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Abstract

The problem of the estimation of a regression function by continuous piece-

wise linear functions is formulated as a nonconvex, nonsmooth optimization

problem. Estimates are defined by minimization of the empirical L2 risk over a

class of functions, which are defined as maxima of minima of linear functions.

An algorithm for finding continuous piecewise linear functions is presented.

We observe that the objective function in the optimization problem is semi-

smooth, quasidifferentiable and piecewise partially separable. The use of these

properties allow us to design an efficient algorithm for approximation of sub-

gradients of the objective function and to apply the discrete gradient method

for its minimization. We present computational results with some simulated

data and compare the new estimator with a number of existing ones.

Key words: nonsmooth optimization, nonparametric regression, subdifferential,
semismooth functions.

1 Introduction

We consider the problem of estimating a multivariate regression function given a
sample of the underlying distribution and develop an algorithm for the computation
of continuous piecewise linear functions approximating such regression functions.

In applications usually no a priori information about the regression function is
known, therefore it is necessary to apply nonparametric methods for this estima-
tion problem. There are several established methods for nonparametric regression,
including regression trees like CART [6], adaptive spline fitting like MARS [10] and
least squares neural network estimates (Chapter 11 in [12]). All these methods min-
imize a kind of least squares risk of the regression estimate, either heuristically over
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a fixed and very complex function space as for neural networks or over a stepwise de-
fined data dependent space of piecewise constant functions or piecewise polynomials
as for CART or MARS.

In this paper, we consider a rather complex function space consisting of contin-
uous piecewise linear functions, over which we minimize an empirical least squares
risk. Since each continuous piecewise linear function can be represented as a maxima
of minima of linear functions [5], we use such a representation to estimate regres-
sion functions. We fit a linear spline function with free knots to the data. But in
contrast to MARS, we do not need heuristics to choose these free knots, but use
instead nonsmooth optimization methods to compute our estimate approximately
in an application. Since continuous piecewise linear functions are, in general, nons-
mooth and nonconvex, the resulting least squares risk is nonconvex and nonsmooth
function. The Clarke subdifferential can be used to design algorithms for mini-
mization of such functions [8]. However, the objective function is also non-regular
and the Clarke sudifferential calculus cannot be used to estimate its subgradients.
In this paper, we present an algorithm to approximate subgradients of the least
squares risk function. Then we present the discrete gradient method which is based
on those approximations to compute piecewise linear functions. We also present
the computational results with simulated data and compare the proposed algorithm
with various regression estimates.

The structure of the paper is as follows. Section 2 gives the definition of the
estimate and the optimization reformulation of the problem of estimating a regres-
sion function. Properties of the objective function in the optimization problem are
discussed in Section 3. An algorithm for approximation of subgradients is described
in Section 4 and the minimization algorithm in Section 5. The implementation of
the minimization algorithm is discussed in Section 6. We present numerical results
with simulated data in Section 7. Section 8 concludes the paper.

2 Regression estimation

In regression analysis an IRp × IR1-valued random vector (U, V ) with EV 2 < ∞ is
considered and the dependency of V on the value of U is of interest. More precisely,
the goal is to find a function ϕ : IRp → IR1 such that ϕ(U) is a “good approximation”
of V . In the sequel we assume that the main aim of the analysis is minimization of
the mean squared prediction error or L2 risk

E{|ϕ(U) − V |2}. (1)

In this case the optimal function is the so-called regression function
m : IRp → IR1, m(u) = E{V |U = u}. Indeed, let ϕ : IRp → IR1 be an arbitrary
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(measurable) function and denote the distribution of U by µ. Then

E{|ϕ(U) − V |2} = E{((ϕ(U) −m(U)) + (m(U) − V ))2}
= E{|ϕ(U) −m(U)|2} + E{|m(U) − V |2}

= E{|m(U) − V |2} +

∫

|ϕ(u) −m(u)|2µ(du). (2)

Here the second equation follows from

E{(ϕ(U) −m(U)) · (m(U) − V )}
= E{(ϕ(U) −m(U)) · E{(m(U) − V )|U}} = 0.

Since the integral on the right-hand side of (2) is always nonnegative, (2) implies
that the regression function is the optimal predictor in view of minimization of the
L2 risk:

E{|m(U) − V |2} = min
ϕ:IRp→IR1

E{|ϕ(U) − V |2}. (3)

In addition, any function ϕ is a good predictor in the sense that its L2 risk is close
to the optimal value, if and only if the so-called L2 error

∫

|ϕ(u) −m(u)|2µ(du) (4)

is small. This motivates to measure the error caused by using a function ϕ instead
of the regression function by the L2 error (4).

