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Abstract. Pricing of American options can be achieved by solving optimal stopping problems.
This in turn can be done by computing so-called continuation values, which we represent as
regression functions defined by the aid of a cash flow for the next few time periods. We use
Monte Carlo to generate data and apply nonparametric least squares regression estimates to
estimate the continuation values from these data. The parameters of the regression estimates
and of the underlying regression problems are chosen data-dependent. Results concerning
consistency and rate of convergence of these estimates are presented, and the resulting pricing
of American options is illustrated by the aid of simulated data.

1. Introduction

Many financial contracts allow for early exercise before expiry. Most of the exchange traded
option contracts are of American type which allows the holder to choose any exercise date before
expiry, or Bermudan with exercise dates restricted to a predefined discrete set of dates. Mortgages
have embedded prepayment options such that the mortgage can be amortized or repayed. Also
life insurance contracts may allow for early surrender. In this paper we are interested in pricing
options with early exercise features. For simplicity we restrict ourselves to Bermudan options,
which can be considered as a discrete time approximation of American options. It is well-known
that in complete and arbitrage free markets the price of a derivative security can be represented
as an expected value with respect to the so called martingale measure, see for instance [17]. More
generally the price of a Bermudan option can be represented as an optimal stopping problem

V0 = sup
τ∈T (0,...,T )

E {d0,τfτ (Xτ )} , (1.1)

where ft is the payoff function, X0, X1, . . . , XT is the underlying stochastic process, T (0, . . . , T )
is the class of all {0, . . . , T}–stopping times, and ds,t are nonnegative F(Xs, . . . , Xt)–measurable
discount factors satisfying d0,t = d0,s · ds,t for s < t. In practice, the stochastic process
X0, X1, . . . , XT might be, e.g., determined by Black Scholes model or by nonparametric esti-
mation of a time series from observed data. In the sequel we assume that X0, X1, . . . , XT is a
[−A,A]d–valued Markov process recording all necessary information about financial variables in-
cluding prices of the underlying assets as well as additional risk factors driving stochastic volatility
or stochastic interest rates. Neither the Markov property nor the form of the payoff as a function
of the state of Xt is restrictive and can always be achieved by including supplementary variables.
For instance in case of an Asian option we add the running mean as an additional variable into
Xt. Usually in Black Scholes models or nonparametric estimation of time series from observed
data the underlying stochastic process will be modelled by an unbounded stochastic process. If
the Markov process Xt is not localized to the bounded set [−A,A]d we replace it with the process
XA
t = Xt∧τA killed at first exit from [−A,A]d, where τA = inf{s ≥ 0 | Xt /∈ [−A,A]d}. It can
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be shown that the Markov semigroup of XA
t converges for A→∞ to the one of Xt in a suitable

sense. We refer to [12] for details. Moreover, the corresponding solutions of the optimal stopping
problems converge as well, see [19].

The boundedness assumption Xt ∈ [−A,A]d enables us to estimate the price of the American
option from samples of polynomial size in the number of free parameters, in contrast to Monte
Carlo estimation from standard Black Scholes models, where Glasserman and Yu [14] showed
that samples of exponential size in the number of free parameters are needed.

The computation of (1.1) can be done via determination of an optimal stopping rule τ∗ ∈
T (0, . . . , T ) satisfying

V0 = E {d0,τ∗fτ∗(Xτ∗)} . (1.2)

Let
qt(x) = sup

τ∈T (t+1,...,T )

E {dt,τfτ (Xτ )|Xt = x} (1.3)

be the so-called continuation value describing the value of the option at time t given Xt = x and
subject to the constraint of holding the option at time t rather than exercising it. The general
theory of optimal stopping for Markov processes, see for instance [4, 22, 26, 11], implies that

τ∗ = inf{s ≥ 1 : qs(Xs) ≤ fs(Xs)}
is an optimal stopping time, i.e., τ∗ satisfies (1.2). Therefore, computing the continuation values
(1.3) solves the optimal stopping problem (1.1).

Explicit solutions of (1.1) do not exist, except in very rare cases, but there are a variety of
numerical procedures to solve optimal stopping problems, each with its strength and weaknesses.
In this paper we study a concrete simulation algorithm. The first attempts to use simulation are
[1, 28, 2]. Longstaff and Schwartz [21] introduce a new algorithm for Bermudan options in discrete
time. It combines Monte Carlo simulation with multivariate function approximation. Tsitsiklis
and Van Roy [29] independently propose an alternative parametric approximation algorithm
using stochastic approximation to derive the weights of the approximation. Both algorithms
approximate the value function or the early exercise rule and therefore provide a lower bound
for the true optimal stopping value. Upper bounds based on the dual problem are derived in
[24, 16]. More details and further references can be found in [3] and [13]. Also, the article [20]
compares several Monte Carlo approaches empirically.

In this paper we enhance the approach of [21] and its generalization presented in [10]. We
construct estimates q̂t of qt, approximate the optimal stopping rule τ∗ by

τ̂ = inf{s ≥ 1 : q̂s(Xs) ≤ fs(Xs) (1.4)

and estimate the price V0 of the American option by the Monte Carlo estimate of

E{d0,τ̂fτ̂ (Xτ̂ )}. (1.5)

To estimate qt, we represent qt as a regression function of a distribution (Xt, Yt), where Yt
depends on the partial sample path Xt+1, . . . , Xt+w+1 and qt+1, . . . , qt+w+1 for some tunable
parameter w ∈ {0, 1, . . . , T − t− 1}. This distribution will in turn be approximated by (Xt, Ŷt),
where Ŷt depends on Xt+1, . . . , Xt+w+1 and q̂t+1, . . . , q̂t+w+1. We construct an estimate q̂t of qt
with nonparametric regression techniques applied to a Monte Carlo sample of the distribution
(Xt, Ŷt) and use this estimate together with q̂t+1, . . . , q̂t+w to compute recursively estimates of
qt−1, . . . , q0. All parameters of the estimates and the parameter w of the distribution of (Xt, Yt)
are chosen data dependent. We present results concerning consistency and rate of convergence
of the estimates, and illustrate them by the aid of simulated data.
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In Section 2 we describe in detail the connection between discrete time optimal stopping
problems and recursive regression. The dynamic look-ahead Monte Carlo algorithm for solving
optimal stopping problems is introduced in Section 3. The main theoretical results are presented
in Section 4, and the finite sample properties of the proposed algorithm are illustrated in Section
5 by the aid of simulated data. Section 6 contains the proofs.

2. Discrete Time Optimal Stopping and Recursive Regression

Let X = (Xt)t=0,...,T be a discrete time [−A,A]d-valued Markov process, µt the law induced
by Xt on Rd, and F = (Ft) be the induced filtration where

Ft = F(X0, . . . , Xt) =
∨

s≤t
σ(Xs), (2.1)

is the sigma algebra generated by the random variables {Xs | s ≤ t}. The solution of the discrete
time optimal stopping problem for nonnegative reward or payoff functions ft is given by the value
function

vt(x) = supτ∈T (t,...,T )E
[
fτ (Xτ ) | Xt = x

]
. (2.2)

The supremum runs over the class T (t, . . . , T ) of all F-stopping times with values in {t, . . . , T}.
By definition, each τ ∈ T (t, . . . , T ) satisfies {τ = k} ∈ F(X0, . . . , Xk) for k ∈ {t, . . . , T}. Here
and in the sequel we assume for notational simplicity that ft contains already the discount factor
occurring in (1.1). Once the value function has been determined, the smallest optimal stopping
time can be derived as

τ∗t = inf{s ≥ t | vs(Xs) ≤ fs(Xs)}. (2.3)

The optimal stopping problem can also be characterized in terms of the so called continuation
value, which is given by

qt(x) = supτ∈T (t+1,...,T )E
[
fτ (Xτ ) | Xt = x

]
= E

[
fτ∗t+1

(Xτ∗t+1
) | Xt = x

]
. (2.4)

