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Abstract

An L2-boosting algorithm for estimation of a regression function from random design is

presented, which consists of fitting repeatedly a function from a fixed nonlinear function

space to the residuals of the data by least squares and by defining the estimate as a linear

combination of the resulting least squares estimates. Splitting of the sample is used to

decide after how many iterations of smoothing of the residuals the algorithm terminates.

The rate of convergence of the algorithm is analyzed in case of an unbounded response

variable. The method is used to fit a sum of maxima of minima of linear functions to

a given data set, and is compared with other nonparametric regression estimates using

simulated data.
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1 Introduction

In regression analysis an Rd×R-valued random vector (X, Y ) with EY 2 < ∞ is considered

and the dependency of Y on the value of X is of interest. More precisely, the goal is to find

a function f : Rd → R such that f(X) is a “good approximation” of Y . In the sequel we

assume that the main aim of the analysis is minimization of the mean squared prediction

error or L2 risk

E{|f(X)− Y |2}. (1)

In this case the optimal function is the so-called regression function

m : Rd → R, m(x) = E{Y |X = x}, i.e.,

E{|m(X)− Y |2} = min
f :Rd→R

E{|f(X)− Y |2}, (2)

because for an arbitrary (measurable) function f : Rd → R we have

E{|f(X)− Y |2} = E{|m(X)− Y |2}+
∫
|f(x)−m(x)|2PX(dx) (3)

(cf., e.g., Section 1.1 in Györfi et al. (2002)). In addition, equation (3) implies that any

function f is a good predictor in the sense that its L2 risk is close to the optimal value, if

and only if the so-called L2 error∫
|f(x)−m(x)|2PX(dx) (4)

is small. This motivates to measure the error caused by using a function f instead of the

regression function by the L2 error (4).

In applications, usually the distribution of (X, Y ) (and hence also the regression func-

tion) is unknown. But often it is possible to observe a sample of the underlying distribu-

tion. This leads to the regression estimation problem. Here (X, Y ), (X1, Y1), (X2, Y2), . . .

are independent and identically distributed random vectors. The set of data

Dn = {(X1, Y1), . . . , (Xn, Yn)}

is given, and the goal is to construct an estimate mn(·) = mn(·,Dn) : Rd → R of the

regression function such that the L2 error∫
|mn(x)−m(x)|2PX(dx)
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is small. For a detailed introduction to nonparametric regression we refer the reader to

the monograph Györfi et al. (2002).

In this paper we are mainly interested in results which hold under very weak assump-

tions on the underlying distribution. In particular we do not assume that a density of

the distribution of X exists or that the conditional distribution of Y given X is a normal

distribution. Related results in this respect can be found, e.g., in Devroye (1981), Györfi

and Walk (1997), Kohler (2008), Krzyżak, Linder and Lugosi (1996) or Walk (2001).

A closely related problem to nonparametric regression is pattern recognition, where

Y takes on values only in a finite set (cf., e.g., Devroye, Györfi and Lugosi (1996)). One

of the main achievements in pattern recognition in the last fifteen years was boosting

(cf. Freund (1995) and Freund and Schapire (1997)), where the outputs of many “weak”

classifiers are combined to produce a new powerful classification rule. Boosting can be

considered as a way of fitting an additive expansion in a set of “elementary” basis functions

(cf. Friedman, Hastie and Tibshirani (2000)). This view enables to extend the whole idea

to regression by repeatedly fitting of functions of some fixed function space to residuals

and by using the sum of the fitted functions as final estimate (cf. Friedman (2001)).

Bühlmann (2006) showed that this so-called L2-boosting is able to estimate very high-

dimensional linear models well. Barron et al. (2008) analyzed the rate of convergence of

corresponding Greedy algorithms, where iteratively functions of a fixed function space are

fitted to the residuals of the previous estimate, and the estimates are defined by an linear

combination of these functions. In Barron et al. (2008) this algorithm was used to fit a

linear combination of perceptrons to the data, and under the assumption of a bounded

first moment of the Fourier transform of the regression function and of boundedness of

the response variable it was shown that these estimates are able to achieve (up to some

logarithmic factors) the same dimension-free parametric rate of convergence as Barron

(1994) showed for least squares neural networks.

In this paper we modify the general algorithm from Barron et al. (2008) by combining it

with splitting of the sample in order to determine how often the residuals are smoothed. We

analyze the modified general algorithm in the context of an unbounded response variable

satisfying a Sub-Gaussian condition. We use it to fit a sum of maxima of minima of linear

functions to the data. Since this function class contains in particular perceptrons, we get as
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a corollary the rate of convergence mentioned already above, but this time for unbounded

response variables, too. We use an algorithm from Bagirov, Clausen and Kohler (2008) to

compute our estimate, apply our new method to simulated data and compare it to other

nonparametric regression estimates.

The outline of the paper is as follows: Section 2 contains the definition and our theo-

retical result on the general L2-boosting algorithm. In Section 3 we apply it to estimate

the regression function by a sum of maxima of minima of linear functions. This algorithm

is applied to simulated data and compared to other nonparametric regression estimates in

Section 4 . Finally, Section 5 contains the proofs.

2 A general L2-boosting algorithm

Let nl, nt ∈ IN be such that n = nl + nt, and let Fn be a (nonlinear) class of functions

f : Rd → R. Depending on a parameter k0 ∈ IN we define estimates

m̃n,k (k ∈ {k0, k0 + 1, . . . , n})

as follows: Set

m̃n,k0 = arg min
f∈Fn

1
nl

nl∑
i=1

|Yi − f(Xi)|2 (5)

and

m̃n,k+1 =
(

1− 2
k + 1

)
· m̃n,k + fnl,k (6)

where

fnl,k = arg min
f∈Fn

1
nl

nl∑
i=1

∣∣∣∣Yi −
(

1− 2
k + 1

)
· m̃n,k(Xi)− f(Xi)

∣∣∣∣2 . (7)

Here we assume for simplicity that the above minima exist, however we do not require

that they are unique. Next we truncate the estimate at heights ±βn, where βn ∈ R+ is

given and will later be chosen such that βn → ∞ (n → ∞). More precisely, we choose

k0 ∈ {1, . . . , n} and set

mn,k(x) = Tβnm̃n,k(x) (x ∈ Rd), (8)

where Tβ(z) = max{−β, min{β, z}} for z ∈ R. Finally we use splitting of the sample to

select the parameter k of the estimate. To do this, we set

mn(x) = mn,k∗(x) (x ∈ Rd) (9)
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where

k∗ = arg min
k∈{k0,k0+1,...,n}

1
nt

n∑
i=nl+1

|Yi −mn,k(Xi)|2. (10)

In order to be able to formulate our main theoretical result we need the notion of

covering numbers.

