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Abstract

Pricing of American options in discrete time is considered, where the option is allowed to

be based on several underlyings. It is assumed that the price processes of the underlyings

are given Markov processes. We use the Monte Carlo approach to generate artificial

sample paths of these price processes, and then we use the least squares neural networks

regression estimates to estimate from this data the so-called continuation values, which

are defined as mean values of the American options for given values of the underlyings

at time t subject to the constraint that the options are not exercised at time t. Results

concerning consistency and rate of convergence of the estimates are presented, and the

pricing of American options is illustrated by simulated data.
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1 Introduction

In this article we consider American options in discrete time. The price V0 of such options

can be defined as a solution of an optimal stopping problem

V0 = sup
τ∈T (0,...,T )

E {fτ (Xτ )} . (1)

Here ft is the (discounted) payoff function, X0, X1, . . . , XT is the underlying stochastic

process describing e.g. the prices of the underlyings and the financial environment (like

interest rates, etc.) and T (0, . . . , T ) is the class of all {0, . . . , T}-valued stopping times,

i.e., τ ∈ T (0, . . . , T ) is a measurable function of X0, . . . , XT satisfying

{τ = α} ∈ F(X0, . . . ,Xα) for all α ∈ {0, . . . , T}.

As a simple example consider pricing of an American put option with strike K on the

arithmetic mean of several correlated underlyings, where the stock values are modelled

via Black-Scholes theory by

Xi,t = xi,0 · er·t · e
Pm

j=1
(σi,j ·Wj(t)− 1

2
σ2

i,jt) (i = 1, . . . ,m). (2)

Here r > 0 is the (given) riskless interest rate, σi = (σi,1, . . . , σi,m)T is the (given) volatility

of the i-th stock, xi,0 is the initial stock price of the i-th stock, and {Wj(t) : t ∈ IR+}
(j = 1, . . . ,m) are independent Wiener processes.

If we sell the option at time t > 0 and the stock prices are at this point x = (x1, . . . , xm)

(i.e., the arithmetic mean of the stock prices is 1
m

∑m
j=1 xj), we get the payoff

max







K − 1

m

m
∑

j=1

xj, 0







,

and if we discount this payoff towards time zero, we get the discounted payoff function

ft(x1, . . . , xm) = e−r·t · max







K − 1

m

m
∑

j=1

xj, 0







. (3)

But even if all the parameters are known (i.e., if xi,0 (i = 1, . . . ,m) and K are given and

if we estimate the volatilities σi (i = 1, . . . ,m) and the riskless interest rate from observed

data from the past), it is not obvious how we can compute the price

V0 = sup
τ∈T (0,...,T )

E

{

e−r·τ · max

{

K − 1

m

m
∑

i=1

Xi,τ , 0

}}
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of the corresponding American option.

In the above Black-Scholes model we can reformulate the whole problem as a free

boundary problem for partial differential equations (cf., e.g., Chapter 8 in Elliott and Kopp

(1999)), but the numerical solution of this free boundary problem gets very complicated

if the number m of underlyings gets large. In addition, for m ≤ 2 binomial trees (cf., e.g.,

Chapter 1 in Elliott and Kopp (1999)) are able to produce very good estimates of V0, but

for m > 3 it is with this method basically impossible to model the correlation structure of

the stocks correctly.

The purpose of this article is to develop an Monte Carlo algorithm which is able to

compute an approximation of the price (1) even in case that the option is based on a

large number of correlated stocks, that the stock prices are not modelled by a simple

Black-Scholes model as in (2) and that the payoff function is not as simple as in (3). In

particular the method developed in this article is also applicable in case that the process

Xi,t are adjusted to observed data by time series estimation as described, e.g., in Franke

and Diagne (2002).

In the sequel we assume that X0, X1, . . . , XT is a IRd–valued Markov process recording

all necessary information about financial variables including prices of the underlying assets

as well as additional risk factors driving stochastic volatility or stochastic interest rates.

Neither the Markov property nor the form of the payoff as a function of the state Xt is

restrictive and can always be achieved by including supplementary variables.

The computation of (1) can be done by determination of an optimal stopping rule

τ∗ ∈ T (0, . . . , T ) satisfying

V0 = E{fτ∗(Xτ∗)}. (4)

Let

qt(x) = sup
τ∈T (t+1,...,T )

E {fτ (Xτ )|Xt = x} (5)

be the so–called continuation value describing the value of the option at time t given

Xt = x and subject to the constraint of holding the option at time t rather than exercising

it. Here T (t + 1, . . . , T ) is the class of all {t + 1, . . . , T}–valued stopping times. It can be

shown that

τ∗ = inf{s ≥ 0 : qs(Xs) ≤ fs(Xs)} (6)
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satisfies (4), i.e., τ∗ is an optimal stopping time (cf., e.g., Chow, Robbins and Siegmund

(1971) or Shiryayev (1978)). Therefore it suffices to compute the continuation values (5)

in order to solve the optimal stopping problem (1).

The continuation values satisfy the dynamic programming equations

qT (x) = 0,

qt(x) = E {max{ft+1(Xt+1), qt+1(Xt+1)}|Xt = x} (t = 0, 1, . . . , T − 1). (7)

Indeed, by analogy to (6) we have

qt(x) = E{fτ∗

t
(Xτ∗

t
)|Xt = x} where τ∗

t = inf{s ≥ t + 1|qs(Xs) ≤ fs(Xs)},

hence by using the Markov property of {Xs}s=0,...,T we get

qt(Xt)

= E
{

ft+1(Xt+1) · I{qt+1(Xt+1)≤ft+1(Xt+1)} + fτ∗

t+1
(Xτ∗

t+1
) · I{qt+1(Xt+1)>ft+1(Xt+1)}|Xt

}

= E{E{. . . |X0, . . . ,Xt+1}|X0, . . . ,Xt}

= E {max{ft+1(Xt+1), qt+1(Xt+1)}|Xt} .