The value function and the continuation value are related by

vt(Xt) = max
(
ft(Xt), qt(Xt)

)
, qt(Xt) = E

[
vt+1(Xt+1) | Xt

]
. (2.5)

From now on we primarily consider qt. The continuation value satisfies the dynamic programming
equations

qT (x) = 0,
qt(x) = E

[
max(ft+1(Xt+1), qt+1(Xt+1)) | Xt = x

]
. (2.6)

The recursion for the optimal stopping rules is given by

τ∗T = T,

τ∗t = t 1{qt(Xt)≤ft(Xt)} + τ∗t+11{qt(Xt)>ft(Xt)}. (2.7)

The dynamic programming equations (2.6) show that the optimal stopping problem in discrete
time is essentially equivalent to a series of regression problems. Equation (2.4) provides a different
regression representation of the continuation value, once the optimal stopping rule of the next
future period is known. These representations are in a sense extreme cases as we will explain in
the following. Let ht ∈ L1(µt) with hT = fT and introduce the indicator functions

θf,t(h) = θ(ft − ht) = 1{ft−ht≥0}, θ−f,t(h) = 1− θ(ft − ht) = 1{ft−ht<0}. (2.8)
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Then define on R(w+1)d = ×w+1Rd the function

ϑt:w(f, ht, . . . , ht+w)(xt, . . . , xt+w) =
t+w∑
s=t

fs(xs) θf,s(h)(xs)
s−1∏
r=t

θ−f,r(h)(xr) + ht+w(xt+w)
t+w∏
r=t

θ−f,r(h)(xr), (2.9)

where we follow the convention that the product over an empty index set is equal to one. In the
following, to reduce notational overhead, we simply write

ϑt:w(f, h) = ϑt:w(f, ht, . . . , ht+w), (2.10)

thereby implicitly assuming that ϑt:w(f, h) is solely depending on ht, . . . , ht+w.

In a financial context the function ϑt:w(f, h) has a natural interpretation as the future payoff
we would get by holding the Bermudan option for at most w periods, applying the stopping rule
τt(h) which is defined recursively by

τT (h) = T,

τt(h) = t θf,t(h)(Xt) + τt+1(h) θ−f,t(h)(Xt), (2.11)

and selling the option at time t+ w for the price ht+w(Xt+w), if it is not exercised before.

We now come back to the generalization of the regression representations (2.4) and (2.6). First
note that max(ft+1, qt+1) = ϑt+1:0(f, q) and therefore

qt(x) = E
[
ϑt+1:0(f, q)(Xt+1) | Xt = x

]
. (2.12)

On the other hand the recursive formula (2.7) for the optimal stopping rule τ∗t shows that

fτ∗t+1
(Xτ∗t+1

) = fτt+1(q)(Xτt+1(q)) = ϑt+1:T−t−1(f, q)(Xt+1, . . . , XT ),

such that we also have (cf., (2.4))

qt(x) = E
[
ϑt+1:T−t−1(f, q)(Xt+1, . . . , XT ) | Xt = x

]
. (2.13)

More generally, we have for any 0 ≤ w ≤ T − t− 1 the representation

qt(x) = E
[
ϑt+1:w(f, q)(Xt+1, . . . , Xt+w+1) | Xt = x

]
. (2.14)

To prove (2.14) we start with

qt(Xt) = E
[

max(ft+1(Xt+1), qt+1(Xt+1)) | Xt]

= E
[
ft+1(Xt+1)θf,t+1(q)(Xt+1) + qt+1(Xt+1)θ−f,t+1(q)(Xt+1) | Ft], (2.15)

where we have used the Markov property in the second equality. Then we expand qt+1(Xt+1) in
(2.15) by

E
[
ft+2(Xt+2)θf,t+2(q)(Xt+2) + qt+2(Xt+2)θ−f,t+2(q)(Xt+2) | Ft+1]

and proceed recursively up to t + w + 1. Equation (2.14) follows from the projection property
E
[
E
[· | Ft+1] | Ft] = E

[· | Ft] of conditional expectations and by another application of the
Markov property.

3. Monte Carlo algorithms for optimal stopping

Equation (2.14) shows that the continuation value qt at time t can be obtained as the regression
function of ϑt+1:w(f, q) for some 0 ≤ w ≤ T−t−1. Least squares Monte-Carlo methods pioneered
by [21], and extended in [10] to arbitrary w, recursively estimate the regression function qt from
independent sample paths of the underlying Markov process Xt. Let

Xt+1:w = (Xt+1, . . . , Xt+w+1) (3.1)
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be the partial sample path of length w starting at t + 1. When it comes to estimation of the
continuation value qt, these algorithms use the previously determined estimates q̂t+1, . . . , q̂t+w+1

for qt+1, . . . , qt+w+1 to construct

Ŷt = ϑt+1:w(f, q̂)(Xt+1:w) = ϑt+1:w(f, q̂t+1, . . . , q̂t+w+1)(Xt+1:w), (3.2)

which takes the role of the dependent variable of the regression problem for time step t. The
random variable Ŷt is a estimate of the unknown optimal reward

Yt = ϑt+1:w(f, q)(Xt+1:w) = ϑt+1:w(f, qt+1, . . . , qt+w+1)(Xt+1:w). (3.3)

Given independent sample paths

Xi = (Xi,t)t=0,...,T , i = 1, . . . , n (3.4)

of the underlying Markov process X, the least squares estimate of qt is obtained as

q̂n,t = arg min
h∈Hn,t

1
n

n∑

i=1

|h(Xi,t)− Ŷi,t|2, (3.5)

where
Ŷi,t = ϑt+1:w(f, q̂)(Xi,t+1:w), Xi,t+1:w = (Xi,t+1, . . . , Xi,t+w+1) (3.6)

and Hn,t is a set of functions h : Rd → R.

With w = 0 the above algorithm corresponds to the Tsitsiklis–Van Roy algorithm [29], while
the use of w = T − t − 1 was proposed by [21]. The idea of using an intermediate value
w ∈ {0, 1, . . . , T − t− 1} in order to “interpolate” between these two algorithms was introduced
in [10]. There results concerning consistency and rate of convergence of the above algorithm were
derived for fixed w and fixed convex and uniformly bounded function spaces Hn,t.

The boundedness assumption on Hn,t makes computation of the least squares estimate in (3.5)
difficult because it leads to constrained optimization problems, see for instance [15, Section 10.1].
In addition, the convexity assumption excludes promising choices like spaces of polynomial splines
with free knots or spaces of artificial neural networks, which require restrictions on the number of
knots or the number of hidden neurons, respectively, to control the “complexity” of the function
spaces. The resulting function spaces violate the convexity assumptions. Taking the convex
hull instead is not an option because it would lead to function classes with a complexity that is
much to high. Furthermore, in view of applications it is desirable to choose parameters of the
functions spaces and also the parameter w of the underlying regression problems data dependent.
In this paper we modify the above algorithm such that this is possible. For simplicity we restrict
ourselves to function spaces, which are linear vector spaces, however, it is straightforward to
derive similar results for spaces of polynomial splines with free knots or spaces of artificial neural
networks.

The main problem in analyzing the estimates q̂n,t is the control of the error propagation, i.e,
to answer the question how the errors of q̂n,t+1, . . . , q̂n,t+w+1 influence the error of q̂n,t. It is this
point were the convexity assumption on Hn,t was used in [10] to bound the L2-error in terms
of the approximation error and a sample error derived from a suitably centered loss function.
The difficulty for obtaining error estimates is the fact that q̂t+1, . . . , q̂t+w+1 depend on a single
set of sample paths (3.4) and are thus dependent. Clément, Lamberton, Protter [5] face the
same difficulty while deriving a Central Limit Theorem for the Longstaff-Schwartz algorithm
with linear approximation.

