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Abstract

Estimation of a regression function from independent and identically distributed

random variables is considered. Estimates are defined by minimization of the em-

pirical L2 risk over a class of functions, which are defined as maxima of minima of

linear functions. Results concerning the rate of convergence of the estimates are

derived. In particular it is shown that for smooth regression functions satisfying

the assumption of single index models, the estimate is able to achieve (up to some

logarithmic factor) the corresponding optimal one-dimensional rate of convergence.

Hence under these assumptions the estimate is able to circumvent the so-called

curse of dimensionality. The small sample behaviour of the estimates is illustrated

by applying them to simulated data.
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1 Introduction

1.1 Scope of this paper. This paper considers the problem of estimating a mul-

tivariate regression function given a sample of the underlying distribution. In ap-

plications usually no a priori information about the regression function is known,

therefore it is necessary to apply nonparametric methods for this estimation prob-

lem. There are several established methods for nonparametric regression, including

regression trees like CART (cf., Breiman et al. (1984)), adaptive spline fitting like

MARS (cf., Friedman (1991)) and least squares neural network estimates (cf., e.g.,

Chapter 11 in Hastie, Tibshirani and Friedmann (2001)). All these methods mini-

mize a kind of least squares risk of the regression estimate, either heuristically over a

fixed and very complex function space as for neural networks or over a stepwise de-

fined data dependent space of piecewise constant functions or piecewise polynomials

as for CART or MARS.

In this paper we consider a rather complex function space consisting of maxima

of minima of linear functions, over which we minimize a least squares risk. Since

each maxima of minima of linear functions is in fact a continuous piecewise linear

function, we fit a linear spline function with free knots to the data. But in contrast

to MARS, we do not need heuristics to choose these free knots, but use instead

advanced methods of optimization theory of nonlinear and nonconvex functions to

compute our estimate approximately in an application.

1.2 Regression estimation. In regression analysis an IRd × IR-valued random

vector (X, Y ) with EY 2 < ∞ is considered and the dependency of Y on the value

of X is of interest. More precisely, the goal is to find a function f : IRd → IR such

that f(X) is a “good approximation” of Y . In the sequel we assume that the main
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aim of the analysis is minimization of the mean squared prediction error or L2 risk

E{|f(X)− Y |2}.

In this case the optimal function is the so-called regression function

m : IRd → IR, m(x) = E{Y |X = x}. Indeed, let f : IRd → IR be an arbitrary

(measurable) function and denote the distribution of X by µ. The well-known rela-

tion

E{|f(X) − Y |2} = E{|m(X) − Y |2} +

∫

|f(x) − m(x)|2µ(dx)

(cf. e.g., Györfi et al. (2002), eq. (1.1)) implies that the regression function is the

optimal predictor in view of minimization of the L2 risk:

E{|m(X) − Y |2} = min
f :IRd→IR

E{|f(X) − Y |2}.

In addition, any function f is a good predictor in the sense that its L2 risk is close

to the optimal value, if and only if the so-called L2 error
∫

|f(x) − m(x)|2µ(dx) (1)

is small. This motivates to measure the error caused by using a function f instead

of the regression function by the L2 error (1).

In applications, usually the distribution of (X, Y ) (and hence also the regression

function) is unknown. But often it is possible to observe a sample of the underlying

distribution. This leads to the regression estimation problem. Here (X, Y ), (X1, Y1),

(X2, Y2), . . . are independent and identically distributed random vectors. The set of

data

Dn = {(X1, Y1), . . . , (Xn, Yn)}

is given, and the goal is to construct an estimate

mn(·) = mn(·,Dn) : IRd → IR

of the regression function such that the L2 error
∫

|mn(x) − m(x)|2µ(dx)
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is small. For a detailed introduction to nonparametric regression we refer the reader

to the monography Györfi et al. (2002).

1.3 Definition of the estimate. In the sequel we will use the principle of least

squares to fit maxima of minima of linear functions to the data. More precisely, let

Kn ∈ IN and L1,n, . . . , LKn,n ∈ IN be parameters of the estimate and set

Fn =

{

f : IRd → IR : f(x) = max
k=1,...,Kn

min
l=1,...,Lk,n

(ak,l · x + bk,l) (x ∈ IRd)

for some ak,l ∈ IRd, bk,l ∈ IR

}

where

ak,l · x = a
(1)
k,l · x(1) + . . . + a

(d)
k,l · x(d)

denotes the scalar product between ak,l = (a
(1)
k,l , . . . , a

(d)
k,l )

T and x = (x(1), . . . , x(d))T .

For this class of functions the estimate m̃n is defined by

m̃n(·) = arg min
f∈Fn

1

n

n
∑

i=1

|f(Xi) − Yi|2. (2)

Here we assume that the minimum exists, however we do not require that it is

unique.

In Section 2 we will analyze the rate of convergence of a truncated version of this

least squares estimate defined by

mn(·) = Tβn
(m̃n(·)) , where Tβn

(z) =



















βn z > βn,

z −βn ≤ z ≤ βn,

−βn z < −βn

for some βn ∈ R+.

1.4 Main results. Under a Sub-Gaussian condition on the distribution of Y and

for bounded distribution of X we show that the L2 error of the estimate achieves

for (p, C)-smooth regression function with p ≤ 2 (where roughly speaking all partial

derivates of the regression function of order p exist) the corresponding optimal rate

of convergence

n−2p/(2p+d)
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up to some logarithmic factor. For single index models, where the regression function

m satifies in addition

m(x) = m(βTx) (x ∈ R
d)

for some univariate function m and some vector β ∈ R
d, we show furthermore, that

our estimate achieves (up to some logarithmic factor) the one-dimensional rate of

convergence

n−2p/(2p+1).

