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Abstract

Pricing of American options can be achieved by solving optimal stopping problems. This

in turn can be done by computing so-called continuation values, which we represent as

regression functions defined recursively by using the continuation values of the next time

step. We use Monte Carlo to generate data and apply smoothing spline regression esti-

mates to estimate the continuation values from these data. All parameters of the estimate

are chosen data dependent. Results concerning consistency and rate of convergence of the

estimates are presented.
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1 Introduction

Many financial contracts allow for early exercise before expiry. Most of the exchange traded

options contracts are of American type which allows the holder to choose any exercise date

before expiry, or Bermudan with exercise dates restricted to a predefined discrete set of

dates. Examples are mortages with embedded payment options or life insurance contracts

which allow for early surrender. In this article we are interested in pricing such Bermuda

options which can be considered as discrete time approximations of American options.
∗Corresponding author. Tel: +49-681-302-2435, Fax: +49-681-302-6583
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To do this, we assume that the price V0 of such an option is represented as solution of

an optimal stopping problem

V0 = sup
τ∈T (0,...,T )

E {fτ (Xτ )} . (1)

Here ft is the (discounted) payoff function, X0, X1, . . . , XT is the underlying stochastic

process and T (0, . . . , T ) is the class of all {0, . . . , T}-valued stopping times, i.e., τ ∈

T (0, . . . , T ) is a measurable function of X0, . . . , XT satisfying

{τ = k} ∈ F(X0, . . . , Xk) for all k ∈ {0, . . . , T}.

As a very simple example consider pricing of an American put option with strike K

and initial stock value x0. We assume that the stock value is modelled via Black Scholes

theory by

Xt = x0 · exp
(
(r − 1/2 · σ2) · t + σ ·Wt

)
, (2)

where r > 0 is the (given) discount rate, σ > 0 is the (given) volatility of the asset, x0 is

the initial stock price and {Wt : t ∈ IR+} is a Wiener process. If we sell the option at

time t > 0 and the stock price is at this point x, we get the payoff

max{K − x, 0},

and if we discount this payoff towards time zero, we get the discounted payoff function

ft(x) = e−r·t ·max{K − x, 0}. (3)

But even if all the parameters are known (i.e., if x0 and K are given and if we estimate

the volatility σ and the discount rate from observed data from the past), it is not obvious

how we can compute the price

V0 = sup
τ∈T (0,...,T )

E
{
e−r·τ ·max{K −Xτ , 0}

}
of the corresponding American option. The purpose of this article is to develop an algo-

rithm which is able to compute an approximation of the price (1) even in case that the

stock price is not modelled by a simple Black Scholes model as in (2) and that the payoff

function is not as simple as in (3). In particular the method of this article is also appli-

cable in case that the process Xt is adjusted to observed data by time series estimation
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as described, e.g., in Franke and Diagne (2002), or that the payoff function is based on

several underlyings, e.g., on the maximum of several stock values.

In the sequel we assume that X0, X1, . . . , XT is a [−A,A]d–valued Markov process

recording all necessary information about financial variables including prices of the un-

derlying assets as well as additional risk factors driving stochastic volatility or stochastic

interest rates. Neither the Markov property nor the form of the payoff as a function of the

state Xt is restrictive and can always be achieved by including supplementary variables.

But usually in modelling financial processes one models them by unbounded processes. In

this case we choose a large value A > 0 and replace Xt by its bounded approximation

XA
t = Xmin{t,τA} where τA = inf{s ≥ 0 : Xs /∈ [−A,A]d}.

(Here we assume for simplicity that the stochastic process has continuous paths in order

to be able to neglect an additional truncation of XA
t ). This boundedness assumption

enables us to estimate the price of the American option from samples of polynomial size

in the number of free parameters, in contrast to Monte Carlo estimation from standard

(unbounded) Black Scholes models, where Glasserman and Yu (2004) showed that samples

of exponential size in the number of free parameters are needed.

The computation of (1) can be done by determination of an optimal stopping rule

τ∗ ∈ T (0, . . . , T ) satisfying

V0 = E{fτ∗(Xτ∗)}. (4)

Let

qt(x) = sup
τ∈T (t+1,...,T )

E {fτ (Xτ )|Xt = x} (5)

be the so–called continuation value describing the value of the option at time t given

Xt = x and subject to the constraint of holding the option at time t rather than exercising

it. Here T (t + 1, . . . , T ) is the class of all {t + 1, . . . , T}–valued stopping times. It can be

shown that

τ∗ = inf{s ≥ 0 : qs(Xs) ≤ fs(Xs)} (6)

satisfies (4), i.e., τ∗ is an optimal stopping time (cf., e.g., Chow, Robbins and Siegmund

(1971) or Shiryayev (1978)). Therefore it suffices to compute the continuation values (5)

in order to solve the optimal stopping problem (1).
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The continuation values satisfy the dynamic programming equations

qT (x) = 0,

qt(x) = E {max{ft+1(Xt+1), qt+1(Xt+1)}|Xt = x} (t = 0, 1, . . . , T − 1). (7)

Indeed, analogously to (6) we have

qt(x) = E{fτ∗t
(Xτ∗t

)|Xt = x} where τ∗t = inf{s ≥ t + 1|qs(Xs) ≤ fs(Xs)},

hence by using the Markov property of {Xs}s=0,...,T we get

qt(Xt)

= E
{

ft+1(Xt+1) · I{qt+1(Xt+1)≤ft+1(Xt+1)} + fτ∗t+1
(Xτ∗t+1

) · I{qt+1(Xt+1)>ft+1(Xt+1)}|Xt

}
= E{E{. . . |X0, . . . , Xt+1}|X0, . . . , Xt}

= E {max{ft+1(Xt+1), qt+1(Xt+1)}|Xt} .

Unfortunately, the conditional expectation in (7) can in general not be computed in ap-

plications. The basic idea of regression based Monte Carlo methods for pricing American

options is to apply recursively regression estimates to artificially created samples of

(Xt,max {ft+1(Xt+1), q̂t+1(Xt+1)})

(so–called Monte Carlo samples) to construct estimates q̂t of qt. In connection with linear

regression this was proposed in Tsitsiklis and Van Roy (1999), and, based on a different

regression estimation than (7), in Longstaff and Schwartz (2001). Modern nonparametric

least squares regression estimates have been applied and investigated in this context in

Egloff (2005) and Egloff, Kohler and Todorovic (2006).