In applications, usually the distribution of (U, V ) (and hence also the regression
function) is unknown. But often it is possible to observe a sample of the underlying
distribution. This leads to the regression estimation problem. Here (U, V ), (U1, V1),
(U2, V2), . . . are independent and identically distributed random vectors. The set of
data

Dl = {(U1, V1), . . . , (Ul, Vl)}
is given, and the goal is to construct an estimate

ml(·) = ml(·,Dl) : IRp → IR1

of the regression function such that the L2 error

∫

|ml(u) −m(u)|2µ(du)

is small. For a detailed introduction to nonparametric regression we refer the reader
to the monograph [11].
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2.1 Least squares estimates

The regression function minimizes the L2 risk (1) over the set of all measurable
functions, so in principle it can be computed by solving a minimization problem.
However, in an application the term to be minimized is unknown, because it depends
on the unknown distribution of (U, V ). For least squares estimates the given data
is used to estimate the L2 risk by the so-called empirical L2 risk

1

l

l
∑

i=1

|ϕ(Ui) − Vi|2, (5)

and the regression estimate is defined by minimizing (5). Minimization of (5) with
respect to all measurable functions (as in (3)) leads to an estimate, which usually (at
least if the values of U1, . . . , Ul are distinct) interpolates the given data. Obviously,
such an estimate is not a reasonable estimate for m(u) = E{V |U = u}. In order
to avoid this so-called overfitting, for least squares estimates, first a class Fl of
functions ϕ : IRp → IR1 is chosen and then the estimate is defined by minimizing
the empirical L2 risk over Fl, i.e.,

ml(·) = arg min
ϕ∈Fl

1

l

l
∑

i=1

|ϕ(Ui) − Vi|2. (6)

Here we assume that the minimum exists, however we do not require that it is
unique.

2.2 Definition of the estimate

In the sequel we will use continuous piecewise linear functions to define Fl. Since
any continuous piecewise linear function can be represented as a max-min of finite
number of linear functions (see [5]) we consider maxima of minima of linear functions.
More precisely, let Kl ∈ IN and L1,l, . . . , LKl,l ∈ IN be parameters of the estimate
and set

Fl =

{

ϕ : IRp → IR1 : ϕ(u) = max
k=1,...,Kl

min
j=1,...,Lk,l

(

〈xk,j, u〉 + yk,j

)

(u ∈ IRp),

for some xk,j ∈ IRp, yk,j ∈ IR1

}

where

〈xk,j, u〉 =

p
∑

i=1

xk,j
i ui

denotes the scalar product between xk,j = (xk,j
1 , . . . , xk,j

p )T and u = (u1, . . . , up)
T .

For this class of functions the estimate ml is defined by (6).
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2.3 Formulation of optimization problem

It follows from (5) that the estimation of a regression function by continuous piece-
wise linear function can be formulated as the following minimization problem:

minimize F (x, y) =
1

l

l
∑

i=1

(

max
k=1,...,Kl

min
j=1,...,Lk,l

(

〈xk,j, Ui〉 + yk,j

)

− Vi

)2

(7)

subject to
xk,j ∈ IRp, yk,j ∈ IR1, k = 1, . . . , Kl, j = 1, . . . , Lk,l.

Here
x = (x1,1

1 , . . . , x1,1
p , . . . , x

Kl,LKl,l

1 , . . . , x
Kl,LKl,l

p ) ∈ IRq×p,

y = (y1,1, . . . , . . . , yKl,LKl,l
) ∈ IRq

and

q =

Kl
∑

k=1

Lk,l.

In the next section we study some properties of the function F .

3 Properties of F

In general, the objective function F in Problem (7) is nonsmooth and nonconvex.
The number of its local minimizers is large, if the numbers l and q are large. The
theory of Clarke generalized gradients can be applied to study such functions. Before
describing properties of the function F we recall definitions of a Clarke subdifferen-
tial, a quasidiffential, semismooth and piecewise partially separable functions.

A function f , defined on IRn, is called locally Lipschitz continuous if for any
bounded subset X ⊂ IRn there exists an R > 0 such that

|f(x) − f(y)| ≤ R‖x− y‖ ∀x, y ∈ X.

In [7] (see, also [8]) Clarke introduced generalized gradients for Lipschitz functions.
Since a locally Lipschitz function f is differentiable almost everywhere we can define
for it a subdifferential by

∂f(x) = co
{

v ∈ IRn : ∃(xk ∈ D(f)) : x = lim
k→∞

xk and v = lim
k→∞

∇f(xk)
}

,

here D(f) denotes the set where f is differentiable, co denotes the convex hull of a
set. The mapping ∂f(x) is upper semicontinuous and bounded on bounded sets [8].
The generalized directional derivative of f at x in the direction g is defined as

f 0(x, g) = lim sup
y→x,α↓0

α−1[f(y + αg) − f(y)].
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For the locally Lipschitz function f the generalized directional derivative exists and
f 0(x, g) = max{〈v, g〉 : v ∈ ∂f(x)}. f is called a Clarke regular function on IRn, if it
is directionally differentiable and f ′(x, g) = f 0(x, g) for all x, g ∈ IRn, where f ′(x, g)
is a derivative of the function f at the point x in the direction g:

f ′(x, g) = lim
α↓0

α−1[f(x+ αg) − f(x)].

Let f be a locally Lipschitz continuous function defined on IRn. For a point x to
be a local minimizer of the function f on IRn, it is necessary that 0 ∈ ∂f(x).

