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Abstract

Monte Carlo evaluation of American options in discrete time is considered. Upper bounds

on the price of such options can be constructed by the dual approach, where the maximal

difference between the payoff and a martingale is minimized. In this article techniques

from nonparametric regression are used to estimate so-called continuation values, and

nested Monte Carlo is used to compute the optimal martingale approximately. It is shown

that the resulting upper bounds on the option tend to the true price regardedless of the

structure of the continuation values. Furthermore it is illustrated by simulated data that

in this context nonparametric regression leads to better bounds than linear regression.

AMS classification: Primary 91B28, 60G40; secondary 65C05, 93E24.

Key words and phrases: American options, consistency, dual method, nonparametric re-
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1 Introduction

Monte Carlo methods for pricing American options are very attractive compared to other

methods when the number of underlying assets or state variables is large. One way to

apply such methods is to represent the price of an American option in discrete time (also
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called Bermudan option) in the risk-neutral market as a solution of an optimal stopping

problem

V0 = E {fτ∗(Xτ∗)} = sup
τ∈T (0,...,T )

E {fτ (Xτ )} . (1)

Here ft is the (discounted) payoff function, X0, X1, . . . , XT is the underlying stochastic

process describing e.g. the prices of the underlyings and the financial environment (like

interest rates, etc.) and T (0, . . . , T ) is the class of all {0, . . . , T}-valued stopping times,

i.e., τ ∈ T (0, . . . , T ) is a measurable function of X0, . . . , XT satisfying

{τ = α} ∈ F(X0, . . . ,Xα) for all α ∈ {0, . . . , T}.

In the sequel we assume that X0, X1, . . . , XT is a IRd–valued Markov process recording all

necessary information about financial variables including prices of the underlying assets

as well as additional risk factors driving stochastic volatility or stochastic interest rates.

Neither the Markov property nor the form of the payoff as a function of the state Xt is

restrictive and can always be achieved by including supplementary variables.

The general theory of optimal stopping (cf., e.g., Chow, Robbins and Siegmund (1971)

or Shiryayev (1978)) implies that the optimal stopping time τ∗ is given by

τ∗ = inf{s ≥ 0 : qs(Xs) ≤ fs(Xs)}, (2)

where

qt(x) = sup
τ∈T (t+1,...,T )

E {fτ (Xτ )|Xt = x} (3)

(t ∈ {0, . . . , T −1}) are the so–called continuation values describing the value of the option

at time t given Xt = x and subject to the constraint of holding the option at time t rather

than exercising it. Here T (t + 1, . . . , T ) is the class of all {t + 1, . . . , T}–valued stopping

times. Furthermore we set qT = 0. Unfortunately, since

V0 = E {max{f0(X0), q0(X0)}} ,

computation of the continuation values is not easier than computation of the price of the

option. But by using a regression representation like

qt(x) = E {max{ft+1(Xt+1), qt+1(Xt+1)}|Xt = x} (t = 0, 1, . . . , T − 1) (4)
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(cf. Tsitsiklis and Van Roy (1999)), estimates q̂0, . . . , q̂T−1 can be computed recursively

by applying regression estimates to Monte Carlo samples of

(Xt,max {ft+1(Xt+1), q̂t+1(Xt+1)})

(where q̂T = qT = 0). In connection with linear regression this was proposed by Tsitsiklis

and Van Roy (1999) and Longstaff and Schwartz (2001), where the latter article used a

different regression representation than (4). Egloff (2005) used nonparametric regression

estimates (cf., e.g., Györfi et al. (2002)) in this context and analyzed them theoretically.

Unfortunately the definition of the estimates was so complicated, that it seems to be hard

to implement them. Nonparametric regression estimates of continuation values which are

easy to compute in practice have been introduced in Egloff, Kohler and Todorovic (2007),

Kohler, Krzyżak and Todorovic (2006), and Kohler (2008) and it was shown that these

estimates achieve better results for simulated data than linear regression. This implies

that techniques from nonparametric regression are really useful in this context.