Unfortunately, the conditional expectation in (7) in general cannot be computed in ap-

plications. The basic idea of regression-based Monte Carlo methods for pricing American

options is to apply recursively regression estimates to artificially created samples of

(Xt,max {ft+1(Xt+1), q̂t+1(Xt+1)})

(so–called Monte Carlo samples) to construct estimates q̂t of qt. In connection with linear

regression this was proposed in Tsitsiklis and Van Roy (1999), and, based on a different

regression estimation than (7), in Longstaff and Schwartz (2001). Nonparametric least

squares regression estimates have been applied and investigated in this context in Egloff

(2005) and Egloff, Kohler and Todorovic (2006), smoothing spline regression estimates

have been analyzed in this context in Kohler (2006b), recursive kernel regression estimates

have been considered in Barty et al. (2006).

In this article we propose to use least squares neural networks regression estimates in

order to compute the conditional expectations in (7), which is particularly promising for

options based on several underlyings, where high-dimensional regression problems have
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to be solved in order to compute approximations of the continuation values. Due to the

well-known curse of dimensionality it is difficult to choose here a reasonable nonparametric

regression estimate, and neural networks belong (together with regression trees (cf., e.g.,

Breiman et al. (1984)) or interaction models (cf., e.g., Stone (1994))) to standard estimates

in this field.

Below we define least squares neural networks regression estimates of the continuation

values where all parameters of the estimates are chosen using the given data only. We

will show that these estimates are universally consistent in the sense that their L2 errors

converge to zero in probability for all distributions. Furthermore, under regularity condi-

tions on the smoothness of the continuation values we will analyze the rate of convergence

of the estimates. Finally, we will illustrate the estimates by applying them to simulated

data.

The precise definition of the estimates and the main theoretical results concerning con-

sistency and rate of convergence of the estimate are given in Sections 2 and 3, respectively.

The application of the estimates to simulated data will be described in Section 4, and the

proofs will be given in Section 5.

2 Definition of the estimate

Let σ : IR → [0, 1] be a sigmoid function, i.e., assume that σ is monotonically increasing

and satisfies

σ(x) → 0 (x → −∞) and σ(x) → 1 (x → ∞).

An example of such a sigmoid function is the logistic squasher defined by σ(x) = 1
1+e−x

(x ∈ IR). In the sequel we estimate the continuation values by neural networks with k ∈ IN

hidden neurons and a sigmoid function σ. We will use the principle of least squares to

fit such a function to the data, and for technical reasons we will restrict the sum of the

absolute values of the output weights. The choice of number k of hidden neurons will be

data-driven by using sample splitting.

Let βn > 0 (which we will choose later such that βn → ∞ (n → ∞)) and let Fk(βn)
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be a class of neural networks defined by

Fk(βn) =

{

k
∑

i=1

ci · σ(aT
i x + bi) + c0 : ai ∈ IRd, bi ∈ IR,

k
∑

i=0

|ci| ≤ βn

}

(8)

where σ is the sigmoid function from above.

In the sequel we describe an algorithm to estimate the continuation values qt recur-

sively. To do this we generate artificial independent Markov processes {X(l)
i,t }t=0,...,T (l =

0, 1, . . . , T − 1, i = 1, 2, . . . , n) which are identically distributed as {Xt}t=0,...,T . Then we

use these so-called Monte Carlo samples to generate recursively data to estimate qt by

using the regression representation given in (7).

We start with

q̂n,T (x) = 0 (x ∈ IRd) .

Fix t ∈ {0, 1, . . . , T − 1}. Given an estimate q̂n,t+1 of qt+1, we estimate

qt(x) = E{max{ft+1(Xt+1), qt+1(Xt+1)}|Xt = x}

by applying a neural networks regression estimate to an ’approximative’ sample of

(Xt,max{ft+1(Xt+1), qt+1(Xt+1)}).

With the notation

Ŷ
(t)
i,t = max{ft+1(X

(t)
i,t+1), q̂n,t+1(X

(t)
i,t+1)}

(where we have suppressed the dependency of Ŷ
(t)
i,t on n) this ’approximative’ sample is

given by

{(

X
(t)
i,t , Ŷ

(t)
i,t

)

: i = 1, . . . , n
}

. (9)

Observe that this sample depends on the t-th sample of {Xs}s=0,...,T and q̂n,t+1, i.e., for

each time step t we use a new sample of the stochastic process {Xs}s=0,...,T in order to

define our data (9).

To choose parameter k of the neural networks regression estimate fully automatically

we use splitting of the sample. Thus we subdivide (9) in a learning sample of size nl =

⌈n/2⌉ and a testing sample of size nt = n − nl and define for a given k ∈ Pn = {1, . . . , n}
a regression estimate of qt by

q̂k
nl,t

(·) = arg min
f∈Fk(βn)

(

1

nl

nl
∑

i=1

|f(X
(t)
i,t ) − Ŷ

(t)
i,t |2

)

, (10)
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where z = arg minx∈D f(x) is an abbreviation for z ∈ D and f(z) = minx∈D f(x). Here

we assume for simplicity that the above minima exist, however we do not require them to

be unique.

Then we minimize the empirical L2 risk on the testing sample in order to choose the

value of parameter k. So we choose

k̂ = arg min
k∈Pn

1

nt

n
∑

i=nl+1

|q̂k
nl,t

(X
(t)
i,t ) − Ŷ

(t)
i,t |2 (11)

and define our final neural networks regression estimate of qt by

q̂n,t(x) = q̂k̂
nl,t

(x) (x ∈ IRd). (12)

3 Theoretical results

We say that an = OP(bn) if lim supn→∞ P(an > c · bn) = 0 for some finite constant c. Our

main theoretical result is the following theorem.

Theorem 1 Let L > 0. Assume that X0,X1, . . . ,XT is a IRd-valued Markov process

and that the discounted payoff function ft is bounded in absolute value by L. Define the

estimate q̂n,t by (10),(11) and (12) for some βn > 0. Let kn ∈ Pn and assume that kn, βn

satisfy

βn → ∞ (n → ∞), kn → ∞ (n → ∞),
β4

n · kn · log n

n
→ 0 (n → ∞).