In this article we propose to use smoothing spline regression estimates in order to

compute the conditional expectation in (7). This is in particular very promising since

smoothing spline estimates are able to extend gradually the form of the estimate from

completely parametric linear models to fully nonparametric models. And given the simple

form of the payoff function in most applications (cf., e.g., (3)) it is not clear whether in

applications the regression functions will be sufficient complicated that a fully nonpara-

metric estimate (like the ones used in Egloff (2005) and Egloff, Kohler and Todorovic

(2006)) is really necessary. Here the smoothing spline estimate with data-driven choice of
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the smoothing parameter seems to be a promising compromise between very simple linear

regression and complicated nonparametric regression estimates.

Below we define smoothing spline estimates of the continuation values where all pa-

rameters of the estimates are chosen using the given data only. We will show that these

estimates are universally consistent in the sense that their L2 errors converges to zero in

probability for all distributions. Furthermore, under regularity conditions on the smooth-

ness of the continuation values we will analyze the rate of convergence of the estimates.

The precise definition of the estimates and the main results concerning consistency

and rate of convergence of the estimate will be described in Section 2. The proofs will be

given in Section 3.

2 Main results

2.1 Smoothing spline regression estimates

In this subsection we explain how the smoothing spline estimate of a regression function

m(x) = E{Y |X = x} given a sample

{(X1, Y1), . . . , (Xn, Yn)} (8)

of the distribution of a [−A,A]d × IR–valued random variable (X, Y ) is defined.

Let k ∈ IN with 2k > d. Denote by W k([−A,A]d) the Sobolev space{
f :

∂kf

∂xα1
1 . . . ∂xαd

d

∈ L2([−A,A]d) for all α1, . . . , αd ∈ IN with α1 + . . . + αd = k

}
.

The condition 2k > d implies that the functions in W k([−A,A]d) are continuous and hence

the value of a function at a point is well defined. Set

J2
k (f) =

∑
α1,...,αd∈IN, α1+...+αd=k

k!
α1! · . . . · αd!

∫
IRd

∣∣∣∣ ∂kf

∂xα1
1 . . . ∂xαd

d

(x)
∣∣∣∣2 dx.

Let λ ∈ IR+. The smoothing spline estimate m̃n,(k,λ) of a regression function is defined

by

m̃n,(k,λ)(·) = arg min
f∈W k([−A,A]d)

(
1
n

n∑
i=1

|f(Xi)− Yi|2 + λ · J2
k (f)

)
. (9)

Observe that m̃n,(k,λ) depends on the data (8) and that we have suppressed this in our

notation.
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Let l =
(

d+k−1
d

)
and let φ1, . . . , φl be all monomials xα1

1 · . . . · xαd
d of total degree

α1 + . . . + αd less than k. Define R : IR+ → IR by

R(u) =

 u2k−d · log(u) if 2k − d is even,

u2k−d if 2k − d is odd,

and denote the euclidean norm of a vector x ∈ IRd by ‖x‖2. It follows from Section V in

Duchon (1976) that there exists a function of the form

m̃n,(k,λ)(x) =
n∑

i=1

aiR(‖x−Xi‖2) +
l∑

j=1

bjφj(x) (10)

which achieves the minimum in (9), and that the coefficients a1, . . . , an, b1, . . . , bl ∈ IR

of this function can be computed by solving a linear system of equations. Under some

additional assumptions on the X1, . . . , Xn this is also shown in Section 2.4 of Wahba

(1990).

The parameter λ ∈ IR+ is a smoothing parameter of the estimate which controls

how much the data is smoothed. For λ = 0 the estimate will interpolate the given data

(provided the x-values of the sample are pairwise distinct), while for λ large, i.e., for

λ →∞, the estimate will be a polynomial of degree k−1 fitted to the data by least squares.

In this sense the choice of the smoothing parameter enables to adjust the estimate between

a parametric estimate (λ ≈ ∞) and a completely nonparametric estimate (for small λ).

2.2 Smoothing spline estimates for pricing of American options

Let X0, X1, . . . , XT be a [−A,A]d–valued Markov process and let ft be the discounted

payoff function which we assume to be bounded in absolute value by L. In the se-

quel we describe an algorithm to estimate the continuation values qt (defined by (5))

recursively. To do this we generate artificial independent Markov processes {X(l)
i,t }t=0,...,T

(l = 0, 1, . . . , T, i = 1, 2, . . . , n) which are identically distributed as {Xt}t=0,...,T . Then we

use these so-called Monte Carlo samples to generate recursively data to estimate qt by

using the regression representation given in (7).

We start with

qn,T (x) = 0 (x ∈ IRd).
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Given an estimate qn,t+1 of qt+1, we estimate

qt(x) = E {max{ft+1(Xt+1), qt+1(Xt+1)}|Xt = x}

by applying a smoothing spline regression estimate to an “approximative” sample of

(Xt,max{ft+1(Xt+1), qt+1(Xt+1)}) .

With the notation

Ŷ
(t)
i,t = max{ft+1(X

(t)
i,t+1), qn,t+1(X

(t)
i,t+1)}

(where we have suppressed the dependency of Ŷ
(t)
i,t on n) this “approximative” sample is

given by {(
X

(t)
t , Ŷ

(t)
i,t

)
: i = 1, . . . , n

}
. (11)

Observe that this sample depends on the t-th sample of {Xs}s=0,...,T and qn,t+1, i.e., for

each time step t we use a new sample of the stochastic process {Xs}s=0,...,T in order to

define our data (11).

To choose the smoothing parameters k and λ of the smoothing spline regression esti-

mate fully automatically we use splitting of the sample. I.e., we subdivide the data (11)

in a learning sample of size nl = dn/2e and a testing sample of size nt = n−nl and define

for given λ ∈ IR+ and k ∈ IN0 a regression estimate of qt by

q̃
(k,λ)
nl,t

(·) = arg min
f∈W k([−A,A]d)

(
1
nl

nl∑
i=1

|f(X(t)
i,t )− Ŷ

(t)
i,t |

2 + λ · J2
k (f)

)
and

q
(k,λ)
nl,t

(x) = TLq̃
(k,λ)
nl,t

(x) (x ∈ IRd),

where TLz = max{−L,min{L, z}} for z ∈ IR. Then we minimize the empirical L2 error

on the discrete parameter set

Pn =
{

(k, λ) : λ =
i

n
for some i ∈ {0, 1, . . . , n2}, k ∈

{
dd
2
e, . . . ,K

}}
(where K ≥ dd/2e is a given natural number) in order to choose the value of the parameter.