The above estimates yield estimates

τ̂ = inf {s ≥ 0 : q̂s(Xs) ≤ fs(Xs)}

of the optimal stopping time τ∗. By Monte Carlo these estimates yields estimates of V0,

such that expectation

E {fτ̂ (Xτ̂ )}

of the estimate is less than or equal to the true price V0. It was proposed independently

by Rogers (2001) and Haugh and Kogan (2004) that by using a dual method Monte Carlo

estimates can be constructed such that the expectation of the estimate is greater than or

equal to V0. The key idea is to show that

V0 = inf
M∈M

E

{

max
t=0,...,T

(ft(Xt) − Mt)

}

, (5)

where M is the set of all martingales M0, . . . , MT with M0 = 0. Here the optimal

martingale achieving the infimum in (5) can be expressed with the aid of the continuation

values by

M∗
t =

t
∑

s=1

(max{fs(Xs), qs(Xs)} − E {max{fs(Xs), qs(Xs)}|Xs−1}) (6)
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(cf., e.g., Section 8.7 in Glasserman (2004)). Given estimate q̂s (s ∈ {0, 1, . . . , T}) of the

continuation values, we can estimate this martingale by

M̂t =

t
∑

s=1

(max{fs(Xs), q̂s(Xs)} − E∗ {max{fs(Xs), q̂s(Xs)}|Xs−1}) . (7)

Provided we use unbiased and F(X0, . . . ,Xt)-measurable estimates E∗ of the inner ex-

pectation in (6) (which can be constructed, e.g., by nested Monte Carlo) this leads to a

martingale, too. This in turn can be used to construct Monte Carlo estimates of V0, for

which the expectation

E

{

max
t=0,...,T

(

ft(Xt) − M̂t

)

}

is greater than or equal to V0. As a consequence we get two kind of estimates with

expectation lower and higher than V0, resp., so we have available an interval in which our

true price should be contained. In connection with linear regression these kind of estimates

have been studied in Rogers (2001) and Haugh and Kogan (2004). Jamshidian (2007)

studies multiplicative versions of this method. A comparative study of multiplicative

and additive duals is contained in Chen and Glasserman (2007). Andersen and Broadie

(2004) derive upper and lower bounds for American options based on duality. Belomestny,

Bender and Schoenmakers (2007) propose in a Brownian motion setting estimates with

expectation greater than or equal to the true price, which can be computed without nested

Monte Carlo (and hence are quite easy to compute).

In this article we study the above dual method in connection with nonparametric

regression. This leads to estimates with expectation greater than or equal to V0. The

estimates will be based on nested Monte Carlo and are applicable for general Markov

processes. Our main theoretical result is that these estimates will be universally consistent

provided we choose the estimates of the continuation values properly, i.e., provided the

estimated price will tend to the true price for all (bounded) Markov processes. This is

in contrast to estimates based on linear regression, which are based on the assumption

that the continuation values can be approximated well by a linear combination of the used

basis functions, which are chosen independently of the sample size. By using simulated

data we show furthermore that the new estimates proposed in this article also have for

finite sample size a better performance than estimates based on linear regression.
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The precise definition of the estimates and the main theoretical result concerning

consistency of the estimates are given in Sections 2 and 3, respectively. The application

of the estimates to simulated data will be described in Section 4, and the proofs will be

given in Section 5. Section 6 contains a conclusion summarizing the main results.

2 Definition of the estimate

Let X0,X1, . . . ,XT be a IRd–valued Markov process and let ft be the discounted payoff

function which we assume to be bounded in absolute value by L. We assume that the

data generating process is completely known, i.e., that all parameters of this process are

already estimated from historical data. In this section we describe a dual Monte Carlo

method for estimation of V0.

To do this we generate artificial independent Markov processes {Xi,t}t=0,...,T

(i = 1, 2, . . . , n) which are identically distributed as {Xt}t=0,...,T . Set n = nq + nM .

In a first step we use the first nq replication of the Markov process to define regression

based Monte Carlo estimates q̂n,t of qt. Here any of the estimates described in Egloff,

Kohler and Todorovic (2007), Kohler, Krzyżak and Todorovic (2006) or Kohler (2008)

can be used. For simplicity we describe in the sequel only the estimate of Kohler (2008)

in detail.

Here we start with

q̂n,T (x) = 0 (x ∈ IRd).