In the sequel we use a trick to simplify the analysis of the error propagation. Instead of
using the partial sample path Xt+1:w of our training data, which was used in part already in
construction of the estimates q̂n,t+1, . . . , q̂n,t+w+1, we generate new data Xt,new

t+1:w for Xt+1:w which
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are conditionally independent from all previously used data of time s > t given Xt at time point
t. We then construct samples of the distribution of (Xt, Ŷ

w,new
t ) where

Ŷ w,newt = ϑt+1:w(f, q̂n,t+1, . . . , q̂n,t+w+1)(Xt,new
t+1:w).

Since for given Xt the random variable Xt,new
t+1:w is independent from all previously used data from

time periods s > t, it is in particular independent from the data used in the construction of
q̂n,t+1, . . . , q̂n,t+w+1. Set

qw,newt (x) = E∗{Ŷ w,newt |Xt = x},
where in E∗{·|Xt = x} we take the conditional expectation with respect to fixed Xt = x and
with all the data fixed which were used in the construction of q̂n,t+1, . . . , q̂n,t+w+1. Proposition
6.4 in [10] implies

{∫
|qw,newt (x)− qt(x)|2µt(dx)

}1/2

≤
t+w+1∑
s=t+1

{∫
|q̂n,s(x)− qs(x)|2µs(dx)

}1/2

. (3.7)

This allows us to control the error propagation. By induction, assume that we have

P

{∫
|q̂n,s(x)− qs(x)|2µs(dx) >

T−1∑
r=s

c ·
(
δn,r + min

h∈Hn,r

∫
|h(x)− qr(x)|2µr(dx)

)}

→ 0 (n→∞) (3.8)

for s ∈ {t+ 1, . . . , t+ w + 1}. Assume in addition, that we are able to show

P
{∫
|q̂n,t(x)− qw,newt (x)|2µt(dx) > c ·

(
δn,t + min

h∈Hn,t

∫
|h(x)− qw,newt (x)|2µt(dx)

)}

→ 0 (n→∞), (3.9)

which is for suitable δn,t (depending on the “complexity” of the function spaces Hn,t) a standard
rate of convergence result for least squares estimates from a sample of size n where in the sample
the response variables are independent given the predictor variables and where the predictor
variables are independent, see [30] or [18].

It can be shown that (3.7)–(3.9) imply

P

{∫
|q̂n,t(x)− qt(x)|2µt(dx) > c̄ ·

T−1∑
s=t

(
δn,s + min

h∈Hn,s

∫
|h(x)− qs(x)|2µs(dx)

)}

→ 0 (n→∞)

(details concerning related arguments can be found in the proofs of Theorems 4.1 and 4.3 below).

The main difference between our work here and the algorithms used in [21] and [10] is that we
generate new data to construct samples of Ŷ w,newt . Because of this the data used for estimation
of qw,newt is conditionally independent given the sample of Xt, which enables us to to conclude
(3.9) from standard rate-of-convergence results in nonparametric regression. The generation of
the new, independent data is similar to the data generation in the random tree method (see,
for instance, Section 8.3 in [13]). However, in contrast to the random tree method we use
nonparametric regression techniques to estimate the regression function, while in the random
tree method simple averages are used to estimate the regression function point by point. As
a consequence, the number of data points needed grows exponential in T in the random tree
method, while for our method it grows only linearly in T .

In the sequel we explain the definition of the estimates in detail. Let n be the size of the
samples which we generate for our regression estimates, and let wmax ∈ {0, 1, . . . , T − 1} be the
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maximal look-ahead which we use. We start with generating n independent sample paths

Xi = (Xi,t)t=0,...,T (i = 1, . . . , n)

of the underlying Markov process X. Then we set

q̂T = q̂n,T = 0

and construct successively estimates of qT−1, . . . , q0 as follows: Fix t ∈ {0, 1, . . . , T − 1} and
assume that estimates q̂n,t+1, . . . , q̂n,T−1 of qt+1, . . . , qT−1 are already constructed. Let

wmax(t) = min{wmax, T − t− 1}
be the maximal look-ahead of time period t. Generate independent sample paths

Xt,new
i,t:wmax(t)+1 =

(
Xt,new
i,s

)
s=t,...,t+wmax(t)+1

(i = 1, . . . , n)

starting at Xt,new
i,t = Xi,t for every i ∈ {1, . . . , n} such that for all i, the partial sample paths

Xt,new
i,t:wmax(t)+1 (3.10)

have the same distribution as Xi,t:wmax(t)+1, and such that, given X1,t, . . . , Xn,t, this data is
independent from all previously generated data points for time periods s > t. Then set for every
w ∈ {0, . . . , wmax(t)}

Ŷ w,newi,t = ϑt+1:w(f, q̂n,t+1, . . . , q̂n,t+w+1)(Xt,new
i,t+1 , . . . , X

t,new
i,t+w+1)

and apply a nonparametric least squares estimate to the data
(

(Xi,t, Ŷ
w,new
i,t )

)
i=1,...,n

(3.11)

to construct estimates q̂wn,t of qt. Finally choose

ŵt ∈ {0, 1, . . . , wmax(t)}
and set

q̂n,t = q̂ŵtn,t.

Next we explain how to define the nonparametric least squares estimates applied to the data
(3.11), and how to choose ŵt in a data dependent way. To do this we split our sample in three
parts: a learning sample of size nl, a testing sample of size nt, and a validation sample of size nv,
where n = nl+nt+nv. Furthermore we assume that we have given a finite set Pn of parameters
and sets Hn,p of functions h : Rd → R for each p ∈ Pn.

We start with explaining the definition of q̂wn,t for fixed w. For p ∈ Pn let

q̃w,pn,t (·) = arg min
h∈Hn,p

1
nl

nl∑

i=1

|h(Xi,t)− Ŷ w,newi,t |2 (3.12)

be the least squares estimate of qw,newt in Hn,p, which we use as an estimate of qt. Here we
assume for notational simplicity that the minimum exists, however we do not require that it is
unique. Depending on a truncation parameter βn > 0, which we will choose later such that qt is
bounded in absolute value by βn, we set

q̂w,pn,t (x) = Tβn q̃
w,p
n,t (x) (x ∈ Rd), (3.13)

where TLz = max{−L,min{L, z}} for z ∈ R and L > 0. Next we use splitting of the sample, see
for instance Chapter 7 in [15], to choose the parameter p. We set

q̂wn,t(x) = q̂
w,p̂wt
n,t (x) (x ∈ Rd), (3.14)
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where p̂wt ∈ Pn satisfies

1
nt

nl+nt∑

i=nl+1

|q̂w,p̂wtn,t (Xi,t)− Ŷ w,newi,t |2 = min
p∈Pn

1
nt

nl+nt∑

i=nl+1

|q̂w,pn,t (Xi,t)− Ŷ w,newi,t |2.

Finally, we explain our choice of w. For each w ∈ {0, 1, . . . , wmax(t)} we have already defined
an estimate q̂wn,t of qt. The idea is to compute from these estimates an approximately optimal
stopping rule which provides a lower bound on the solution of the optimal stopping problem at
time t. We then choose w such that this lower bound is maximized, i.e., we set

ŵt = arg max
w∈{0,1,...,wmax(t)}

1
nv

n∑

i=nl+nt+1

fτ̂wt (Xt,newi,t:T−t−1)(X
t,new

i,τ̂wt (Xt,newi,t:T−t−1)
), (3.15)

where for w ∈ {0, 1, . . . , wmax(t)} the approximately optimal stopping rule τ̂wt is defined via

τ̂wt = τt(q̂wn,t, q̂n,t+1, . . . , q̂n,T−2, q̂T−1) (3.16)

where τt(h) is recursively defined by (2.11). With this choice of w we define our estimate of qt
by

q̂n,t = q̂ŵtn,t. (3.17)

4. Main theoretical results

In the sequel we derive results concerning consistency of our estimate under the assumption

Xt ∈ [−A,A]d a.s. (t ∈ {0, 1, . . . , T}). (4.1)

In addition we assume that the payoff fs is bounded on [−A,A]d by some constant L > 0, i.e.
we assume

|fs(x)| ≤ L for x ∈ [−A,A]d and s ∈ {0, 1, . . . , T}. (4.2)
Observe that (4.2) implies |qt(x)| ≤ L for x ∈ [−A,A]d and t ∈ {0, 1, . . . , T}, therefore we use in
the sequel βn = L as truncation parameter of the estimate.

