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vergence.

1 Introduction

Let (X, Y ), (X1, Y1), (X2, Y2), . . . be i.i.d. random variables with values in IRd ×{0, 1}. In

classification we want to predict Y given the value of X, i. e., we want to find a classifier

f : IRd → {0, 1} such that the misclassification risk

P{f(X) 6= Y }

is as small as possible. Denote by

m(x) = P{Y = 1|X = x} = E{Y |X = x}

the a posteriori probability of Y given X = x. Then the Bayes classifier, i. e., the

classification rule with the smallest misclassification risk

P{f∗(X) 6= Y } = min
f :IRd→{0,1}

P{f(X) 6= Y }

is given by

f∗(x) =


1 if m(x) > 1/2

0 otherwise

(cf. Devroye, Györfi and Lugosi (1996), Theorem 2.1.) In applications, the distribution

of (X, Y ), and hence also this optimal classifier are unknown. But often it is possible to

observe a sample

Dn = {(X1, Y1), . . . , (Xn, Yn)}

of the underlying distribution, and then the task is to learn a classification rule fn(·) =

fn(·,Dn) : IRd → IR from this data. For an introduction to pattern recognition and

classification we refer the reader to the monographs Devroye, Györfi and Lugosi (1996)

and Vapnik (1998).
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In this paper we consider so–called plug-in classifiers, which estimate the regression

function m by a regression estimate mn(·) = mn(·,Dn) : IRd → IR and define the classifi-

cation rule by

fn(x) =


1 if mn(x) > 1/2

0 otherwise.
(1)

The rate of convergence of the difference between the misclassification risk of the plug-

in classifier and the optimal misclassification risk is related to the error of the regression

estimates. For a long time the following rather trivial bound was a main tool in this

domain:

P{fn(X) 6= Y } −P{f∗(X) 6= Y } ≤ 2 ·E{|mn(X)−m(X)|} ≤ 2 ·
√

E|mn(X)−m(X)|2

(cf. Theorem 2.2 in Devroye, Györfi and Lugosi (1996)). It is well-known, that it is

possible to construct for (p, C)-smooth regression functions (i. e., roughly speaking the

functions that are p-times continuously differentiable) regression estimates such that the

expected L2 error

E|mn(X)−m(X)|2 = E
∫
|mn(x)−m(x)|2PX(dx)

converges to zero with the rate

n−2p/(2p+d)

(cf. Stone (1982), or Györfi et al. (2002)). So for (p, C)-smooth a posteriori probabilities

and suitably defined plug-in classifiers we have the bound

P{fn(X) 6= Y } −P{f∗(X) 6= Y } ≤ c1 · n−p/(2p+d)

and for large p the rate of convergence of the so-called excess risk achieves rates up to

n−1/2.

Recently, it was shown that under so-called margin condition

∃c ∃α > 0 : P{0 < |m(X)− 1
2
| < t} ≤ c · tα (2)

3



for all t > 0, one can derive much better rates than n−1/2. Corresponding results concern-

ing classifiers based on empirical risk minimization can be found, e.g., in Audibert (2004),

Mammen and Tsybakov (1999), Massart and Nédélec (2003) and Tsybakov and van de

Geer (2005). For plug-in classifiers it was shown in in Audibert and Tsybakov (2005) that

assuming margin condition (2) one gets

P{fn(X) 6= Y } −P{f∗(X) 6= Y } ≤
(
E
∫
|mn(X)−m(X)|2PX(dx)

) 1+α
2+α

(3)

(cf. Audibert and Tsybakov (2005), Lemma 5.2), which implies that for (p, C)–smooth

regression functions and suitably defined plug-in classifiers we have the bound

P{fn(X) 6= Y } −P{f∗(X) 6= Y } ≤ c2 · n−
2p·(1+α)

(2p+d)·(2+α) , (4)

so for large α we can get rates up to n−1. Furthermore, it was shown that under the

margin condition and by imposing restrictions on the distribution of X such as existence

of a bounded density with respect to the Lebesgue-Borel measure one gets for estimates

defined by minimizing the empirical risk on a special covering (these estimates are hard

to compute in practice) for (p, C)-smooth regression function under the margin condition