Given an estimate q̂n,t+1 of qt+1, we set

Ŷ
(t)
i,t = max{ft+1(X

(t)
i,t+1), q̂n,t+1(X

(t)
i,t+1)}

(where we have suppressed the dependency of Ŷ
(t)
i,t on n) and use the data

{(

X
(t)
i,t , Ŷ

(t)
i,t

)

: i = 1, . . . , nq

}

.

to define q̂n,t as follows: we subdivide the data in a learning sample of size nl = ⌈nq/2⌉

and a testing sample of size nt = nq − nl and define for given λ ∈ IR+ and k ∈ IN0 a

regression estimate of qt by

q̃
(k,λ)
nl,t

(·) = arg min
f∈W k([−A,A]d)

(

1

nl

nl
∑

i=1

|f(X
(t)
i,t ) − Ŷ

(t)
i,t |

2 + λ · J2
k (f)

)

5



and

q
(k,λ)
nl,t

(x) = TLq̃
(k,λ)
nl,t

(x) (x ∈ IRd).

Here W k([−A,A]d) denotes the Sobolev space

{

f :
∂kf

∂xα1

1 . . . ∂xαd

d

∈ L2([−A,A]d) for all α1, . . . , αd ∈ IN with α1 + . . . + αd = k

}

,

we set

J2
k (f) =

∑

α1,...,αd∈IN, α1+...+αd=k

k!

α1! · . . . · αd!

∫

IRd

∣

∣

∣

∣

∂kf

∂xα1

1 . . . ∂xαd

d

(x)

∣

∣

∣

∣

2

dx,

and TLz = max{−L,min{L, z}} for z ∈ IR. Then we minimize the empirical L2 error on

the discrete parameter set

Pn =

{

(k, λ) : λ =
i

n
for some i ∈ {0, 1, . . . , n2}, k ∈

{

⌈
d

2
⌉, . . . ,K

}}

(where K ≥ ⌈d/2⌉ is a given natural number) in order to choose the value of the parameter.

I.e., we choose

(λ∗
t , k

∗
t ) = arg min

(k,λ)∈Pn

1

nt

n
∑

i=nl+1

|q
(k,λ)
nl,t

(X
(t)
i,t ) − Ŷ

(t)
i,t |

2

and define our final estimate of qt by

q̂n,t(x) = q
(λ∗

t ,k∗

t )
nl,t

(x) (x ∈ IRd).

In a second step we estimate the martingale (6). Here we approximate

max{fs(Xs,i), qs(Xs,i)}

by replacing qs by its estimate q̂n,s. In order to estimate

E {max{fs(Xs,i), qs(Xs,i)}|Xs−1,i} (8)

we use nested Monte Carlo. We generate independent copies X
(1)
s,i , . . . , X

(ln)
s,i of Xs,i such

that conditional on Xs−1,i the newly generated data is independent from all previously

generated data and independent and identically distributed as Xs,i. Using this data we

estimate (8) by

1

ln

ln
∑

j=1

max{fs(X
(j)
s,i ), q̂n,s(X

(j)
s,i )} (9)

6



and the resulting estimate of M∗
t (Xt,i) is

M̂t,i =

t
∑

s=1



max{fs(Xs,i), q̂n,s(Xs,i)} −
1

ln

ln
∑

j=1

max{fs(X
(j)
s,i ), q̂n,s(X

(j)
s,i )}



 ,

where M̂0,i = 0. Finally we use

V̂0 =
1

nM

nq+nM
∑

i=nq+1

max
t=0,...,T

(

ft(Xt,i) − M̂t,i

)

as estimate of

V0 = E

{

max
t=0,...,T

(ft(Xt) − M∗
t )

}

.

Since (9) is a conditionally unbiased estimate of

E {max{fs(Xs,i), q̂n,s(Xs,i)}|Xs−1,i,Xt,j (t ∈ {0, . . . , T}, j ∈ {1, . . . , nq})} ,

it is easy to see that
(

M̂t,i

)

t=0,...,T

is indeed a martingale with respect to the filtration

Ft,i = F
(

X0,i, . . . ,Xt,i,X0,1, . . . ,XT,1, . . . ,X0,nq , . . . ,XT,nq

)

(i = nq + 1, . . . , n). Consequently the expectation of V̂0 is greater than or equal to V0 (cf.

(5))

3 Main theorem

In the sequel we will use the notation PXt for the distribution of Xt. Our main theoretical

result is the following theorem.