Because of boundedness of Xt, this assumptions is, e.g., fulfilled (for some L depending on A)
if ft(x) = f(x) for some f : Rd → R satisfies

|f(u)| ≤ const · ‖u‖r (u ∈ Rd)
for some r > 0.

In the sequel we use polynomial splines to define the function spaces Hn,p = Hp. Here Hn,p
will depend in an application on the sample size n via the parameter p = (M,α) ∈ N0 × (0,∞)
which we will choose in a concrete application depending on the sample.

Depending on these parameters set uk = k·α (k ∈ Z). For k ∈ Z and M ∈ N0 let Bk,M : R→ R
be the univariate B-spline of degree M with knot sequence (ul)l∈Z and support supp(Bk,M ) =
[uk, uk+M+1]. In case M = 0 this means that Bk,0 is the indicator function of the interval
[uk, uk+1), and for M = 1 we have the so-called hat-functions

Bk,1(x) =





x−uk
uk+1−uk , uk ≤ x ≤ uk+1,
uk+2−x

uk+2−uk+1
, uk+1 < x ≤ uk+2,

0 , else.

The general definition of Bk,M can be found, e.g., in [7], or in Section 14.1 of [15]. These B-splines
are basis functions of sets of univariate piecewise polynomials of degree M , which are globally
(M − 1)–times continuously differentiable and where the M -th derivative of the functions have
jump points only at the knots ul.
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For k = (k1, . . . , kd) ∈ Zd we define the tensor product B-spline Bk,M : Rd → R by

Bk,M (x(1), . . . , x(d)) = Bk1,M (x(1)) · · ·Bkd,M (x(d)) (x(1), . . . , x(d) ∈ R).

With these functions we define Hn,p as the set of all linear combinations of all those of the above
tensor product B-splines, where the support has nonempty intersection with [−A,A]d, i.e., we
set

Hn,p =





∑

k∈Zd:supp(Bk,M )∩[−A,A]d 6=∅
ak ·Bk,M : ak ∈ R



 .

It can be shown by using standard arguments from spline theory, that the functions in Hn,p are in
each component (M−1)-times continuously differentiable, that they are equal to a (multivariate)
polynomial of degree less than or equal to M (in each component) on each rectangular

[uk1 , uk1+1)× · · · × [ukd , ukd+1) (k = (k1, . . . , kd) ∈ Zd), (4.3)

and that they vanish on all of those rectangles (4.3) where k ∈ Zd satisfies for some j ∈ {1, . . . , d}
kj > 0 and ukj−M > A

or
kj < 0 and ukj+M+1 < −A.

So Hn,p is a set of functions which are piecewise polynomials with respect to a equidistant
partition of Rd in cubes of side length α and which vanish outside a compact set.

For the set Pn of parameters p of the functions spaces we use

Pn =

{
(M,α) : M ∈ N0,M ≤ dlog(n)e, α = 2k for some k ∈ Z, |k| ≤ dlog(n)e

}
.

Here log denotes the natural logarithm, and for z ∈ R we denote by dze the smallest integer
greater than or equal to z.

Let q̂n,t be defined as in Section 3 with Pn and Hn,p as above and with nv = nt = bn/3c and
nl = n− nv − nt.

Our first result concerns consistency of the estimate.

Theorem 4.1. Assume (4.1), (4.2) and let the estimate q̂n,t be defined as above with βn = L.
Then

E
∫
|q̂n,t(x)− qt(x)|2µt(dx)→ 0 (n→∞)

for all t ∈ {0, 1, . . . , T − 1}.

Next we study the rate of convergence of our estimate. It is well known in nonparametric
regression, that without smoothness assumptions on the regression function the rate of conver-
gence can be arbitrarily slow (cf., e.g., [6], [8] or [15, Chapter 3]. In the sequel we assume that
the continuation values qt are (p, C)–smooth according to the following definition.

Definition 4.2. Let p = k+β for some k ∈ N0, β ∈ (0, 1], and let C > 0. A function f : Rd → R
is called (p, C)–smooth, if all partial derivatives

∂f

∂α1x(1) . . . ∂αdx(d)

of total order α1 + · · ·+ αd = k exist and satisfy∣∣∣∣
∂f

∂α1x(1) . . . ∂αdx(d)
(x)− ∂f

∂α1x(1) . . . ∂αdx(d)
(z)
∣∣∣∣ ≤ C · ‖x− z‖β

for all x, z ∈ Rd.
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The next theorem contains our main result concerning rate of convergence of the estimate.

Theorem 4.3. Let p = k + β for some k ∈ N0, β ∈ (0, 1], and let C > 0. Assume k ≤ Mmax,
(4.1), (4.2) and

qt (p, C)− smooth

for all t ∈ {0, 1, . . . , T − 1}. Let the estimate q̂n,t be defined as above with βn = L. Then for
every t ∈ {0, 1, . . . , T − 1}

E
∫
|q̂n,t(x)− qt(x)|2µt(dx) ≤ const · C 2d

2p+d ·
(

log n
n

) 2p
2p+d

.

Remark 4.4. We would like to stress that in the theorems above there is no assumption on the
distribution of X besides the assumption (4.1). In particular it is not required that X has a
density with respect to the Lebesgue-Borel-measure.

Remark 4.5. It is well-known that for estimation of (p, C)–smooth functions n−2p/(2p+d) is the
optimal rate of convergence (see, e.g., [27] or [15, Chapter 3]). So the rate of convergence in
Theorem 4.3 is optimal up to a logarithmic factor.

Remark 4.6. The definition of the estimate in Theorem 4.3 above does not depend on (p, C),
however the estimate achieves nevertheless the optimal rate of convergence for this particular
smoothness of the continuation value. In this sense the estimate is able to adapt automatically
to the smoothness of the continuation value, in contrast to the estimates in [10].

Remark 4.7. Assume X0 = x0 a.s. for some x0 ∈ R. We can estimate the price

V0 = v0(x0) = max{f0(x0), q0(x0)}
(cf., (1.1), (2.2), (2.5)) of the American option by

V̂0 = max{f0(x0), q̂n,0(x0)}.
Since the distribution µ0 of X0 is concentrated on x0, under the assumptions of Theorem 4.3 we
have the following error bound:

E{|V̂0 − V0|2} = E{|max{f0(x0), qn,0(x0)} −max{f0(x0), q0(x0)}|2}
≤ E{|qn,0(x0)− q0(x0)|2}

≤ const · C 2d
2p+d ·

( logn
n

) 2p
2p+d

.

5. Application to simulated data

In this section, we illustrate the finite sample behaviour of our algorithm by comparing it with
the Longstaff–Schwartz [21] and Tsitsiklis–Van Roy [29] algorithm.

For a comparison we apply all three algorithms to 100 independently generated sets of paths.
We compute for each algorithm 100 Monte Carlo estimates (MCE) of the price (1.5) of the
approximate optimal stopping rule (1.4) with a sample size of 4000. Figure 2 and 4 show boxplots
of the MCE of the price (1.5) for an ordinary put and for a more complicated strangle spread
payoff. Because all three algorithms provide lower bounds to the optimal stopping value, and
since we evaluate the approximative optimal stopping rule on newly generated data, a higher
MCE indicates a better performance of the algorithm.