Definition 1 Let x1, ..., xn ∈ Rd and set xn
1 = (x1, ..., xn). Let F be a set of functions

f : Rd → R. An Lp-ε-cover of F on xn
1 is a finite set of functions f1, ..., fk : Rd → R with

the property

min
1≤j≤k

(
1
n

n∑
i=1

|f(xi)− fj(xi)|p
)1/p

< ε for all f ∈ F . (11)

The Lp-ε-covering number Np(ε,F , xn
1 ) of F on xn

1 is the minimal size of an Lp-ε-cover

of F on xn
1 . In case that there exist no finite Lp-ε-cover of F the Lp-ε-covering number of

F on xn
1 is defined by Np(ε,F , xn

1 ) = ∞.

For a given class F of functions f : Rd → R, and fixed N ∈ IN, we define HN = HF
N

as the class of functions h : Rd → R with h(x) = αh
1g1(x) + ... + αh

NgN (x), where αh
i ≥ 0

and gi ∈ F (i ∈ {1, ..., N}) are such, that the two conditions(
2
l

N∑
i=1

αh
i

)
· gj ∈ F for all j ∈ {1, . . . , N}, l ∈ {1, . . . , k}, (12)

||gj ||∞ = sup
x∈Rd

|gj(x)| ≤ 1, for all j ∈ {1, . . . , N}, and x ∈ Rd (13)

are satisfied.

Our main theoretical result is the following theorem.

Theorem 1 Let Fn be a class of functions f : Rd → R with the property α ·f ∈ Fn for all

f ∈ Fn and all 0 ≤ α ≤ 1. Let N1(ε,Fn) be an upper bound on the L1-ε-covering number

of Fn on any finite set of points, i.e., assume

N1(ε,Fn, xn
1 ) ≤ N1(ε,Fn) for all xn

1 ∈ Rd·n.

Define the estimate mn by (5) - (10) with βn = c1 · log(n). Furthermore assume that the

distribution of (X, Y ) satisfies

E
(
exp

(
c2 · |Y |2

))
< ∞ (14)
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for some constant c2 > 0 and that the regression function m is bounded in absolute value

by some constant. Then

E
∫
|mn(x)−m(x)|2PX(dx)

≤ min
k∈{k0,k0+1,...,n}

(
c3

k · log(n)2 · logN1

(
1

80βn·k·n ,Fn

)
nl


+ inf

N∈IN
inf

h∈HFn
N

(
16 · k0 ·

(αh
1 + . . . + αh

N )2

k
+ 4

∫
|h(x)−m(x)|2PX(dx)

))

+c4
log(n)3

nt

holds for sufficiently large constants c3, c4 > 0, which do not depend on n, βn, k or k0.

3 Fitting of a sum of maxima of minima of linear functions

to the data

In this section we apply our general algorithm to classes of functions consisting of maxima

of minima of linear functions as introduced in Bagirov, Clausen and Kohler (2006), i.e.

we apply it to a truncated version of

Fr1,r2 =

{
f : Rd → R : f(x) = max

k=1,...,r1

min
l=1,...,r2

(ak,l · x + bk,l) (x ∈ Rd)

for some ak,l ∈ Rd, bk,l ∈ R

}
(15)

where

ak,l · x = a
(1)
k,l · x

(1) + . . . + a
(d)
k,l · x

(d)

denotes the scalar product between ak,l = (a(1)
k,l , . . . , a

(d)
k,l )

T and x = (x(1), . . . , x(d))T .

This class of functions consists of continuous piecewise linear functions. For r1, r2 ≥ 2

it contains in particular perceptrons of the form

f(x) = σ (a · x + b) (x ∈ Rd)

for a suitable chosen squashing function σ (i.e., for a suitable chosen monotone increasing

function σ : R → R satisfying σ(x) → 0 (x → −∞) and σ(x) → 1 (x → ∞)). This is
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obvious, if we choose for σ the so-called ramp squasher

σ(z) = max{0,min{z, 1}} (z ∈ R).

In the sequel we will choose as function class for the general algorithm of Section 2

Fn = TβnFl,l = {Tβnf : f ∈ Fl,l}

for some l ≥ 2.

It is well-known that in order to derive non-trivial rate of convergence results we have

to make some smoothness assumptions on the regression function (cf., e.g., Theorem 7.2

and Problem 7.2 in Devroye, Györfi and Lugosi (1996) and Section 3 in Devroye and

Wagner (1980)). In the sequel we will impose such smoothness conditions implicitely on

the regression function by imposing conditions on its Fourier transform. More precisely,

we will consider functions f ∈ L1(Rd), which satisfy

f(x) = f(0) +
1

(2π)d/2

∫ (
ei(ω·x) − 1

)
F̂ (ω)dω, (16)

where F̂ is the Fourier transform of f , that is

F̂ (ω) =
1

(2π)d/2

∫
e−i(ω·x)f(x)dx (ω ∈ Rd),

and we assume ∫
||ω|| · |F̂ (ω)|dω ≤ C (17)

for some C ∈ R+. We denote the class of functions f : Rd → R, which satisfy (16) and

(17) by FC .

Corollary 1 Let βn = c1 · log(n) and assume that the distribution of (X, Y ) satisfies (14)

for some constant c2 > 0, X ∈ [−a, a]d a.s. for some a ∈ R+ and that the regression

function is bounded in absolute value by some constant less than or equal to βn and that

it satisfies m ∈ FC for some 0 < C < ∞. Let the estimate mn be defined by (5) - (10),

with F = TβnFl,l for some l ≥ 2, and with nl = dn
2 e. Then we have for βn ≥ 6 ·

√
d · a ·C

E
∫
|mn(x)−m(x)|PX(dx) ≤ c5 · C2

(
log(n)3

n

)1/2

for a sufficiently large constant c5 > 0, that does not depend on n or C.
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4 Application to simulated data

In this section we want to compare our new L2–boosting estimate with other nonparamet-

ric regression estimates. To do this, we use results from a simulation study conducted in

Bagirov, Clausen and Kohler (2008). There data was generated according to

Y = m(X) + σ · ε,

where ε is standard normally distributed and independent of X and σ ∈ {0, 0.5, 1}, and

where X is uniformly distributed on [−2, 2]d with d ∈ {1, 2, 10}, and where σ ∈ {0, 0.2, 1}.