Theorem 1 Let L > 0, let X0,X1, . . . ,XT be a IRd–valued Markov process and assume

that the discounted payoff function ft is bounded in absolute value by L. Let the estimate

V̂0 be defined as in Section 2. Assume that the estimates q̂n,t of qt are bounded in absolute

value by L and satisfy

∫

|q̂n,t(x) − qt(x)|2PXt(dx) → 0 in probability, (10)
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and that

nM → ∞ (n → ∞) and
ln

log nM
→ ∞ (n → ∞). (11)

Then

V̂0 → V0 in probability.

The estimates defined in Egloff, Kohler and Todorovic (2007), Kohler, Krzyżak and

Todorovic (2006) and Kohler (2008) satisfy (10) for all bounded Markov processes. Hence

if we use any of these estimates in the definition of our new estimate, we get universally

consistent upper bounds on the price of V0.

Corollary 1 Let A,L > 0. Assume that X0,X1, . . . ,XT is a [−A,A]d–valued Markov

process and that the discounted payoff function ft is bounded in absolute value by L. Let

the estimate V̂0 be defined as in Section 2 where qt is estimated by least squares splines

as in Egloff, Kohler and Todorovic (2007), by least squares neural networks as in Kohler,

Krzyżak and Todorovic (2006) or by smoothing splines as in Kohler (2008) (i.e., as in

Section 2). Choose nq, nM and ln such that

nq → ∞ (n → ∞), nM → ∞ (n → ∞) and
ln

log nM

→ ∞ (n → ∞).

Then

V̂0 → V0 in probability.

Proof. The assertion follows from Theorem 1 above and Theorem 4.1 in Egloff, Kohler

and Todorovic (2007), Corollary 1 in Kohler, Krzyżak and Todorovic (2006) and Theorem

1 in Kohler (2008). �

4 Application to simulated data

In this section, we illustrate the finite sample behavior of our algorithm by comparing

it with algorithms for computing dual upper bounds with linear regression using the re-

gression representations proposed by Tsitsiklis and Van Roy (1999) and Longstaff and

Schwartz (2001), respectively.

We consider an American option based on the average of three correlated stock prices.

The stocks are ADECCO R, BALOISE R and CIBA. The stock prices were observed
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0.85 0.95 1.05 1.15

Figure 1: Strangle spread payoff with strike prices 0.85, 0.95, 1.05 and 1.15.

from Nov. 10, 2000 until Oct. 3, 2003 on weekdays when the stock market was open for

the total of 756 days. We estimate the volatility from data observed in the past by the

historical volatility

σ = (σi,j)1≤i,j≤3 =











0.3024 0.1354 0.0722

0.1354 0.2270 0.0613

0.0722 0.0613 0.0717











.

We simulate the paths of the underlying stocks with a Black-Scholes model by

Xi,t = x0 · e
r·t · e

P

3

j=1
(σi,j ·Wj(t)−

1

2
·σ2

i,jt) (i = 1, . . . , 3),

where {Wj(t) : t ∈ IR+} (j = 1, . . . , 3) are three independent Wiener processes and where

the parameters are chosen as follows: x0 = 1, r = 0.05 and components σi,j of the volatility

matrix as above. The time to maturity is assumed to be one year. To compute the payoff

of the option we use a strangle spread function (cf. Figure 1) with strikes 0.85, 0.95, 1.05

and 1.15 applied to the average of the three correlated stock prices.

We discretize the time interval [0, 1] by dividing it into m = 48 equidistant time steps

with t0 = 0 < t1 < . . . < tm = 1 and consider a Bermudan option with payoff function

as above and exercise dates restricted to {t0, t1, . . . , tm}. We choose discount factors e−rtj

for j = 0, . . . ,m. For all three algorithms we use parameters nq = 2000, nM = 1000 and
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ln = 100.

For our newly proposed algorithm we use smoothing splines as implemented in the

routine Tps() from the library “fields” in the statistics package R, where the smooth-

ing parameter is chosen by generalized cross-validation. For the Longstaff–Schwartz and

Tsitsiklis–Van Roy algorithms we use linear regression as implemented in R.

We apply all three algorithms to 100 independently generated sets of paths and we

compare the algorithms using boxplots for the 100 upper bounds computed for each al-

gorithm. We would like to stress that for all three algorithms the expectation of the

values are upper bounds to the true option price, hence lower values indicates a better

performance of the algorithms.