Hence under these assumptions the estimate is able to circumvent the curse of di-

mensionality.

1.5 Discussion of related results. In multivariate nonparametric regression func-

tion estimation there is a gap between theory and practice: The established estimates

like CART, MARS or least squares neural networks are based on several heuristics

for computing the estimates, which makes it basically impossible to analyze their

rate of convergence theoretically. However, if one defines them without these heuris-

tics, their rate of convergence can be analyzed (and this has been done for neural

networks, e.g., in Barron (1993, 1994) and for CART in Kohler (1999)), but in

this form the estimates cannot be computed in an application. For our estimate,

a similar phenomen occurs since we need heuristics to compute it approximately

in an application. The difference to the above established estimates is that we use

heuristics from advanced optimization theory, in particular from the optimization

theory of nonlinear and nonconvex optimization (cf., e.g., Bagirov (1999, 2002) and

Bagirov and Udon (2006)) instead of complicated heuristics from statistics for step-

wise computation as for CART or MARS, or a simple gradient descent as for least

squares neural networks.

It follows from Stone (1982) that the rates of convergence, which we derive, are

optimal (in some Minimax sense) up to a logarithmic factor. The idea of imposing

additional restrictions on the structure of the regression function (like additivity or

like the assumption in the single index model) and to derive under these assumption

better rates of convergence is due to Stone (1985, 1994).
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We use a theorem of Lee, Bartlett and Williamson (1996) to derive our rate of

convergence results. This approach is described in detail in Section 11.3 of Györfi at

al. (2002). Below we extend this approach to unbounded data (which satisfies a Sub-

Gaussian condition) by introducing new truncation arguments. In this way we are

able to derive the results under similar general assumptions on the distribution of Y

as with alternative methods from empirical process theory, see, e.g., the monography

van de Geer (2000) or Kohler (2000, 2006).

Maxima of minima of linear functions have been used in regression estimation

already in Beliakov and Kohler (2005). There least squares estimates are derived

by minimizing the empirical L2 risk over classes of functions consisting of Lipschitz

smooth functions where a bound on the Lipschitz constant is given. It is shown that

the resulting estimate is in fact a maxima of minima of linear functions, where the

number of minima occurring in the maxima is equal to the sample size. Additional

restrictions (e.g. on the linear functions in the minima) ensure that there will be

no overfitting. In contrast, the number of linear functions which we consider in this

article is much smaller and restrictions on these linear functions are therefore not

necessary. This seems to be promising, because we do not fit too many parameters

to the data.

In Corollary 2 we show that even for large dimension of X the L2 error of our

estimate converges to zero quickly if the regression function satisfies the structural

assumption of single index models. Similar results are shown in Section 22.2 of

Györfi et al. (2002). However, in contrast to the estimate defined there our newly

proposed estimate can be computed in an application (which we will demonstrate

in Section 3). So the main result here is to derive this good rate of convergence for

an estimate which can be computed in an application.

1.6 Notations. The sets of natural numbers, natural numbers including zero, real

numbers and non-negative real numbers are denoted by N, N0, R and R+, respec-

tively. For vectors x ∈ R
n we denote by ||x|| the Euclidian norm of x and by x ·y the

scalarproduct between x and y. The least integer greater or equal to a real number
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x will be denoted by ⌈x⌉. log(x) denotes the natural logarithm of x > 0. For a

function f : R
d → R

||f ||∞ = sup
x∈Rd

|f(x)|

denotes the supremum norm.

1.7 Outline of the paper The main theoretical result is formulated in Section 2

and proven in Section 4. In Section 3 the estimate is illustrated by applying it to

simulated data.

2 Analysis of the rate of convergence of the esti-

mate

Our first theorem gives an upper bound for the expected L2 error of our estimate.

Theorem 1. Let Kn, L1,n, ..., LKn,n ∈ N, with Kn · max{L1,n, ..., LKn,n} ≤ n2, and

set βn = c1 · log(n) for some constant c1 > 0. Assume that the distribution of (X, Y )

satifies

E
(

ec2·|Y |2
)

< ∞ (3)

for some constant c2 > 0 and that the regression function m is bounded in absolute

value. Then for the estimate mn defined as in Subsection 1.3

E

∫

|mn(x) − m(x)|2µ(dx)

≤ c3 · log(n)3 ·∑Kn

k=1 Lk,n

n

+E

(

2 inf
f∈Fn

(

1

n

n
∑

i=1

|f(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(Xi) − Yi|2
))

(4)

for some constant c3 > 0 and hence also

E

∫

|mn(x) − m(x)|2µ(dx) ≤ c3 · log(n)3 ·∑Kn

k=1 Lk,n

n

+2 · inf
f∈Fn

∫

|f(x) − m(x)|2µ(dx),

where c3 does not depend on n, βn or the parameters of the estimate.
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The condition (3) is a modified Sub-Gaussian condition and it is particulary

satisfied, if PY |X=x is the normal distribution N(m(x),σ2) and the regression func-

tion m is bounded. This condition allows us to consider an unbounded conditional

distribution of Y .

Together with an approximation result this theorem implies the next corollary,

which considers the rate of convergence of the estimate. Here it is necessary to

impose smoothness conditions on the regression function.

Definition 1. Let p = k + β for some k ∈ N0 and 0 < β ≤ 1 and let C > 0. A

function m : [a, b]d → R is called (p, C)-smooth if for every α = (α1, ..., αd), αi ∈
N0,
∑d

j=1 αj = k the partial derivative

∂kf

∂xα1
1 ...∂xαd

d

exists and satisfies

∣

∣

∣

∣

∂kf

∂xα1
1 ...∂xαd

d

(x) − ∂kf

∂xα1
1 ...∂xαd

d

(z)

∣

∣

∣

∣

≤ C · ||x − z||β

for all x, z ∈ [a, b]d.

