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Summary: This paper is concerned with evaluation of American optionsalso called Bermudan options in discrete

time. We use the dual approach to derive upper bounds on the price of such options using only a reduced number of

nested Monte Carlo steps. The key idea is to apply nonparametric regression to estimate continuation values and all

other required conditional expectations and to combine theresulting estimate with another estimate computed by using

only a reduced number of nested Monte Carlo steps. The expectation of the resulting estimate is an upper bound on the

option price. It is shown that the estimates of the option prices are universally consistent, i.e., they converge to the true

price regardless of the structure of the continuation values. The finite sample behavior is validated by experiments on

simulated data.

1 Introduction

The main advantage of Monte Carlo methods for pricing American options in discrete time, also called

Bermudan options, is that they can be computed quickly compared to other methods when the number of

underlying assets or state variables is large. One way to apply them is to use the dual representation of the

priceV0 of an American option in discrete time given by

V0 = inf
M∈M

E

{

max
t=0,...,T

(ft(Xt) − Mt)

}

. (1.1)

HereX0, X1, . . . , XT denote the underlying Markovian process describing, e.g.,the prices of the under-

lyings and the financial environment (like interest rates, etc.), ft is the discounted payoff function andM
is the set of all martingalesM0, . . . , MT with M0 = 0 (cf. Rogers (2001), Haugh and Kogan (2004), or
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Section 8.7 in Glasserman (2004)). Neither the Markov property nor the form of the payoff as a function of

the stateXt is restrictive and can always be achieved by including supplementary variables.

We next describe the optimal martingaleM∗
t at which the infimum in (1.1) is reached. LetT (t +

1, . . . , T ) be the class of all{t+1, . . . , T}–valued stopping times, i.e., of all functionsτ = τ(X0, . . . , XT )

with values in{t + 1, . . . , T} satisfying

{τ = α} ∈ F(X0, . . . , Xα) for all α ∈ {t + 1, . . . , T}.

Let

qt(x) = sup
τ∈T (t+1,...,T )

E {fτ (Xτ )|Xt = x}

(t ∈ {0, . . . , T − 1}) be the so–called continuation values describing the value of the option at timet given

Xt = x and subject to the constraint of holding the option at timet rather than exercising it. It can be

shown that the optimal martingaleM∗
t is given by

M∗
t =

t
∑

s=1

(max{fs(Xs), qs(Xs)} − qs−1(Xs−1)) (t ∈ {1, . . . , T}) (1.2)

(cf., e.g., Section 8.7 in Glasserman (2004)). Because of

qs−1(Xs−1) = E {max{fs(Xs), qs(Xs)}|Xs−1} (1.3)

(cf. Tsitsiklis and van Roy (1999))M∗
t is indeed a martingale.

Using (1.3) (or other regression representations like the ones in Longstaff and Schwartz (2001) or Egloff

(2005)) the continuation values can be estimated recursively by the Monte Carlo method. This approach has

been proposed for linear regression in Tsitsiklis and van Roy (1999) and Longstaff and Schwartz (2001).

Egloff (2005), Egloff, Kohler and Todorovic (2007), Kohler, Krzyżak and Todorovic (2006), and Kohler

(2008a) introduced various estimates based on nonparametric regression.

With such estimateŝqs of qs the optimal martingaleM∗
t can be estimated by

M̂t =

t
∑

s=1

(

max{fs(Xs), q̂s(Xs)} − Ê {max{fs(Xs), q̂s(Xs)}|Xs−1}
)

(t ∈ {1, . . . , T}) (1.4)

andM̂0 = 0. As long asÊ is an unbiased estimate of the corresponding conditional expectation,M̂t will

be a martingale and according to (1.1)

E

{

max
t=0,...,T

(

ft(Xt) − M̂t

)

}

will be an upper bound on the price of the option. Similar estimates have been introduced in Rogers (2001)

and Haugh and Kogan (2004), where linear regression was usedto estimate the continuation values recur-

sively, and where nested Monte Carlo was used to get unbiasedestimateŝE of the conditional expectation
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occuring in (1.2) (cf. (1.3)). Jamshidian (2007) studied multiplicative versions of this method. A compara-

tive study of multiplicative and additive duals is contained in Chen and Glasserman (2007). Andersen and

Broadie (2004) derive upper and lower bounds for American options based on duality.