Then

∫

|q̂n,t(x) − qt(x)|2PXt(dx)

= OP

(

β4
n · kn · log n

n
+ max

s∈{t,t+1,...,T−1}
inf

f∈Fkn (βn)

∫

|f(x) − qt(x)|2PXs(dx)

)

for all t ∈ {0, 1, . . . , T}.

As a first consequence we get consistency of the estimate.

Corollary 1 Let L > 0. Assume that X0,X1, . . . ,XT is a IRd-valued Markov process and

that the discounted payoff function ft is bounded in absolute value by L, i.e.,

|ft(x)| ≤ L for x ∈ IRd and t ∈ {0, 1, . . . , T}. (13)
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Define the estimate q̂n,t by (10),(11) and (12). Let βn > 0 and assume that βn satisfies

βn → ∞ (n → ∞) ,
β4

n · log n

n
→ 0 (n → ∞).

Then

∫

|q̂n,t(x) − qt(x)|2PXt(dx) → 0 in probability

for all t ∈ {0, 1, . . . , T}.

Proof of Corollary 1. Because of the conditions of Corollary 1 we can choose kn ∈ Pn

such that kn → ∞ (n → ∞) and β4
n·kn·log n

n → 0 (n → ∞). By Theorem 1 we get

∫

|q̂n,t(x) − qt(x)|2PXt(dx)

= OP

(

β4
n · kn · log n

n
+ max

s∈{t,t+1,...,T−1}
inf

f∈Fkn (βn)

∫

|f(x) − qt(x)|2PXs(dx)

)

for all t ∈ {0, 1, . . . , T}. Condition (13) implies that qt is bounded, hence we get by Lemma

16.2 in Györfi et al. (2002)

max
s∈{t,t+1,...,T−1}

inf
f∈Fkn (βn)

∫

|f(x) − qt(x)|2PXs(dx) → 0 (n → ∞).

�

The above corollary shows that the L2 error of our estimate converges to zero in

probability for sample size of the Monte Carlo sample tending to infinity. In view of an

application with necessarily finite sample size it would be nice to know how quickly the er-

ror converges to zero for sample size tending to infinity. It is well-known in nonparametric

regression that assumptions on the underlying distribution, in particular on the smooth-

ness of the regression function, are necessary in order to be able to derive non-trivial rates

of convergence results (see, e.g., Cover (1968), Devroye (1982) or Chapter 3 in Györfi et al.

(2002)). For our neural networks estimate we restrict the smoothness of the continuation

values by imposing constraints on their Fourier transformation (see below).

In addition we assume that the stochastic process is bounded. Usually in modelling

of financial processes one models them by unbounded processes. In this case we choose a

large value A > 0 and replace Xt by its bounded approximation

XA
t = Xmin{t,τA} where τA = inf{s ≥ 0 : Xs /∈ [−A,A]d}.
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(Here we assume for simplicity that the stochastic process has continuous paths in order

to be able to neglect an additional truncation of XA
t ). This boundedness assumption

enables us to estimate the price of the American option from samples of polynomial size

in the number of free parameters, in contrast to Monte Carlo estimation from standard

(unbounded) Black-Scholes models, where Glasserman and Yu (2004) showed that samples

of exponential size in the number of free parameters are needed.

Next we analyze the rate of convergence of the estimate. To this end we need to

introduce the class of functions having Fourier transform with the first absolute moment

finite. The Fourier transform F̃ of a function f ∈ L1(IR
d) is defined by

F̃ (ω) =
1

(2π)d/2

∫

IRd

e−iωT xf(x)dx (ω ∈ IRd).

If F̃ ∈ L1(IR
d) then the inverse formula

f(x) =
1

(2π)d/2

∫

IRd
eiωT xF̃ (ω)dω (14)

holds almost everywhere with respect to the Lebesgue measure. Let 0 < C < ∞ and

consider the class of functions FC for which (14) holds on IRd and, in addition,
∫

IRd

‖ω‖F (ω)dω ≤ C. (15)

A class of functions satisfying (15) is a subclass of functions with Fourier transform having

first absolute moment finite, i.e.,
∫

IRd ‖ω‖F (ω)dω < ∞ (these functions are continuously

differentiable on IRd). The next corollary provides the rate of convergence of the estimate.

Corollary 2 Let L > 0. Assume that X0,X1, . . . ,XT is a IRd-valued Markov process,

Xt ∈ [−A,A]d almost surely for some A > 0 and all t ∈ {0, 1, . . . , T}, that the discounted

payoff function ft is bounded in absolute value by L, i.e.,

|ft(x)| ≤ L for x ∈ IRd and t ∈ {0, 1, . . . , T},

and that the Fourier transform Q̃t of qt satisfies (14) and (15) for all x ∈ IRd and all

t ∈ {0, . . . , T}. Let βn = const · log n and define the estimate q̂n,t by (10),(11) and (12).

Then
∫

|q̂n,t(x) − qt(x)|2PXt(dx) = OP

(

(

log5 n

n

)1/2
)

for all t ∈ {0, 1, . . . , T}.
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Proof of Corollary 2. Set kn =
(

n
log5 n

)1/2
. From Lemma 16.8 in in Györfi et al. (2002)

we have for n sufficiently large

max
s∈{t,t+1,...,T−1}

inf
f∈Fkn (βn)

∫

|f(x) − qt(x)|2PXs(dx) ≤ (2
√

dAC)2

kn
.

Then Theorem 1 implies

∫

|q̂n,t(x) − qt(x)|2PXt(dx)

= OP

(

β4
n · kn · log n

n
+ max

s∈{t,t+1,...,T−1}
inf

f∈Fkn (βn)

∫

|f(x) − qt(x)|2PXs(dx)

)

= OP

(

β4
n · kn · log n

n
+

(2
√

dAC)2

kn

)

= OP





√

log5 n

n





for all t ∈ {0, 1, . . . , T}. �

Remark. Assume X0 = x0 a.s. for some x0 ∈ IR. We can estimate the price

V0 = max{f0(x0), q0(x0)}

(cf., (1) and (5)) of the American option by

V̂0 = max{f0(x0), q̂n,0(x0)}.