As regression functions the following 11 function have been considered:

• m1(x) = 2 ∗max(1,min(3 + 2 ∗ x, 3− 8 ∗ x)),

• m2(x) =

 1 , x ≤ 0,

3 , else,

• m3(x) =

 10 ∗
√
−x ∗ sin(8 ∗ π ∗ x) ,−0.25 ≤ x < 0,

0 , else,

• m4(x) = 3 ∗ sin(π ∗ x/2),

• m5(x1, x2) = x1 ∗ sin(x2
1)− x2 ∗ sin(x2

2),

• m6(x1, x2) = 4
1+4∗x2

1+4∗x2
2
,

• m7(x1, x2) = 6− 2 ∗min(3, 4 ∗ x2
1 + 4 ∗ |x2|),

• m8(x1, ..., x10) =
∑10

j=1(−1)j−1 ∗ xj ∗ sin(x2
j ),

• m9(x1, ..., x10) = m7(x1, x2),

• m10(x1, ..., x10) = m6(x1 + ... + x5, x6 + ... + x10),

• m11(x1, ..., x10) = m2(x1 + ... + x10).

For these 11 different regression functions and each value σ ∈ {0, 0.5, 1} data sets of size

n ∈ {500, 5000} have been generated, so altogether 3 · 11 = 33 different distributions have

been considered, and for each of these distributions the estimates have been compared

for 2 different sample sizes. The maxmin–estimate proposed in Bagirov, Clausen and
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Kohler (2008) has been compared for d = 1 with with kernel estimates (with Gaussian

kernel) (see, e.g., Chapter 5 in Györfi et al. (2002)), local linear kernel estimates (see, e.g.,

Section 5.4 in Györfi et al. (2002)), smoothing splines (see, e.g., Chapter 20 in Györfi et

al. (2002)), neural networks and regression trees (as implemented in the freely available

statistics software R). Since for d > 1 not all of these estimates are easily applicable in

R, for d > 1 the maxmin–estimate has been compared only with neural networks and

regression trees.

In order to compute the L2 errors of the estimates, Monte Carlo integration was used,

i.e., ∫
|mn(x)−m(x)|2PX(dx) = E{|mn(U)−m(U)|2|Dn}

was approximated by
1
N

N∑
j=1

|mn(Ũj)−m(Ũj)|2,

where the random variables Ũ1, Ũ2, . . . are i.i.d. with distribution PU = PX and inde-

pendent of Dn, and where N = 3000. Since this error is a random variable itself, the

experiment was 25 times repeated with independent realizations of the sample, and the

mean and the standard deviation of the Monte Carlo estimates of the L2 error was re-

ported.

In the sequel we make the same simulations with our newly propsed L2–boosting

estimate. Here we set l = 4 for d ∈ {1, 2} and l = 5 for d = 10, k0 = 1000, repeat 7

boosting steps and use splitting of the sample with nl = nt = n/2 to choose one of these

seven estimates as final estimate. In the sequel we present the mean and the standard

deviation of the Monte Carlo estimates of the L2 error of our estimates. In order to save

space, we do not repeat the error values already published in Bagirov, Clausen and Kohler

(2008), instead we just summarize them by reporting whether the error of the L2–boosting

estimate is better, worse or the same as the error of the maxmin–estimate (coded by +,

− and =, resp.), and by reporting which position the error of the L2–boosting estimate

achieves, if we order the mean error values of all estimates (except the maxmin–estimate)

increasingly (which gives us a number between 1 and 6 in case of d = 1, and a number

between 1 and 3 in case of d > 1).
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Table 1 summarizes the results for the four univariate regression functions m1, . . . , m4,

Table 2 summarizes the results for the three bivariate regression functions m5, m6 and m7

l 500 5000

σ 0 0.5 1 0 0.5 1

Error 0.0000 0.0078 0.0290 0.0000 0.0007 0.0025
m1 Std. deviation (0.0000) (0.0043) (0.0166) (0.0000) (0.0004) (0.0014)

Comparison = / 1 + / 1 + / 1 = / 1 = / 1 + / 1

Error 0.0041 0.0157 0.0389 0.0007 0.0012 0.0040
m2 Std. (0.0039) (0.0128) (0.0157) (0.0010) (0.0008) (0.0020)

Comparison + / 1 − / 1 + / 2 = / 1 + / 1 − / 1

Error 0.0155 0.0272 00.1070 0.0015 0.0041 0.0072
m3 Std. (0.0343) (0.0129) (0.0459) (0.0012) (0.0022) (0.0031)

Comparison + / 3 − / 1 + / 2 − / 3 − / 2 − / 1

Error 0.0006 0.0184 0.0508 0.0006 0.0030 0.0088
m4 Std. (0.0003) (0.0054) (0.0151) (0.0004) (0.0007) (0.0027)

Comparison + / 5 + / 4 + / 3 + / 6 + / 5 + / 6

Table 1: Simulation results and comparison with six other nonparametric regression esti-

mates for four univariate regression functions.

and Table 3 summarizes the results for the four regression functions m8, . . . , m11 where

d = 10. Considering the results in Table 1,2 and 3 we can firstly see, that the error of

our L2–boosting estimate was 47-times less than but only 15–times bigger than the error

of the original maxmin–estimate. Taking into account that the newly proposed estimates

requires on average three to four times less time for computation of the estimate, we can

say that L2–boosting clearly leads to an improvement of the maxmin–estimate.

Secondly, by looking at Table 3 we can see that the L2–boosting estimate is especially

suited for high-dimensional data sets and large sample size in comparison with other

nonparametric regression estimates.
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l 500 5000

σ 0 0.5 1 0 0.5 1

Error 0.0322 0.1036 0.2076 0.0089 0.0212 0.0445
m5 Std. (0.0075) (0.0226) (0.0426) (0.0024) (0.0037) (0.0118)

Comparison + / 2 + / 2 + / 1 + / 2 + / 2 + / 2

Error 0.0143 0.0645 0.1486 0.0064 0.0123 0.0311
m6 Std. (0.0045) (0.0143) (0.0330) (0.0013) (0.0015) (0.0039)

Comparison − / 2 − / 2 + / 1 + / 2 + / 2 + / 1

Error 0.0317 0.1192 0.1952 0.0049 0.0234 0.0392
m7 Std. (0.0150) (0.0310) (0.0469) (0.0018) (0.0123) (0.0133)

Comparison + / 2 − / 1 − / 1 + / 1 − / 1 − / 1

Table 2: Simulation results and comparison with three other nonparametric regression

estimates for three bivariate regression functions.