Corollary 1. Assume that the distribution of (X, Y ) satifies, that X ∈ [a, b]d a.s.

for some a, b ∈ R, that the modified Sub-Gaussian condition E(exp(c2 · |Y |2)) < ∞
is fullfiled for some constant c2 > 0 and that m is (p, C)-smooth for some 0 < p ≤ 2

and C > 1. Set βn = c1 · log(n) for some c1 > 0,

Kn =

⌈

C
2d

2p+d ·
(

n

log(n)3

)d/(2p+d)
⌉

and Lk,n = Lk = 2d + 1 (k = 1, ..., Kn).

Then we have for the estimate mn defined as above

E

∫

|mn(x) − m(x)|2µ(dx) ≤ const · C 2d
2p+d ·

(

log(n)3

n

)

2p

2p+d

.

The above rate of convergence converges slowly to zero in case of large dimension

d of the predictor variable X (so-called curse of dimensionality). Next we present

a result which shows that under structural assumptions on the regression function
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(more precisly, for single index models) our estimate is able to circumvent the curse

of dimensionality.

Corollary 2. Assume that the distribution of (X, Y ) satifies, that X ∈ [a, b]d a.s. for

some a, b ∈ R and that the modified Sub-Gaussian condition E(exp(c2 · |Y |2)) < ∞ is

fullfiled for some constant c2 > 0. Furthermore assume, that the regression function

m satisfies

m(x) = m(α · x) (x ∈ R
d)

for some (p, C)-smooth function m : R → R and some α ∈ R
d. Then for the

estimate mn as above and with the setting βn = c1 · log(n) for some c1 > 0,

Kn =

⌈

C
2

2p+1 ·
(

n

log(n)3

)1/(2p+1)
⌉

and Lk,n = Lk = 3 (k = 1, ..., Kn)

we get

E

∫

|mn(x) − m(x)|2µ(dx) ≤ const · C 2
2p+1 ·

(

log(n)3

n

)

2p

2p+1

.

Remark 1. It follows from Stone (1982) that under the conditions of Corollary 1 no

estimate can achieve (in some Minimax sense) a rate of convergence which converges

faster to zero than

n−2p/(2p+d)

(cf., e.g., Chapter 3 in Györfi et al. (2002)). Hence Corollary 1 implies, that our

estimate has an optimal rate of convergence up to the logarithmic factor.

Remark 2. In any application the smoothness of the regression function (measured

by (p, C)) is not known in advance and hence the parameters of the estimate have to

be chosen data-dependent. This can be done, e.g., by splitting of the sample, where

the estimate is computed for various values of the parameters on a learning sample

(consisting, e.g., of the first half of the data points) and the parameters are chosen
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such that the empirical L2 risk on a testing sample (consisting, e.g., of the second

half of the data points) is minimized (cf., e.g., Chapter 7 in Györfi et al. (2002)).

Theoretical results concerning splitting of the sample can be found in Hamers

and Kohler (2003) and Chapter 7 in Györfi et al. (2002).

3 Application to simulated data

In our applications we choose the number of linear functions considered in the max-

ima and the minima in a data-dependent way by splitting of the sample. We split

the sample of size n in a learning sample of size nl < n and a testing sample of size

nt = n− nl. We use the learning sample to define for a fixed number of linear func-

tions K an estimate m̃nl,K , and compute the empirical L2 risk of this estimate on

the testing sample. Since the testing sample is independent of the learning sample,

this gives us an unbiased estimate of the L2 risk of m̃nl,K . Then we choose K by

minimizing this estimate with respect to K. In the sequel we use n ∈ {500, 3000}
and nt = nl = n/2.

To compute the estimate for given numbers of linear functions we have to mini-

mize

1

n

n
∑

i=1

∣

∣

∣

∣

(

max
k=1,...,K

min
l=1,...,Lk

(ak,l · xi + bk,l)

)

− yi

∣

∣

∣

∣

2

for given (fixed) x1, . . . , xn ∈ IRd, y1, . . . , yn ∈ IR with respect to

ak,l ∈ IRd, bk,l ∈ IR (k = 1, . . . , K, l = 1, . . . , Lk).

Unfortunately, we cannot solve this minimization problem exactly in general. The

reason is that the function to be minimized is nonsmooth and nonconvex. Depend-

ing on K and Lk it may have a large number of variables (more than hundred even

in the case of univariate data). The function has many local minima and their num-

ber increases drastically as the number of maxima and minima functions increases.

Most of the local minimizers do not provide a good approximation to the data and
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therefore one is interested to find either a global minimizer or a minimizer which is

near to a global one. Conventional methods of global optimization are not effective

for minimizing of such functions, since they are very time consuming and cannot

solve this problem in a reasonable time. Furthermore, the function to be minimized

is a very complicated nonsmooth function and the calculation even of only one sub-

gradient of such a function is a difficult task. Therefore subgradient-based methods

of nonsmooth optimization are not effective here.

Even though we cannot solve this minimzation problem exactly, we are able

to compute the estimate approximately. For this we use the following properties

of the function to be minimized: It is a semismooth function (cf., Mifflin (1977)),

moreover it is a smooth composition of so-called quasidifferentiable functions (see,

Demyanov and Rubinov (1995) for the definition of quasidifferentiable functions).

Therefore we can use the discrete gradient method from Bagirov (2002) to solve it.

Furthermore, it is piecewise partially separable (see Bagirov and Ugon (2006) for

the definition of such functions). We use the version of the discrete gradient method

described in Bagirov and Ugon (2006) for minimizing piecewise partially separable

functions to solve it. The discrete gradient method is a derivative-free method and it

is especially effective for minimization of nonsmooth and nonconvex function when

the subgradient is not available or it is difficult to calculate the subgradient.