A function f : IRn → IR1 is called semismooth at x ∈ IRn, if it is locally Lipschitz
at x and for each g ∈ IRn and for any sequences {tk} ⊂ IR1, {gk} ⊂ IRn, {vk} ⊂ IRn

such that tk ↓ 0, gk → g, vk ∈ ∂f(x+ tkg
k), the limit

lim
k→∞

〈vk, g〉

exists [13]. The semismooth function f is directionally differentiable and

f ′(x, g) = lim
k→∞

〈vk, g〉, vk ∈ ∂f(x + tkg
k).

A function f is called quasidifferentiable at a point x, if it is locally Lipschitz
continuous, directionally differentiable at this point and there exist convex, compact
sets ∂f(x) and ∂f(x) such that:

f ′(x, g) = max {〈u, g〉 : u ∈ ∂f(x)} + min
{

〈v, g〉 : v ∈ ∂f(x)
}

.

The set ∂f(x) is called a subdifferential, the set ∂f(x) a superdifferential and the
pair [∂f(x), ∂f(x)] a quasidifferential of the function f at a point x [9].

The function f is called a partially separable if there exists a family of n × n
diagonal matrices Qi, i = 1, . . . ,M such that the function f can be represented as
follows:

f(x) =

M
∑

i=1

fi(Qix).

We assume that the matrices Qi are binary, that is they contain only 0 and 1 and the
number of non-zero elements in the diagonal of the matrixQi is much smaller than n.
In other terms, the function f is called partially separable if it can be represented
as the sum of functions of a much smaller number of variables. If M = n and
diag(Qi) = ei where ei is the i− th orth vector, then the function f is separable.

The function f is said to be piecewise partially separable if there exists a finite
family of closed sets D1, . . . , Dm such that

⋃m

i=1
Di = IRn and the function f is

partially separable on each set Di, i = 1, . . . , m (see [2]).

Now we can describe some of properties of the function F .
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Proposition 1. The function F is locally Lipschitz continuous.

Proof: One can see from the definition of the function F that it is represented as a
smooth composition of max-min type functions. More precisely, it is represented as
a smooth composition of continuous nonconvex piecewise linear functions. Therefore
it is nonconvex. Since both smooth and continuous piecewise linear functions are
locally Lipschitz continuous the function F is also locally Lipschitz continuous.

Remark 1. In general, nonconvex piecewise linear functions are not regular, then
the function F , in general, is not regular. It follows from Proposition 1 that F is
subdifferentiable, however it is nonregular. The Clarke subdifferential calculus for
such functions exists in the form of inclusions and such a calculus cannot be used
to estimate subgradients of the function F . Therefore computations of even one
subgradient of this function is a quite difficult task. In Section 4 we describe an
algorithm for approximation of subgradients of the function F .

Proposition 2. The function F is quasidifferentiable and its subdifferential and
superdifferential are polytopes.

Proof: Consider the function

ψi,k(x, y) = min
j=1,...,Lk,l

{

〈xk,j, Ui〉 + yk,j

}

, i = 1, . . . , l, k = 1, . . . , Kl.

This function can be represented as the difference of two convex functions ψ1
i,k and

ψ2
i,k as follows:

ψi,k(x, y) = ψ1

i,k(x, y) − ψ2

i,k(x, y),

where

ψ1

i,k(x, y) =

Lk,l
∑

j=1

(

〈xk,j, Ui〉 + yk,j

)

,

ψ2

i,k(x, y) = max
j=1,...,Lk,l

Lk,l
∑

t=1,t6=j

(

〈xk,t, Ui〉 + yk,t

)

.

The function ψ1
i,k is linear and the function ψ2

i,k is piecewise linear convex. The

subdifferentials of the function ψ2
i,k at any point (x, y), x ∈ IRq×p, y ∈ IRq are

polytopes, that is they can be expressed as a convex combination of finite number
of points.

Now consider the following function

ϕi(x, y) = max
k=1,...,Kl

ψi,k(x, y).
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This function can be represented as the difference of two convex functions ϕ1
i and

ϕ2
i as follows:

ϕi(x, y) = ϕ1
i (x, y) − ϕ2

i (x, y)

where

ϕ1

i (x, y) = max
k=1,...,Kl

(

ψ1

i,k(x, y) +

Kl
∑

j=1,j 6=k

ψ2

i,j(x, y)

)

,

ϕ2

i (x, y) =

Kl
∑

j=1

ψ2

i,k(x, y).

Both functions ϕ1
i and ϕ2

i are convex piecewise linear and their subdiffierentials are
polytopes at any point (x, y), x ∈ IRq×p, y ∈ IRq. This means that the function ϕi

is quasidifferentiable and its subdifferentials and superdifferentials are polytopes at
any point.

Finally, the function F is smooth composition of the functions ϕi and therefore
it is quasidifferentiable [9]. Since for any smooth functions subdifferential is the
singleton set at any point, the function F is quasidifferentiable and its subdifferential
and superdifferential are polytopes.