5 Proofs

5.1 A deterministic lemma

Let F be a class of functions f : Rd → R and let (x1, y1), . . . , (xn, yn) ∈ Rd × R, k0 ∈ IN

and define mn,k (k ≥ k0) recursively by

mn,k0 = arg min
f∈F

1
n

n∑
i=1

|yi − f(xi)|2 (18)

and

mn,k+1 =
(

1− 2
k + 1

)
·mn,k + fn,k (19)

where

fn,k = arg min
f∈F

1
n

n∑
i=1

∣∣∣∣yi −
(

1− 2
k + 1

)
·mn1,k(xi)− f(xi)

∣∣∣∣2 . (20)

Lemma 1 Let mn,k be defined by (18) - (20). Then for any k ≥ k0, N ∈ IN, g1, . . . , gN ∈

F and α1, . . . , αN > 0, such that(
2
l

N∑
i=1

αi

)
· gj ∈ F , for all j ∈ {1, . . . , N}, l ∈ {1, . . . , k}, (21)

and ||gj ||∞ = sup
x∈Rd

|gj(x)| ≤ 1, for all j ∈ {1, . . . , N}, (22)
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l 500 5000

σ 0 0.5 1 0 0.5 1

Error 4.4171 4.4991 4.5242 1.1063 1.1496 1.1246
m8 Std. (0.1606) (0.1774) (0.1687) (0.1292) (0.1190) (0.1622)

Comparison + / 1 − / 1 + / 1 + / 1 + / 1 + / 1

Error 0.5656 0.6867 0.8648 0.0348 0.0461 0.1247
m9 Std. (0.1602) (0.1287) (0.0629) (0.0142) (0.0073) (0.0327)

Comparison + / 3 + / 3 + / 3 − / 2 + / 2 + / 3

Error 0.1529 0.2078 0.2441 0.0185 0.0410 0.0962
m10 Std. (0.0309) (0.0271) (0.0614) (0.0029) (0.0053) (0.0173)

Comparison + / 1 + / 2 + / 3 + / 1 + / 1 + / 1

Error 0.0698 0.1983 0.4128 0.0169 0.0251 0.0514
m11 Std. (0.0252) (0.0662) (0.0425) (0.0034) (0.0052) (0.0174)

Comparison + / 1 + / 1 + / 1 − / 1 + / 1 + / 1

Table 3: Simulation results and comparison with three other nonparametric regression

estimates for regression functions where d = 10.

we have:

1
n

n∑
i=1

|yi −mn,k(xi)|2 ≤
1
n

n∑
i=1

|yi − (α1g1 + . . . + αNgN )(xi)|2 + 4 · k0 ·

(∑N
i=1 αi

)2

k
.

The proof of the above lemma is a modification of the proof of Theorem 2.4 in Barron

et al. (2008). For the sake of completeness we repeat it below.

Proof of Lemma 1. In the first step of the proof we show

1
n

n∑
i=1

|yi −mn,k(xi)|2 −
1
n

n∑
i=1

(
yi −

N∑
l=1

αlgl(xi)

)2

≤
(

1− 2
k

)
·

 1
n

n∑
i=1

(yi −mn,k−1(xi))2 −
1
n

n∑
i=1

(
yi −

N∑
l=1

αlgl(xi)

)2


+
4
k2

·

(
N∑

j=1

αj)2 −
1
n

n∑
i=1

(
N∑

l=1

αlgl(xi)

)2
 .

To do this, let j ∈ {1, . . . , N} and set βk = 2
k ·
∑N

i=1 αi. Because of βk · gj ∈ F we have by

definition of the estimate

1
n

n∑
i=1

|yi −mn,k(xi)|2
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≤ 1
n

n∑
i=1

∣∣∣∣(1− 2
k

)
· (yi −mn,k−1(xi)) +

2
k
· yi − βk · gj(xi)

∣∣∣∣2
=
(

1− 2
k

)2

· 1
n

n∑
i=1

|yi −mn,k−1(xi)|2

+2
(

1− 2
k

)
· 1
n

n∑
i=1

(yi −mn,k−1(xi)) ·
(

2
k
· yi − βk · gj(xi)

)

+
1
n

n∑
i=1

(
2
k

(
yi −

N∑
l=1

αlgl(xi)

)
+

2
k
·

N∑
l=1

αlgl(xi)− βk · gj(xi)

)2

≤
(

1− 2
k

)2

· 1
n

n∑
i=1

|yi −mn,k−1(xi)|2

+2
(

1− 2
k

)
· 1
n

n∑
i=1

(yi −mn,k−1(xi)) ·
(

2
k
· yi − βk · gj(xi)

)

+
(

2
k

)2 1
n

n∑
i=1

(
yi −

N∑
l=1

αlgl(xi)

)2

+
4
k

1
n

n∑
i=1

(
yi −

N∑
l=1

αlgl(xi)

)
·

(
2
k
·

N∑
l=1

αlgl(xi)− βk · gj(xi)

)

+
(

2
k

)2 1
n

n∑
i=1

(
N∑

l=1

αlgl(xi)

)2

− 2βk ·
2
k
· 1
n

n∑
i=1

(
N∑

l=1

αlgl(xi)

)
· gj(xi) + β2

k

=: Lj ,

where we have used
1
n

n∑
i=1

β2
kg2

j (xi) ≤ β2
k‖gj‖2

∞ ≤ β2
k.

Since αj ≥ 0 and
∑N

j=1(2/k) · αj = βk we can conclude

1
n

n∑
i=1

|yi −mn,k(xi)|2

≤
N∑

j=1

2 · αj

k · βk
· Lj

=
(

1− 2
k

)2

· 1
n

n∑
i=1

|yi −mn,k−1(xi)|2

+2
(

1− 2
k

)
· 1
n

n∑
i=1

(yi −mn,k−1(xi)) ·

2
k
· yi −

2
k

N∑
j=1

αjgj(xi)


+
(

2
k

)2 1
n

n∑
i=1

(
yi −

N∑
l=1

αlgl(xi)

)2

−
(

2
k

)2 1
n

n∑
i=1

(
N∑

l=1

αlgl(xi)

)2

+ β2
k

13



=
(

1− 2
k

)2 1
n

n∑
i=1

(yi −mn,k−1(xi))
2 +

(
2
k

)2 1
n

n∑
i=1

(
yi −

N∑
l=1

αlgl(xi)

)2

+
(

1− 2
k

)
· 2
k
· 1
n

n∑
i=1

2 · (yi −mn,k−1(xi))

(
yi −

N∑
l=1

αlgl(xi)

)

−
(

2
k

)2 1
n

n∑
i=1

(
N∑

l=1

αlgl(xi)

)2

+ β2
k.