A detailed description of the algorithm used to compute the estimate is given in

Bagirov, Clausen and Kohler (2007). An implementation of the estimate in Fortran

is available from the authors by request.

In Bagirov, Clausen and Kohler (2007) the estimate is also compared to various

other nonparametric regression estimates. In the sequel we will only illustrate it by

applying it to a few simulated data sets. Here we define (X, Y ) by

Y = m(X) + σ · ǫ,

where X is uniformly distributed on [−2, 2]d, ǫ is standard normally distributed and

independent of X, and σ ≥ 0. In Figures 1 to 4 we choose d = 1 and σ = 1, and use

11



four different univariate regression functions in order to define four different data

sets of size n = 500. Each figures shows the true regression function together with

its formula, a corresponding sample of size n = 500 and our estimate applied to this

sample.

−2 −1 0 1 2

−
5

0
5

m(x)=2*x^3−4*x

n= 500 , sigma= 1
x

y

Figure 1: Simulation with the first univariate regression function.

Here the first two examples show how the maxmin-estimate looks like for rather

simple regression estimates, while in the third and fourth example the regression

function has some local irregularity. Here it can be seen that our newly proposed

estimate is able to adapt locally to such irregularities in the regression function.

Next we consider the case d = 2. In our fifth example we choose

m(x(1), x(2)) = x(1) · sin((x(1))2) − x(2) · sin((x(2))2),

n = 5000 and σ = 0.2. Figures 5 shows the regression function and our estimate

applied to a corresponding data set of sample size 5000.
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−2 −1 0 1 2

−
6

−
4

−
2

0
2

4
6

m(x)=4*|x|*sin(x*pi/2)

n= 500 , sigma= 1
x

y

Figure 2: Simulation with the second univariate regression function.

In our sixth example we choose

m(x(1), x(2)) =
4

1 + 4 ∗ (x(1))2 + 4 ∗ (x(2))2
,

and again n = 5000 and σ = 0.2. Figures 6 shows the regression function and our

estimate applied to a corresponding data set of sample size 5000.

In our seventh (and final) example we choose

m(x(1), x(2)) = 6 − 2 ∗ min(3, 4 ∗ (x(1))2 + 4 ∗ |x(2)|),

and again n = 5000 and σ = 0.2. Figures 7 show the regression function and our

estimate applied to a corresponding data set of sample size 5000.

From the last simulation we see again that our estimate is able to adapt to the

local behaviour of the regression function.
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−2 −1 0 1 2

0
5

10

m(x)=8 if x>0, m(x)=0 if x<=0

n= 500 , sigma= 1
x

y

Figure 3: Simulation with the third univariate regression function.

4 Proofs

In the proofs we need the notation of covering numbers.

Definition 2. Let x1, ..., xn ∈ R
d and set xn

1 = (x1, ..., xn). Let F be a set of

functions f : R
d → R. A Lp-ǫ-cover of F on xn

1 is a finite set of functions f1, ..., fk :

R
d → R with the property

min
1≤j≤k

(

1

n

n
∑

i=1

|f(xi) − fj(xi)|p
)1/p

< ǫ for all f ∈ F . (5)

The Lp-ǫ-covering number Np(ǫ,F , xn
1 ) of F on xn

1 is the minimal size of a Lp-ǫ-

cover of F on xn
1 . In case that there exist no finite Lp-ǫ-cover of F the Lp-ǫ-covering

number of F on xn
1 is defined by Np(ǫ,F , xn

1 ) = ∞.

To get bounds for covering numbers of sets of maxima of minima of linear

functions we first show the connection between the Lp-ǫ-covering numbers of sets
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−2 −1 0 1 2

−
2

0
2

4
6

8
10

m(x)=|(8*x−2*x^2)/(0.5+x^2)|

n= 500 , sigma= 1
x

y

Figure 4: Simulation with the fourth univariate regression function.

G1,G2, ... and the Lp-ǫ-covering number of their maximum

max{G1, ...,Gl} =

{

f : IRd → IR : f(x) = max{g1(x), ..., gl(x)}

for some g1 ∈ G1, ..., gl ∈ Gl

}

and minimum (defined analogously), respectively.

Lemma 1. Let G1,G2, ...,Gl be l sets of functions from R
d to R and let xn

1 =

(x1, ..., xn) ∈ R
d × · · · × R

d be n fixed points in R
d. Then

Np (ǫ, max {G1, ...,Gl} , xn
1 ) ≤

l
∏

i=1

Np

( ǫ

l1/p
,Gi, x

n
1

)

(6)

and

Np (ǫ, min {G1, ...,Gl} , xn
1 ) ≤

l
∏

i=1

Np

( ǫ

l1/p
,Gi, x

n
1

)

. (7)
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x1

x2

y

x1

x2

y

Figure 5: The bivariate regression function together with our max-min-estimate in

the fifth example.

Proof. Inequaltity (6) follows from

(

1

n

n
∑

k=1

∣

∣

∣

∣

max
i=1,...,l

gi(xk) − max
i=1,...,l

gji

i (xk)

∣

∣

∣

∣

p
)1/p

≤
(

1

n

n
∑

k=1

max
i=1,...,l

∣

∣gi(xk) − gji

i (xk)
∣

∣

p

)1/p

≤
(

1

n

n
∑

k=1

l
∑

i=1

∣

∣gi(xk) − gji

i (xk)
∣

∣

p

)1/p

≤ l1/p · max
i=1,...,l

(

1

n

n
∑

k=1

|gi(xk) − gji

i (xk)|p
)1/p

.

Inequality (7) follows directly from (6) with min {G1, ...,Gl} = −max {−G1, ...,−Gl} .