I.e., we choose

(λ∗t , k
∗
t ) = arg min

(k,λ)∈Pn

1
nt

n∑
i=nl+1

|q(k,λ)
nl,t

(X(t)
i,t )− Ŷ

(t)
i,t |

2

and define our final estimate of qt by

qn,t(x) = q
(λ∗t ,k∗t )
nl,t

(x) (x ∈ IRd).
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2.3 Consistency and rate of convergence of the estimates

Our main results are the following two theorems concerning consistency and rate of con-

vergence of the estimates.

Theorem 1 Let A,L > 0. Assume that X0, X1, . . . , XT is a [−A,A]d–valued Markov

process and that the discounted payoff function ft is bounded in absolute value by L. Then

the estimates qn,t defined in the previous subsections satisfy for any t ∈ {0, 1, . . . , T}∫
|qn,t(x)− qt(x)|2PXt(dx) → 0 in probability.

The above theorem shows that the L2 error of our estimates converges to zero in prob-

ability for sample size (of the Monte Carlo sample) tending to infinity. In view of an

application with necessarily finite sample size it would be nice to know how quickly the

error converges to zero for sample size tending to infinity. It is well-known that assump-

tions on the underlying distribution, in particular on the smoothness of the regression

function, are necessary in order to be able to derive non-trivial rate of convergence results

in nonparametric regression (see, e.g., Cover (1968), Devroye (1982) or Chapter 3 in Györfi

et al. (2002)). In the next theorem we assume qt ∈ W k([−A,A]d) and show that under

this assumption our estimates achieve (up to some logarithmic factor) the corresponding

optimal rate of convergence. Here we will write Un = OP(Vn) for random variables Un

and nonnegative random variables Vn, if

P{|Un| > const · Vn} → 0 (n →∞)

for some constant const > 0.

Theorem 2 Let A,L > 0. Assume that X0, X1, . . . , XT is a [−A,A]d–valued Markov

process, that the discounted payoff function ft is bounded in absolute value by L and that

the continuation values satisfy

qt ∈ {f ∈ W k∗([−A,A]d) : J2
k∗(f) ≤ C} (t = 0, 1, . . . , T − 1)

for some k∗ ∈ {dd/2e, . . . ,K} and some C > 0. Then the estimates qn,t defined in the

previous subsections satisfy for any t ∈ {0, 1, . . . , T}∫
|qn,t(x)− qt(x)|2PXt(dx) = OP

C
d

2k∗+d ·
(

log(n)
n

) 2k∗
2k∗+d

 .
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Remark 1. It follows from Stone (1982) that the rate of convergence in Theorem 2 is

optimal (in some Minimax sense) up to a logarithmic factor.

Remark 2. The definition of the estimate in Theorem 2 does not depend on the smooth-

ness of the continuation values measured by k and Jk(qt), nevertheless the estimate is

able to achieve (up to some logarithmic factor) the corresponding optimal rate of conver-

gence. In this sense the estimate is able to adapt automatically to the smoothness of the

continuation values.

Remark 3. It follows from the proof of the above theorems, that the assumption that ft

is bounded in absolute value by L can be replaced by |ft(Xt)| ≤ L a.s. Since we assume

that the Markov process X0, . . . , XT is bounded, this in turn is satisfied for more or less

all payoff functions occuring in practice.

Remark 4. The estimate qn,T , qn,T−1, . . . , qn,0 can be used to approximate the optimal

stopping time τ∗ defined in (4) by

τ̂ = inf {s ≥ 0 : qn,s(Xs) ≤ fs(Xs)}

and to estimate the price V0 of the American option defined in (1) by a Monte Carlo

estimate of E{fτ̂ (Xτ̂ )}. In case of X0 = x0 a.s (with initial stock value x0) the price V0

of the American option can also be estimated by

max{f0(x0), qn,0(x0)}

and it is easy to see that the above theorems imply consistency and corresponding rate of

convergence results of this estimate.

2.4 Discussion of related results

Smoothing spline regression estimates have been studied by many authors, see, e.g., the

monographs by Eubank (1988) and Wahba (1990) and the literature cited therein. In

the context of random design regression consistency and rate of convergence of univariate

smoothing spline regression estimates have been studied by means of empirical process

theory by van de Geer (1987, 1988, 1990). Kohler and Krzyżak (2001) proved that suitable

defined smoothing spline regression estimates are universally consistent.

In the proofs we analyze the problem of pricing American options in the context

of regression estimation with additional measurement errors in the dependent data (cf.
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Section 3). The idea to consider regression estimation with additional measurement errors

in the dependent data was proposed in Kohler (2006). There results concerning the rate

of convergence of least squares estimates have been derived and have been used to analyze

the rate of convergence of regression estimates based on censored data. Kohler, Kul and

Mathé (2004) studied adaptive least squares estimates based on splitting of the sample in

this context, and proved also an additional result concerning universal consistency of the

estimates. Dippon and Winter (2006) studied smoothing spline estimates for regression

estimation with additional measurement errors in the dependent data. In particular, they

extended the consistency result of Kohler and Krzyżak (2001) to this context and analyzed

the rate of convergence of the estimates. The current article shows how to apply these

results to the problem of pricing American options.

Various Monte Carlo methods in financial engineering are described in detail in the

monography Glasserman (2004). Regression based Monte Carlo methods for pricing Amer-

ican options have been proposed by Tsitsiklis and Van Roy (1999) and Longstaff and

Schwartz (2001) based on different regression representations of the continuation values.

Egloff (2005) presents a generalization of both regression representations. The first two

articles use linear regression (i.e., a standard parametric approach) to estimate the regres-

sion function. In contrast, Egloff (2005) focuses on nonparametric least squares estimates

in this context. Egloff, Kohler and Todorovic (2006) modify the estimates of Egloff (2005)

such that they are easier to compute in an application and such that all parameters of

the estimates are chosen only by aid of the given data. In both papers results concerning

consistency and rate of convergence of suitably defined least squares estimates are proven.