Since the distribution of X0 is concentrated on x0, under the assumptions of Corollary 2

we have the following error bound:

|V̂0 − V0|2 = |max{f0(x0), q̂n,0(x0)} − max{f0(x0), q0(x0)}|2

≤ |q̂n,0(x0) − q0(x0)|2

= OP

(

(

log5 n

n

)1/2
)

.

4 Application to simulated data

In this section, we illustrate the finite sample behavior of our algorithm by comparing

it with the Tsitsiklis–Van Roy algorithm and Longstaff–Schwartz algorithm proposed by

Tsitsiklis and Van Roy (1999) and Longstaff and Schwartz (2001), respectively.
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We simulate the paths of the underlying stocks with a simple Black-Scholes model.

The time to maturity is assumed to be one year. We discretize the time interval [0, 1] by

dividing it into m equidistant time steps with t0 = 0 < t1 < . . . < tm = 1. In the first two

examples we consider an option on a single stock. The prices of the underlying stock at

time points tj (j = 0, . . . ,m) are then given by

Xi,tj = x0 · exp
(

(r − 1/2 · σ2) · tj + σ · Wtj

)

(i = 1, . . . , n , j = 0, . . . ,m).

We choose x0 = 100, r = 0.05, m = 12 and discount factors e−rtj for j = 0, . . . ,m. For our

algorithm we use sample size of 2000 while for the other algorithms sample size of 10000.

For our algorithm we set the number of learning and training samples to nl = nt =

1000. To simplify the implementation we select the k hidden neurons by sample splitting

(as described in Section 2) from the set {20, 21, . . . , 25}. The neural networks least squares

estimate is computed approximately by backpropagation (i.e., by gradient descent). For

the Longstaff–Schwartz and Tsitsiklis–Van Roy algorithms we use polynomials of degree 3

in the one-dimensional case and degree 1 in the high-dimensional case, since these choices

yield the best results.

We apply all three algorithms to 100 independently generated sets of paths. We would

like to stress that all three algorithms provide lower bounds to the optimal stopping

value. Since we evaluate the approximative optimal stopping rule on newly generated

data, a higher MCE indicates a better performance of the algorithm. We compare the

algorithms using boxplots. Observe that the higher the boxplot of the MCE the better

the performance of the corresponding algorithm.

In our first example we analyze a standard put-payoff with exercise price 90 as il-

lustrated in Figure 1, and simulate the paths of the underlying stock with a volatility of

σ = 0.25. As we can see from Figure 2, our algorithm is slightly better than the Longstaff–

Schwartz algorithm and comparable to the algorithm of Tsitsiklis–Van Roy. This is not

surprising, since it is well known that for simple payoff functions the Longstaff–Schwartz

as well as the Tsitsiklis–Van Roy algorithms perform very well.

In our second example we make the pricing problem more difficult. We consider m = 48

time steps, a strangle spread payoff with strikes 50, 90, 110 and 150 as illustrated in Figure

3, and a large volatility of σ = 0.5. Figure 4 shows that our algorithm provides a higher

11
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Figure 1: Put-payoff with exercise price 90.
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Figure 2: Boxplots for the realized option prices for the put-payoff of the Tsitsiklis–Van

Roy (price TR), Longstaff–Schwartz (price LS) algorithms and our algorithm (price KKT).

In the boxplot the box stretches from the 25th percentile to the 75th percentile and the

median is shown as a line across the box.
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Figure 3: Strangle spread payoff with strike prices 50, 90, 110 and 150.
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Figure 4: Realized option prices for the strangle spread-payoff of the Tsitsiklis–Van

Roy (price TR), Longstaff–Schwartz (price LS) and our algorithm (price KKT) in a 1-

dimensional case.

MCE of the option price than Longstaff–Schwartz and Tsitsiklis–Van Roy algorithms.

Finally, in our third example we consider the high-dimensional case and use for the

pricing problem a strangle spread function with strikes 75, 90, 110 and 125 for the average

of five correlated stock prices. The stocks are ADECCO R, BALOISE R, CIBA, CLARI-

ANT and CREDIT SUISSE R. The stock prices were observed from Nov. 10, 2000 until

Oct. 3, 2003 on weekdays when the stock market was open for the total of 756 days. We
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Figure 5: Realized option prices for the strangle spread-payoff of the Tsitsiklis–Van

Roy (price TR), Longstaff–Schwartz (price LS) and our algorithm (price KKT) in a 5-

dimensional case.

estimate the volatility from data observed in the past by the historical volatility

σ =























0.3024 0.1354 0.0722 0.1367 0.1641

0.1354 0.2270 0.0613 0.1264 0.1610

0.0722 0.0613 0.0717 0.0884 0.0699

0.1367 0.1264 0.0884 0.2937 0.1394

0.1641 0.1610 0.0699 0.1394 0.2535























.

Again we used x0 = 100, r = 0.05 and m = 48. As we can see in Figure 5, our algorithm

is superior to Longstaff–Schwartz and Tsitsiklis–Van Roy algorithms, since the higher

boxplot of the MCE again indicates better performance.

5 Proofs

5.1 Auxiliary results

In the sequel we formulate auxiliary results which will be needed in the derivation of the

rate of convergence. We start by defining so-called covering numbers:

Let x1, . . . , xn ∈ IRd and set xn
1 = (x1, . . . , xn). Define the distance d2(f, g) between

14



f, g : IRd → IR by

d2(f, g) =

(

1

n

n
∑

i=1

|f(xi) − g(xi)|2
)1/2

.

An ǫ-cover of F (w.r.t. the distance d2) is a set of functions f1, . . . , fκ : IRd → IR with the

property

min
1≤j≤κ

d2(f, fj) < ǫ for all f ∈ F .