Using 2 · a · b ≤ a2 + b2 we get

1
n

n∑
i=1

|yi −mn,k(xi)|2

≤
(

1− 2
k

)
· 1
n

n∑
i=1

(yi −mn,k−1(xi))2 +
2
k
· 1
n

n∑
i=1

(
yi −

N∑
l=1

αlgl(xi)

)2

+β2
k −

(
2
k

)2 1
n

n∑
i=1

(
N∑

l=1

αlgl(xi)

)2

,

which implies the assertion of the first step.

In the second step of the proof we show

1
n

n∑
i=1

(yi −mn,k0(xi))2 −
1
n

n∑
i=1

(
yi −

N∑
l=1

αlgl(xi)

)2

≤ 4

(
N∑

l=1

αl

)2

.

To do this, let j ∈ {1, . . . , N} and set γk0 =
∑N

j=1 αj . Then

1
n

n∑
i=1

(yi −mn,k0(xi))2 ≤
1
n

n∑
i=1

(
yi −

N∑
l=1

αlgl(xi) +
N∑

l=1

αlgl(xi)− γk0 · gj(xi)

)2

,

and arguing as above we get

1
n

n∑
i=1

(yi −mn,k0(xi))2 ≤
N∑

j=1

αj

γk0

· 1
n

n∑
i=1

(
yi −

N∑
l=1

αlgl(xi) +
N∑

l=1

αlgl(xi)− γk0 · gj(xi)

)2

=
1
n

n∑
i=1

(yi −
N∑

l=1

αlgl(xi))2 +
N∑

j=1

αj

γk0

· 1
n

n∑
i=1

(
N∑

l=1

αlgl(xi)− γk0 · gj(xi)

)2

≤ 1
n

n∑
i=1

(yi −
N∑

l=1

αlgl(xi))2 −
1
n

n∑
i=1

(
N∑

l=1

αlgl(xi)

)2

+ γ2
k0

,

from which we conclude the assertion of the second step.
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In the third step of the proof we finish the proof. To do this, we observe that by the

results of the previous steps we know already that

ak :=
1
n

n∑
i=1

|yi −mn,k(xi)|2 −
1
n

n∑
i=1

(yi −
N∑

l=1

αlgl(xi))2

satisfies

ak0 ≤
4M

k0
and ak ≤

(
1− 2

k

)
ak−1 +

4
k2

M

where M is defined as M := k0 ·
(∑N

j=1 αj

)2
.

But from this we get the assertion, since ak ≤ 4M/k implies

ak+1 ≤
(

1− 2
k + 1

)
· 4M

k
+

4
(k + 1)2

M ≤ 4M

k + 1
,

where the last inequality follows from(
1− 2

k + 1

)
· 1
k

+
1

(k + 1)2
=

k2 + k − 1
k2 + k

· 1
k + 1

≤ 1
k + 1

.

�

5.2 Splitting of the Sample for Unbounded Y

The following lemma is an extension of Theorem 7.1 in Györfi et al. (2002) to unbounded

data. It is about bounding the L2 error of estimates, which are defined by splitting of the

sample. Let n = nl + nt, let Qn be a finite set of parameters and assume that for each

parameter h ∈ Qn an estimate

m(h)
nl

(·) = m(h)
nl

(·,Dnl
)

is given, which depends only on the training data Dnl
= {(X1, Y1), . . . , (Xnl

, Ynl
)}. Then

we define

mn(x) = m(H)
nl

(x) for all x ∈ Rd, (23)

where H ∈ Qn is chosen such that

1
nt

n∑
i=nl+1

|m(H)
nl

(Xi)− Yi|2 = min
h∈Qn

1
nt

n∑
i=nl+1

|m(h)
nl

(Xi)− Yi|2. (24)
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Lemma 2 Let βn = c1 · log(n) for some constant c1 > 0 and assume that the estimates

m
(h)
nl are bounded in absolute value by βn for h ∈ Qn. Assume furthermore that the

distribution of (X, Y ) satisfies the Sub-Gaussian condition (14) for some constant c2 > 0,

and that the regression function fulfils ||m||∞ < L for some L ∈ R+, with L ≤ βn. Then,

for every estimate mn defined by (23) and (24) and any δ > 0,

E
∫
|mn(x)−m(x)|2PX(dx)

≤ (1 + δ) min
h∈Q

E
∫
|m(h)

nl
(x)−m(x)|2PX(dx) + c6 · β2

n ·
1 + log |Qn|

nt
+ c7

log(n)
n

holds, with c6 = 16/δ + 35 + 19δ and a sufficiently large constant c7 > 0.

Proof. We use the following error decomposition

E
(∫

|mn(x)−m(x)|2PX(dx)
∣∣∣∣Dnl

)
= E

(∫
|m(H)

nl
(x)−m(x)|2PX(dx)

∣∣∣∣Dnl

)
=

[
E
(
|m(H)

nl
(X)− Y |2

∣∣∣Dnl

)
−E

(
|m(X)− Y |2

)
−E

(
|m(H)

nl
(X)− TβnY |2

∣∣∣Dnl

)
−E

(
|mβn(X)− Tβnt

Y |2
) ]

+

[
E
(
|m(H)

nl
(X)− TβnY |2

∣∣∣Dnl

)
−E

(
|mβn(X)− Tβnt

Y |2
)

−(1 + δ) · 1
nt

n∑
i=nl+1

(
|m(H)

nl
(Xi)− TβnYi|2 − |mβn(Xi)− TβnYi|2

)]

+

[
(1 + δ) · 1

nt

n∑
i=nl+1

(
|m(H)

nl
(Xi)− TβnYi|2 − |mβn(Xi)− TβnYi|2

)
−
(

(1 + δ) · 1
nt

n∑
i=nl+1

(
|m(H)

nl
(Xi)− Yi|2 − |m(Xi)− Yi|2

))]

+

(1 + δ) · 1
nt

n∑
i=nl+1

(
|m(H)

nl
(Xi)− Yi|2 − |m(Xi)− Yi|2

) =
4∑

i=1

Ti,n,

where TβnY denotes the truncated version of Y and mβn(x) = E {TβnY |X = x} . Due to

equality (24) we can bound the last term T4,n by

(1 + δ)

 1
nt

n∑
i=nl+1

(
|m(h)

nl
(Xi)− Yi|2 − |m(Xi)− Yi|2

) ,
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for every h ∈ Qn, and this entails for its conditional expectation

E(T4,n|Dnl
) ≤ (1 + δ) min

h∈Qn

(
E
(
|m(h)

nl
(X)− Y |2

∣∣∣Dnl

)
−E

(
|m(X)− Y |2

))
= (1 + δ) min

h∈Qn

∫
|m(h)

nl
(x)−m(x)|2PX(dx).