We simulate the paths of the underlying stocks with a simple Black-Scholes-model. The time
to maturity is assumed to be 1 year. We discretize the time interval [0, 1] with m time steps.
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Figure 1. Put-payoff with exercise price 90

The prices of the underlying stocks at the time points 0, 1
m , . . . ,

m−1
m , 1 are then given by

Xi,j = Xi

( j
m

)

where

Xi,j = X0 · exp
(

(r − 1
2
σ2) · j

m
+

σ√
m
·Wi,j

)
(i = 1, . . . , n , j = 1, . . . ,m) . (5.1)

Here, X0 is the initial stock price at time 0, r is the risk-free interest rate, σ the instantaneous
volatility, and Wi,j is discretized Brownian motion

Wi,j =
j∑

l=1

Zi,l

where Zi,l (i = 1, . . . , n , l = 1, . . . ,m) are independent standard normally distributed random
variables. For all of the subsequent simulations we choose X0 = 100, r = 0.05, m = 12, a sample
size of n = 10000, and discount factors given by d0,t = e−rt.

We set for our algorithm the number of learning, training, and validation samples to nl = 6000,
nt = 2000 and nv = 2000, respectively. To simplify the implementation we select the degree M ,
the knot distance α, and the look-ahead parameter w in a data-dependent manner as described
in Section 3 from the sets M ∈ {0, 1, 2}, α ∈ { 100

2 , 100
22 ,

100
23 ,

100
24 }, and w(t) ∈ {0, 4, T − t−1}. For

the Longstaff–Schwartz and Tsitsiklis–Van Roy algorithm we use polynomials of degree 3.

We first analyze a standard put-payoff with exercise price 90, illustrated in Figure 1, and
simulate the paths of the underlying stock with an instantaneous volatility of σ = 0.25. As we
can see from Figure 2, our algorithm is slightly better than the Longstaff–Schwartz algorithm
and comparable to the algorithm of Tsitsiklis–Van Roy. This is not surprising, since it is well
known that for simple payoff functions the Longstaff–Schwartz as well as the Tsitsiklis–Van Roy
algorithm perform very well.

Next, we make the pricing problem more difficult. We consider m = 48 time steps, a strangle
spread payoff with strikes 50, 90, 110 and 150 as illustrated in Figure 3, and a large volatility of
σ = 0.5. This time our algorithm is clearly superior to Longstaff–Schwartz and Tsitsiklis–Van
Roy algorithm. Figure 4 show that our dynamic look-ahead algorithm provides a higher MCE
of the option price.

6. Proofs

In the proofs we will need an auxiliar result concerning properties of the splitting of the sample
method, which we formulate and prove for the sake of generality in a fixed design regression model.
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Figure 2. Boxplots for realized option prices for the put-payoff of the Longstaff–
Schwartz (price LS), Tsitsiklis–Van Roy (price TR), and our algorithm (price
EKT). In the boxplots the box stretches from the 25th percentile to the 75th
percentile and the median is shown as a line across the box.
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Figure 3. Strangle spread payoff with strike prices 50, 90, 110 and 150

Let x1, . . . , xn ∈ Rd and let Y1, . . . , Yn be independent square integrable random variables
which satisfy

EYi = m(xi) (i = 1, . . . , n)

for some function m : Rd → R. Let Pn be a finite set of parameters and assume that for each
p ∈ Pn an estimate mp : Rd → R is given. Choose p∗ ∈ Pn by minimizing the empirical L2 risk
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Figure 4. Realized option prices for the strangle spread-payoff of the Longstaff–
Schwartz (price LS), Tsitsiklis–Van Roy (price TR) and our algorithm (price
EKT)

on the sample (x1, Y1), . . . , (xn, Yn), i.e., assume

1
n

n∑

i=1

|mp∗(xi)− Yi|2 = min
p∈Pn

1
n

n∑

i=1

|mp(xi)− Yi|2.

Then the following bound on the error

1
n

n∑

i=1

|mp∗(xi)−m(xi)|2

of mp∗ holds:

Lemma 6.1. Under the above assumptions we have for each ε > 0

P

{
1
n

n∑

i=1

|mp∗(xi)−m(xi)|2 > ε+ 18 · min
p∈Pn

1
n

n∑

i=1

|mp(xi)−m(xi)|2
}

≤ c1 · max
i=1,...,n

EY 2
i ·
|Pn|
ε · n

for some constant c1 which does not depend on n or ε.
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Proof. Set

m∗ = arg min
f∈{mp:p∈Pn}

1
n

n∑

i=1

|f(xi)−m(xi)|2.

By Lemma 1 in [18] (or standard results from the book [30], see proof of Theorem 10.11 in [30])
we have

P

{
1
n

n∑

i=1

|mp∗(xi)−m(xi)|2 > ε+ 18 · min
p∈Pn

1
n

n∑

i=1

|mp(xi)−m(xi)|2
}

≤ P

{
ε

2
<

1
n

n∑

i=1

|mp∗(xi)−m∗(xi)|2 ≤ 16
n

n∑

i=1

(mp∗(xi)−m∗(xi)) · (Yi −m(xi))

}

≤ |Pn| · max
p∈Pn

P

{
ε

2
<

1
n

n∑

i=1

|mp(xi)−m∗(xi)|2 ≤ 16
n

n∑

i=1

(mp(xi)−m∗(xi)) · (Yi −m(xi))

}

≤ |Pn| · max
p∈Pn

∞∑
s=0

P

{
2s−1ε <

1
n

n∑

i=1

|mp(xi)−m∗(xi)|2 ≤ 2sε,

1
n

n∑

i=1

|mp(xi)−m∗(xi)|2 ≤ 16
n

n∑

i=1

(mp(xi)−m∗(xi)) · (Yi −m(xi))

}

≤ |Pn| ·
∞∑
s=0

max
p∈Pn,

1
n

Pn
i=1 |mp(xi)−m∗(xi)|2≤2sε

P

{
1
n

n∑

i=1

(mp(xi)−m∗(xi)) · (Yi −m(xi)) >
2sε
32

}
.

Using

V

(
1
n

n∑

i=1

(mp(xi)−m∗(xi)) · (Yi −m(xi))

)
≤ 1
n2

n∑

i=1

(mp(xi)−m∗(xi))2 · max
i=1,...,n

EY 2
i

we can bound the right-hand side above via Chebyshev inequality by

|Pn| ·
∞∑
s=0

1
n · 2s · ε ·maxi=1,...,n EY 2

i

(2sε/32)2
=
|Pn|
n
· maxi=1,...,n EY 2

i

ε
·
∞∑
s=0

322

2s

�
Proof of Theorem 4.1. Because of

E
∫
|q̂n,t(x)− qt(x)|2µt(dx) ≤

wmax(t)∑
w=0

E
∫
|q̂wn,t(x)− qt(x)|2µt(dx)

it suffices to show

E
∫
|q̂wn,t(x)− qt(x)|2µt(dx)→ 0 (n→∞) (6.1)

for every t ∈ {0, 1, . . . , T − 1} and every w ∈ {0, 1, . . . , wmax(t)}.
Fix t ∈ {0, 1, . . . , T−1} and assume (by induction) that we have for every s ∈ {t+1, . . . , T−1}

and every v ∈ {0, 1, . . . , wmax(s)}

E
∫
|q̂vn,s(x)− qs(x)|2µt(dx)→ 0 (n→∞). (6.2)

Fix w ∈ {0, 1, . . . , wmax(t)}. In the sequel we show

E
∫
|q̂wn,t(x)− qt(x)|2µt(dx)→ 0 (n→∞). (6.3)
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To do this, we use for fixed pn ∈ Pn the error decomposition