P{fn(X) 6= Y } −P{f∗(X) 6= Y } ≤ c3 · n−
p·(1+α)

(2+α)p+d . (5)

If, in addition, X has a density with respect to the Lebesgue-Borel measure bounded

away from zero and infinity, then it was shown that suitably defined local polynomial

kernel plug-in classifiers (these estimates are easy to compute in practice) satisfy

P{fn(X) 6= Y } −P{f∗(X) 6= Y } ≤ c4 · n−
p(1+α)
2p+d (6)

(cf. Theorems 4.3 and 3.3 in Audibert and Tsybakov (2005)). In (6) one can get for large α

rates better than n−1. However, the assumption on the distribution of X somewhat limits

the value of this result. The margin condition (2) measures how quickly the a posteriori

probability crosses the decision boundary {x : m(x) = 1/2}. It depends on the distribution
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of X and on the steepness of the regression function near the decision boundary. But if

we require as in (6) that X have a density with respect to the Lebesgue-Borel measure

bounded away from zero, then for p ≥ 1 the class of distributions of (X, Y ) which yield m

(p, C)-smooth and which fulfill the margin condition for α > 1 is very narrow.

In this paper we improve the bound (4) without assuming existence of a density of X.

As main result we prove bounds which are for d ·α > 2 better than (4) but not as good as

the one in (5) for kernel, partitioning and nearest neighbor plug-in classification rules and

p ≤ 1. In case a density of X exists which is bounded away from zero we provide for kernel

and partitioning plug-in classifiers simple proofs of (6) for p ≤ 1. In contrast to Audibert

and Tsybakov (2005) this result does not require that the density of X is bounded away

from infinity. The main results are formulated in Section 2 and proven in Section 3.

2 Main results

In the sequel we make the following three assumptions on the distribution of (X, Y ):

(A1) There exists c̄ > 0 and α > 0 such that for all δ > 0 we have

E
{
|m(X)− 1

2
| · 1{|m(X)− 1

2
|≤δ}

}
≤ c̄ · δ1+α.

(A2) X ∈ [0, 1]d a.s.

(A3) There exists 0 < p ≤ 1 and C > 0 such that m(x) = E{Y |X = x} is (p, C)–smooth,

i.e.,

|m(x)−m(z)| ≤ C · ‖x− z‖p for all x, z ∈ [0, 1]d,

where ‖x− z‖ is the Euclidean norm of x− z.

Note that the margin condition (A1) is slightly weaker than the margin condition (2).
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First we consider the Nadaraya-Watson kernel estimate (Nadaraya (1964) and Watson

(1964)) defined by

mn(x) =

∑n
i=1 K

(
x−Xi

hn

)
· Yi∑n

i=1 K
(

x−Xi
hn

) (with
0
0

= 0)

with naive kernel K : IRd → IR+ given by K(u) = 1{‖u‖≤1} and bandwidth hn > 0. The

plug-in classifier is then defined by (1).

Theorem 1 Assume that the distribution of (X, Y ) satisfies (A1), (A2) and (A3) and

that the plug-in kernel classification rule is defined as above with bandwidth

hn = n
− 1

d+p·(3+α) .

Then

P{fn(X) 6= Y } −P{f∗(X) 6= Y } ≤ c5 · n−
p·(1+α)

p·(3+α)+d .

If we add restrictions on the distribution of X, we can improve the rate of convergence

above:

Theorem 2 Assume that the distribution of (X, Y ) satisfies (A1), (A2), (A3) and, in

addition, assume that X has a density with respect to the Lebesgue-Borel measure which

is bounded away from zero. Let the plug-in kernel classification rule be defined as above

with bandwidth

hn = n
− 1

2p+d .

Then

P{fn(X) 6= Y } −P{f∗(X) 6= Y } ≤ c6 · n−
p·(1+α)
2p+d .