�

16



x1

x2

y

x1

x2

y

Figure 6: The bivariate regression function together with our max-min-estimate in

the sixth example.

In the next lemma we bound the Lp-ǫ-covering number of a truncated version of our

class Fn of functions.

Lemma 2. Let xn
1 ∈ R

d × ... × R
d and set Ln := max{L1,n, ..., LKn,n}. Then for

0 < ǫ < β/2

N1 (ǫ, TβFn, xn
1 ) ≤ 3

(

6eβ

ǫ
· Kn · Ln

)2(d+2)(
PKn

k=1 Lk,n)
.

Proof. In the first step of the proof, we show that we can involve the truncation

operator into the class of functions, i.e., we show
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x1

x2

y

x1

x2

y

Figure 7: The bivariate regression function together with our max-min-estimate in

the seventh example.

TβFn =

{

f : IRd → IR : f(x) = max
1≤k≤Kn

min
1≤l≤Lk,n

Tβ (ak,l · x + bk,l) (8)

for some ak,l ∈ R
d, bk,l ∈ R

}

At the beginning we observe, that by monotonicity of the mapping x 7→ Tβx the

equality

Tβ max
1≤i≤n

zi = max
1≤i≤n

Tβzi (9)

holds for real numbers zi ∈ R (i = 1, ..., n). With min1≤i≤n zi = −max1≤i≤n(−zi)

and Tβ(−z) = −Tβ(z) we get also

Tβ min
1≤i≤n

zi = min
1≤i≤n

Tβzi,
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which implies (8). Set

G =

{

g : IRd → IR : g(x) = ak,l · x + bk,l

for some ak,l ∈ R
d, bk,l ∈ R

}

.

From Theorem 9.4, Theorem 9.5 and inequality (10.23) in Györfi et al. (2002) we

get

N1 (ǫ, TβG, xn
1 ) ≤ 3

(

4eβ

ǫ
· log

6eβ

ǫ

)(d+1)+1

.

By applying Lemma 1 we get the desired result. �

With this bound of the covering number of TβFn we can now start with the proof

of Theorem 1.

Proof of Theorem 1. In the proof we use the following error decomposition:

∫

|mn(x) − m(x)|2µ(dx)

=
[

E
{

|mn(X) − Y |2|Dn

}

−E
{

|m(X) − Y |2
}

−E
{

|mn(X) − Tβn
Y |2|Dn

}

−E
{

|mβn
(X) − Tβn

Y |2
}]

+

[

E
{

|mn(X) − Tβn
Y |2|Dn

}

−E
{

|mβn
(X) − Tβn

Y |2
}

−2 · 1

n

n
∑

i=1

(

|mn(Xi) − Tβn
Yi|2 − |mβn

(Xi) − Tβn
Yi|2
)

]

+

[

2 · 1

n

n
∑

i=1

|mn(Xi) − Tβn
Yi|2 − 2 · 1

n

n
∑

i=1

|mβn
(Xi) − Tβn

Yi|2

−
(

2 · 1

n

n
∑

i=1

|mn(Xi) − Yi|2 − 2 · 1

n

n
∑

i=1

|m(Xi) − Yi|2
)]

+

[

2

(

1

n

n
∑

i=1

|mn(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(Xi) − Yi|2
)]

=

4
∑

i=1

Ti,n,
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where Tβn
Y is the truncated version of Y and mβn

is the regression function of Tβn
Y ,

i.e.,

mβn
(x) = E

{

Tβn
Y |X = x

}

.

We start with bounding T1,n. By using a2 − b2 = (a − b)(a + b) we get

T1,n = E
{

|mn(X) − Y |2 − |mn(X) − Tβn
Y |2
∣

∣

∣
Dn

}

−E
{

|m(X) − Y |2 − |mβn
(X) − Tβn

Y |2
}

= E
{

(Tβn
Y − Y )(2mn(X) − Y − Tβn

Y )
∣

∣

∣
Dn

}

−E
{(

(m(X) − mβn
(X)) + (Tβn

Y − Y )
)(

m(X) + mβn
(X) − Y − Tβn

Y
)}

= T5,n + T6,n.

With the Cauchy-Schwarz inequality and

I{|Y |>βn} ≤
exp(c2/2 · |Y |2)
exp(c2/2 · β2

n)
(10)

it follows

|T5,n| ≤
√

E{|Tβn
Y − Y |2} ·

√

E{|2mn(X) − Y − Tβn
Y |2|Dn}

≤
√

E{|Y |2 · I{|Y |>βn}} ·
√

E{2 · |2mn(X) − Tβn
Y |2 + 2 · |Y |2|Dn}

≤
√

E

{

|Y |2 · exp(c2/2 · |Y |2)
exp(c2/2 · β2

n)

}

·
√

E{2 · |2mn(X) − Tβn
Y |2|Dn} + 2E{|Y |2}

≤
√

E
{

|Y |2 · exp(c2/2 · |Y |2)
}

· exp

(

−c2 · β2
n

4

)

·
√

2(3βn)2 + 2E{|Y |2}.

With x ≤ exp(x) for x ∈ R we get

|Y |2 ≤ 2

c2
· exp

(c2

2
|Y |2

)

and hence

√

E
{

|Y |2 · exp(c2/2 · |Y |2)
}

is bounded by

E

(

2

c2

· exp
(

c2/2 · |Y |2
)

· exp(c2/2 · |Y |2)
)

≤ E

(

2

c2

· exp
(

c2 · |Y |2
)

)

≤ c4
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which is less than infinity by the assumptions of the theorem. Furthermore the third

term is bounded by
√

18β2
n + c5 because

E(|Y |2) ≤ E(1/c2 · exp(c2 · |Y |2) ≤ c5 < ∞ (11)

which follows again as above. With the setting βn = c1 · log(n) it follows for some

constants c6, c7 > 0

|T5,n| ≤ √
c4 · exp

(

−c6 · log(n)2
)

·
√

(18 · c1 · log(n)2 + c5) ≤ c7 ·
log(n)

n
.