In contrast to the above papers, the current paper focuses on smoothing spline esti-

mates. Since these estimates are able to extend gradually the form of the estimate from

completely parametric linear models to fully nonparametric models they seemed to be in

particular promising for pricing of American options, where usually the payoff function is

so simple that it is not clear whether the continuation values are sufficient complicated

that a fully nonparametric regression estimate is really useful.
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3 Proofs

3.1 Regression estimation in case of additional measurement errors in

the dependent variable

In the proof we will use results concerning regression estimation in case of additional

measurement errors in the dependent variable, which we describe in the sequel.

Let (X, Y ), (X1, Y1), . . . be independent and identically distributed IRd × IR valued

random variables with EY 2 < ∞. Let m(x) = E{Y |X = x} be the corresponding

regression function. Assume that we want to estimate m from observed data, but instead

of a sample

Dn = {(X1, Y1), . . . , (Xn, Yn)}

of (X, Y ) we have only available a set of data

D̄n = {(X1, Ȳ1,n), . . . , (Xn, Ȳn,n)}

where the only assumption on Ȳ1,n, . . . , Ȳn,n is that the measurement error

1
n

n∑
i=1

|Yi − Ȳi,n|2 (12)

is small. In particular we do not assume that the random variables in D̄n are indepen-

dent or identically distributed. In the sequel we are interested in the influence of the

measurement error (12) on the L2 error of a regression estimate applied to the data D̄n.

As we do not assume anything on the difference between the true y-values Yi and the

observed values Ȳi,n besides the assumption that (12) is small, it is clear that there is

no chance to get rid of this measurement error completely. But a natural conjecture is

that a small measurement error (12) does only slightly influence the L2 error of suitably

defined regression estimates. That this conjecture is indeed true was proven for least

squares estimates in Kohler (2006) and for smoothing spline estimates in Dippon and

Winter (2006). We describe next the part of this result, which we will need in the proofs

of our main results.

Assume

Xi ∈ [−A,A]d a.s. and Yi, Ȳi,n ∈ [−L,L] a.s.
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(i = 1, . . . , n) and define for k ∈ IN0 and λn > 0 the smoothing spline estimate mn,(k,λn)

by

m̃n,(k,λn)(·) = arg min
f∈W k([−A,A]d)

(
1
n

n∑
i=1

|f(Xi)− Ȳi,n|2 + λn · J2
k (f)

)
and

mn,(k,λn)(x) = TLm̃n,(k,λn)(x) (x ∈ IRd)

(where TLz = max{−L,min{L, z}} for z ∈ IR). Then the following result holds.

Lemma 1 Assume 2k > d. Under the above assumptions we have

1
n

n∑
i=1

|mn,(k,λn)(Xi)−m(Xi)|2 + λn · J2
k (m̃n,(k,λn))

= OP

(
1
n

n∑
i=1

|Yi − Ȳi,n|2 +
log n

n
· λ−d/2k

n + λn · J2
k (m) +

log n

n

)
.

Proof: The result follows from the proof Lemma A.1 in Dippon and Winter (2006). For

the sake of completeness we give a (short) outline of the proof. The crucial step is to

extend Lemma 1 in Kohler (2006) in order to show that

1
n

n∑
i=1

|mn,(k,λn)(Xi)−m(Xi)|2 + λn · J2
k (m̃n,(k,λn))

> t + 64
n

n∑
i=1

|Yi − Ȳi,n|2 + 2 · λn · J2
k (m)

implies

t ≤ 1
n

n∑
i=1

|mn,(k,λn)(Xi)−m(Xi)|2 + λn · J2
k (m̃n,(k,λn))

≤ 8
n

n∑
i=1

(mn,(k,λn)(Xi)−m(Xi)) · (Yi −m(Xi)).

Hence

P

{
1
n

n∑
i=1

|mn,(k,λn)(Xi)−m(Xi)|2 + λn · J2
k (m̃n,(k,λn))

> t +
64
n

n∑
i=1

|Yi − Ȳi,n|2 + 2 · λn · J2
k (m)

}

≤
∞∑

j=0

P
{

2jt · I{j 6=0} ≤ λn · J2
k (m̃n,(k,λn)) < 2j+1t, . . .

}

≤
∞∑

j=0

P

{
J2

k (m̃n,(k,λn)) < 2j+1t/λn, 2jt ≤ 8
n

n∑
i=1

(mn,(k,λn)(Xi)−m(Xi)) · (Yi −m(Xi)

}
.
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The last probability is then bounded by Corollary 8.3 in van de Geer (2000) using the

bound on the covering number given in Lemma 3 below. �

The above lemma enables us to analyze the rate of convergence of the estimate for

fixed k and λn. Next we explain how we can use the data to choose appropriate values for

k and λn. To do this we use splitting of the sample with a learning sample

D̄nl
=
{
(X1, Ȳ1,n), . . . , (Xnl

, Ȳnl,n)
}

of size nl = dn/2e and a testing sample

{
(Xnl+1, Ȳnl+1,n), . . . , (Xn, Ȳn,n)

}
of size nt = n−nl. For fixed k and λ > 0 we use the learning sample to define a smoothing

spline estimate mnl,(k,λ) by

m̃nl,(k,λ)(·) = arg min
f∈W k([−A,A]d)

(
1
nl

nl∑
i=1

|f(Xi)− Ȳi,n|2 + λ · J2
k (f)

)

and

mnl,(k,λ)(x) = TLm̃nl,(k,λ)(x) (x ∈ IRd).

Let Pn be a finite set of parameters (k, λ). Next we choose (k̂, λ̂) ∈ Pn by minimizing the

empirical L2 risk on the testing sample, i.e., we set

mn(x) = mnl,(k̂,λ̂)(x) (x ∈ IRd),

where

(k̂, λ̂) = arg min
(k,λ)∈Pn

1
nt

n∑
i=nl+1

|mnl,(k,λ)(Xi)− Ȳi,n|2.

Then the following result holds.

Lemma 2 Assume |Pn| → ∞ (n →∞). Then

1
nt

n∑
i=nl+1

|mn(Xi)−m(Xi)|2

= OP

 log |Pn|
nt

+
1
nt

n∑
i=nl+1

|Yi − Ȳi,n|2 + min
(k,λ)∈Pn

1
nt

n∑
i=nl+1

|mnl,(k,λ)(Xi)−m(Xi)|2
 .