Next we consider plug-in classifiers based on partitioning estimates. Let Pn be a cubic

partition of IRd into cubes with side-length hn > 0. For x ∈ IRd let An(x) be that cube

Aj,n ∈ Pn with x ∈ Aj,n. Then the partitioning estimate with partition Pn is defined by

mn(x) =

∑n
i=1 1An(x)(Xi) · Yi∑n

i=1 1An(x)(Xi)
(with

0
0

= 0).
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Let fn(x) be the corresponding plug-in classification rule defined by (1). In the same way

as Theorem 1 we will show

Theorem 3 Assume that the distribution of (X, Y ) satisfies (A1), (A2) and (A3) and

that the plug-in partitioning classification rule is defined as above with cubes of side-length

hn = n
− 1

d+p·(3+α) .

Then

P{fn(X) 6= Y } −P{f∗(X) 6= Y } ≤ c7 · n−
p·(1+α)

p·(3+α)+d .

Under restrictions on the distribution of X, we get again a better rate of convergence

than above:

Theorem 4 Assume that the distribution of (X, Y ) satisfies (A1), (A2), (A3) and, in

addition, assume that X has a density with respect to the Lebesgue-Borel measure which

is bounded away from zero. Let the plug-in partitioning classification rule be defined as

above with cubes of side-length

hn = n
− 1

2p+d .

Then

P{fn(X) 6= Y } −P{f∗(X) 6= Y } ≤ c8 · n−
p·(1+α)
2p+d .

Next we consider nearest neighbor regression estimates. For x ∈ IRd let

(X(1)(x), Y(1)(x)), . . . , (X(n)(x), Y(n)(x))

be a permutation of Dn such that

‖x−X(1)(x)‖ ≤ . . . ≤ ‖x−X(n)(x)‖.

In case of ties, i.e., in case ‖x − Xi‖ = ‖x − Xj‖, we assume that the data point with

the smaller index comes before the other data point. For kn ∈ {1, . . . , n} the kn–nearest
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neighbor estimate is defined by

mn(x) =
1
kn

kn∑
i=1

Y(i)(x).

Let fn(x) be the corresponding plug-in classifier.

Theorem 5 Assume that the distribution of (X, Y ) satisfies (A1), (A2) and (A3) and

that the plug-in nearest neighbor classification rule is defined as above with

kn =
⌈
log(n) · n

2p
(3+α)·p+d

⌉
.

Then

P{fn(X) 6= Y } −P{f∗(X) 6= Y } ≤ c9 · log(n)r · n−
p·(1+α)

p·(3+α)+d

for some r > 0.

Under restrictions on the distribution of X, we will show again a better rate of con-

vergence:

Theorem 6 Assume that the distribution of (X, Y ) satisfies (A1), (A2), (A3) and, in

addition, assume that X has a density with respect to the Lebesgue-Borel measure which

is bounded away from zero. Let the plug-in nearest neighbor classification rule be defined

as above with

kn = log2(n) · n
2p

2p+d .

Then

P{fn(X) 6= Y } −P{f∗(X) 6= Y } ≤ c10 · log(n)
2p
d
·(1+α) · n−

p·(1+α)
2p+d .

Remark 1. For p ≤ 1 and d ·α > 2 the rate of convergence in Theorems 1 and 3 is better

than in (4), but worse than in (6). However, as already mentioned in the introduction,

these theorems do not require the existence of a density of X with respect to the Lebesgue-

Borel measure, and therefore in Theorems 1 and 3 there is no contradiction between the

margin condition and smoothness of the regression function for large α and large p.
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Remark 2. For large α the rates of convergence in Theorems 1, 3 and 5 approach the

parametric rate n−1. In Theorems 2, 4 and 6 the rate of convergence is even better than

n−1 for large α, but because of the restrictions on the distribution of X the class of

distributions of (X, Y ) satisfying the assumptions of Theorems 2, 4 and 6 is rather narrow

for α large.

Remark 3. In the proofs of the above theorems we analyze the rate of convergence of

the pointwise error of local averaging estimates. This pointwise error was also analyzed in

Devroye (1981, 1982), Greblicki, Krzyżak and Pawlak (1984), Györfi (1981), Mack (1981)

and Walk (2001).