Proposition 3. The function F is semismooth.

Proof: The proof follows from the facts that linear functions are semismooth, min-
imum of semismooth functions is again semismooth, maximum of semismooth func-
tions is also semismooth and finally, the smooth composition of semismooth func-
tions is semismooth [13].

Proposition 4. The function F is piecewise partially separable.

Proof: Linear functions are separable. Maximum and minimum of linear functions
is piecewise separable and finally, smooth composition of continuous piecewise linear
functions is piecewise partially separable (see [2]). Therefore, the function F is
piecewise partially separable. More precisely, for any k ∈ {1, . . . , Kl} and j ∈
{1, . . . , Lk,l} there exists a set Dkj ⊂ IRn such that the function F in this set can be
represented as follows:

F (x, y) =
1

l

l
∑

i=1

(

〈xk,j, Ui〉 + yk,j − Vi

)2
.

It is clear that
Kl
⋃

k=1

Lk,l
⋃

j=1

Dkj = IRn,

however some of sets Dkj can be empty.
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4 Approximation of subgradients

In this section a technique to approximate subgradients of the function F is de-
scribed. This approach is introduced in [3, 4]. All necessary proofs also can be
found in these papers.

We consider a function f defined on IRn and assume that this function is qua-
sidifferentiable. We also assume that both sets ∂f(x) and ∂f(x) are polytopes at
any x ∈ IRn. We denote by Φ the class of all semismooth, quasidifferentiable func-
tions defined on IRn, whose subdifferential and superdifferential are polytopes at any
x ∈ IRn. Results from the previous section show that the function F belongs to this
class.

Let G = {e ∈ IRn : e = (e1, . . . , en), |ej| = 1, j = 1, . . . , n} be a set of all vertices
of the unit hypercube in IRn. We take e ∈ G and consider the sequence of n vectors
ej = ej(α), j = 1, . . . , n with α ∈ (0, 1]:

e1 = (αe1, 0, . . . , 0),
e2 = (αe1, α

2e2, 0, . . . , 0),
. . . = . . . . . . . . .
en = (αe1, α

2e2, . . . , α
nen).

Let e ∈ G be a given vector and λ > 0, α ∈ (0, 1] be given numbers. Consider
the following points

x0 = x, xj = x0 + λej(α), j = 1, . . . , n.

It is clear that

xj = xj−1 + (0, . . . , 0, λαjej , 0, . . . , 0), j = 1, . . . , n.

Let v = v(α, λ) ∈ IRn be a vector with the following coordinates:

vj = (λαjej)
−1
[

f(xj) − f(xj−1)
]

, j = 1, . . . , n. (8)

For any fixed e ∈ G and α > 0 we introduce the set:

V (e, α) =

{

w ∈ IRn : ∃(λk → +0, k → +∞), w = lim
k→+∞

v(α, λk)

}

.

Proposition 5. [3, 4]. Assume that f ∈ Φ. Then there exists α0 ∈ (0, 1] such that

V (e, α) ⊂ ∂f(x), ∀ α ∈ (0, α0].

Remark 2. It follows from Proposition 5 that in order to approximate subgradients
of the function F one can choose a vector e ∈ G, sufficiently small α > 0, λ > 0
and apply (8) to compute a vector v(α, λ). This vector is an approximation to a
subgradient.
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4.1 Computation of subdifferentials

In this subsection we consider an algorithm for the computation of subdifferentials
of the function F . This algorithm is based on the notion of a discrete gradient. We
start with the definition of the discrete gradient, which was introduced in [1].

Let f be a locally Lipschitz continuous function defined on IRn. Let

S1 = {g ∈ IRn : ‖g‖ = 1}, P = {z : z : IR+ → IR+, β−1z(β) ↓ 0, β ↓ 0}.

Here S1 is the unit sphere and P is the set of univariate positive infinitesimal func-
tions. We take any g ∈ S1, e ∈ G and a positive number α ∈ (0, 1]. Then we define
|gi| = max{|gk|, k = 1, . . . , n} and the sequence of n vectors ej(α), j = 1, . . . , n.
For given x ∈ IRn and z ∈ P consider a sequence of n+ 1 points:

x0 =
x1 =
. . . =
xn =

x+ λg,
x0+ z(λ)e1(α),
. . . . . .
x0+ z(λ)en(α).

Definition 1. [1] The discrete gradient of the function f at the point x ∈ IRn is the
vector Γ(x, g, e, z, λ, α) = (Γ1, . . . ,Γn) ∈ IRn, g ∈ S1 with the following coordinates:

Γj = [z(λ)αjej)]
−1
[

f(xj) − f(xj−1)
]

, j = 1, . . . , n, j 6= i,

Γi = (λgi)
−1

[

f(x+ λg) − f(x) − λ

n
∑

j=1,j 6=i

Γjgj

]

.

It follows from Definition 1 that

f(x+ λg) − f(x) = λ〈Γ(x, g, e, z, λ, α), g〉 (9)

for all g ∈ S1, e ∈ G, z ∈ P, λ > 0, α > 0.