∫
|q̂wn,t(x)− qt(x)|2µt(dx)

=
∫
|q̂wn,t(x)− qt(x)|2µt(dx)− 1

nt

nl+nt∑

i=nl+1

|q̂wn,t(Xi,t)− qt(Xi,t)|2

+
1
nt

nl+nt∑

i=nl+1

|q̂wn,t(Xi,t)− qt(Xi,t)|2 − 2
nt

nl+nt∑

i=nl+1

|q̂wn,t(Xi,t)− qw,newt (Xi,t)|2

+
2
nt

nl+nt∑

i=nl+1

|q̂wn,t(Xi,t)− qw,newt (Xi,t)|2 − 36
nt

nl+nt∑

i=nl+1

|q̂w,pnn,t (Xi,t)− qw,newt (Xi,t)|2

+
36
nt

nl+nt∑

i=nl+1

|q̂w,pnn,t (Xi,t)− qw,newt (Xi,t)|2 − 72
nt

nl+nt∑

i=nl+1

|q̂w,pnn,t (Xi,t)− qt(Xi,t)|2

+
72
nt

nl+nt∑

i=nl+1

|q̂w,pnn,t (Xi,t)− qt(Xi,t)|2

=
5∑

j=1

Tj,n

and observe that it suffices to show

lim sup
n→∞

ETj,n ≤ 0 (6.4)

for j ∈ {1, 2, . . . , 5}.
In the sequel we denote by DTn,t+1 the set of all data used in the construction of the estimates

q̂w,pn,s for s > t, w ∈ {0, 1, . . . , wmax(s)} and p ∈ Pn.

Using boundedness of q̂wn,t and qt by L we can conclude from Hoeffding inequality (see, for
instance, Lemma A.3 in [15])

P
{
T1,n > ε|Xt,new

i,t:wmax(t)+1 (i = 1, . . . , nl),DTn,t+1

}

≤ |Pn| · max
p∈Pn

P

{∫
|q̂w,pn,t (x)− qt(x)|2µt(dx)− 1

nt

nl+nt∑

i=nl+1

|q̂w,pn,t (Xi,t)− qt(Xi,t)|2 > ε

∣∣∣∣Xt,new
i,t+wmax(t)+1 (i = 1, . . . , nl),DTn,t+1

}

≤ |Pn| · exp
(
− 2ntε2

(4L2)2

)
= exp

(
log(|Pn|)− 2ntε2

16L4

)
,
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thus

ET1,n ≤
∫ ∞

0

P{T1,n > s}ds

=
∫ ∞

0

E
{

P
{
T1,n > s|Xt,new

i,t+wmax(t)+1 (i = 1, . . . , nl),DTn,t+1

}}
ds

≤ 4L2
√

log(|Pn|)/nt +
∫ ∞

4L2
√

log(|Pn|)/nt
exp

(
− nts

2

16L4

)
ds

≤ 4L2
√

log(|Pn|)/nt +
∫ ∞

4L2
√

log(|Pn|)/nt
exp

(
−nt · 4L

2
√

log(|Pn|)/nt
16L2

· s
)
ds

≤ 4L2
√

log(|Pn|)/nt +
4L2

nt
√

log(|Pn|)/nt
· exp(− log(|Pn|))→ 0 (n→∞).

Furthermore, by a2 = (a− b+ b)2 ≤ 2(a− b)2 + 2b2 we get

T2,n ≤ 2
nt

nl+nt∑

i=nl+1

|qw,newt (Xi,t)− qt(Xi,t)|2,

from which we conclude by (3.7) and (6.2)

ET2,n = E
{

E
{
T2,n|Xt,new

i,t:wmax(t)+1 (i = 1, . . . , nl),DTn,t+1

}}

≤ 2E
∫
|qw,newt (x)− qt(x)|2µt(dx)→ 0 (n→∞).

Similarly we get

ET4,n ≤ 72E
∫
|qw,newt (x)− qt(x)|2µt(dx)→ 0 (n→∞).

To bound T3,n we use Lemma 6.1, which shows

P
{
T3,n > ε|Xt,new

i,t:wmax(t)+1 (i = 1, . . . , nl),DTn,t+1

}

≤ P

{
1
nt

nl+nt∑

i=nl+1

|q̂wn,t(Xi,t)− qw,newt (Xi,t)|2 > ε

2
+ 18 · min

p∈Pn
1
nt

nl+nt∑

i=nl+1

|q̂w,pn,t (Xi,t)− qw,newt (Xi,t)|2

∣∣∣∣Xt,new
i,t:wmax(t)+1 (i = 1, . . . , nl),DTn,t+1

}

≤ c2 · |Pn|
ε · nt .

From this we get for u > 0

ET3,n ≤
∫ ∞

0

P{T3,n > ε}dε

≤
∫ ∞

0

E
{

P
{
T3,n > ε|Xt,new

i,t:wmax(t)+1 (i = 1, . . . , nl),DTn,t+1

}}
dε

≤ u+
∫ const

u

c2 · |Pn|
ε · nt dε

= u+ c2 · |Pn|
nt
· (log(const)− log u),
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where we have used that (3.13) and boundedness of f (which implies boundedness of qw,newt )
yield

T3,n ≤ 2
nt

nl+nt∑

i=nl+1

|q̂wn,t(Xi,t)− qw,newt (Xi,t)|2 ≤ const.

For u = |Pn|/nt we get
lim sup
n→∞

ET3,n ≤ 0.

Furthermore

ET5,n = E
{

E
{
T5,n|Xt,new

i,t:wmax(t)+1 (i = 1, . . . , nl),DTn,t+1

}}
= 72·E

∫
|q̂w,pnn,t (x)−qt(x)|2µt(dx).

So it remains to show

E
∫
|q̂w,pnn,t (x)− qt(x)|2µt(dx)→ 0 (n→∞) (6.5)

for some pn ∈ Pn.

To show this we set pn = (0, 2−dlog2(n)/(2+d)e) (where log2 denotes the logarithm with base 2)
and consider the error decomposition

∫
|q̂w,pnn,t (x)− qt(x)|2µt(dx)

=
∫
|q̂w,pnn,t (x)− qt(x)|2µt(dx)− 2

nl

nl∑

i=1

|q̂w,pnn,t (Xi,t)− qt(Xi,t)|2

+
2
nl

nl∑

i=1

|q̂w,pnn,t (Xi,t)− qt(Xi,t)|2 − 2
nl

nl∑

i=1

|q̃w,pnn,t (Xi,t)− qt(Xi,t)|2

+
2
nl

nl∑

i=1

|q̃w,pnn,t (Xi,t)− qt(Xi,t)|2 − 4
nl

nl∑

i=1

|q̃w,pnn,t (Xi,t)− qw,newt (Xi,t)|2

+
4
nl

nl∑

i=1

|q̃w,pnn,t (Xi,t)− qw,newt (Xi,t)|2

=
9∑

j=6

Tj,n.

Because of boundedness of qt by L we have

T7,n ≤ 0 and ET7,n ≤ 0.

Furthermore, as for T2,n we get by (3.7) and (6.2)

ET8,n ≤ 4 ·E
{

E

{
1
nl

nl∑

i=1

|qt(Xi,t)− qw,newt (Xi,t)|2
∣∣∣∣DTn,t+1

}}

= 4 ·E
∫
|qt(x)− qw,newt (x)|2µt(dx)→ 0 (n→∞),

where the last equality follows from the fact that the conditional expectation qw,newt (x) does not
depend on data from time t.