Let N2(ǫ,F , xn
1 ) denote the size κ of the smallest ǫ-cover of F w.r.t. the distance d2, and

set N2(ǫ,F , xn
1 ) = ∞ if there does not exist any ǫ-cover of F of a finite size. N2(ǫ,F , xn

1 )

is called L2-ǫ-covering number of F on xn
1 .

In the appendix we will prove the following bound on the covering number of Fk(βn),

where Fk(βn) is defined by (8).

Lemma 1 Let Fk(βn) be defined by (8), let ǫ > 0 and let xn
1 ∈ (IRd)n. Then

N2(ǫ,Fk(βn), xn
1 ) ≤

(

12eβn(k + 1)

ǫ

)(4d+9)k+1

. (16)

In the proof we will use results concerning regression estimation in case of additional

measurement errors in the dependent variable, which we describe in the sequel.

Let (X,Y ), (X1, Y1), . . . be independent and identically distributed IRd × IR valued

random variables with EY 2 < ∞. Let m(x) = E{Y |X = x} be the corresponding

regression function. Assume that we want to estimate m from observed data, but instead

of a sample

Dn = {(X1, Y1), . . . , (Xn, Yn)}

of (X,Y ) we have only available a set of data

D̄n = {(X1, Ŷ1,n), . . . , (Xn, Ŷn,n)}

where the only assumption on Ŷ1,n, . . . , Ŷn,n is that the measurement error

1

n

n
∑

i=1

|Yi − Ŷi,n|2 (17)

is small. In particular we do not assume that the random variables in D̄n are indepen-

dent or identically distributed. In the sequel we are interested in the influence of the

measurement error (17) on the L2 error of a regression estimate applied to the data D̄n.

15



As we do not assume anything on the difference between the true y-values Yi and the

observed values Ŷi,n besides the assumption that (17) is small, it is clear that there is no

chance to get rid of this measurement error completely. But a natural conjecture is that a

small measurement error (17) does only slightly influence the L2 error of suitably defined

regression estimates. That this conjecture is indeed true was proven for the least squares

estimates in Kohler (2006a). Next we describe the part of this result, which will be needed

in the proof of our main result.

Assume

Yi, Ŷi,n ∈ [−L,L] a.s.

(i = 1, . . . , n) and define the estimate mn by

mn(·) = arg min
f∈Fn

(

1

n

n
∑

i=1

|f(Xi) − Ŷi,n|2
)

,

where Fn is a set of functions f : IRd → IR. Then the following result holds.

Lemma 2 Assume that Y − m(X) is sub-Gaussian in the sense that

C2E
{

e(Y −m(X))2/C2 − 1|X
}

≤ σ2
0 almost surely (18)

for some C, σ0 > 0. Let βn, L ≥ 1 and assume that the regression function is bounded in

absolute value by L and that βn satisfies βn → ∞ (n → ∞). Let Fn be a set of functions

f : IRd → [−βn, βn] and define the estimate mn as above. Then there exist constants

c1, c2, c3 > 0 depending only on σ0 and C such that for any δn which satisfies

δn → 0 (n → ∞) and
n · δn

β2
n

→ ∞ (n → ∞)

and

c1

√
nδ

β2
n

≥

∫

√
δ

(c2δ)/β2
n

(

logN2

(

u

4βn
, {f − g : f ∈ Fn,

1

n

n
∑

i=1

|f(xi) − g(xi)|2 ≤ δ

β2
n

}, xn
1

))1/2

du

for all δ ≥ δn, all x1, . . . , xn ∈ IRd and all g ∈ Fn ∪ {m} we have

P

{∫

|mn(x) − m(x)|2µ(dx) >

c3

(

1

n

n
∑

i=1

|Yi − Ŷi,n|2 + δn + inf
f∈Fn

∫

|f(x) − m(x)|2µ(dx)

)

}

→ 0

16



for n → ∞.

Proof. See proof of Theorem 1 in Kohler (2006a) and observe that we can assume βn ≥ L

(since βn → ∞ for n → ∞). �

The above lemma enables us to analyze the rate of convergence of the estimate for

fixed function space. Next we explain how we can use the data to choose an appropriate

function space from a finite collection

{Fn,k : k ∈ Pn}

of function spaces. To do this we split the sample into a learning sample

D̂nl
=
{

(X1, Ŷ1,n), . . . , (Xnl
, Ŷnl,n)

}

of size nl = ⌈n/2⌉ and a testing sample

{

(Xnl+1, Ŷnl+1,n), . . . , (Xn, Ŷn,n)
}

of size nt = n − nl. For fixed k ∈ Pn we use the learning sample to define a estimate mk
nl

by

mk
nl

(·) = arg min
f∈Fn,k

(

1

nl

nl
∑

i=1

|f(Xi) − Ŷi,n|2
)

Next we choose k̂ ∈ Pn by minimizing the empirical L2 risk on the testing sample, i.e., we

set

mn(x) = mk̂
nl

(x) (x ∈ IRd),

where

k̂ = arg min
k∈Pn

1

nt

n
∑

i=nl+1

|mk
nl

(Xi) − Ŷi,n|2.

Then the following result holds.

Lemma 3 Assume that Y −m(X) is sub-Gaussian in the sense that (18) holds for some

C, σ > 0 and assume |Pn| → ∞ (n → ∞). Assume furthermore that conditioned on

X1, . . . ,Xn the data sets

D̂nl
and {Ynl+1, . . . , Yn}

17



are independent. Let for each k ∈ Pn a set Fn,k of functions f : IRd → IR be given and let

the estimate mn be defined as above. Then

1

nt

n
∑

i=nl+1

|mn(Xi) − m(Xi)|2

= OP





log |Pn|
nt

+
1

nt

n
∑

i=nl+1

|Yi − Ŷi,n|2 + min
k∈Pn

1

nt

n
∑

i=nl+1

|mk
nl

(Xi) − m(Xi)|2


 .

Proof. The results follows by applying Lemma 2 in Kohler (2006a) conditioned on D̂nl

and X1, . . . ,Xn and with

Fn = {mk
nl

: k ∈ Pn}.

Here we bound the covering number by the finite cardinality |Pn| of the set of estimates.