Kohler (2008b) applied nonparametric regression in this context. It was shown that the resulting esti-

mates of the option price converge to the true values regardless of the structure of the continuation values,

and that their performance on simulated data was superior tothe estimates based on linear regression. How-

ever, the use of nested Monte Carlo substantially increasedthe computational burden. In a Brownian motion

setting Belomestny, Bender and Schoenmakers (2007) proposed dual estimates of option prices which do

not require nested Monte Carlo and hence can be computed significantly faster.

In this article we introduce for general Markovian processes dual Monte Carlo estimates based on

nonparametric regression which do not require many nested Monte Carlo steps. The key idea is to define

dual estimates where all conditional expectations are estimated by nonparametric regression. In general

there is no guarantee that the expectation of this kind of estimate is an upper bound on the option price.

However, by combining it with a dual estimate of the option price based on nonparametric regression and

nested Monte Carlo we construct another estimate, which hasthis property, and which requires only a

reduced number of nested Monte Carlo steps. We show that our new estimates are universally consistent,

i.e., they converge to the true price regardless of the structure of the continuation values. We illustrate the

finite sample behavior of our estimates by experiments on simulated data.

The definition of the estimates is given in Section 2. Our maintheoretical result concerning consistency

of the estimates is presented in Section 3 and proven in Section 5. Section 4 contains an application of our

method to simulated data.

2 Definition of the estimate

Let X0, X1, . . . , XT be aIRd–valued Markov process and letft be the discounted payoff function which

we assume to be bounded in absolute value byL. We assume that the data generating process is completely

known, i.e., that all parameters of this process are alreadyestimated from historical data. In this section we

describe dual Monte Carlo methods for estimation ofV0.

We start with the algorithm from Kohler (2008b) using nestedMonte Carlo and nonparametric re-

gression. The algorithm uses artificially generated independent Markov processes{Xi,t}t=0,...,T (i =

1, 2, . . . , n + Nn) which are identically distributed as{Xt}t=0,...,T . In addition we use random variables

{X(k)
i,t }t=0,...,T (i = n + 1, . . . , n + Nn, k = 1, . . . , Kn) which are constructed in such a way that given

Xi,t−1 the random variables

Xi,t, X
(1)
i,t , . . . , X

(Kn)
i,t

are i.i.d. and such that givenXi,t−1 the random variablesX(1)
i,t , . . . , X

(Kn)
i,t are independent of all other
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random variables introduced above. In a first step the firstn replications{Xi,t}t=0,...,T (i = 1, 2, . . . , n)

of the Markov process are used to define regression based Monte Carlo estimateŝqn,t of qt. Here any of

the estimates described in Egloff, Kohler and Todorovic (2007), Kohler, Krzyżak and Todorovic (2006) or

Kohler (2008a) can be applied. In a second step the martingale (1.2) is estimated by

M̄t,j =
t
∑

s=1

(

max{fs(Xs,j), q̂n,s(Xs,j)} −
1

Kn

Kn
∑

k=1

max{fs(X
(k)
s,j ), q̂n,s(X

(k)
s,j )

)

(2.1)

(t ∈ {1, . . . , T}) andM̄0 = 0. Since

1

Kn

Kn
∑

k=1

max{fs(X
(k)
s,j ), q̂n,s(X

(k)
s,j )} (2.2)

is an unbiased estimate of the corresponding expectation (conditioned on all dataDn used in the definition of

q̂n,s and conditioned onXs−1,j), this is indeed a martingale. Consequently the expectation of the estimate

V̂0,n =
1

Nn

n+Nn
∑

j=n+1

max
t=0,...,T

(

ft(Xt,j) − M̄t,j

)

(2.3)

is an upper bound onV0.

What makes the computation of the estimate time consuming are the nested Monte Carlo steps needed

in (2.2). Here we needKn successors of the random variableXt,j for eachj ∈ {n + 1, . . . , n + Nn}, so

we need to simulateNn · Kn random variables for each time step. The problem with this isthat we need a

large numberNn in order to ensure that the estimate (2.3) is close to its expectation.