As we can see in Figure 2, our algorithm is superior to Longstaff–Schwartz and

Tsitsiklis–Van Roy algorithms, since the lower boxplot of the upper bounds for our al-

gorithm indicates better performance. Of course the simulations with linear regression

can be improved by choosing the basis functions in a clever way. One way to do this is

to use the payoff function as one of the basis functions. In this case it turns out that the

algorithms based on linear regression produce similarly good values as the algorithm using

nonparametric regression in Figure 2, but if we increase the sample size of the regression

estimate from nq = 2000 to nq = 40000, the values of the algorithm using nonparametric

regression are again better than the values of the algorithms using linear regression.

5 Proof of Theorem 1

Set

M∗
t,i =

t
∑

s=1

(max{fs(Xs,i), qs(Xs,i)} − E {max{fs(Xs,i), qs(Xs,i)}|Xs−1,i})

(t ∈ {1, . . . , T}) and M∗
0,i = 0 (i ∈ {1, . . . , n}).

In the first step of the proof we observe that by the law of large numbers, (5) and (6)

we have

V̄0 =
1

nM

nq+nM
∑

i=nq+1

max
t=0,...,T

(

ft(Xt,i) − M∗
t,i

)

→ E

{

max
t=0,...,T

(ft(Xt) − M∗
t )

}

= V0 in probability.
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Figure 2: Upper bounds computed with a dual Monte-Carlo method based on linear

regression and the Tsitsiklis–Van Roy algorithm (lin–ttvr), linear regression and the

Longstaff–Schwartz algorithm (lin–ls), and the newly proposed smoothing spline estimate

(smoothing–spline) in a 3-dimensional case.
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Hence it suffices to show

V̂0 − V̄0 → 0 in probability. (12)

In the second step of the proof we show that (12) is implied by

1

nM

nq+nM
∑

i=nq+1

|q̂n,s(Xs,i) − qs(Xs,i)| → 0 in probability (13)

for all s ∈ {0, . . . , T},

1

nM

nq+nM
∑

i=nq+1

1

ln

ln
∑

j=1

|q̂n,s(X
(j)
s,i ) − qs(X

(j)
s,i )| → 0 in probability (14)

for all s ∈ {0, . . . , T} and

1

nM

nq+nM
∑

i=nq+1

∣

∣

∣

∣

∣

∣

1

ln

ln
∑

j=1

max
{

fs(X
(j)
s,i ), qs(X

(j)
s,i )
}

− E {max {fs(Xs,i), qs(Xs,i)} |Xs−1,i}

∣

∣

∣

∣

∣

∣

→ 0

(15)

in probability for all s ∈ {0, . . . , T}. This follows from

|V̂0 − V̄0|

=

∣

∣

∣

∣

∣

∣

1

nM

nq+nM
∑

i=nq+1

max
t=0,...,T

(

ft(Xt,i) − M̂t,i

)

−
1

nM

nq+nM
∑

i=nq+1

max
t=0,...,T

(

ft(Xt,i) − M∗
t,i

)

∣

∣

∣

∣

∣

∣

≤
1

nM

nq+nM
∑

i=nq+1

max
t=1,...,T

∣

∣

∣M̂t,i − M∗
t,i

∣

∣

∣

≤

T
∑

t=1

1

nM

nq+nM
∑

i=nq+1

∣

∣

∣M̂t,i − M∗
t,i

∣

∣

∣

≤

T
∑

t=1

1

nM

nq+nM
∑

i=nq+1

∣

∣

∣

∣

∣

t
∑

s=1

(max{fs(Xs,i), q̂n,s(Xs,i)} − max{fs(Xs,i), qs(Xs,i)})

∣

∣

∣

∣

∣

+

T
∑

t=1

1

nM

nq+nM
∑

i=nq+1

∣

∣

∣

∣

∣

∣

t
∑

s=1

1

ln

ln
∑

j=1

(

max{fs(X
(j)
s,i ), q̂n,s(X

(j)
s,i )} − max{fs(X

(j)
s,i ), qs(X

(j)
s,i )}

)