From the Cauchy-Schwarz inequality we get

T6,n ≤
√

2E

{

|(m(X) − mβn
(X))|2

}

+ 2E
{

|(Tβn
Y − Y )|2

}

·
√

E

{

∣

∣

∣
m(X) + mβn

(X) − Y − Tβn
Y
∣

∣

∣

2
}

,

where we can bound the second factor on the right hand-side in the above inequality

in the same way we have bounded the second factor from T5,n, because by assumption

||m||∞ is bounded and furthermore mβn
is bounded by βn. Thus we get for some

constant c8 > 0

√

E

{

∣

∣

∣
m(X) + mβn

(X) − Y − Tβn
Y
∣

∣

∣

2
}

≤ c8 · log(n).

Next we consider the first term. With the inequality from Jensen it follows

E
{

|m(X) − mβn
(X)|2

}

≤ E
{

E
(

|Y − Tβn
Y |2
∣

∣

∣
X
)}

= E
{

|Y − Tβn
Y |2
}

.

Hence we get

T6,n ≤
√

4E {|Y − Tβn
Y |2} · c8 · log(n)

and therefore with the calculations from T5,n it follows T6,n ≤ c9 · log(n)/n for some

constant c9 > 0. Alltogether we get

T1,n ≤ c10 ·
log(n)

n
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for some constant c10 > 0.

Next we consider T2,n. Let t > 1/n be arbitrary. Then

P{T2,n > t} ≤ P

{

∃f ∈ Tβn
Fn : E

(

∣

∣

∣

∣

f(X)

βn
− Tβn

Y

βn

∣

∣

∣

∣

2
)

−E

(

∣

∣

∣

∣

mβn
(X)

βn
− Tβn

Y

βn

∣

∣

∣

∣

2
)

−1

n

n
∑

i=1

(

∣

∣

∣

∣

f(Xi)

βn
− Tβn

Yi

βn

∣

∣

∣

∣

2

−
∣

∣

∣

∣

mβn
(Xi)

βn
− Tβn

Yi

βn

∣

∣

∣

∣

2
)

>
1

2

(

t

β2
n

+ E

(

∣

∣

∣

∣

f(X)

βn
− Tβn

Y

βn

∣

∣

∣

∣

2
)

−E

(

∣

∣

∣

∣

mβn
(X)

βn
− Tβn

Y

βn

∣

∣

∣

∣

2
))}

.

Thus with Theorem 11.4 in Györfi et al. (2002) and

N1

(

δ,

{

1

βn

f : f ∈ F
}

, xn
1

)

≤ N1 (δ · βn,F , xn
1) ,

we get for xn
1 = (x1, ..., xn) ∈ R

d × ... × R
d

P{T2,n > t} ≤ 14 sup
xn
1

N1

(

t

80βn
, Tβn

Fn, x
n
1

)

· exp

(

− n

5136 · β2
n

t

)

.

From Lemma 2 we know, that with Ln := max{L1,n, ..., LKn,n} for 1/n < t < 40βn

N1

(

t

80βn
, Tβn

Fn, x
n
1

)

≤ 3

(

6eβn · 80βn · KnLn

t

)2(d+2)(
PKn

k=1 Lk,n)

≤ nc11·
PKn

k=1 Lk,n

for some sufficient large c11 > 0. (This inequality holds also for t ≥ 40βn, since the

right-hand side above does not depend on t and the covering number is decreasing

in t.) Using this we get for arbitrary ǫ ≥ 1/n

E(T2,n) ≤ ǫ +

∫ ∞

ǫ

P{T2,n > t}dt

= ǫ + 14 · nc11(
PKn

k=1 Lk,n) 5136β2
n

n
· exp

(

− n

5136β2
n

ǫ

)

and this expression is minimized for

ǫ =
5136 · β2

n

n
log
(

14 · nc11(
PKn

k=1 Lk,n)
)

.

Alltogether we get

E(T2,n) ≤ c12 · log(n)3 ·∑Kn

k=1 Lk,n

n
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for some sufficient large constant c12 > 0, which does not depend on n, βn or the

parameters of the estimate.

By bounding T3,n similarly to T1,n we get

E(T3,n) ≤ c13 ·
log(n)

n

for some large enough constant c13 > 0 and hence we get over all

E

(

3
∑

i=1

Ti,n

)

≤ c14 · log(n)3 ·∑Kn

k=1 Lk,n

n

for some sufficient large constant c14 > 0.

We finish the proof by bounding T4,n. Let An be the event, that there exists

i ∈ {1, ..., n} such that |Yi| > βn and let IAn
be the indicator function of An. Then

we get

E(T4,n) ≤ 2 · E
(

1

n

n
∑

i=1

|mn(Xi) − Yi|2 · IAn

)

+2 · E
(

1

n

n
∑

i=1

|mn(Xi) − Yi|2 · IAc
n
− 1

n

n
∑

i=1

|m(Xi) − Yi|2
)

= 2 · E
(

|mn(X1) − Y1|2 · IAn

)

+2 · E
(

1

n

n
∑

i=1

|mn(Xi) − Yi|2 · IAc
n
− 1

n

n
∑

i=1

|m(Xi) − Yi|2
)

= T7,n + T8,n.