By using a2 − b2 = (a− b)(a + b) we get for T1,n

T1,n = E
(
|m(H)

nl
(X)− Y |2 − |m(H)

nl
(X)− TβnY |2

∣∣∣Dnl

)
−E
(
|m(X)− Y |2 − |mβn(X)− TβnY |2

)
= E

(
(TβnY − Y )(2m(H)

nl
(X)− Y − TβnY )

∣∣∣Dnl

)
−E
((

(m(X)−mβn(X)) + (TβnY − Y )
)

·
(
m(X) + mβn(X)− Y − TβnY

))
= T5,n + T6,n.

With the Cauchy-Schwarz inequality and

I{|Y |>βn} ≤
exp(c2/2 · |Y |2)
exp(c2/2 · β2

n)
, (25)

it follows

|T5,n| ≤
√

E(|TβnY − Y |2) ·
√

E(|2m
(H)
nl (X)− Y − TβnY |2|Dnl

)

≤
√

E(|Y |2 · I{|Y |>βn}) ·
√

E(2 · |2m
(H)
nl (X)− TβnY |2 + 2 · |Y |2|Dnl

)

≤

√√√√E

(
|Y |2 · exp(c2/2 · |Y |2)

exp(c2/2 · β2
n)

)
·
√

2(3βn)2 + 2E(|Y |2)

≤
√

E
(
|Y |2 exp(c2/2 · |Y |2)

)
exp

(
−c2 · β2

n

4

)√
2(3βn)2 + 2E(|Y |2),

owing to the boudedness of m
(H)
nl . With x ≤ exp(x) for x ∈ R we get

|Y |2 ≤ 2
c2
· exp

(c2

2
|Y |2

)
and hence E

(
|Y |2 · exp(c2/2 · |Y |2)

)
is bounded by

E
(

2
c2
· exp

(
c2/2 · |Y |2

)
· exp(c2/2 · |Y |2)

)
≤ E

(
2
c2
· exp

(
c2 · |Y |2

))
≤ c6,
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which is less than infinity by the assumptions of the theorem. Furthermore the third term

is bounded by
√

18β2
n + c8, because

E(|Y |2) ≤ E(1/c2 · exp(c2 · |Y |2) ≤ c8 < ∞,

which follows again as above. With the setting βn = c1 ·log(n) it follows for some constants

c9, c10 > 0

|T5,n| ≤
√

c5 · exp
(
−c9 · log(n)2

)
·
√

(18 · c2
1 · log(n)2 + 2c7) ≤ c10 ·

log(n)
n

.

From the Cauchy-Schwarz inequality we get

T6,n ≤

√√√√2E

(
|(m(X)−mβn(X))|2

)
+ 2E

(
|(TβnY − Y )|2

)

·

√√√√E

(∣∣∣m(X) + mβn(X)− Y − TβnY
∣∣∣2),

where we can bound the second factor on the right hand-side in the above inequality in the

same way we have bounded the second factor from T5,n, because by assumption ||m||∞ is

bounded, and mβn is clearly also bounded, namely by βn. Thus, we get for some constant

c11 > 0, √√√√E

(∣∣∣m(X) + mβn(X)− Y − TβnY
∣∣∣2) ≤ c11 · log(n).

Next we consider the first term. With the inequality from Jensen it follows

E
(
|m(X)−mβn(X)|2

)
≤ E

(
E
(
|Y − TβnY |2

∣∣∣X)) = E
(
|Y − TβnY |2

)
.

Hence we get,

T6,n ≤
√

4E (|Y − TβnY |2) · c11 · log(n),

and therefore the calculations from T5,n imply T6,n ≤ c12 · log(n)/n, for some constant

c12 > 0. Altogether we get T1,n ≤ c13 · log(n)/n for some constant c13 > 0.

With the same arguments we get also

E{T3,n|Dnl
} ≤ c13

log(n)
n

,

18



for sufficiently large c13 > 0. Hence it suffices to show

E(T2,n|Dnl
) ≤ c6β

2
n ·

1 + log(|Qn|)
nt

,

to complete this proof. But a bound on E(T2,n|Dnl
) can be derived analogously to the

bounding of the corresponding term in the proof of Theorem 7.1 in Györfi et al. (2007)

by an application of Bernstein inequality, because T2,n contains only the bounded versions

of Y and the belonging bounded regression function. Hence this yields to the desired

assertion and closes this proof. �

5.3 Proof of Theorem 1

By Lemma 2 applied with δ = 1 and with Qn = {k0, k0 + 1, ..., n} we get

E
∫
|mn(x)−m(x)|2PX(dx)

≤ 2 min
k∈{k0,k0+1,...,n}

E
∫
|mnl,k(x)−m(x)|2PX(dx) + 70β2

n

1 + log(n)
nt

+ c7
log(n)

n
.

For k ∈ {k0, k0 + 1, ..., n}, we now use the following error decomposition:∫
|mnl,k(x)−m(x)|2PX(dx)

=
[
E
(
|mnl,k(X)− Y |2|Dnl

)
−E

(
|m(X)− Y |2

)
−E
(
|mnl,k(X)− TβnY |2|Dnl

)
−E

(
|mβn(X)− TβnY |2

)]
+

[
E
(
|mnl,k(X)− TβnY |2|Dnl

)
−E

(
|mβn(X)− TβnY |2

)
−2 · 1

nl

nl∑
i=1

(
|mnl,k(Xi)− TβnYi|2 − |mβn(Xi)− TβnYi|2

)]

+

[
2 · 1

nl

nl∑
i=1

|mnl,k(Xi)− TβnYi|2 − 2 · 1
nl

nl∑
i=1

|mβn(Xi)− TβnYi|2

−

(
2 · 1

nl

nl∑
i=1

|mnl,k(Xi)− Yi|2 − 2 · 1
nl

nl∑
i=1

|m(Xi)− Yi|2
)]

+

[
2

(
1
nl

nl∑
i=1

|mnl,k(Xi)− Yi|2 −
1
nl

nl∑
i=1

|m(Xi)− Yi|2
)]

=
4∑

i=1

Ti,n,

19



where again TβnY is the truncated version of Y and mβn is the regression function of

TβnY .