3 Proofs

3.1 Proof of Theorem 1

By Theorem 2.2 in Devroye, Györfi and Lugosi (1996) we have for any δn > 0

P{fn(X) 6= Y } −P{f∗(X) 6= Y }

= E
{
|2m(X)− 1| · 1{fn(X) 6=f∗(X)}

}
= 2 ·E

{
|m(X)− 1/2| · 1{|m(X)−1/2|≤δn} · 1{fn(X) 6=f∗(X)

}
+2 ·E

{
|m(X)− 1/2| · 1{|m(X)−1/2|>δn} · 1{fn(X) 6=f∗(X)

}
.

If fn(X) 6= f∗(X) then |m(X) − 1/2| ≤ |mn(X) − m(X)|. Using the margin condition

(A1) we conclude

P{fn(X) 6= Y } −P{f∗(X) 6= Y } ≤ 2c̄ · δ1+α
n + P{|mn(X)−m(X)| > δn}.

Put

m̂n(x) =

∑n
i=1 K

(
x−Xi

hn

)
·m(Xi)∑n

i=1 K
(

x−Xi
hn

) .
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Then

P{|mn(X)−m(X)| > δn}

≤ P{|mn(X)− m̂n(X)| > δn/2}+ P{|m̂n(X)−m(X)| > δn/2}.

First we bound

P{|mn(X)− m̂n(X)| > δn/2}

=
∫

P{|mn(x)− m̂n(x)| > δn/2}PX(dx)

=
∫

P

{∣∣∣∣∣ 1n
n∑

i=1

K(x−Xi
hn

)∑n
j=1 K(x−Xj

hn
)
· (Yi −m(Xi))

∣∣∣∣∣ > δn

2n

}
PX(dx).

Using K2(u) = K(u) (u ∈ IRd) we get by Hoeffding inequality (cf., e.g., Lemma A.3 in

Györfi et al. (2002))

P

{∣∣∣∣∣ 1n
n∑

i=1

K(x−Xi
hn

)∑n
j=1 K(x−Xj

hn
)
· (Yi −m(Xi))

∣∣∣∣∣ > δn

2n

∣∣∣∣X1, . . . , Xn

}

≤ 2 · exp

− 2 · n · (δn/(2n))2

1
n

∑n
i=1

K2(
x−Xi

hn
)“Pn

j=1 K(
x−Xj

hn
)
”2


= 2 · exp

−1
2

n∑
j=1

K(
x−Xj

hn
) · δ2

n


≤ 2 · I

{
Pn

j=1 K(
x−Xj

hn
)< 1

2
·n·PX(Sx,hn )−log2(n)}

+2 · exp
(
−1

4
· n ·PX(Sx,hn) · δ2

n

)
· exp

(
log2(n) · δ2

n

2

)
.

If we choose δn such that δn ≤ 1/ log(n) we get

P{|mn(X)− m̂n(X)| > δn/2}

≤
∫

P

 1
n

n∑
j=1

K(
x−Xj

hn
)−PX(Sx,hn) < −1

2
·PX(Sx,hn)− log2(n)

n

PX(dx)

+4 ·
∫

exp
(
−1

4
· n ·PX(Sx,hn) · δ2

n

)
PX(dx).

Using

K(
x−Xj

hn
) = I{Xj∈Sx,hn} and V(K(

x−Xj

hn
)) ≤ PX(Sx,hn)
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(where Sx,hn denotes the (closed) ball of radius hn around x) we can bound the probability

in the first integral by Bernstein inequality (cf., e.g., Lemma A.2 in Györfi et al. (2002)).

This yields

P

 1
n

n∑
j=1

K(
x−Xj

hn
)−PX(Sx,hn) < −1

2
·PX(Sx,hn)− log2(n)

n


≤ 2 · exp

(
−

n · (1
2PX(Sx,hn) + log2(n)

n )2

2PX(Sx,hn) + 2 · (1
2PX(Sx,hn) + log2(n)

n ) · (1− 0)/3

)

≤ 2 · exp

(
−

n · (1
2PX(Sx,hn) + log2(n)

n )
4 + 2/3

)

≤ 2 · exp
(
−14

3
· log2(n)

)
.