Remark 3. One can see that the discrete gradient is defined with respect to a
given direction g ∈ S1 and in order to compute it, first we define a sequence of
points x0, . . . , xn and compute the values of the function f at these points that is
we compute n + 2 values of this function including the point x. n − 1 coordinates
of the discrete gradient are defined similar to those of the vector v(α, λ) and i-th
coordinate is defined so that to satisfy the equality (9) which can be considered as
some version of the mean value theorem.

Remark 4. Since the function F is piecewise partially separable we will use a special
scheme described in [2] to compute its discrete gradients. This scheme allows us to
use only two evaluations instead of n + 2 evaluations of the function F to compute
one discrete gradient.
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For a given α > 0 we define the following set:

B(x, α) = {v ∈ IRn : ∃(g ∈ S1, e ∈ G, zk ∈ P, λk ∈ IR1) : zk ↓ 0, λk ↓ 0, k → +∞

and v = lim
k→+∞

Γ(x, g, e, zk, λk, α)}. (10)

Proposition 6. [3, 4] Assume that f ∈ Φ. Then there exists α0 ∈ (0, 1] such that

coB(x, α) ⊂ ∂f(x), ∀ α ∈ (0, α0].

Remark 5. Proposition 6 shows how one can approximate the subdifferential of
the function F . However, in general, the computation of the set B(x, α) or its
approximation is not easy. In the next section we describe an algorithm, where only
a few discrete gradients are computed to find descent directions of the function F .

5 The discrete gradient method

In this section we describe the discrete gradient method for minimizing the function
F . An important step in this method is the computation of descent directions.
Therefore we start with the description of an algorithm for finding descent directions.

5.1 Computation of descent directions

Let z ∈ P, λ > 0, α ∈ (0, 1], the number c ∈ (0, 1) and a tolerance δ > 0 be given.

Algorithm 1. Computation of the descent direction.

Step 1. Choose any g1 ∈ S1, e ∈ G, compute i = argmax {|gj|, j = 1, . . . , n} and a
discrete gradient v1 = Γ(x, g1, e, z, λ, α). Set D1(x) = {v1} and k = 1.

Step 2. Compute the vector ‖wk‖2 = min{‖w‖2 : w ∈ Dk(x)}. If

‖wk‖ ≤ δ, (11)

then stop. Otherwise go to Step 3.

Step 3. Compute the search direction by gk+1 = −‖wk‖−1wk.
Step 4. If

f(x+ λgk+1) − f(x) ≤ −cλ‖wk‖, (12)

then stop. Otherwise go to Step 5.

Step 5. Compute i = argmax {|gk+1

j | : j = 1, . . . , n} and a discrete gradient

vk+1 = Γ(x, gk+1, e, z, λ, α),

construct the set Dk+1(x) = co {Dk(x)
⋃

{vk+1}}, set k = k + 1 and go to Step 2.
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Some explanations to Algorithm 1 are necessary. In Step 1 we compute the
discrete gradient in an initial direction g1 ∈ IRn. The distance between the convex
hull Dk(x) of all computed discrete gradients and the origin is computed in Step 2.
This problem can be solved using the algorithm from [15]. If this distance is less than
the tolerance δ > 0, then we accept the point x as an approximate stationary point
(Step 2), otherwise we compute another search direction in Step 3. In Step 4 we
check whether this direction is a descent direction. If it is, we stop and the descent
direction has been computed, otherwise we compute another discrete gradient in
this direction in Step 5 and update the set Dk(x). At each iteration k we improve
the approximation of the subdifferential of the function f .

Algorithm 1 terminates after a finite number of iterations [4].

5.2 The method

Let sequences δk > 0, zk ∈ P, λk > 0, δk ↓ 0, zk ↓ 0, λk ↓ 0, k → +∞, sufficiently
small number α > 0 and numbers c1 ∈ (0, 1), c2 ∈ (0, c1] be given.

Algorithm 2. The discrete gradient method

Step 1. Choose any starting point x0 ∈ IRn and set k = 0.

Step 2. Set s = 0 and xk
s = xk.

Step 3. Apply Algorithm 1 for the computation of the descent direction at x =
xk

s , δ = δk, z = zk, λ = λk, c = c1. This algorithm terminates after a finite number
of iterations r > 0. As a result we get the set Dr(x

k
s) and an element vk

s such that

‖vk
s‖2 = min{‖v‖2 : v ∈ Dr(x

k
s )}.

Furthermore either ‖vk
s‖ ≤ δk or for the search direction gk

s = −‖vk
s‖−1vk

s

f(xk
s + λkg

k
s ) − f(xk

s) ≤ −c1λk‖vk
s‖. (13)

Step 4. If
‖vk

s‖ ≤ δk (14)

then set xk+1 = xk
s , k = k + 1 and go to Step 2. Otherwise go to Step 5.

Step 5. Construct the following iteration xk
s+1 = xk

s + σsg
k
s , where σs is defined as

follows
σs = argmax

{

σ ≥ 0 : f(xk
s + σgk

s ) − f(xk
s) ≤ −c2σ‖vk

s‖
}

.