∣

∣

∣

∣

∣

∣

+

T
∑

t=1

1

nM

nq+nM
∑

i=nq+1

∣

∣

∣

∣

∣

t
∑

s=1

( 1

ln

ln
∑

j=1

max{fs(X
(j)
s,i ), qs(X

(j)
s,i )}

−E {max {fs(Xs,i), qs(Xs,i)} |(Xs−1,i}
)

∣

∣

∣

∣

∣

≤ T ·

T
∑

s=1

1

nM

nq+nM
∑

i=nq+1

|q̂n,s(Xs,i) − qs(Xs,i)|
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+T ·

T
∑

s=1

1

nM

nq+nM
∑

i=nq+1

1

ln

ln
∑

j=1

|q̂n,s(X
(j)
s,i ) − qs(X

(j)
s,i )|

+T ·

T
∑

s=1

1

nM

nq+nM
∑

i=nq+1

∣

∣

∣

∣

∣

( 1

ln

ln
∑

j=1

max{fs(X
(j)
s,i ), qs(X

(j)
s,i )}

−E {max {fs(Xs,i), qs(Xs,i)}} |Xs−1,i

)

∣

∣

∣

∣

∣

.

In the third step of the proof we show (13). Set

Dnq = {Xs,i : s = 0, . . . , T, i = 1, . . . , nq} .

By Cauchy-Schwarz inequality we have

E







1

nM

nq+nM
∑

i=nq+1

|q̂n,s(Xs,i) − qs(Xs,i)|

∣

∣

∣

∣

Dnq







= E

{

|q̂n,s(Xs) − qs(Xs)|

∣

∣

∣

∣

Dnq

}

≤

√

E

{

|q̂n,s(Xs) − qs(Xs)|2
∣

∣

∣

∣

Dnq

}

=

√

∫

|q̂n,s(x) − qs(x)|2PXs(dx).

Since q̂n,s and qs are bounded, assumption (10) together with the dominated convergence

theorem implies

E







1

nM

nq+nM
∑

i=nq+1

|q̂n,s(Xs,i) − qs(Xs,i)|







≤ E

√

∫

|q̂n,s(x) − qs(x)|2PXs(dx) → 0 (n → ∞),

which in turn implies (13).

In the fourth step of the proof we show

1

nM

nq+nM
∑

i=nq+1

∣

∣

∣

∣

∣

∣

1

ln

ln
∑

j=1

|q̂n,s(X
(j)
s,i ) − qs(X

(j)
s,i )| − E

{

|q̂n,s(Xs,i) − qs(Xs,i)|

∣

∣

∣

∣

Xs−1,i,Dnq

}

∣

∣

∣

∣

∣

∣

→ 0

(16)

in probability. Let ǫ > 0 be arbitrary. Then

P

{

1

nM

nq+nM
∑

i=nq+1

∣

∣

∣

∣

1

ln

ln
∑

j=1

|q̂n,s(X
(j)
s,i ) − qs(X

(j)
s,i )|

13



−E
{

|q̂n,s(Xs,i) − qs(Xs,i)||Xs−1,i,Dnq

}

∣

∣

∣

∣

> ǫ

∣

∣

∣

∣

Xs−1,i,Dnq

}

≤ P

{

max
i=nq+1,...,nq+nM

∣

∣

∣

∣

1

ln

ln
∑

j=1

|q̂n,s(X
(j)
s,i ) − qs(X

(j)
s,i )|

−E
{

|q̂n,s(Xs,i) − qs(Xs,i)||Xs−1,i,Dnq

}

∣

∣

∣

∣

> ǫ

∣

∣

∣

∣

Xs−1,i,Dnq

}

≤ nM · max
i=nq+1,...,nq+nM

P

{

∣

∣

∣

∣

1

ln

ln
∑

j=1

|q̂n,s(X
(j)
s,i ) − qs(X

(j)
s,i )|

−E
{

|q̂n,s(Xs,i) − qs(Xs,i)||Xs−1,i,Dnq

}

∣

∣

∣

∣

> ǫ

∣

∣

∣

∣

Xs−1,i,Dnq

}

.

Conditioned on Xs−1,i and Dnq the random variables

|q̂n,s(X
(1)
s,i ) − qs(X

(1)
s,i )|, . . . , |q̂n,s(X

(ln)
s,i ) − qs(X

(ln)
s,i )|

are independent and identically distributed with expectation

E
{

|q̂n,s(Xs,i) − qs(Xs,i)||Xs−1,i,Dnq

}

.