To bound the second integral we use inequality (5.1) in Györfi et al. (2002) and get

4 ·
∫

exp
(
−1

4
· n ·PX(Sx,hn) · δ2

n

)
PX(dx)

=
16

n · δ2
n

·
∫

1
4
· n ·PX(Sx,hn) · δ2

n · exp
(
−1

4
· n ·PX(Sx,hn) · δ2

n

)
· 1
PX(Sx,hn)

PX(dx)

≤
16 ·maxu∈IR+ u · e−u

n · δ2
n

∫
1

PX(Sx,hn)
PX(dx) (7)

≤ 16
e
· c11

n · δ2
n · hd

n

. (8)

Putting together the above results we get

P{|mn(X)− m̂n(X)| > δn/2} ≤ 2 · exp
(
−14

3
· log2(n)

)
+

16
e
· c11

n · δ2
n · hd

n

provided we choose δn such that δn ≤ 1/ log(n).

So it remains to bound

P{|m̂n(X)−m(X)| > δn/2} =
∫

P{|m̂n(x)−m(x)| > δn/2}PX(dx).

Fix x ∈ [0, 1]d and define the event Bn(x) by

Bn(x) =

{
n∑

i=1

K

(
x−Xi

hn

)
> 0

}
.
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By triangle inequality and (p, C)–smoothness of m we have

|m̂n(x)−m(x)|

=

∣∣∣∣∣∣
∑n

i=1(m(Xi)−m(x)) ·K
(

x−Xi
hn

)
∑n

i=1 K
(

x−Xi
hn

)
∣∣∣∣∣∣ · 1Bn(x) + m(x)1Bn(x)c

≤

∑n
i=1 |m(Xi)−m(x)| ·K

(
x−Xi

hn

)
∑n

i=1 K
(

x−Xi
hn

) · 1Bn(x) + m(x)1Bn(x)c

≤ Chp
n + m(x)1Bn(x)c ,

where the last inequality follows from the fact that

K

(
x−Xi

hn

)
6= 0 implies ‖x−Xi‖ ≤ hn. (9)

Hence

P{|m̂n(x)−m(x)| > δn/2} ≤ P
{
m(x)1Bn(x)c > δn/2− C · hp

n

}
≤ P

{
n∑

i=1

K

(
x−Xi

hn

)
= 0

}

provided we choose δn such that

δn > 2 · C · hp
n.

From this we conclude

P{|m̂n(X)−m(X)| > δn/2} ≤
∫

P

{
n∑

i=1

K

(
x−Xi

hn

)
= 0

}
PX(dx)

=
∫

(1−PX(Sx,hn))n PX(dx)

≤
∫

e−n·PX(Sx,hn )PX(dx)

≤ max
u∈IR+

u · e−u ·
∫

1
n ·PX(Sx,hn)

PX(dx)

≤ c11

n · hd
n

where the last inequality follows from inequality (5.1) in Györfi et al. (2002).
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Thus we get for any δn satisfying 2 · C · hp
n < δn ≤ 1/ log(n)

P{fn(X) 6= Y } −P{f∗(X) 6= Y }

≤ 2c̄ · δ1+α
n +

16
e
· c11

n · hd
n · δ2

n

+ 2 · exp(−14
3
· log2(n)) +

c11

n · hd
n

.

With δn = 4 · C · hp
n and hn = n−1/(d+p·(3+α)) we get the desired result. �

3.2 Proof of Theorem 2

Set

δn = 2C · hp
n = 2C · n−

p
2p+d

and for x ∈ IRd let Bn(x) be the event that

n∑
i=1

K

(
x−Xi

hn

)
>

1
2
· n ·PX(Sx,hn)

where Sx,hn denotes the (closed) ball of radius hn around x. Because of

EK

(
x−X1

hn

)
= PX(Sx,hn) and V

(
K

(
x−X1

hn

))
≤ PX(Sx,hn)

we get by Bernstein inequality (cf., e.g., Lemma A.2 in Györfi et al. (2002))

P(Bn(x)c) = P

{
1
n

n∑
i=1

K

(
x−Xi

hn

)
−PX(Sx,hn) ≤ −1

2
·PX(Sx,hn)

}

≤ exp

(
−

n ·
(

1
2 ·PX(Sx,hn)

)2
2PX(Sx,hn) + 2 · 1

2 ·PX(Sx,hn) · (1− 0)/3

)

= exp
(
−

n ·PX(Sx,hn)
8 + 4/3

)
≤ exp(−c12 · n · hd

n).