Step 6. Set s = s+ 1 and go to Step 3.

For the point x0 ∈ IRn we consider the set M(x0) = {x ∈ IRn : f(x) ≤ f(x0)} .
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Proposition 7. [4] Assume that the function f ∈ Φ and the set M(x0) is bounded
for any x0 ∈ IRn. Then every accumulation point of {xk} belongs to the set X0 =
{x ∈ IRn : 0 ∈ ∂f(x)}.

Remark 6. It follows from Proposition 7 that the discrete gradient method can be
applied to minimize the function F .

6 Implementation

In this section we describe conditions for the implementation of Algorithm 2 to solve
Problem (7). The following conditions have been chosen:

1. Since Algorithm 1 can compute descent directions for any values of λ > 0
we take λ0 > 1, some β ∈ (0, 1) and update λk, k ≥ 1 by the formula
λk = βkλ0, k ≥ 1. In our computations λ0 = 3 and β = 0.6.

2. It follows from (13) and the condition c2 ≤ c1 that always σs ≥ λk and
therefore λk > 0 is a lower bound for σs. This leads to the following rule
for the computation of σs. We define a sequence θm = mλk, m ≥ 1 and
σs is defined as the largest θm satisfying the inequality in Step 5. In our
computations c1 ∈ (0.2, 0.5) and c2 = 0.001.

3. In our computations α = 1, δk = 10−7 and zk(λ) = λ2 for all k.

4. In our applications we choose the number of linear functions considered in the
maxima and the minima in a data-dependent way by splitting of the sample.
We split the sample of size l in a learning sample of size llearning < l and a
testing sample of size ltesting = l − llearning. We use the learning sample to
define for a fixed number of minima functions Kl and a fixed number of linear
functions under minima LKl,l an estimate mllearning ,K,L, and compute the em-
pirical L2 risk of this estimate on the testing sample. Since the testing sample
is independent of the learning sample, this gives us an unbiased estimate of the
L2 risk of mllearning ,K,L. Then we choose K and L by minimizing this estimate
with respect to Kl and LKl,l. In the sequel we use l ∈ {500, 5000}, ltesting =
llearning = l/2 and Kl ∈ {1, . . . , 5}, LKl,l ∈ {1, . . . , 5}.

7 Application to simulated data

In order to compare the estimates proposed in this paper with other nonparametric
regression estimates we made a simulation study. Here we define (U, V ) by

V = m(U) + σ · ǫ,
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where ǫ is standard normally distributed and independent of U and σ ≥ 0, and
where U is uniformly distributed on [−2, 2]p. For the noise level σ we use three
different values: 0, 0.5 and 1. We generate data sets of two different sample sizes,
namely l = 500 and l = 5000.

For p = 1 we compare our estimate with kernel estimates (with Gaussian kernel)
(see Chapter 5, [11]), local linear kernel estimates (see Section 5.4, [11]), smoothing
splines (see Chapter 20, [11]), neural networks and regression trees (as implemented
in the freely available statistics software R [14]) by applying every one of these
six estimates to samples of the above distributions. Since for p > 1 not all of
these estimates are easily applicable in R, we compare for p > 1 our estimate only
with neural networks and regression trees (again by applying every one of these
three estimates to samples of the above distributions). In all cases we choose the
smoothing parameter of the estimates by splitting of the sample, where for each
simulation the size of the training sample and the testing sample is l/2.

In order to compute the L2 errors of the estimates, we use Monte Carlo integra-
tion, i.e., we approximate

∫

|ml(u) −m(u)|2µ(du) = E{|ml(U) −m(U)|2|Dl}

by

1

N

N
∑

j=1

|ml(Ũj) −m(Ũj)|2,

where the random variables Ũ1, Ũ2, . . . are i.i.d. with distribution µ = PU and
independent of Dl. In the sequel we use N = 3000. Since this error is a random
variable itself, we repeat the experiment 25 times with independent realizations of
the sample, and report the mean and the standard deviation of the Monte Carlo
estimates of the L2 error.

First we consider the case p = 1 and consider the following four different regres-
sion functions:

• m1(u) = 2 ∗ max(1,min(3 + 2 ∗ u, 3 − 8 ∗ u)),

• m2(u) =

{

1 , u ≤ 0,
3 , else,

• m3(u) =

{

10 ∗
√
−u ∗ sin(8 ∗ π ∗ u) ,−0.25 ≤ u < 0,

0 , else,

• m4(u) = 3 ∗ sin(π ∗ u/2),

Figure 1 shows the four different univariate regression functions, Figure 2 shows
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Figure 1: The four univariate regression functions.

these function together with our max-min-estimate applied to a sample with variance
σ = 0.2 and sample size l = 500. In Tables 1 to 4 we report the error values for our
maxmin estimate and the other five univariate regression estimates which are applied
to the simulated data described above. From these tables we can see that in case of
the distributions considered above our estimate outperforms the other estimates if
the sample size is large and the regression function is not globally smooth like the
fourth regression function.