Proof. See Lemma 4 in Kohler, Kul and Mathé (2004). �
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3.2 Auxiliary results

In this subsection we formulate two auxiliary results which we will use in the proof of our

main results. To be able to do this we need the notion of covering numbers.

Definition 1 Let q ≥ 1, l ∈ IN and let F be a class of functions f : IRl → IR. The

covering number Nq(ε,F , xn
1 ) is defined for any ε > 0 and xn

1 = (x1, ..., xn) ∈ (IRl)n as the

smallest integer k such that there exist functions g1, ..., gk : IRl → IR with

min
1≤i≤k

 1
n

n∑
j=1

|f(xj)− gi(xj)|q
1/q

≤ ε

for each f ∈ F .

In the proofs of our main results we will need the following two lemmas.

Lemma 3 (Lemma 3 in Kohler, Krzyżak and Schäfer (2002)).

Let A,L, c > 0 and set

F =
{

TLf : f ∈ W k([−A,A]d) and J2
k (f) ≤ c

}
.

Then there exists a constant cd ∈ IR+ depending only on d and A such that for any ε > 0

and all x1, . . . , xn ∈ [−A,A]d

logN2(ε,F , xn
1 ) ≤ cd(kd + 1)

((√
c

ε

)d/k

+ 1

)
· log

(
64eL2n

ε2

)
· I{ε≤L}. (13)

Lemma 4 (Lemma 5 in Kohler (2006)).

Let L ≥ 1, let m : IRd → [−L,L] and let F be a class of functions f : IRd → [−L,L]. Let

0 < ε < 1 and α > 0. Assume that

√
nε
√

α ≥ 1152L

and that, for all x1, . . . , xn ∈ IRd and all δ ≥ 2L2α,
√

nεδ

768
√

2L2
≥

∫ √
δ

εδ
128L2

(
logN2

(
u

4L
,

{
f −m : f ∈ F ,

1
n

n∑
i=1

|f(xi)−m(xi)|2 ≤
δ

L2

}
, xn

1

))1/2

du.

14



Then

P

{
sup
f∈F

∣∣E{|f(X)−m(X)|2} − 1
n

∑n
i=1 |f(Xi)−m(Xi)|2

∣∣
α + E{|f(X)−m(X)|2}+ 1

n

∑n
i=1 |f(Xi)−m(Xi)|2

> ε

}

≤ 15 exp
(
− nαε2

512 · 2304L2

)
.

3.3 Proof of Theorem 1

In the sequel we will show∫
|qn,s(x)− qs(x)|2PXs(dx) → 0 in probability (14)

for all s ∈ {0, 1, . . . , T}.

For s = T we have qn,T (x) = 0 = qT (x), so the assertion is trivial. So let t < T and

assume that the assertion holds for s ∈ {t + 1, . . . , T}. By induction it suffices to show

(14) for s = t, which we will show in the sequel in nine steps.

In the first step of the proof we show∫
|qn,t(x)− qt(x)|2PXt(dx)− 1

nt

n∑
i=nl+1

|qn,t(X
(t)
i,t )− qt(X

(t)
i,t )|2 → 0 in probability.

Let Dn,t be the set of all X
(r)
j,s with either r ≥ t + 1, s ∈ {0, . . . , T} and j ∈ {1, . . . , n} or

r = t, s = t and j ∈ {1, . . . , nl}. Conditioned on Dn,t,

{q(k,λ)
nl,t

: (k, λ) ∈ Pn}

consists of |Pn| different functions. Using the boundedness of q
(k,λ)
nl,t

and qt by L we get by

Hoeffding‘s inequality (cf., e.g., Lemma A.3 in Györfi et al. (2002)) for any ε > 0:

P{
∫
|qn,t(x)− qt(x)|2 PXt(dx)− 1

nt

n∑
i=nl+1

|qn,t(X
(t)
i,t )− qt(X

(t)
i,t )|2 > ε |Dn,t}

≤ |Pn|max(k,λ)∈Pn
P{
∫
|q(k,λ)

n,t (x)− qt(x)|2PXt(dx)

− 1
nt

n∑
i=nl+1

|q(k,λ)
n,t (X(t)

i,t )− qt(X
(t)
i,t )|2 > ε | Dn,t}

≤ |Pn| · exp
(
− ntε2

16L4

)
= exp

(
−nt ·

(
ε2

16L4 − log |Pn|
nt

))
→ 0 (n →∞),

15



since
log(|Pn|)

nt
≤ log((n + 1)2K)

n/2− 1
→ 0 (n →∞).

In the second step of the proof we show

1
nt

n∑
i=nl+1

|qn,t(X
(t)
i,t )− qt(X

(t)
i,t )|2

= OP

(
1
nt

n∑
i=nl+1

|qn,t+1(X
(t)
i,t+1)− qt+1(X

(t)
i,t+1)|2 + log |Pn|

nt

+ min
(k,λ)∈Pn

1
nt

n∑
i=nl+1

|q(k,λ)
nl,t

(X(t)
i,t )− qt(X

(t)
i,t )|2

)
.

To do this we use Lemma 2. In the context of Lemma 2 we have

Xi = X
(t)
i,t , Yi = max{ft+1(X

(t)
i,t+1), qt+1(X

(t)
i,t+1)} and Ȳi,n = max{ft+1(X

(t)
i,t+1), qn,t+1(X

(t)
i,t+1)}.

Observing

1
nt

n∑
i=nl+1

|Yi − Ȳi,n|2 ≤
1
nt

n∑
i=nl+1

|qt+1(X
(t)
i,t+1)− qn,t+1(X

(t)
i,t+1)|

2

the assertion follows from Lemma 2 if we apply it conditioned on Dn,t.

In the third step of the proof we observe

1
nt

n∑
i=nl+1

|qn,t+1(X
(t)
i,t+1)− qt+1(X

(t)
i,t+1)|2 −

∫
|qn,t+1(x)− qt+1(x)|2PXt+1(dx) → 0

in probability. Indeed, this follows as in the first step of the proof by an application of

Hoeffding‘s inequality.

Choose (k∗, λn) ∈ Pn such that

λn → 0 (n →∞) and
n · λd/(2k∗)

n

log n
→∞ (n →∞).