Using this together with Theorem 2.2 in Devroye, Györfi and Lugosi (1996) we get

P{fn(X) 6= Y } −P{f∗(X) 6= Y }

= E
{
|2m(X)− 1| · 1{fn(X) 6=f∗(X)}

}
≤ 2 ·E

{
|m(X)− 1/2| · 1{|m(X)−1/2|≤δn} · 1{fn(X) 6=f∗(X)}

}
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+
∞∑

j=1

2 ·E
{
|m(X)− 1/2| · 1{2j−1δn<|m(X)−1/2|≤2jδn} · 1{fn(X) 6=f∗(X)} · 1Bn(x)

}
+exp(−c12 · n · hd

n).

If fn(X) 6= f∗(X) then |m(X)− 1
2 | ≤ |mn(X)−m(X)|, from which we conclude

P{fn(X) 6= Y } −P{f∗(X) 6= Y }

≤ 2 ·E
{
|m(X)− 1/2| · 1{|m(X)−1/2|≤δn}

}
+

∞∑
j=1

2 ·E

{
|m(X)− 1/2| · 1{|m(X)−1/2|≤2jδn}

·P
{
|mn(X)−m(X)| > 2j−1 · δn|X, X1, . . . , Xn

}
· 1Bn(x)

}
+exp(−c12 · n · hd

n).

Using the margin condition (A1) we get

2 ·E
{
|m(X)− 1/2| · 1{|m(X)−1/2|≤δn}

}
≤ 2c̄ · δ1+α

n .

Next we fix j ∈ IN, assume that Bn(X) holds and bound

P{|mn(X)−m(X)| > 2j−1 · δn|X, X1, . . . , Xn}.

Set

m̂n(x) =

∑n
i=1 K

(
x−Xi

hn

)
·m(Xi)∑n

i=1 K
(

x−Xi
hn

) .

On Bn(X) we have
n∑

i=1

K

(
X −Xi

hn

)
> 0,

and together with the (p, C)–smoothness of m this implies

|m̂n(X)−m(X)| =

∣∣∣∣∣∣
∑n

i=1(m(Xi)−m(X)) ·K
(

X−Xi
hn

)
∑n

i=1 K
(

X−Xi
hn

)
∣∣∣∣∣∣

≤

∑n
i=1 |m(Xi)−m(X)| ·K

(
X−Xi

hn

)
∑n

i=1 K
(

X−Xi
hn

)
≤ sup

u,v∈[0,1]d,‖u−v‖≤hn

|m(u)−m(v)|

≤ Chp
n =

δn

2
,

14



from which we conclude that on Bn(X) we have

P{|mn(X)−m(X)| > 2j−1 · δn|X, X1, . . . , Xn}

≤ P{|mn(X)− m̂n(X)|+ δn

2
> 2j−1 · δn|X, X1, . . . , Xn}

≤ P{|mn(X)− m̂n(X)| > 2j−2 · δn|X, X1, . . . , Xn}

= P


∣∣∣∣∣∣ 1n

n∑
i=1

K
(

X−Xi
hn

)
∑n

j=1 K
(

X−Xj

hn

)(Yi −m(Xi))

∣∣∣∣∣∣ > 2j−2 δn

n
|X, X1, . . . , Xn

 .

By Hoeffding inequality (cf., e.g., Lemma A.3 in Györfi et al. (2002)) we can bound the

last term by

2 exp

− 2n · (2j−2δn/n)2

1
n

∑n
i=1

K2
“

X−Xi
hn

”
(
Pn

j=1 K
“

X−Xj
hn

”
)2

 ≤ 2 exp

−22j−3δ2
n

n∑
j=1

K

(
X −Xj

hn

)

(where the last inequality follows from K2(u) = K(u) (u ∈ IRd)), which, in turn, is

bounded on Bn(X) by

2 exp
(
−22j−4δ2

nn · c13 · hd
n

)
= 2 exp

(
−22j−44C2n−2p/(2p+d)n · c13 · n−d/(2p+d)

)
= 2 exp(−c14 · 22j).

