

∑
B∈Qn

|νn(A,B)− ν(A,B)|

+
∑

A∈Pn

∑
B∈Qn

∫
A

∫
B

∣∣∣∣ ν(A,B)
µ(A) · λ(B)

− f(y|x)
∣∣∣∣ λ(dy)µ(dx)

≤
∑

A∈Pn

|µn(A)− µ(A)| (16)

+
∑

A∈Pn

∑
B∈Qn

|νn(A,B)− ν(A,B)| (17)

+
∑

A∈Pn

∑
B∈Qn

∫
A

∫
B

∣∣∣∣ ν(A,B)
µ(A) · λ(B)

− f(y|x)
∣∣∣∣ λ(dy)µ(dx), (18)

where we have used for the last inequality that

∑
B∈Qn

νn(A,B) = µn(A).

Because of (11), (16) tends to 0 a.s., while (11) and (14) imply that (17) tends to 0 a.s.

(cf. Lemma 1 in Devroye and Györfi (1985b)).

Concerning the convergence of the bias term (18), introduce the notation

f̄n(y|x) =

∫
An(x)

∫
Bn(y) f(u|z)λ(du)µ(dz)

µ(An(x)) · λ(Bn(y))

then

∑
A∈Pn

∑
B∈Qn

∫
A

∫
B

∣∣∣∣ ν(A,B)
µ(A) · λ(B)

− f(y|x)
∣∣∣∣ λ(dy)µ(dx)

=
∑

A∈Pn

∑
B∈Qn

∫
A

∫
B

∣∣∣∣
∫
A

∫
B f(u|z)λ(du)µ(dz)

µ(A) · λ(B)
− f(y|x)

∣∣∣∣ λ(dy)µ(dx)

18



=
∫ ∫ ∣∣f̄n(y|x)− f(y|x)

∣∣ λ(dy)µ(dx)

→ 0,

because of the conditions (10) and (13). This convergence is obvious if f(y|x) is continuous

and has compact support. In general, we use that f(y|x) ∈ L1(µ × λ), and refer to the

denseness result such that the set of continuous functions in L1(µ × λ) with compact

support is dense in L1(µ × λ) (cf., e.g., Devroye and Györfi (2002)). An alternative

technique would be the Lebesgue density theorem (cf., e.g., Lemma 24.5 in Györfi et al.

(2002)), which is a pointwise convergence, and together with the Scheefe theorem and the

dominated convergence theorem we are ready. �

4.5 Proof of Theorem 5

Because of the proof of Theorem 4,

E
{∫ ∫

|fn(y|x)− f(y|x)|λ(dy)µ(dx)
}

≤
∑

A∈Pn

E {|µn(A)− µ(A)|}

+
∑

A∈Pn

∑
B∈Qn

E {|νn(A,B)− ν(A,B)|}

+
∫ ∫ ∣∣∣∣ ν(An(x), Bn(y))

µ(An(x)) · λ(Bn(y))
− f(y|x)

∣∣∣∣ λ(dy)µ(dx).

According to the proof of Theorem 2, the condition that X is bounded implies that

∑
A∈Pn

E {|µn(A)− µ(A)|} ≤
√

c15

n · hd
n

,

and, similarly, using X and Y are bounded we can show

∑
A∈Pn

∑
B∈Qn

E {|νn(A,B)− ν(A,B)|} ≤
√

c16

n · hd
n ·Hd′

n

.

Concerning the rate of convergence of the bias term we observe∫ ∫ ∣∣∣∣ ν(An(x), Bn(y))
µ(An(x)) · λ(Bn(y))

− f(y|x)
∣∣∣∣ λ(dy)µ(dx)
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=
∑

A∈Pn

∑
B∈Qn

∫
A

∫
B

∣∣∣∣ ν(A,B)
µ(A) · λ(B)

− f(y|x)
∣∣∣∣ λ(dy)µ(dx)

=
∑

A∈Pn

∑
B∈Qn

∫
A

∫
B

∣∣∣∣
∫
A

∫
B f(u|z)λ(du)µ(dz)

µ(A) · λ(B)
− f(y|x)

∣∣∣∣ λ(dy)µ(dx)

≤
∑

A∈Pn

∑
B∈Qn

∫
A

∫
B

∫
A

∫
B |f(u|z)− f(y|x)|λ(du)µ(dz)

µ(A) · λ(B)
λ(dy)µ(dx)

≤
∑

A∈Pn

∑
B∈Qn

∫
A

∫
B

∫
A

∫
B |f(u|z)− f(y|z)|λ(du)µ(dz)

µ(A) · λ(B)
λ(dy)µ(dx)

+
∑

A∈Pn

∑
B∈Qn

∫
A

∫
B

∫
A

∫
B |f(y|z)− f(y|x)|λ(du)µ(dz)

µ(A) · λ(B)
λ(dy)µ(dx).

Applying the conditions the theorem we get that∫ ∫ ∣∣∣∣ ν(An(x), Bn(y))
µ(An(x)) · λ(Bn(y))

− f(y|x)
∣∣∣∣ µ(dx)λ(dy)

≤
∑

A∈Pn

∑
B∈Qn

∫
A

∫
B

∫
A

∫
B C1(z) ·

√
d′ ·Hnλ(du)µ(dz)

µ(A) · λ(B)
λ(dy)µ(dx)

+
∑

A∈Pn

∑
B∈Qn

∫
A

∫
B

∫
A

∫
B C2(y) ·

√
d · hnλ(du)µ(dz)

µ(A) · λ(B)
λ(dy)µ(dx)

=
∫

C1(z)µ(dz)λ(SY ) ·
√

d′ ·Hn +
∫

C2(y)λ(dy) ·
√

d · hn,

where SY is the bounded support of Y . �
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