In the fourth step of the proof we show that

min
(k,λ)∈Pn

1
nt

n∑
i=nl+1

|q(k,λ)
nl,t

(X(t)
i,t )− qt(X

(t)
i,t )|2 → 0 in probability

is implied by ∫
|q(k∗,λn)

nl,t
(x)− qt(x)|2PXt(dx) → 0 in probability.

To see this, we observe that we have as in the third step of the proof

1
nt

n∑
i=nl+1

|q(k∗,λn)
nl,t

(X(t)
i,t )− qt(X

(t)
i,t )|2 −

∫
|q(k∗,λn)

nl,t
(x)− qt(x)|2PXt(dx) → 0

16



in probability, hence the assertion follows from

min
(k,λ)∈Pn

1
nt

n∑
i=nl+1

|q(k,λ)
nl,t

(X(t)
i,t )− qt(X

(t)
i,t )|2 ≤ 1

nt

n∑
i=nl+1

|q(k∗,λn)
nl,t

(X(t)
i,t )− qt(X

(t)
i,t )|2.

Given the results of the previous steps, we see that it suffices to show∫
|q(k∗,λn)

nl,t
(x)− qt(x)|2PXt(dx) → 0 in probability,

which we do in the sequel by extending arguments in Kohler and Krzyżak (2001). The

modification of these arguments was also described in the proof of Theorem 4.1 in Dippon

and Winter (2006). For the sake of completeness we repeat the calculations here.

Let ε, δ > 0 and choose qt,ε ∈ W k∗([−A,A]d) such that qt,ε is bounded in supremum

norm and such that ∫
|qt(x)− qt,ε(x)|2PXt(dx) < ε

(cf., e.g., Corollary A.1 in Györfi et al. (2002)). Set

Yt = max{ft+1(Xt+1), qt+1(Xt+1)} and Y
(t)
i,t = max{ft+1(X

(t)
i,t+1), qt+1(X

(t)
i,t+1)}

and let D̄n,t be the set of all X
(r)
j,s with r ≥ t, s ∈ {0, . . . , T} and j ∈ {1, . . . , n}. We will

use the error decomposition∫
|q(k∗,λn)

nl,t
(x)− qt(x)|2PXt(dx)

= E
{
|q(k∗,λn)

nl,t
(Xt)− Yt|2|D̄n,t

}
−E

{
|qt(Xt)− Yt|2

}
= E

{
|q(k∗,λn)

nl,t
(Xt)− Yt|2|D̄n,t

}
− 1

nl

nl∑
i=1

|q(k∗,λn)
nl,t

(X(t)
i,t )− Y

(t)
i,t |

2

+
1
nl

nl∑
i=1

|q(k∗,λn)
nl,t

(X(t)
i,t )− Y

(t)
i,t |

2 − (1 + δ) · 1
nl

nl∑
i=1

|q(k∗,λn)
nl,t

(X(t)
i,t )− Ŷ

(t)
i,t |

2

+(1 + δ) · 1
nl

nl∑
i=1

|q(k∗,λn)
nl,t

(X(t)
i,t )− Ŷ

(t)
i,t |

2 − (1 + δ) · 1
nl

nl∑
i=1

|qt,ε(X
(t)
i,t )− Ŷ

(t)
i,t |

2

+(1 + δ) · 1
nl

nl∑
i=1

|qt,ε(X
(t)
i,t )− Ŷ

(t)
i,t |

2 − (1 + δ)2 · 1
nl

nl∑
i=1

|qt,ε(X
(t)
i,t )− Y

(t)
i,t |

2

+(1 + δ)2 · 1
nl

nl∑
i=1

|qt,ε(X
(t)
i,t )− Y

(t)
i,t |

2 − (1 + δ)2 ·E
{
|qt,ε(Xt)− Yt|2

}
+(1 + δ)2 ·E

{
|qt,ε(Xt)− Yt|2

}
−E

{
|qt(Xt)− Yt|2

}
=

6∑
j=1

Tj,n.

17



In the fifth step of the proof we show

T1,n → 0 in probability.

This follows as in Lemma 1 of Kohler and Krzyżak (2001), if we observe that Yt is bounded

in absolute value by L and that the definition of the estimate implies

λnJ2
k∗(q̃

(k∗,λn)
nl,t

) ≤ 1
nl

nl∑
i=1

|q̃(k∗,λn)
nl,t

(X(t)
i,t )− Ŷ

(t)
i,t |

2 + λnJ2
k∗(q̃

(k∗,λn)
nl,t

)

≤ 1
nl

nl∑
i=1

|0− Ŷ
(t)
i,t |

2 + λn · 0

≤ 2
nl

nl∑
i=1

|Ŷ (t)
i,t − Y

(t)
i,t |

2 +
2
nl

nl∑
i=1

|Y (t)
i,t |

2

→ 2 ·EY 2
t in probability

since

1
nl

nl∑
i=1

|Ŷ (t)
i,t − Y

(t)
i,t |

2 ≤ 1
nl

nl∑
i=1

|qn,t+1(X
(t)
i,t )− qt+1(X

(t)
i,t )|2 → 0 in probability (15)

by induction.

In the sixth step of the proof we show for every η > 0

P
{

lim sup
n→∞

Tj,n > η

}
= 0 for j ∈ {2, 4}.

Using (a + b)2 ≤ (1 + δ)a2 + (1 + 1/δ)b2 (a, b > 0) we get

T2,n =
1
nl

nl∑
i=1

|q(k∗,λn)
nl,t

(X(t)
i,t )− Ŷ

(t)
i,t + Ŷ

(t)
i,t − Y

(t)
i,t |

2 − (1 + δ) · 1
nl

nl∑
i=1

|q(k∗,λn)
nl,t

(X(t)
i,t )− Ŷ

(t)
i,t |

2

≤ (1 +
1
δ
) · 1

nl

nl∑
i=1

|Ŷ (t)
i,t − Y

(t)
i,t |

2

→ 0 in probability

by (15). The result for T4,n follows in the same way.

In the seventh step of the proof we observe that we have by definition of the estimate

T3,n ≤ (1 + δ) · λn · J2
k∗(qt,ε) → 0 (n →∞)

since λn → 0 (n →∞).
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In the eighth step of the proof we observe that the law of large numbers implies

T5,n → 0 in probability.