Putting together the above results and applying the margin condition (A2) again yields

P{fn(X) 6= Y } −P{f∗(X) 6= Y }

≤ 2c̄ · δ1+α
n + 4

∞∑
j=1

E

{
|m(X)− 1/2| · 1{|m(X)−1/2|≤2jδn} · exp(−c14 · 22j)

}
+exp(−c12 · n · hd

n)

≤ 2c̄ · δ1+α
n + 4c̄ · δ1+α

n

∞∑
j=1

2j(1+α) exp(−c14 · 22j) + exp(−c12 · n · hd
n)

≤ c15 · n−
p(1+α)
2p+d .

�
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3.3 Proofs of Theorems 3 and 4

The proofs are similar to the proofs of Theorems 1 and 2, therefore we give only the outline

of the proofs.

Let Kn(x, z) = 1An(x)(z). Then the partitioning estimate is given by

mn(x) =
∑n

i=1 Kn(x,Xi) · Yi∑n
i=1 Kn(x,Xi)

and with

m̂n(x) =
∑n

i=1 Kn(x,Xi) ·m(Xi)∑n
i=1 Kn(x,Xi)

we get for δn > 2C · hp
n as in the proof of Theorem 1:

P{fn(X) 6= Y } −P{f∗(X) 6= Y }

≤ 2c̄ · δ1+α
n + P {|mn(X)− m̂n(X)| > δn/2}+ P {|m̂n(X)−m(X)| > δn/2}

≤ 2c̄ · δ1+α
n + 2 · exp

(
−14

3
· log2(n)

)
+ 4 ·

∫
exp

(
−1

4
· n ·PX(An(x)) · δ2

n

)
PX(dx)

+
∫

P

{
n∑

i=1

Kn(x,Xi) = 0

}
PX(dx).

Now using the similar argument as in (7) we get∫
P

{
n∑

i=1

Kn(x,Xi) = 0

}
PX(dx) =

∫
(1−PX(An(x)))nPX(dx)

≤
∫

exp (−n ·PX(An(x)))PX(dx)

≤ 1
e · n

·
∫

1
PX(An(x))

PX(dx)

and

4 ·
∫

exp
(
−1

4
· n ·PX(An(x)) · δ2

n

)
PX(dx) ≤ 16

e · n · δ2
n

·
∫

1
PX(An(x))

PX(dx).

Let A1,n, . . . , ANn,n be those sets of the partition that overlap with [0, 1]d. Then

Nn ≤ c16/hd
n and we have∫

1
PX(An(x))

PX(dx) =
Nn∑
j=1

∫
Aj,n

1
PX(Aj,n)

PX(dx) ≤ Nn ≤ c16/hd
n.
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From this Theorem 3 follows as in the proof of Theorem 1.

Similarly Theorem 4 follows from the proof of Theorem 2 if we replace K((x−Xi)/hn)

by Kn(x,Xi) and Sx,hn by An(x). �

3.4 Proof of Theorem 5

As in the proof of Theorem 1 we have

P{fn(X) 6= Y } −P{f∗(X) 6= Y } ≤ 2c̄ · δ1+α
n + P {|mn(X)−m(X)| > δn} .

Put

m̂n(x) =
1
kn

kn∑
i=1

m(X(i)(x)).

Application of Hoeffding inequality (cf., e.g., Lemma A.3 in Györfi et al. (2002)) condi-

tioned on X, X1, . . . , Xn yields

P{|mn(X)−m(X)| > δn}

≤ P{|mn(X)− m̂n(X)| > δn/2}+ P{|m̂n(X)−m(X)| > δn/2}

≤ 2 · exp
(
−2 · kn · (δn/2)2

)
+ P{|m̂n(X)−m(X)| > δn/2}.