�

5.2 Proof of Theorem 1

Before we start with the proof, observe that the boundedness of the discounted payoff

function ft by L implies |qt(x)| ≤ L for x ∈ IRd. W.l.o.g. assume βn ≥ L (since βn → ∞
for n tending to infinity).

In the sequel we will show

∫

|q̂n,s(x) − qs(x)|2PXs(dx)

= OP

(

β4
n · kn · log n

n
+ max

t∈{s,s+1,...,T−1}
inf

f∈Fkn (βn)

∫

|f(x) − qt(x)|2PXt(dx)

)

(19)

for all s ∈ {0, 1, . . . , T}.
For s = T we have q̂n,T (x) = 0 = qT (x), so the assertion is trivial. So let t < T and

assume that the assertion holds for s ∈ {t + 1, . . . , T}. By induction it suffices to show

(19) for s = t, which we will show in the sequel in seven steps.

In the first step of the proof we show

∫

|q̂n,t(x) − qt(x)|2PXt(dx) = OP





1

nt

n
∑

i=nl+1

|q̂n,t(X
(t)
i,t ) − qt(X

(t)
i,t )|2 +

β4
n · log |Pn|

nt



 .

Let Dn,t be the set of all X
(r)
j,s with either r ≥ t + 1, s ∈ {0, . . . , T} and j ∈ {1, . . . , n} or

r = t, s ∈ {0, . . . , T} and j ∈ {1, . . . , nl}. Conditioned on Dn,t,

18



{q̂k
nl,t

: k ∈ Pn}

consists of |Pn| different functions. Furthermore, because of boundedness of q̂k
nl,t

and qt

by βn we have

σ2
k := Var{|q̂k

nl,t
(X

(t)
nl+1,t) − qt(X

(t)
nl+1,t)|2|Dn,t}

≤ E{|q̂k
nl,t

(X
(t)
nl+1,t) − qt(X

(t)
nl+1,t)|4|Dn,t}

≤ 4β2
n

∫

|q̂k
nl,t

(x) − qt(x)|2 PXt(dx).

Using this and the Bernstein inequality (cf., e.g., Lemma A.2 in Györfi et al. (2002)) we

get using the notation ǫn = c4 · (β4
n log |Pn|)/nt:

P{
∫

|q̂n,t(x) − qt(x)|2 PXt(dx) > (4β2
n + 1) · 1

nt

n
∑

i=nl+1
|q̂n,t(X

(t)
i,t ) − qt(X

(t)
i,t )|2 + ǫn |Dn,t}

≤ |Pn| · max
k∈Pn

P{
∫

|q̂k
nl,t

(x) − qt(x)|2PXt(dx)

> (4β2
n + 1) · 1

nt

n
∑

i=nl+1
|q̂k

nl,t
(X

(t)
i,t ) − qt(X

(t)
i,t )|2 + ǫn | Dn,t}

≤ |Pn| · max
k∈Pn

P{
∫

|q̂k
nl,t

(x) − qt(x)|2PXt(dx) + 4β2
n

∫

|q̂k
nl,t

(x) − qt(x)|2 PXt(dx)

> (4β2
n + 1) · 1

nt

n
∑

i=nl+1
|q̂k

nl,t
(X

(t)
i,t ) − qt(X

(t)
i,t )|2 + ǫn + σ2

k| Dn,t}

≤ |Pn| · max
k∈Pn

P{
∫

|q̂k
nl,t

(x) − qt(x)|2 PXt(dx) − 1
nt

n
∑

i=nl+1
|q̂k

nl,t
(X

(t)
i,t ) − qt(X

(t)
i,t )|2

> 1
4β2

n+1
·
(

σ2
k + ǫn

)

|Dn,t}

≤ |Pn| · max
k∈Pn

exp





−nt·
„

σ2
k
+ǫn

4β2
n+1

«2

2σ2
k
+2

σ2
k
+ǫn

4β2
n+1

· 4β2
n

3





≤ |Pn| · max
k∈Pn

exp

(

− nt(σ2
k
+ǫn)

2(4β2
n+1)2+2(4β2

n+1)· 4β2
n

3

)

≤ |Pn| · exp

(

− c4

2(4β2
n+1)2+2(4β2

n+1)· 4β2
n

3

· β4
n log |Pn|

)

→ 0 (n → ∞)

provided we choose c4 sufficiently large.
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In the second step of the proof we show

1
nt

n
∑

i=nl+1
|q̂n,t(X

(t)
i,t ) − qt(X

(t)
i,t )|2

= OP

(

1
nt

n
∑

i=nl+1
|q̂n,t+1(X

(t)
i,t+1) − qt+1(X

(t)
i,t+1)|2 + log |Pn|

nt

+ min
k∈Pn

1
nt

n
∑

i=nl+1
|qk

nl,t
(X

(t)
i,t ) − qt(X

(t)
i,t )|2

)

.

To do this we apply Lemma 3. In the context of Lemma 3 we have

Xi = X
(t)
i,t , Yi = max{ft+1(X

(t)
i,t+1), qt+1(X

(t)
i,t+1)} and Ŷi,n = max{ft+1(X

(t)
i,t+1), q̂n,t+1(X

(t)
i,t+1)}.
(20)

Observing

1

nt

n
∑

i=nl+1

|Yi − Ŷi,n|2 ≤ 1

nt

n
∑

i=nl+1

|qt+1(X
(t)
i,t+1) − q̂n,t+1(X

(t)
i,t+1)|2

the assertion follows from Lemma 3 if we apply it conditioned on Dn,t.

In the third step of the proof we show

1
nt

n
∑

i=nl+1
|q̂n,t+1(X

(t)
i,t+1) − qt+1(X

(t)
i,t+1)|2 = OP

(

∫

|q̂n,t+1(x) − qt+1(x)|2PXt+1
(dx) + β4

n·log |Pn|
nt

)

.