Next we consider the case p = 2 and the following three regression functions:

• m5(u1, u2) = u1 ∗ sin(u2
1) − u2 ∗ sin(u2

2),

• m6(u1, u2) = 4

1+4∗u2

1
+4∗u2

2

,

• m7(u1, u2) = 6 − 2 ∗ min(3, 4 ∗ u2
1 + 4 ∗ |u2|),

Figures 3-5 show the three bivariate regression functions together with our max-
min-estimate applied to a sample with variance σ = 0.2 and sample size l = 5000.

In Table 5 we compare our maxmin estimate with regression trees and neural
networks. As above we report the error values for our maxmin estimate and the
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Figure 2: The four univariate regression functions (solid lines) together with the
max-min-estimate (dash lines) applied to a sample with variance σ = 0.2 and sample
size l = 500.

other two bivariate regression estimates which are applied to the simulated data
described above. Here our estimate is most of the time better than regression trees
and sometimes better and sometimes worse than neural networks.

Finally, we consider the case p = 10 where we use the following four regression
functions for our simulations:

• m8(u1, ..., u10) =
∑10

j=1
(−1)j−1 ∗ uj ∗ sin(u2

j),

• m9(u1, ..., u10) = m7(u1, u2),

• m10(u1, ..., u10) = m6(u1 + ... + u5, u6 + ...+ u10),

• m11(u1, ..., u10) = m2(u1 + ... + u10).

Again we compare our maxmin estimate with regression trees and neural net-
works. In Table 6 we report the error values for our maxmin estimate and the
other two multivariate regression estimates which are applied to the simulated data
described above. Here none of the estimate is able to estimate m8 well, the other
method outperform our estimate form9 (which is a very simple function depending in
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l σ est. 1 est. 2 est. 3 est. 4 est. 5 maxmin est.
500 0 0.0022 0.0005 0.0001 0.0020 0.0347 0.0000

(0.0017) (0.0004) (0.0001) (0.0004) (0.0062) (0.0000)

0.5 0.0288 0.0278 0.0242 0.0161 0.0798 0.0093

(0.0075) (0.0078) (0.0065) (0.0039) (0.0123) (0.0048)

1 0.0741 0.0816 0.0760 0.0438 0.2204 0.0408

(0.0268) (0.0389) (0.0327) (0.0206) (0.0445) (0.0254)

5000 0 0.0003 0.0003 0.0000 0.0006 0.0009 0.0000

(0.0000) (0.0000) (0.0000) (0.0002) (0.0001) (0.0000)

0.5 0.0044 0.0043 0.0038 0.0030 0.0105 0.0007

(0.0011) (0.0009) (0.0007) (0.0008) (0.0017) (0.0005)

1 0.0131 0.0121 0.0118 0.0091 0.1358 0.0028

(0.0032) (0.0036) (0.0030) (0.0020) (0.0232) (0.0015)

Table 1. Mean (and in brackets: standard deviation) of the L2 error for the
maxmin regression estimates, compared to L2 error of kernel estimates (est. 1),
local linear kernel estimates (est. 2), smoothing splines (est. 3), neural networks

(est. 4) and regression trees (est. 4). The regression function is m1.

fact only of two of the components of the predictor variable), but our estimate clearly
outperforms the other estimates in case of l = 5000 and m10 and for l ∈ {500, 5000}
in case of m11.

8 Conclusion

In this paper we proposed an algorithm to compute continuous piecewise linear es-
timation of a regression function. This problem was formulated as an optimization
problem where the objective function is nonconvex and nonsmooth. Moreover, it
is nonregular and the Clarke calculus cannot be applied to compute subgradients
of such functions. We proposed the special scheme to approximate the subgradi-
ents. The discrete gradient method based on those approximate subgradients is
suggested to minimize the objective function. We present the results with simulated
data and compare this approach with the number of other estimates. Numerical re-
sults confirm that the max-min estimate is effective for the estimation of regression
functions.
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l σ est. 1 est. 2 est. 3 est. 4 est. 5 maxmin est.
500 0 0.0078 0.0096 0.0072 0.0110 0.0087 0.0045

(0.0486) (0.0047) (0.0051) (0.0047) (0.0108) (0.0046)

0.5 0.0365 0.0396 0.0375 0.0165 0.0608 0.0156

(0.0100) (0.0087) (0.0083) (0.0052) (0.0153) (0.0110)

1 0.0684 0.0806 0.0746 0.0288 0.2260 0.0431
(0.0160) (0.0171) (0.0170) (0.0184) (0.0489) (0.0240)

5000 0 0.0058 0.0074 0.0026 0.0040 0.0009 0.0007

(0.0011) (0.0013) (0.0007) (0.0009) (0.0018) (0.0011)

0.5 0.0106 0.0119 0.0110 0.0051 0.0033 0.0013

(0.0013) (0.0013) (0.0011) (0.0009) (0.0032) (0.0008)

1 0.0219 0.0241 0.0226 0.0076 0.1539 0.0041

(0.0039) (0.0039) (0.0039) (0.0021) (0.0203) (0.0022)