In the ninth (and last) step of the proof we finish the proof by observing

T6,n = (1 + 2δ + δ2) ·E
{
|qt,ε(Xt)− Yt|2

}
−E

{
|qt(Xt)− Yt|2

}
= (2δ + δ2) ·E

{
|qt,ε(Xt)− Yt|2

}
+
∫
|qt,ε(x)− qt(x)|2PXt(dx)

≤ (2δ + δ2) · (max
x∈IRd

|qt,ε(x)|+ L)2 + ε.

The right-hand side above can be made arbitrarily small by choice of δ and ε. �

3.4 Proof of Theorem 2

In the sequel we will show∫
|qn,s(x)− qs(x)|2PXs(dx) = OP

C
d

2k∗+d ·
(

log(n)
n

) 2k∗
2k∗+d

 (16)

for all s ∈ {0, 1, . . . , T}.

For s = T we have qn,T (x) = 0 = qT (x), so the assertion is trivial. So let t < T and

assume that the assertion holds for s ∈ {t + 1, . . . , T}. By induction it suffices to show

(16) for s = t, which we will show in the sequel in seven steps.

In the first step of the proof we show∫
|qn,t(x)− qt(x)|2PXt(dx) = OP

 1
nt

n∑
i=nl+1

|qn,t(X
(t)
i,t )− qt(X

(t)
i,t )|2 +

log |Pn|
nt

 .

Let Dn,t be the set of all X
(r)
j,s with either r ≥ t + 1, s ∈ {0, . . . , T} and j ∈ {1, . . . , n} or

r = t, s = t and j ∈ {1, . . . , nl}. Conditioned on Dn,t,

{q(k,λ)
nl,t

: (k, λ) ∈ Pn}

consists of |Pn| different functions. Furthermore, because of boundedness of q
(k,λ)
nl,t

and qt

by L we have

σ2
(k,λ) := Var{|q(k,λ)

nl,t
(X(t)

nl+1,t)− qt(X
(t)
nl+1,t)|2|Dn,t}

≤ E{|q(k,λ)
nl,t

(X(t)
nl+1,t)− qt(X

(t)
nl+1,t)|4|Dn,t}

≤ 4L2
∫
|q(k,λ)

nl,t
(x)− qt(x)|2 PXt(dx).
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Using this and the Bernstein inequality (cf., e.g., Lemma A.2 in Györfi et al. (2002)) we

get with the notation εn = c1 · log |Pn|/nt:

P{
∫
|qn,t(x)− qt(x)|2 PXt(dx) > (4L2 + 1) · 1

nt

n∑
i=nl+1

|qn,t(X
(t)
i,t )− qt(X

(t)
i,t )|2 + εn |Dn,t}

≤ |Pn| max
(k,λ)∈Pn

P{
∫
|q(k,λ)

nl,t
(x)− qt(x)|2PXt(dx)

> (4L2 + 1) · 1
n

nt∑
i=nl+1

|q(k,λ)
nl,t

(X(t)
i,t )− qt(X

(t)
i,t )|2 + εn | Dn,t}

≤ |Pn| · max
(k,λ)∈Pn

P{
∫
|q(k,λ)

nl,t
(x)− qt(x)|2 PXt(dx)− 1

nt

n∑
i=nl+1

|q(k,λ)
nl,t

(X(t)
i,t )− qt(X

(t)
i,t )|2

> 1
4L2+1

·
(
σ2

(k,λ) + εn

)
|Dn,t}

≤ |Pn| · max
(k,λ)∈Pn

exp

 −nt·
 

σ2
(k,λ)

+εn

4L2+1

!2

2σ2
(k,λ)

+2
σ2
(k,λ)

+εn

4L2+1
· 4L2

3


≤ |Pn| · max

(k,λ)∈Pn

exp
(
−

nt(σ2
(k,λ)

+εn)

2(4L2+1)2+2(4L2+1)· 4L2

3

)

≤ |Pn| · exp
(
− c1

2(4L2+1)2+2(4L2+1)· 4L2

3

· log |Pn|
)

→ 0 (n →∞)

provided we choose c1 sufficiently large.

In the second step of the proof we observe that as in the second step of the proof of

Theorem 1 we have

1
nt

n∑
i=nl+1

|qn,t(X
(t)
i,t )− qt(X

(t)
i,t )|2

= OP

(
1
nt

n∑
i=nl+1

|qn,t+1(X
(t)
i,t+1)− qt+1(X

(t)
i,t+1)|2 + log |Pn|

nt

+ min
(k,λ)∈Pn

1
nt

n∑
i=nl+1

|q(k,λ)
nl,t

(X(t)
i,t )− qt(X

(t)
i,t )|2

)
.

In the third step of the proof we show

1
nt

n∑
i=nl+1

|qn,t+1(X
(t)
i,t+1)− qt+1(X

(t)
i,t+1)|2 = OP

(∫
|qn,t+1(x)− qt+1(x)|2PXt+1(dx) + log |Pn|

nt

)
.
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Using

P{ 1
nt

n∑
i=nl+1

|qn,t+1(X
(t)
i,t+1)− qt+1(X

(t)
i,t+1)|2

> (4L2 + 1)
∫
|qn,t+1(x)− qt+1(x)|2PXt+1(dx) + εn|Dn,t}

= P{ 1
nt

n∑
i=nl+1

|qn,t+1(X
(t)
i,t+1)− qt+1(X

(t)
i,t+1)|2 −

∫
|qn,t+1(x)− qt+1(x)2PXt+1(dx)

> 4L2 ·
∫
|qn,t+1(x)− qt+1(x)|2PXt+1(dx) + εn|Dn,t}

this follows as in the first step by an application of Bernstein inequality.

Let k∗ ∈ {dd
2e, . . . ,K} be as in Theorem 2 (i.e., J2

k∗(qt) ≤ C). Set

λ̄n = C− 2k∗
2k∗+d ·

(
log n

n

) 2k∗
2k∗+d

and choose (for n sufficiently large) λ∗n such that

(k∗, λ∗n) ∈ Pn and |λ̄n − λ∗n| ≤
1
n

.

In the fourth step of the proof we show

min
(k,λ)∈Pn

1
nt

n∑
i=nl+1

|q(k,λ)
nl,t

(X(t)
i,t )− qt(X

(t)
i,t )|2 = OP

(∫
|q(k∗,λ∗n)

nl,t
(x)− qt(x)|2PXt(dx) + log |Pn|

nt

)
.