Since q̂n,s and qs are both bounded by L, these random variables are bounded by 2L. By

an application of Hoeffding‘s inequality (cf., e.g., Lemma A.3 in Györfi et al. (2002)) we

get

nM · max
i=nq+1,...,nq+nM

P

{

∣

∣

∣

∣

1

ln

ln
∑

j=1

|q̂n,s(X
(j)
s,i ) − qs(X

(j)
s,i )|

−E
{

|q̂n,s(Xs,i) − qs(Xs,i)||Xs−1,i,Dnq

}

∣

∣

∣

∣

> ǫ

∣

∣

∣

∣

Xs−1,i,Dnq

}

≤ nM · 2 · exp

(

−
2 · ln · ǫ2

4L2

)

= 2 · exp

(

−ln ·

(

2 · ǫ2

4L2
−

log nM

ln

))

.

By assumption (11) the last term converges to zero, which proves (16).

In the fifth step of the proof we show (14). Because of (16) it suffices to show

1

nM

nq+nM
∑

i=nq+1

E

{

|q̂n,s(Xs,i) − qs(Xs,i)|

∣

∣

∣

∣

Xs−1,i,Dnq

}

→ 0 in probability.

This in turn follows from

1

nM

nq+nM
∑

i=nq+1

E

{

|q̂n,s(Xs,i) − qs(Xs,i)|

∣

∣

∣

∣

Xs−1,i,Dnq

}

− E

{

|q̂n,s(Xs) − qs(Xs)|

∣

∣

∣

∣

Dnq

}

→ 0

(17)
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in probability and

E

{

|q̂n,s(Xs) − qs(Xs)|

∣

∣

∣

∣

Dnq

}

→ 0 in probability, (18)

which we show next.

Conditioned on Dnq , the random variables

E

{

|q̂n,s(Xs,i) − qs(Xs,i)|

∣

∣

∣

∣

Xs−1,i,Dnq

}

(i = nq + 1, . . . , nq + nM )

are independent and identically distributed with expectation

E

{

|q̂n,s(Xs) − qs(Xs)|

∣

∣

∣

∣

Dnq

}

.

Since they are furthermore bounded by 2L, (17) follows from another application of Hoeff-

ding‘s inequality.

To show (18) we observe

E

{

|q̂n,s(Xs) − qs(Xs)|

∣

∣

∣

∣

Dnq

}

=

∫

|q̂n,s(x) − qs(x)|PXs(dx).

By an application of the Cauchy-Schwarz inequality (18) follows from (10).

In the sixth step of the proof we show (15). We proceed similarily to the fourth step

of the proof. For ǫ > 0 we have

P

{

1

nM

nq+nM
∑

i=nq+1

∣

∣

∣

∣

1

ln

ln
∑

j=1

|max
{

fs(X
(j)
s,i ), qs(X

(j)
s,i )
}

−E {max {fs(Xs,i), qs(Xs,i)} |Xs−1,i}

∣

∣

∣

∣

> ǫ

}

≤ nM · max
i=nq+1,...,nq+nM

P

{

∣

∣

∣

∣

1

ln

ln
∑

j=1

|max
{

fs(X
(j)
s,i ), qs(X

(j)
s,i )
}

−E {max {fs(Xs,i), qs(Xs,i)} |Xs−1,i}

∣

∣

∣

∣

> ǫ

}

.

Application of Hoeffding‘s inequality conditioned on Xs−1,i yields that the right-hand side

above is bounded by

nM · 2 · exp

(

−
2 · ln · ǫ2

4L2

)

= 2 · exp

(

−ln ·

(

2 · ǫ2

4L2
−

log nM

ln

))

→ 0 (n → ∞).

Gathering the above results, the proof is complete. �
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6 Conclusion

In this paper methods from nonparametric regression have been used to construct dual

Monte Carlo estimates for pricing American options in discrete time. It was shown that

the estimates are consistent for all bounded Markov processes. I.e., whenever the under-

lying price process is a bounded Markov process, the estimated value will tend to the

true value for sample size tending to infinity regardedless of the distribution of the price

process. Furthermore it was illustrated by using simulated data that in the context of

dual Monte Carlo estimates the use of nonparametric regression yields better results than

corresponding estimates based on linear regression.
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