Both terms T1,n and T3,n can be bounded like their corresponding terms in the proof

of Lemma 2, and hence we have

T1,n ≤ c14
log n

n
and E{T3,n|Dnl

} ≤ c14
log n

n
,

for a constant c14 > 0. Next we consider T4,n. Let Anl
be the event, that there exists

i ∈ {1, ..., nl} such that |Yi| > βn and let IAnl
be the indicator function of Anl

. Then we

get

E(T4,n) ≤ 2 ·E

(
1
nl

nl∑
i=1

|mnl,k(Xi)− Yi|2 · IAnl

)

+2 ·E

(
1
nl

nl∑
i=1

|mnl,k(Xi)− Yi|2 · IAc
nl
− 1

nl

nl∑
i=1

|m(Xi)− Yi|2
)

= 2 ·E
(
|mnl,k(X1)− Y1|2 · IAnl

)
+2 ·E

(
1
nl

nl∑
i=1

|mnl,k(Xi)− Yi|2 · IAc
nl
− 1

nl

nl∑
i=1

|m(Xi)− Yi|2
)

= T7,n + T8,n.

With the Cauchy-Schwarz inequality we get, for T7,n,

1
2
· T7,n ≤

√
E
(
(|mnl,k(X1)− Y1|2)2

)
·
√

P(Anl
)

≤
√

E
(
(2|mnl,k(X1)|2 + 2|Y1|2)2

)
·
√

nl ·P{|Y1| > βn}

≤
√

E (4|mnl,k(X1)|4 + 4|Y1|4) ·

√
nl ·

E (exp(c2 · |Y1|2))
exp(c2 · β2

n)
,

where the last inequality follows from inequality (25). Because x ≤ exp(x) holds for all

x ∈ R, we get

E
(
|Y |4

)
= E

(
|Y |2 · |Y |2

)
≤ E

(
2
c2
· exp

(c2

2
· |Y |2

)
· 2
c2
· exp

(c2

2
· |Y |2

))
=

4
c2
2

·E
(
exp

(
c2 · |Y |2

))
,

which is less than infinity by the assumption (14). Furthermore ||mnl,k||∞ is bounded by

βn and therefore the first factor is bounded by

c15 · β2
n = c16 · log(n)2,
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for some constant c15, c16 > 0. The second factor is bounded by 1/n, because (14) yields

to√
nl ·

E (exp(c2 · |Y1|2))
exp(c2 · β2

n)
≤

√
nl ·

√
c17√

exp(c2 · β2
n)
≤
√

nl
√

c17 · exp
(
−c18 · log(n)2

2

)
.

Since exp(−c18 · log(n)2) = O(n−2), further on this leads to

T7,n ≤ c19 ·
log(n)2

√
nl

n2
≤ c20 ·

log(n)
n

. (26)

With the definition of Ac
nl

and mnl,k defined as in (8), it follows for T8,n

T8,n ≤ 2 ·E

(
1
nl

nl∑
i=1

|m̃nl,k(Xi)− Yi|2 · IAc
nl
− 1

nl

nl∑
i=1

|m(Xi)− Yi|2
)

≤ 2 ·E

(
1
nl

nl∑
i=1

|m̃nl,k(Xi)− Yi|2 −
1
nl

nl∑
i=1

|m(Xi)− Yi|2
)

.

Lemma 1 yields for arbitrary N ∈ IN and h ∈ HF
N

T8,n ≤ 2 ·E

(
4 · k0 ·

(αh
1 + . . . + αh

N )2

k
+

1
nl

nl∑
i=1

|h(Xi)− Yi|2 −
1
nl

nl∑
i=1

|m(Xi)− Yi|2
)

= 8k0
(αh

1 + . . . + αh
N )2

k
+ 2

∫
|h(x)−m(x)|2PX(dx),

which together with (26) implies

E(T4,n) ≤

c21 ·
log(n)

n
+ inf

N∈IN
inf

h∈HFn
N

(
8 · k0 ·

(αh
1 + . . . + αh

N )2

k
+ 2

∫
|h(x)−m(x)|2PX(dx)

)
.

The last part of the proof considers T2,n. To get bounds on the expectation of T2,n we

need conclusions for the covering numbers of Fn. With the notation

K⊕
k=1

Fn =

{
g : Rd → R, g(x) =

K∑
k=1

gk(x), (x ∈ Rd), for some gk ∈ Fn, 1 ≤ k ≤ K

}
(27)

it is clear that mnl,k ∈ Tβ(
⊕k

i=1Fn). Furthermore for an arbitrary class G of real functions

on Rd

Np (ε, TβG, zn
1 ) ≤ Np (ε,G, zn

1 ) (28)
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holds, because whenever g1, ..., gN is an Lp-ε-cover of G on zn
1 then Tβg1, ..., TβgN is an

Lp-ε-cover of TβG on zn
1 , too. Together with Lemma 16.4 in Györfi et al. (2002) this yields

N1

(
ε, Tβ

k⊕
i=1

Fn, zn
1

)
≤ N1

( ε

k
,Fn, zn

1

)k
≤ N1

( ε

k
,Fn

)k
.

This bound will be used to get a bound on the following probability. We have, for arbitrary

t > 1/n,

P{T2,n > t} ≤ P

{
∃f ∈ Tβn

k⊕
i=1

Fn : E

(∣∣∣∣f(X)
βn

−
TβnY

βn

∣∣∣∣2
)
−E

(∣∣∣∣mβn(X)
βn

−
TβnY

βn

∣∣∣∣2
)

− 1
nl

nl∑
i=1

(∣∣∣∣f(Xi)
βn

−
TβnYi

βn

∣∣∣∣2 − ∣∣∣∣mβn(Xi)
βn

−
TβnYi

βn

∣∣∣∣2
)

>
1
2

(
t

β2
n

+ E

(∣∣∣∣f(X)
βn

−
TβnY

βn

∣∣∣∣2
)
−E

(∣∣∣∣mβn(X)
βn

−
TβnY

βn

∣∣∣∣2
))}

.