Using

P{ 1
nt

n
∑

i=nl+1
|q̂n,t+1(X

(t)
i,t+1) − qt+1(X

(t)
i,t+1)|2

> (4β2
n + 1)

∫

|q̂n,t+1(x) − qt+1(x)|2PXt+1
(dx) + ǫn|Dn,t}

= P{ 1
nt

n
∑

i=nl+1
|q̂n,t+1(X

(t)
i,t+1) − qt+1(X

(t)
i,t+1)|2 −

∫

|q̂n,t+1(x) − qt+1(x)2PXt+1
(dx)

> 4β2
n ·
∫

|q̂n,t+1(x) − qt+1(x)|2PXt+1
(dx) + ǫn|Dn,t}

this follows as in the first step by an application of the Bernstein inequality.

In the fourth step of the proof we show

min
k∈Pn

1
nt

n
∑

i=nl+1
|q̂k

nl,t
(X

(t)
i,t ) − qt(X

(t)
i,t )|2 = OP

(

∫

|q̂kn
nl,t

(x) − qt(x)|2PXt(dx) + β4
n·log |Pn|

nt

)

.

To see this, we observe that we have as in the third step of the proof

1
nt

n
∑

i=nl+1
|q̂kn

nl,t
(X

(t)
i,t ) − qt(X

(t)
i,t )|2 = OP

(

∫

|q̂kn
nl,t

(x) − qt(x)|2PXt(dx) + β4
n·log |Pn|

nt

)

,

hence the assertion follows from

min
k∈Pn

1
nt

n
∑

i=nl+1
|q̂k

nl,t
(X

(t)
i,t ) − qt(X

(t)
i,t )|2 ≤ 1

nt

n
∑

i=nl+1
|q̂kn

nl,t
(X

(t)
i,t ) − qt(X

(t)
i,t )|2.
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In the fifth step of the proof we show

∫

|q̂kn
nl,t

(x) − qt(x)|2PXt(dx)

= OP

(

1
nl

nl
∑

i=1
|Yi − Ŷi,n|2 + δn + inff∈Fkn (βn)

∫

|f(x) − qt(x)|2PXt(dx)

)

,

where δn = c6 · β4
n · kn · log(n)/n and Yi and Ŷi,n are defined in (20). To do this we show

that with this choice of δn the conditions of Lemma 2 are satisfied.

Observe that Y1 is bounded in absolute value by L, hence (18) holds. By Lemma 1 we

get for g ∈ Fkn
(βn) ∪ {qt}

N2

(

u

4βn
,
{

f − g : f ∈ Fkn
(βn),

1

n

n
∑

i=1

|f(Xi) − g(Xi)|2 ≤ δ

β2
n

}

,Xn
1

)

≤ N2

(

u

4βn
,Fkn

(βn),Xn
1

)

≤
(

48eβ2
n(kn + 1)

u

)(4d+9)kn+1

,

thus

∫

√
δ

(c2δ)/β2
n

{

logN2

(

u

4βn
,
{

f − g : f ∈ Fkn
(βn),

1

n

n
∑

i=1

|f(Xi) − g(Xi)|2 ≤ δ

β2
n

}

,Xn
1

)}1/2

du

≤
∫

√
δ

(c2δ)/β2
n

{

log

(

48eβ2
n(kn + 1)

u

)(4d+9)kn+1
}1/2

du.

Let δ > 1/n. Then by bounding u from below by (c2δ)/β
2
n and using constant c5 > 0 we

get

∫

√
δ

(c2δ)/β2
n

{

log

(

48eβ2
n(kn + 1)

u

)(4d+9)kn+1
}1/2

du

≤
∫

√
δ

(c2δ)/β2
n

{

log

(

48eβ4
n(kn + 1)

c2δ

)(4d+9)kn+1
}1/2

du

≤
∫

√
δ

(c2δ)/β2
n

{

log

(

48eβ4
n(kn + 1)n

c2

)(4d+9)kn+1
}1/2

du

≤ c5

√
δ
√

kn(log(n))1/2.
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This together with

c1
√

nδ
β2

n
≥ c5

√
δ
√

kn

√

log(n)

⇔ δ ≥ c6β
4
nkn

log(n)

n

shows that

δn := c6β
4
nkn

log(n)

n

satisfies the condition of Lemma 2.

In the sixth step of the proof we show

1
nl

nl
∑

i=1
|Yi − Ŷi,n|2 = OP

(

∫

|q̂n,t+1(x) − qt+1(x)|2PXt+1
(dx) + β4

n·log |Pn|
nl

)

.

First we observe

1

nl

nl
∑

i=1

|Yi − Ŷi,n|2 ≤ 1

nl

nl
∑

i=1

|q̂n,t+1(X
(t)
i,t+1) − qt+1(X

(t)
i,t+1)|2.

To show

1
nl

nl
∑

i=1
|q̂n,t+1(X

(t)
i,t+1) − qt+1(X

(t)
i,t+1)|2 = OP(

∫

|q̂n,t+1(x) − qt+1(x)|2PXt+1
(dx) + β4

n·log |Pn|
nl

)

we condition on all data points X
(r)
j,s with r ≥ t + 1, s ∈ {0, . . . , T} and j ∈ {1, . . . , n}.

Then the assertion follows by an application of Bernstein inequality as in steps 1 and 3.

In the seventh (and last) step of the proof we observe that we get by induction

∫

|q̂n,t+1(x) − qt+1(x)|2PXt+1
(dx)

= OP

(

β4
n·kn·log n

n + maxs∈{t+1,...,T−1} inff∈Fkn (βn)

∫

|f(x) − qt(x)|2PXs(dx)

)

.