Next we bound T6,n. The functions q̂w,pnn,t and qt are bounded in absolute value by L, and
q̃w,pnn,t belongs to the linear vector space Hn,pn , whose dimension Dn is bounded by some constant
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(depending on A) times nd/(2+d). As in the proof of Theorem 11.3 in [15] (see there proof of
inequality (11.6)) this implies

ET6,n = E
{
E
{
T6,n

∣∣DTn,t+1

}} ≤ c3L2 (log nl + 1) · nd/(2+d)

nl
→ 0 (n→∞).

Finally we bound T9,n. With

σ2 = sup
x∈Rd

E∗
{
|Ŷ w,new1,t |2|X1,t = x

}
≤ 4L2 <∞

we can conclude from Theorem 11.1 in [15]

E
{
T9,n|Xi,t (i = 1, . . . , nl),DTn,t+1

}

≤ 4σ2 c4n
d/(2+d)

nl
+ 4 min

h∈Hn,pn

1
nl

nl∑

i=1

|h(Xi,t)− qw,newt (Xi,t)|2,

so

ET9,n

= E
{
E
{
T9,n|Xi,t (i = 1, . . . , nl),DTn,t+1

}}

≤ 4σ2 c4n
d/(2+d)

nl
+ 4 min

h∈Hn,pn
E
∫
|h(x)− qw,newt (x)|2µt(dx)

≤ 4σ2 c4n
d/(2+d)

nl
+ 8E

∫
|qw,newt (x)− qt(x)|2µt(dx) + 8 min

h∈Hn,pn

∫
|h(x)− qt(x)|2µt(dx).

Because of (3.7), (6.2) and ∫
|qt(x)|2µt(dx) ≤ L2 <∞,

which implies that qt can be approximated arbitrarily closely by functions from Hn,pn (which
follows from Theorem A.1 in [15] and the fact that any continuous function can be approximated
in supremum norm on the compact set [−A,A]d arbitrarily closely by the piecewise constant
functions in Hn,pn for n → ∞), the right hand side of the above inequality tends to zero for
n→∞.

The proof is complete. �
Proof of Theorem 4.3. Because of

E
∫
|q̂n,t(x)− qt(x)|2µt(dx) ≤

wmax(t)∑
w=0

E
∫
|q̂wn,t(x)− qt(x)|2µt(dx)

it suffices to show

E
∫
|q̂wn,t(x)− qt(x)|2µt(dx) ≤ const · C 2d

2p+d ·
(

logn
n

) 2p
2p+d

(6.6)

for every t ∈ {0, 1, . . . , T − 1} and every w ∈ {0, 1, . . . , wmax(t)}.
Fix t ∈ {0, 1, . . . , T−1} and assume (by induction) that we have for every s ∈ {t+1, . . . , T−1}

and every v ∈ {0, 1, . . . , wmax(s)}

E
∫
|q̂vn,s(x)− qs(x)|2µt(dx) ≤ const · C 2d

2p+d ·
(

log n
n

) 2p
2p+d

. (6.7)
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Fix w ∈ {0, 1, . . . , wmax(t)}. In the sequel we show

E
∫
|q̂wn,t(x)− qt(x)|2µt(dx) ≤ const · C 2d

2p+d ·
(

log n
n

) 2p
2p+d

. (6.8)

To do this, we use for fixed pn ∈ Pn the error decomposition

∫
|q̂wn,t(x)− qt(x)|2µt(dx)

=
∫
|q̂wn,t(x)− qt(x)|2µt(dx)− 2

nt

nl+nt∑

i=nl+1

|q̂wn,t(Xi,t)− qt(Xi,t)|2

+
2
nt

nl+nt∑

i=nl+1

|q̂wn,t(Xi,t)− qt(Xi,t)|2 − 4
nt

nl+nt∑

i=nl+1

|q̂wn,t(Xi,t)− qw,newt (Xi,t)|2

+
4
nt

nl+nt∑

i=nl+1

|q̂wn,t(Xi,t)− qw,newt (Xi,t)|2 − 72
nt

nl+nt∑

i=nl+1

|q̂w,pnn,t (Xi,t)− qw,newt (Xi,t)|2

+
72
nt

nl+nt∑

i=nl+1

|q̂w,pnn,t (Xi,t)− qw,newt (Xi,t)|2 − 144
nt

nl+nt∑

i=nl+1

|q̂w,pnn,t (Xi,t)− qt(Xi,t)|2

+
144
nt

nl+nt∑

i=nl+1

|q̂w,pnn,t (Xi,t)− qt(Xi,t)|2

=
5∑

j=1

Tj,n

and observe that it suffices to show

ETj,n ≤ const · C
2d

2p+d ·
(

logn
n

) 2p
2p+d

(6.9)

for j ∈ {1, 2, . . . , 5}.
We can conclude from Bernstein inequality (see, for instance, Lemma A.2 in [15]) by using

boundedness of q̂wn,t and qt by L together with

σ2 = V
(
|q̂w,pn,t (Xnl+1,t)− qt(Xnl+1,t)|2

∣∣∣Xt,new
i,t:wmax(t)+1 (i = 1, . . . , nl),DTn,t+1

)

≤ E
(
|q̂w,pn,t (Xnl+1,t)− qt(Xnl+1,t)|4

∣∣∣Xt,new
i,t:wmax(t)+1 (i = 1, . . . , nl),DTn,t+1

)

≤ 4L2E
(
|q̂w,pn,t (Xnl+1,t)− qt(Xnl+1,t)|2

∣∣∣Xt,new
i,t:wmax(t)+1 (i = 1, . . . , nl),DTn,t+1

)

= 4L2

∫
|q̂w,pn,t (x)− qt(x)|2µt(dx)
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P
{
T1,n > ε|Xt,new

i,t:wmax(t)+1 (i = 1, . . . , nl),DTn,t+1

}

≤ |Pn| · max
p∈Pn

P

{∫
|q̂w,pn,t (x)− qt(x)|2µt(dx)− 2

nt

nl+nt∑

i=nl+1

|q̂w,pn,t (Xi,t)− qt(Xi,t)|2 > ε

∣∣∣∣Xt,new
i,t:wmax(t)+1 (i = 1, . . . , nl),DTn,t+1

}

= |Pn| · max
p∈Pn

P

{∫
|q̂w,pn,t (x)− qt(x)|2µt(dx)− 1

nt

nl+nt∑

i=nl+1

|q̂w,pn,t (Xi,t)− qt(Xi,t)|2

>
ε

2
+

1
2

∫
|q̂w,pn,t (x)− qt(x)|2µt(dx)

∣∣∣∣Xt,new
i,t:wmax(t)+1 (i = 1, . . . , nl),DTn,t+1

}

≤ |Pn| · max
p∈Pn

P

{∫
|q̂w,pn,t (x)− qt(x)|2µt(dx)− 1

nt

nl+nt∑

i=nl+1

|q̂w,pn,t (Xi,t)− qt(Xi,t)|2

>
ε

2
+

1
2
· σ

2

4L2

∣∣∣∣Xt,new
i,t:wmax(t)+1 (i = 1, . . . , nl),DTn,t+1

}

≤ |Pn| · exp

(
− nt( ε2 + σ2

8L2 )2

2σ2 + 2( ε2 + σ2

8L2 ) · 4L2

3

)

≤ |Pn| · exp

(
− nt( ε2 + σ2

8L2 )2

(16L2 + 8L2

3 )( ε2 + σ2

8L2 )

)

≤ |Pn| · exp
(
− 1

32 + 16
3

· ntε
L2

)
= |Pn| · exp

(
− 3

112
· ntε
L2

)
,

thus

ET1,n ≤
∫ ∞

0

P{T1,n > s}ds

=
∫ ∞

0

E
{

P
{
T1,n > s|Xt,new

i,t:wmax(t)+1 (i = 1, . . . , nl),DTn,t+1

}}
ds

≤ |Pn| ·
∫ ∞

0

exp
(
− 3nt

112L2
· s
)
ds

≤ 112L2

3
· |Pn|
nt

≤ const · C 2d
2p+d ·

(
logn
n

) 2p
2p+d

.