To see this, we observe that we have as in the third step of the proof

1
nt

n∑
i=nl+1

|q(k∗,λ∗n)
nl,t

(X(t)
i,t )− qt(X

(t)
i,t )|2 = OP

(∫
|q(k∗,λ∗n)

nl,t
(x)− qt(x)|2PXt(dx) + log |Pn|

nt

)
,

hence the assertion follows from

min
(k,λ)∈Pn

1
nt

n∑
i=nl+1

|q(k,λ)
nl,t

(X(t)
i,t )− qt(X

(t)
i,t )|2 ≤ 1

nt

n∑
i=nl+1

|q(k∗,λ∗n)
nl,t

(X(t)
i,t )− qt(X

(t)
i,t )|2.

In the fifth step of the proof we show∫
|q(k∗,λ∗n)

nl,t
(x)− qt(x)|2PXt(dx)

= OP

(
1
nl

nl∑
i=1

|q(k∗,λ∗n)
nl,t

(X(t)
i,t )− qt(X

(t)
i,t )|2 + λ∗n · J2

k∗

(
q̃
(k∗,λ∗)
nl,t

)
+ C

d
2k∗+d ·

(
log n

n

) 2k∗
2k∗+d

)
.

To do this we observe that for t = c2 · C
d

2k∗+d ·
(

log n
n

) 2k∗
2k∗+d we have:
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P
{∫

|q(k∗,λ∗n)
nl,t

(x)− qt(x)|2PXt(dx)

> 2 · 1
nl

nl∑
i=1

∣∣∣q(k∗,λ∗n)
nl,t

(X(t)
i,t )− qt(X

(t)
i,t )
∣∣∣2 + λ∗n · J2

k∗(q̃
(k∗,λ∗n)
nl,t

) + t

}
≤

∞∑
j=0

P{2jt · I{j 6=0} ≤ λ∗n · J2
k∗(q̃

(k∗,λ∗n)
nl,t

) < 2j+1 · t, . . .}

≤
∞∑

j=0
P{∃f = TLg : g ∈ W k∗([−A,A]d), J2

k∗(g) < 2j+1 · t/λ∗n and∫
|f(x)− qt(x)|2PXt(dx) > 2 · 1

nl

nl∑
i=1

|f(X(t)
i,t )− qt(X

(t)
i,t )|2 + 2j · t}

=
∞∑

j=0
Pj,n.

Fix j ∈ IN0. The last condition inside Pj,n implies

|
∫
|f(x)− qt(x)|2PXt(dx)− 1

nl

nl∑
i=1

|f(X(t)
i,t )− qt(X

(t)
i,t )|2|

2jt +
∫
|f(x)− qt(x)|2PXt(dx)

>
1
2
,

therefore we can apply Lemma 4 in order to bound Pj,n. In order to do this we will show

that the assumptions of this lemma are satisfied. The first inequality there is implied by

t ≥ c3/n. With the bound on the covering number of

{TLf : f ∈ W k∗([−A,A]d), J2
k∗(f) ≤ 2j+1 · t/λ∗n}

given in Lemma 3 we see that the second assumption of this lemma is implied by

c4 · δ ·
√

n ≥

√
δ∫

c5·δ

(((√
2j+1 · t/λ∗n

u

)d/k∗

+ 1

)
· log

64eL2n

(u/(4L2))2

)1/2

du (17)

for all δ ≥ 2L2 · 2jt.

By choice of t we can bound the value of u inside the logarithm from below by c6
n ,

therefore the right -hand side of (17) is bounded from above by

c7 ·

((
2j · t
λ∗n

) d
4k∗

· (
√

δ)1−
d

2k∗ + 1

)
·
√

log(n).

So in order to show (17) it suffices to show

δ
1
2
+ d

4k∗ > c8 ·
(

2j · t
λ∗n

) d
4k∗

·
√

log(n)
n

and δ ≥ c8

√
log n

n
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for all δ ≥ 2L2 · 2jt, which follows from t = c2 · Cd/(2k∗+d) · (log n/n)2k∗/(2k∗+d).

Hence by Lemma 4 we get

Pj,n ≤ 15 · exp(−c9 · nl · 2j · t)

which implies
∞∑

j=0

Pj,n ≤ 15 · exp(−c9 · nl · t)
1− exp(−c9 · nl · t)

→ 0 (n →∞).

In the sixth step of the proof we show

1
nl

nl∑
i=1

∣∣∣∣q(k∗,λ∗n)
nl,t

(X(t)
i,t )− qt(X

(t)
i,t )
∣∣∣∣2 + λ∗n · J2

k∗

(
q̃
(k∗,λ∗n)
nl,t

)
= OP

(
λ∗n · J2

k∗(qt) + log nl
nl

· (λ∗n)−
d

2k∗ + 1
nl

nl∑
i=1

|qn,t+1(X
(t)
i,t+1)− qt(X

(t)
i,t+1)|2 + log nl

nl

)
This follows from Lemma 1 if we apply it (conditioned on all X

(r)
j,s with r ≥ t + 1, s ∈

{0, . . . , T} and j ∈ {1, . . . , n}) with

Xi = X
(t)
i,t , Yi = max{ft+1(X

(t)
i,t+1), qt+1(X

(t)
i,t+1)} and Ȳi,n = max{ft+1(X

(t)
i,t+1), qn,t+1(X

(t)
i,t+1)}

and if we observe

1
nl

nl∑
i=1

|Yi − Ȳi,n|2 ≤
1
nl

nl∑
i=1

|qn,t+1(X
(t)
i,t+1)− qt+1(X

(t)
i,t+1)|

2.

In the seventh step of the proof we observe

1
nl

nl∑
i=1

|qn,t+1(X
(t)
i,t+1)− qt(X

(t)
i,t+1)|2 = OP(

∫
|qn,t+1(x)− qt+1(x)|2PXt+1(dx) + log |Pn|

nl
).

To see this, we condition on all data points X
(r)
j,s with r ≥ t + 1, s ∈ {0, . . . , T} and

j ∈ {1, . . . , n}. Then the assertion follows by an application of Bernstein inequality as in

steps 1 and 3.

The proof is complete. �
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