Thus with Theorem 11.4 in Györfi et al. (2002), the above derived bound, and

N1

(
δ,

{
1
βn

f : f ∈ Fn

}
, zn

1

)
≤ N1 (δ · βn,Fn, zn

1 ) ,

we get for zn
1 = (z1, ..., zn) ∈ Rd × ...× Rd

P{T2,n > t} ≤ 14 sup
zn
1

N1

(
t

80βn
, Tβn

k⊕
i=1

Fn, zn
1

)
· exp

(
− nl

5136 · β2
n

t

)

≤ 14 · N1

(
t

80βn · k
,Fn

)k

· exp
(
− nl

5136 · β2
n

t

)
.

Using this we get for arbitrary ε ≥ 1/n

E(T2,n) ≤ ε +
∫ ∞

ε
P{T2,n > t}dt

= ε + 14 · N1

(
1

80βn · n · k
,Fn

)k

· 5136β2
n

nl
· exp

(
− nl

5136β2
n

ε

)
.

With

ε =
5136 · β2

n

nl
· log

(
14 · N1

(
1

80βn · n · k
,Fn

)k
)

we get

E(T2,n) ≤
c22 · β2

n · k · log
(
N1

(
1

80βn·n·k ,Fn

))
nl

for some sufficient large constant c22 > 0, which does not depend on n, βn or k. Gathering

the above results, the proof is complete. �
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5.4 Proof of Corollary 1

In the proof we will use the following bound on the covering number of TβFl,l shown in

Lemma 2 in Bagirov, Clausen and Kohler (2006).

Lemma 3 Let xn
1 ∈ Rd × ...× Rd. Then we have for Fr1,r2 defined by (15), that

N1 (ε, TβFm1,m2 , x
n
1 ) ≤ 3

(
6eβ

ε
·m1 ·m2

)2(d+2)·r1·r2

holds for all ε > 0.

Furthermore we need the following approximation result for neural networks, which is

proven in Lemma 16.8 in Györfi et al. (2002).

Lemma 4 Let σ : R → R be a squashing function, i.e., assume that σ is monotone

increasing and satisfies σ(x) → 0 (x → −∞) and σ(x) → 1 (x → ∞). Then for every

probability measure µ on Rd, every measurable f ∈ FC , every r > 0 and every k ≥ 1 there

exists a neural network fk in{
k∑

i=1

ciσ(ai · x + bi) + c0; k ∈ IN, ai ∈ Rd, bi, ci ∈ R

}

such that ∫
Sr

(f(x)− fk(x))2µ(dx) ≤ (2rC)2

k
,

where Sr is the closed ball around zero with radius r. The coefficients of this neural network

fk may be chosen such that
∑k

i=0 |ci| ≤ 3rC + f(0).

Proof of Corollary 1. Application Theorem 1 with the choice nl = dn
2 e together with

Lemma 3 yields

E
∫
|mn(x)−m(x)|2PX(dx)

≤ c24
log(n)3

n
+ min

k∈{k0,k0+1,...,n}

(
c23

(
k · log(n)3

n

)

+ inf
N∈IN

inf
h∈HFn

N

(
16 · k0 ·

(αh
1 + . . . + αh

N )2

k
+ 4

∫
|h(x)−m(x)|2PX(dx)

))
,
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for large enough constants c23, c24 > 0. Choosing k =
(

n
log(n)3

)1/2
we can bound the

minimum above by

c25

(
log(n)3

n

)1/2

+ inf
N∈IN

inf
h∈HFn

N

16 · k0 · (αh
1 + . . . + αh

N )2(
n

log(n)3

)1/2
+ 4

∫
|h(x)−m(x)|2PX(dx)


for sufficiently large constant c25 > 0, that does not depend on n, βn or k.

Hence we do only need a bound on the infimum over h ∈ HFn
N to conclude this proof.

For this purpose we will use Lemma 4. It is quiet easy to see that, for the so-called ramp

squasher σ, defined by σ(x) = max{0,min{x, 1}}, functions of the form

k∑
i=1

ciσ(ai · x + bi)

are elements of HFn
k . This results from the fact, that for arbitrary ai ∈ Rd and bi ∈ R

σ(ai · x + bi) = max
{

0 , min
{

ai · x + bi , 1
}}

:= f+
i ∈ Fl,l,

with ||f+
i ||∞ ≤ 1 and also

−σ(ai · x + bi) =


0, ai · x < −bi,

−(ai · x + bi), −bi ≤ ai · x ≤ 1− bi,

−1, ai · x > 1− bi,

= max
{
− 1 , min

{
− (ai · x + bi) , 0

}}
:= f−i ∈ Fl,l,

with ||f−i ||∞ ≤ 1 as well, what ensures that condition (13) holds. Therefore we can rewrite

k∑
i=1

ciσ(ai · x + bi),

by using the algebraic sign of the ci to choose whether f+
i or f−i , as

|c1| · fsign(c1)
1 + |c2| · fsign(c2)

2 + . . . + |ck| · f
sign(ck)
k .

In this notation it is now obvious, that
∑k

i=1 ciσ(ai ·x+bi) ∈ H
Fl,l

k , whereas the correctness

of condition (12) follows from the fact, that multiplication of a function from Fl,l with a

positive factor still yields a functions from Fl,l. If βn is large enough, the same is true for

HTβnFl,l

k , because in this case the boundedness of the weights in Lemma 4 together with

24



the boundedness of the regression function imply that the truncation makes no changes

at all.

We have moreover assumed X ∈ [−a, a]d a.s. and for r =
√

d · a we have X ∈ Sr a.s.

Thus with Lemma 4 and the assumptions N = k + 1 and βn ≥ 2 · (3rC + m(0)) we can

now bound the last term:

inf
h∈HN

(
16(αh

1 + . . . + αh
N )2 ·

(
log(n)

n

)1/2

+ 4
∫
|h(x)−m(x)|2PX(dx)

))

≤ 16 · (3rC + m(0))2 ·
(

log(n)
n

)1/2

+ 4 · (2rC)2 ·
(

log(n)
n

)1/2

≤ c26 · C2 ·
(

log(n)
n

)1/2

for a sufficiently large constant c26, that does not depend an r, C, n or k. �
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