Furthermore, by a2 = (a− b+ b)2 ≤ 2(a− b)2 + 2b2 we get

T2,n ≤ 4
nt

nl+nt∑

i=nl+1

|qw,newt (Xi,t)− qt(Xi,t)|2,
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from which we conclude by (3.7) and (6.7)

ET2,n = E
{

E
{
T2,n|Xt,new

i,t:wmax(t)+1 (i = 1, . . . , nl),DTn,t+1

}}

≤ 4E
∫
|qw,newt (x)− qt(x)|2µt(dx)

≤ const · C 2d
2p+d ·

(
log n
n

) 2p
2p+d

.

Similarly we get

ET4,n ≤ const · C
2d

2p+d ·
(

log n
n

) 2p
2p+d

.

To bound T3,n we use Lemma 6.1, which shows

P
{
T3,n > ε|Xt,new

i,t:wmax(t)+1 (i = 1, . . . , nl),DTn,t+1

}

≤ P

{
1
nt

nl+nt∑

i=nl+1

|q̂wn,t(Xi,t)− qw,newt (Xi,t)|2 > ε

4
+ 18 · min

p∈Pn
1
nt

nl+nt∑

i=nl+1

|q̂w,pn,t (Xi,t)− qw,newt (Xi,t)|2

∣∣∣∣Xt,new
i,t:wmax(t)+1 (i = 1, . . . , nl),DTn,t+1

}

≤ c5 · |Pn|
ε · nt .

From this we get for u > 0

ET3,n ≤
∫ ∞

0

P{T3,n > ε}dε

≤
∫ ∞

0

E
{

P
{
T3,n > ε|Xt,new

i,t:wmax(t)+1 (i = 1, . . . , nl),DTn,t+1

}}
dε

≤ u+
∫ const

u

c5 · |Pn|
ε · nt dε

= u+ c5 · |Pn|
nt
· (log(const)− log u),

where we have used that (3.13) and boundedness of f (which implies boundedness of qw,newt )
yield

T3,n ≤ 4
nt

nl+nt∑

i=nl+1

|q̂wn,t(Xi,t)− qw,newt (Xi,t)|2 ≤ const.

With u = log(n)/n we get

ET3,n ≤ logn
n

(
1 + c6

(
log(const)− log

( log n
n

)))
≤ const · C 2d

2p+d ·
(

logn
n

) 2p
2p+d

.

Furthermore

ET5,n = E
{

E
{
T5,n|Xt,new

i,t:wmax(t)+1 (i = 1, . . . , nl),DTn,t+1

}}
= 144·E

∫
|q̂w,pnn,t (x)−qt(x)|2µt(dx).

So it remains to show

E
∫
|q̂w,pnn,t (x)− qt(x)|2µt(dx) ≤ const · C 2d

2p+d ·
(

logn
n

) 2p
2p+d

(6.10)

for some pn ∈ Pn.
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To bound ET5,n we use the error decomposition
∫
|q̂w,pnn,t (x)− qt(x)|2µt(dx)

=
∫
|q̂w,pnn,t (x)− qt(x)|2µt(dx)− 2

nl

nl∑

i=1

|q̂w,pnn,t (Xi,t)− qt(Xi,t)|2

+
2
nl

nl∑

i=1

|q̂w,pnn,t (Xi,t)− qt(Xi,t)|2 − 2
nl

nl∑

i=1

|q̃w,pnn,t (Xi,t)− qt(Xi,t)|2

+
2
nl

nl∑

i=1

|q̃w,pnn,t (Xi,t)− qt(Xi,t)|2 − 4
nl

nl∑

i=1

|q̃w,pnn,t (Xi,t)− qw,newt (Xi,t)|2

+
4
nl

nl∑

i=1

|q̃w,pnn,t (Xi,t)− qw,newt (Xi,t)|2

=
9∑

j=6

Tj,n

with

pn = (k, 2l) where l =
⌈
log2

(
C−2/(2p+d)(n/ log(n))−1/(2p+d)

)⌉
.

Because of boundedness of qt by L we have

T7,n ≤ 0 and ET7,n ≤ 0.

Furthermore, as for T2,n we get by (3.7) and (6.7)

ET8,n ≤ 4E

{
E

{
1
nl

nl∑

i=1

|qt(Xi,t)− qw,newt (Xi,t)|2
∣∣∣∣DTn,t+1

}}

= 4E
∫
|qt(x)− qw,newt (x)|2µt(dx)

≤ const · C 2d
2p+d ·

(
logn
n

) 2p
2p+d

,

where the last equality follows from the fact that the conditional expectation qw,newt (x) does not
depend on data from time t.

Next we bound T6,n. The functions q̂w,pnn,t and qt are bounded in absolute value by L, and
q̃w,pnn,t belongs to the linear vector space Hn,pn , whose dimension Dn is bounded by some constant
(depending on A and k) times C2d/(2p+d) · (n/ log(n))d/(2p+d). As in the proof of Theorem 11.3
in [15] (see there proof of inequality (11.6)) this implies

ET6,n = E
{
E
{
T6,n

∣∣DTn,t+1

}} ≤ c7L
2 (log nl + 1) · C2d/(2p+d) · (n/ log(n))d/(2p+d)

nl

≤ const · C 2d
2p+d ·

(
log n
n

) 2p
2p+d

.

Finally we bound T9,n. With

σ2 = sup
x∈Rd

E∗
{
|Ŷ w,new1,t |2|X1,t = x

}
≤ 4L2 <∞
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we can conclude from Theorem 11.1 in [15]

E
{
T9,n|Xi,t (i = 1, . . . , nl),DTn,t+1

}

≤ 4σ2 · Dn

nl
+ 4 min

h∈Hn,pn

1
nl

nl∑

i=1

|h(Xi,t)− qw,newt (Xi,t)|2

≤ 4σ2 · C2d/(2p+d) · c8
n2p/(2p+d) · log(n)d/(2p+d)

+ 4 min
h∈Hn,pn

1
nl

nl∑

i=1

|h(Xi,t)− qw,newt (Xi,t)|2,

so

ET9,n

= E
{
E
{
T9,n|Xi,t (i = 1, . . . , nl),DTn,t+1

}}

≤ 12σ2 · C2d/(2p+d) ·
(

log n
n

)2p/(2p+d)

+ 4 min
h∈Hn,pn

E
∫
|h(x)− qw,newt (x)|2µt(dx)

≤ 12σ2 · C2d/(2p+d) ·
(

log n
n

)2p/(2p+d)

+ 8E
∫
|qw,newt (x)− qt(x)|2µt(dx)

+8 min
h∈Hn,pn

∫
|h(x)− qt(x)|2µt(dx).

Notice, that for the last term in the last inequality (without the factor 8) we get

min
h∈Hn,p

∫
|h(x)− qt(x)|2µt(dx) ≤ min

h∈Hn,p
sup

x∈[−A,A]d
|h(x)− qt(x)|2.

Because we have assumed the (p, C)-smoothness of qt, there exist a h ∈ Hn,p with

sup
x∈[−A,A]d

|h(x)− qt(x)| ≤ c9 · C · δpn

where δn = C−2/(2p+d) · (n/ log(n))−1/(2p+d) is the side-length in the cubic partition used in the
definition of the spline space, see Theorem 12.8 in [25]. From this we can conclude

min
h∈Hn,p

∫
|h(x)− qt(x)|2µt(dx) ≤ c29 · C2 · δ2p

n

= c29 · C2 · C− 4p
2p+d · (n/ log(n))

−2p
2p+d

≤ const · C 2d
2p+d ·

(
log n
n

) 2p
2p+d

.

With (3.7), (6.7) and the above inequality we get that the right hand side of ET9,n has the
required property.

The proof is complete. �
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