Fix x ∈ IRd. By (p, C)–smoothness of m we have

|m̂n(x)−m(x)| ≤ 1
kn

kn∑
i=1

|m(X(i)(x))−m(x)|

≤ 1
kn

kn∑
i=1

C · ‖X(i) − x‖p

≤ C · ‖X(kn) − x‖p.

Hence

P{|m̂n(X)−m(X)| > δn/2} =
∫

P{|m̂n(x)−m(x)| > δn/2}PX(dx)

≤
∫

P

{
‖X(kn) − x‖ >

(
δn

2C

)1/p
}

PX(dx).
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Put εn = (δn/(2C))1/p and set px,n = PX(Sx,εn). Then

P
{
‖X(kn) − x‖ > εn

}
= P

{
n∑

i=1

1Sx,εn
(Xi) < kn

}

= P

{
1
n

n∑
i=1

1Sx,εn
(Xi)− px,n <

kn

n
− px,n

}

≤ 1{px,n< 4kn
n
} + P

{
1
n

n∑
i=1

1Sx,εn
(Xi)− px,n < −

(
kn

n
+

px,n

2

)}
.

By Bernstein inequality (cf., e.g., Lemma A.2 in Györfi et al. (2002)) we can bound the

probability on the right-hand side above by

2 · exp
(
− n · (kn/n + px,n/2)2

2 · px,n(1− px,n) + 2 · (kn/n + px,n/2)/3

)
≤ 2 · exp

(
−n · (kn/n + px,n/2)

4 + 2/3

)
≤ 2 · exp

(
− 3

14
· kn

)
.

We conclude

P{|m̂n(X)−m(X)| > δn/2}

≤ 2 · exp
(
− 3

14
· kn

)
+ PX

({
x : PX(Sx,εn) < 4 · kn

n

})
.

Choose a covering of [0, 1]d by balls Sx1,εn/2, . . . , SxNn ,εn/2 with radius εn/2 and such that

the number Nn of balls is as small as possible. Then

Nn ≤ c17 · ε−d
n

and we get

PX

({
x : PX(Sx,εn) < 4 · kn

n

})
≤

Nn∑
k=1

PX

({
x ∈ Sxk,εn/2 : PX(Sx,εn) < 4 · kn

n

})

≤
Nn∑
k=1

PX

({
x ∈ Sxk,εn/2 : PX(Sxk,εn/2) < 4 · kn

n

})

=
Nn∑
k=1

PX

({
x ∈ Sxk,εn/2

})
1{PX(Sxk,εn/2)<4· kn

n }
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=
Nn∑
k=1

PX

(
Sxk,εn/2

)
1{PX(Sxk,εn/2)<4· kn

n }

≤ Nn ·
4kn

n
= c18 ·

kn

n
· δ−d/p

n ,

where we have used the fact that x ∈ Sxk,εn/2 implies Sxk,εn/2 ⊆ Sx,εn .

Gathering the above results we get

P{fn(X) 6= Y } −P{f∗(X) 6= Y }

≤ 2c̄ · δ1+α
n + 2 · exp

(
−2 · kn · (δn/2)2

)
+ 2 · exp

(
− 3

14
· kn

)
+ c18 ·

kn

n
· δ−d/p

n .

With

kn =
⌈
log(n) · n

2p
(3+α)·p+d

⌉
and

δn =
(

kn

n

)p/((1+α)·p+d)

we get the desired result. �

3.5 Proof of Theorem 6

Set

δn = c19(kn/n)p/d.

Since X has a density with respect for the Lebesgue-Borel measure bounded away from

zero we get with εn as in the proof of Theorem 5 for each x ∈ [0, 1]d

PX(Sx,εn) ≥ c20 ·
(

δn

2C

)d/p

≥ 4 · kn

n

provided we choose c19 sufficiently large. Using this and proceeding otherwise as in the

proof of Theorem 5 we get

P{fn(X) 6= Y } −P{f∗(X) 6= Y }

≤ 2c̄ · δ1+α
n + 2 · exp

(
−2 · kn · (δn/2)2

)
+ 2 · exp

(
− 3

14
· kn

)
.
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With

kn = log2(n) · n
2p

2p+d

the result follows. �
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