Table 2. Mean (and in brackets: standard deviation) of the L2 error for the
maxmin regression estimates, compared to L2 error of kernel estimates (est. 1),
local linear kernel estimates (est. 2), smoothing splines (est. 3), neural networks

(est. 4) and regression trees (est. 4). The regression function is m2.
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applied to a sample with variance σ = 0.2 and sample size l = 5000.
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Figure 5: The bivariate regression function m7 together with our max-min-estimate
applied to a sample with variance σ = 0.2 and sample size l = 5000.
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l 500 5000
σ 0 0.5 1 0 0.5 1

est. 1 0.0001 0.0657 0.2897 0.0000 0.0049 0.02284

(0.0000) (0.0206) (0.1105) (0.0000) (0.0021) (0.0103)

m5 est. 2 0.3718 0.4128 0.5610 0.0613 0.1002 0.1872
(0.0551) (0.0458) (0.0922) (0.0070) (0.0088) (0.0169)

maxmin 0.0796 0.1449 0.2280 0.0593 0.0700 0.0889
est. (0.0170) (0.0310) (0.0490) (0.0090) (0.0064) (0.0104)

est. 1 0.0015 0.0822 0.2026 0.0001 0.0110 0.0339
(0.0006) (0.0211) (0.0438) (0.0000) (0.0034) (0.0076)

m6 est. 2 0.0817 0.0123 0.2062 0.0083 0.0312 0.0607
(0.0202) (0.0261) (0.0621) (0.0006) (0.0041) (0.0073)

maxmin 0.0134 0.0540 0.1543 0.0066 0.0137 0.0293

est. (0.0040) (0.0135) (0.0629) (0.0018) (0.0015) (0.0048)

est. 1 0.0298 0.1874 0.4884 0.0078 0.0253 0.0699
(0.0108) (0.0617) (0.1198) (0.0011) (0.0033) (0.0112)

m7 est. 2 0.3034 0.3175 0.3757 0.0484 0.0610 0.0902
(0.1547) (0.1967) (0.1820) (0.0071) (0.0081) (0.0166)

maxmin 0.0325 0.0868 0.1734 0.0136 0.0176 0.0260

est. (0.0087) (0.0321) (0.0660) (0.0036) (0.0046) (0.0055)

Table 5. Mean (and in brackets: standard deviation) of the L2 error for the
maxmin regression estimates, compared to L2 error of neural networks (est. 1) and

regression trees (est. 2). The regression function is m5, m6 or m7, respectively.
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l 500 5000
σ 0 0.5 1 0 0.5 1

est. 1 5.5527 5.4825 5.6506 4.7018 4.6583 4.7093
(0.1840) (0.2261) (0.2479) (0.1304) (0.1361) (0.1071)

est. 2 5.6535 5.6297 5.7852 5.0029 4.9726 5.0189
m8 (0.1817) (0.2013) (0.2513) (0.1515) (0.1431) (0.1139)

maxmin 4.4715 4.4842 4.5392 3.7220 3.7106 3.7852

est. (0.1884) (0.1593) (0.1532) (0.1526) (0.1403) (0.1250)

est. 1 0.0265 0.1790 0.4805 0.0079 0.0247 0.0680

(0.0081) (0.0531) (0.0917) (0.0014) (0.0023) (0.0097)

m9 est. 2 0.3011 0.2980 0.3756 0.0477 0.0587 0.0901
(0.1826) (0.1073) (0.2008) (0.0071) (0.0078) (0.0131)

maxmin 0.6216 0.8003 0.9121 0.0279 0.0521 0.1471
est. (0.1049) (0.1255) (0.0928) (0.0133) (0.0085) (0.0358)

est. 1 0.2064 0.2122 0.2284 0.2018 0.1982 0.2061
(0.0231) (0.0147) (0.0284) (0.0116) (0.0185) (0.0190)

m10 est. 2 0.2033 0.2024 0.2053 0.2028 0.1987 0.2039
(0.0226) (0.0134) (0.0263) (0.0116) (0.0186) (0.0190)

maxmin 0.1893 0.2577 0.2944 0.0236 0.0502 0.1135

est. (0.0215) (0.0697) (0.0757) (0.0035) (0.0066) (0.0232)
est. 1 0.8902 0.9057 0.9270 0.8711 0.8766 0.8738

(0.0180) (0.0286) (0.0381) (0.0126) (0.0126) (0.0139)

m11 est. 2 0.9659 0.9745 1.0037 0.9006 0.9064 0.9107
(0.0244) (0.0281) (0.0231) (0.0132) (0.0122) (0.0144)

maxmin 0.0732 0.2037 0.4585 0.0152 0.0258 0.0552

est. (0.0338) (0.1014) (0.1099) (0.0028) (0.0057) (0.0181)

Table 6. Mean (and in brackets: standard deviation) of the L2 error for the
maxmin regression estimates, compared to L2 error of neural networks (est. 1) and

regression trees (est. 2). The regression function is m8, m9, m10 or m11,
respectively.
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