With the Cauchy-Schwarz inequality we get for T7,n

1

2
· T7,n ≤

√

E
(

(|mn(X1) − Y1|2)2) ·
√

P(An)

≤
√

E
(

(2|mn(X1)|2 + 2|Y1|2)2) ·
√

n · P{|Y1| > βn}

≤
√

E (8|mn(X1)|4 + 8|Y1|4) ·
√

n · E (exp(c2 · |Y1|2))
exp(c2 · β2

n)
,

where the last inequality follows from inequality (10). With x ≤ exp(x) for x ∈ R

we get

E
(

|Y |4
)

= E
(

|Y |2 · |Y |2
)

≤ E

(

2

c2
· exp

(c2

2
· |Y |2

)

· 2

c2
· exp

(c2

2
· |Y |2

)

)

=
4

c2
2

·E
(

exp
(

c2 · |Y |2
))

,
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which is less than infinity by condition (3) of the theorem. Furthermore ||mn||∞ is

bounded by βn and therefore the first factor is bounded by

c15 · β2
n = c16 · log(n)2

for some constant c16 > 0. The second factor is bounded by 1/n, because by the

assumptions of the theorem E (exp (c2 · |Y1|2)) is bounded by some constant c17 < ∞
and hence we get

√

n · E (exp(c2 · |Y1|2))
exp(c2 · β2

n)
≤ √

n ·
√

c17
√

exp(c2 · β2
n)

≤
√

n · √c17

exp((c2 · c2
1 · log(n)2)/2)

.

Since exp(−c · log(n)2) = O(n−2) for c > 0, we get alltogether

T7,n ≤ c18 ·
log(n)2

√
n

n2
≤ c19 ·

log(n)2

n
.

With the definition of Ac
n and m̃n defined as in (2) it follows

T8,n ≤ 2 · E
(

1

n

n
∑

i=1

|m̃n(Xi) − Yi|2 · IAc
n
− 1

n

n
∑

i=1

|m(Xi) − Yi|2
)

≤ 2 · E
(

1

n

n
∑

i=1

|m̃n(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(Xi) − Yi|2
)

≤ 2 · E
(

inf
f∈Fn

1

n

n
∑

i=1

|f(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(Xi) − Yi|2
)

,

because |Tβz − y| ≤ |z − y| holds for |y| ≤ β. Hence

E(T4,n) ≤ c19 ·
log(n)2

n
+ 2E

(

inf
f∈Fn

1

n

n
∑

i=1

|f(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(Xi) − Yi|2
)

,

which completes the proof. �

In the sequel we will bound

inf
f∈Fn

1

n

n
∑

i=1

|f(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(Xi) − Yi|2.

Therefore we will use the following lemma.

24



Lemma 3. Let Kn ∈ IN and let Π be a partition of [a, b]d consisting of Kn rectan-

gulars. Assume that f lin : [a, b]d → R is a piecewise polynomial of degree M = 1 (in

each coordinate) with respect to Π and assume that f is continuous. Furthermore

let x1, ..., xn ∈ R
d be n fixed points in R

d. Then there exist linear functions

f1,0, ..., f1,2d, ..., fKn,0, ..., fKn,2d : R
d → R,

such that

f lin(z) = max
i=1,...,Kn

min
k=0,..,2d

fi,k(z) for all z ∈ {x1, ..., xn}.

Proof. Since f lin is a piecewise polynomial of degree 1 it is of the shape

f lin(z) =
Kn
∑

i=1

f lin
i (z) · IAi

=
Kn
∑

i=1

(

d
∑

j=1

αi,j · z(j) + αi,0

)

· IAi

for some constants αi,j ∈ R (i = 1, ..., Kn, j = 0, ..., d), where Π = {A1, ..., AKn
} is a

partition of [a, b]d and

Ai = I
(1)
i × . . . × I

(d)
i

for some univariate intervals I
(j)
i (i = 1, . . . , Kn). We denote the left and the right

endpoint of I
(j)
i by ai,j and bi,j, resp., i.e.,

I
(j)
i = [ai,j , bi,j) or I

(j)
i = [ai,j , bi,j].

This choice is without restriction of any kind because f lin is continuous. Now we

choose for every i ∈ {1, ..., Kn}

fi,0(x) = f lin
i (x) =

d
∑

j=1

αi,j · x(j) + αi,0.

This implies, that fi,0 and the given piecewise polynomial f lin match on Ai for every

i = 1, ..., Kn. Furthermore for i = 1, ..., Kn and j = 1, ..., d we define

fi,2j−1(x) = f lin
i (x) + (x(j) − ai,j) · βi,j ,

where βi,j ≥ 0 is such that

fi,2j−1(z) ≤ f lin(z) for all z = (z(1), ..., z(d)) ∈ {x1, ..., xn} satisfying z(j) < ai,j
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and

fi,2j−1(z) ≥ f lin(z) for all z = (z(1), ..., z(d)) ∈ {x1, ..., xn} satisfying z(j) > ai,j.

The above conditions are satisfied, if

βi,j ≥ max
k=1,...,n;x

(j)
k

6=ai,j

f lin(xk) − f lin
i (xk)

x
(j)
k − ai,j

.

For z(j) = ai,j obviously fi,2j−1(z) = f lin
i (z).

Analogously we choose

fi,2j(x) = f lin
i (x) − (x(j) − bi,j) · γi,j,

where γi,j ≥ 0 is such that

fi,2j(z) ≥ f lin(z) for all z = (z(1), ..., z(d)) ∈ {x1, ..., xn} satisfying z(j) < bi,j

and

fi,2j(z) ≤ f lin(z) for all z = (z(1), ..., z(d)) ∈ {x1, ..., xn} satisfying z(j) > bi,j.

In this case the conditions from above are satisfied, if

γi,j ≥ max
k=1,...,n;x

(j)
k

6=ai,j

f lin
i (xk) − f lin(xk)

x
(j)
k − bi,j

.