We complete the proof by gathering the above results. �

6 Appendix

Lemma 4 Let F and G be two families of real functions on IRm. If F ⊕ G denotes the

set of functions {f + g : f ∈ F , g ∈ G}, then for any zn
1 ∈ IRn·m and ǫ, δ > 0, we have

N2(ǫ + δ,F ⊕ G, zn
1 ) ≤ N2(ǫ,F , zn

1 )N2(δ,G, zn
1 ) .
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Proof of Lemma 4. Let {f1, . . . , fK} and {g1, . . . , gΛ} be an ǫ-cover and a δ-cover of F
and G, respectively, on zn

1 of minimal size. Then, for every f ∈ F and g ∈ G, there exist

κ ∈ {1, . . . ,K} and λ ∈ {1, . . . ,Λ} such that

(

1

n

n
∑

i=1

|f(zi) − fκ(zi)|2
)1/2

< ǫ

and
(

1

n

n
∑

i=1

|g(zi) − gλ(zi)|2
)1/2

< δ .

By the triangle inequality for norms we have

(

1

n

n
∑

i=1

|f(zi) + g(zi) − (fκ(zi) − gλ(zi))|2
)1/2

≤
(

1

n

n
∑

i=1

|f(zi) − fκ(zi)|2
)1/2

+

(

1

n

n
∑

i=1

|g(zi) − gλ(zi)|2
)1/2

≤ ǫ + δ

which proves that {fκ + gλ : 1 ≤ κ ≤ K, 1 ≤ λ ≤ Λ} is an (ǫ + δ)-cover of F ⊕ G on zn
1 . �

Lemma 5 Let F and G be two families of real functions on IRm such that |f(x)| ≤ M1

and |g(x)| ≤ M2 for all x ∈ IRm, f ∈ F , g ∈ G. If F ⊙ G denotes the set of functions

{f · g : f ∈ F , g ∈ G} then, for any zn
1 ∈ IRn·m and ǫ, δ > 0 we have

N2(ǫ + δ,F ⊙ G, zn
1 ) ≤ N2(ǫ/M2,F , zn

1 )N2(δ/M1,G, zn
1 ) .

Proof of Lemma 5. Let {f1, . . . , fK} and {g1, . . . , gΛ} be an ǫ/M2-cover and a δ/M1-

cover of F and G, respectively, on zn
1 of minimal size. By the boundedness of f and g we

can assume w.l.o.g. |fκ(z)| ≤ M1, |gλ(z)| ≤ M2. For every f ∈ F and g ∈ G, there exist

κ ∈ {1, . . . ,K} and λ ∈ {1, . . . ,Λ} such that

(

1

n

n
∑

i=1

|f(zi) − fκ(zi)|2
)1/2

<
ǫ

M2

and
(

1

n

n
∑

i=1

|g(zi) − gλ(zi)|2
)1/2

<
δ

M1
.
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We have, by the triangle inequality of norms

(

1

n

n
∑

i=1

|f(zi) · g(zi) − fκ(zi) · gλ(zi)|2
)1/2

=

(

1

n

n
∑

i=1

|f(zi) · (gλ(zi) + g(zi) − gλ(zi)) − fκ(zi) · gλ(zi)|2
)1/2

≤
(

1

n

n
∑

i=1

|gλ(zi) · (f(zi) − fκ(zi))|2
)1/2

+

(

1

n

n
∑

i=1

|f(zi) · (g(zi) − gλ(zi))|2
)1/2

≤ M2 ·
(

1

n

n
∑

i=1

|f(zi) − fκ(zi)|2
)1/2

+ M1 ·
(

1

n

n
∑

i=1

|g(zi) − gλ(zi)|2
)1/2

≤ ǫ + δ

which implies that {fκ · gλ : 1 ≤ κ ≤ K, 1 ≤ λ ≤ Λ} is an (ǫ + δ)-cover of F ⊙ G on zn
1 . �

Proof of Lemma 1: Define the following classes of functions:

G1 = {aT x + b : a ∈ IRd, b ∈ IR} ,

G2 = {σ(aT x + b) : a ∈ IRd, b ∈ IR} ,

G3 = {c · σ(aT x + b) : a ∈ IRd, b ∈ IR, c ∈ [−βn, βn]} ,

where σ : IR → [0, 1] is a sigmoid function (i.e. σ is a nondecreasing function with the

property limx→−∞ σ(x) = 0 and limx→∞ σ(x) = 1) and βn > 0.

G1 is a linear vector space of dimension d+1, thus Theorem 9.5 in Györfi et al. (2002)

implies

VG+

1

≤ d + 2,

where G+ denotes the set

G+ = {{(z, t) ∈ IRd × IR, t ≤ g(z)}; g ∈ G}

for all subgraphs of functions of G and VG+ is the so-called VC-dimension of G+ (see Györfi

et al. (2002), Definition 9.6).

Since σ is a nondecreasing function, Lemma 16.3 in Györfi et al. (2002) yields

VG+

2

≤ d + 2 .
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Thus, by Theorem 9.4 in Györfi et al. (2002), we have for 0 < ǫ < 1/4

N2(ǫ,G2, x
n
1 ) ≤ M2(ǫ,G2, x

n
1 )

≤ 3

(

2e

ǫ2
log

3e

ǫ2

)d+2

≤ 3

(

3e

ǫ2

)2d+4

.

By Lemma 5 we have for 0 < ǫ/2βn < 1/4 or equivalently 0 < ǫ < βn/2

N2(ǫ,G3, x
n
1 )

≤ N2

( ǫ

2
, {c : |c| ≤ βn}, xn

1

)

N2

(

ǫ

2βn
,G2, x

n
1

)

≤ 2βn

(ǫ/2)
· 3
(

3e

(ǫ/(2βn))2

)2d+4

≤
(

12eβn

ǫ

)4d+9

.

By applying Lemma 4 we obtain for 0 < ǫ < (k + 1) · βn/2

N2(ǫ,Fk(βn), xn
1 )

≤ N2

(

ǫ

k + 1
, {c0 : |c0| ≤ βn}, xn

1

)

(

N2

(

ǫ

k + 1
,G3, x

n
1

)

)k

≤ 2βn(k + 1)

ǫ

(

12eβn(k + 1)

ǫ

)(4d+9)k

≤
(

12eβn(k + 1)

ǫ

)(4d+9)k+1

. (21)

By boundedness of Fn(βn), the proof is trivial for ǫ ≥ (k+1) ·βn/2 ≥ βn, which completes

the proof. �
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