From this choice of functions fi,j (i = 1, ..., Kn), (j = 0, ..., 2d) results directly, that

min
k=0,..,2d

fi,k(z)







= f lin
i (z) = f lin(z) for z ∈ Ai ∩ {x1, ..., xn}

≤ f lin(z) for z ∈ {x1, ..., xn}

holds for all i = 1, ..., Kn, which implies the assertion. �

Proof of Corollary 1. Lemma 3 yields

E

(

2 inf
f∈Fn

(

1

n

n
∑

i=1

|f(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(Xi) − Yi|2
))
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≤ E

(

2 inf
f∈G

(

1

n

n
∑

i=1

|f(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(Xi) − Yi|2
))

≤ 2 · inf
f∈G

∫

|f(x) − m(x)|2µ(dx),

where G is the set of functions which contains all continuous piecewise polynomials

of degree 1 with respect to an arbitrary partition Π consisting of Kn rectangulars.

Next we increase the right-hand side above by choosing Π such that it consists of

equivolume cubes. Now we can apply approximation results from spline theory,

see, e.g., Schumaker (1981), Theorem 12.8 and (13.62). From this, the (p, C)−
smoothness of m and Theorem 1 we conclude for some sufficient large constant

c20 > 0

E

∫

|mn(x) − m(x)|2µ(dx) ≤ c3 ·
Kn · (2d + 1) · log(n)3

n
+ c20 · C2 · K− 2p

d
n

≤ c20 · C
2d

2p+d ·
(

log(n)3

n

)

2p

2p+d

,

where the last inequaltity results from the choice of Kn. �

Proof of Corollary 2. With the assumptions on the regression function m the

second term on the right-hand side of inequality (4) equals

E

(

2 inf
f∈Fn

(

1

n

n
∑

i=1

|f(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(α · Xi) − Yi|2
))

and with F1
n := {maxk=1,...,Kn

minl=1,...,Lk
ak,l · x + bk,l, for some ak,l, bk,l ∈ R} this

expected value is less than or equal to

E

(

2 inf
h∈F1

n

(

1

n

n
∑

i=1

|h(α · Xi) − Yi|2 −
1

n

n
∑

i=1

|m(α · Xi) − Yi|2
))

,

because for every function h ∈ F1
n and every vector α ∈ R

d

f(x) = h(α · x) (x ∈ R
d)

is contained in Fn. Together with Lemma 3 this yields to

E

(

2 inf
f∈Fn

(

1

n

n
∑

i=1

|f(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(Xi) − Yi|2
))
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≤ E

(

2 inf
h∈G

(

1

n

n
∑

i=1

|h(α · Xi) − Yi|2 −
1

n

n
∑

i=1

|m(α · Xi) − Yi|2
))

≤ 2 · inf
h∈G

∫

|h(α · x) − m(α · x)|2µ(dx)

≤ 2 · inf
h∈G

(

max
x∈[a,b]d

|h(α · x) − m(α · x)|2
)

≤ 2 · inf
h∈G

(

max
x∈[â,b̂]

|h(x) − m(x)|2
)

,

where G is the set of functions from R to R which contains all piecewise polynomials

of degree one with respect to a partition of [â, b̂] consisting of Kn intervals. Here [â, b̂]

is chosen such that α · x ∈ [â, b̂] for x ∈ [a, b]d. Hence again with the approximation

result from spline theory we get as in the proof of Corollary 1 for some sufficiently

large constant c21

E

(

2 inf
f∈Fn

(

1

n

n
∑

i=1

|f(Xi) − Yi|2 −
1

n

n
∑

i=1

|m(Xi) − Yi|2
))

≤ c21 · C2 · K−2p
n .

Summarizing the above results we get by Theorem 1

E

∫

|mn(x) − m(x)|2µ(dx) ≤ c3 · log(n)3 ·∑Kn

k=1 Lk,n

n
+ c21 · C2 · K−2p

n

≤ c22 · C2/(2p+1) ·
(

log(n)3

n

)

2p

2p+1

.

�

References

[1] Bagirov, A. M. (1999). Minimization methods for one class of nonsmooth func-

tions and calculation of semi-equilibrium prices. In: A. Eberhard et al. (eds.)

Progress in Optimization: Contribution from Australia, Kluwer Academic Pub-

lishers, 1999, pp. 147-175.

[2] Bagirov, A. M. (2002). A method for minimization of quasidifferentiable func-

tions. Optimization Methods and Software 17, pp. 31–60.

28



[3] Bagirov, A. M., Clausen, C., and Kohler, M. (2007). An algorithm for the estima-

tion of a regression function by continuous piecewise linear functions. Submitted

for publication.

[4] Bagirov, A. M., and Ugon, J. (2006). Piecewise partially separable functions

and a derivative-free method for large-scale nonsmooth optimization. Journal of

Global Optimization 35, pp. 163-195.

[5] Barron, A. R. (1993). Universal approximation bounds for superpositions of a

sigmoidal function. IEEE Transactions on Information Theory 39, pp. 930–944.

[6] Barron, A. R. (1994). Approximation and estimation bounds for neural networks.

Neural Networks 14, pp. 115-133.

[7] Beliakov, G., and Kohler, M. (2005). Estimation of regression functions by Lip-

schitz continuous functions. Submitted for publication.

[8] Breiman, L., Friedman, J. H., Olshen, R. H. and Stone, C. J. (1984). Classifica-

tion and regression trees. Wadsworth, Belmont, CA.

[9] Demyanov, V.F., and Rubinov, A.M. (1995). Constructive Nonsmooth Analysis.

Peter Lang, Frankfurt am Main, 1995.

[10] Friedman, J. H. (1991). Multivariate adaptive regression splines (with discus-

sion). Annals of Statistics 19, pp. 1-141.
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