In the sequel we want to modify the definition of the estimate in such a way that the estimate can be

computed faster. The main idea is to use a regression estimate instead of (2.2). A simple way to define such

an estimate is to set

M̃t =

t
∑

s=1

(max{fs(Xs), q̂n,s(Xs)} − q̂n,s−1(Xs−1)) (t ∈ {1, . . . , T})

and to estimate the price of the option by

E
∗

{

max
t=0,...,T

(

ft(Xt) − M̃t

)

}

, (2.4)

whereE∗ denotes the expectation conditioned onDn. However, since fort > 0

ft(Xt) − M̃t ≤ ft(Xt) −
t−1
∑

s=1

(q̂n,s(Xs) − q̂n,s−1(Xs−1)) − (ft(Xt) − q̂n,t−1(Xt−1)) = q̂n,0(X0),

where we have equality in case thatt is the first index withft(Xt) ≥ q̂n,t(Xt), (2.4) is in fact equal to

E
∗ {max{f0(X0), q̂n,0(X0)}} ,

and this will in general be no longer an upper bound onV0, which satisfies

V0 = E {max{f0(X0), q0(X0)}}
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(cf., e.g., Section 8.7 in Glasserman (2004)).

Instead, we use a second regression estimateq̂ñ,s−1 in order to estimate the conditional expectation

corresponding to (2.2). Here we will use a sample sizeñ larger thann. To be able to compute this estimate

quickly, we setñ = Kn · n and compute the estimate by applying it to a sample ofn i. i. d. random

variables with the same distribution as
(

Xs−1,
1

Kn

Kn
∑

k=1

max{fs(X
(k)
s ), q̂n,s(X

(k)
s )}

)

.

The regression function of this sample is

q∗n,s−1(x) = E
∗
{

max{fs(Xs), q̂n,s(Xs)}
∣

∣Xs−1 = x
}

,

which is indeed the function we want to approximate.

Our corresponding estimate of the option price is

V̂1,n =
1

Nn

n+Nn
∑

j=n+1

max
t=0,...,T

(

ft(Xt,j) − M̂t,j

)

(2.5)

where

M̂t,j =

t
∑

s=1

(max{fs(Xs,j), q̂n,s(Xs,j)} − q̂ñ,s−1(Xs−1,j)) . (2.6)

Unfortunately, there is no guarantee that the expectation of this estimate is indeed an upper bound on the

option price. To construct an estimate with that property, we use an idea similar to control variates (cf., e.g.,

Section 4.1 in Glasserman (2004)) and combine (2.5) with (2.3). To do this, we define the estimate

V̂2,n =
1

Nn

n+Nn
∑

j=n+1

max
t=0,...,T

(

ft(Xt,j) − M̂t,j

)

+
1

N̄n

n+N̄n
∑

j=n+1

(

max
t=0,...,T

(

ft(Xt,j) − M̄t,j

)

− max
t=0,...,T

(

ft(Xt,j) − M̂t,j

)

)

, (2.7)

whereN̄n ≤ Nn is an additional parameter of the estimate (apparently in the caseN̄n = Nn the estimates

(2.3) and (2.7) coincide). Thus in the present paper estimate (2.3), which has been proposed in Kohler

(2008b), is replaced by estimates (2.5) and (2.7). Clearly,the expectation of estimate (2.7) is equal to the

expectation of̂V0,n and hence it provides an upper bound on the option price. We conjecture that

max
t=0,...,T

(

ft(Xt,j) − M̄t,j

)

and max
t=0,...,T

(

ft(Xt,j) − M̂t,j

)

are close and therefore the standard deviation of

max
t=0,...,T

(

ft(Xt,j) − M̄t,j

)

− max
t=0,...,T

(

ft(Xt,j) − M̂t,j

)

(2.8)

is smaller than the standard deviation of

max
t=0,...,T

(

ft(Xt,j) − M̂t,j

)

. (2.9)
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As we will see in Section 4, this is indeed true in our simulation. There the standard deviation of (2.8) will

be approximately half of the standard deviation of (2.9). Since the error of a Monte Carlo estimate of an

expectation is of order
s√
Nn

,

wheres is the standard deviation andNn is the sample size, this allows us to chooseN̄n ≈ Nn/4, which

for (2.7) drastically reduces the number of nested Monte Carlo steps compared to (2.3).

3 Main theorem

Our main theoretical result is the following theorem:

Theorem 1 Let L > 0, let X0, X1, . . . , XT be aIRd–valued Markov process and assume that the dis-

counted payoff functionft is bounded in absolute value byL. Let the estimateŝV1,n andV̂2,n be defined as

in Section 2. Assume that the estimatesq̂n,t of qt are bounded in absolute value byL and satisfy
∫

|q̂n,t(x) − qt(x)|2PXt
(dx) → 0 in probability, (3.1)

and that

Nn → ∞, N̄n → ∞ and
Kn

log N̄n

→ ∞ (n → ∞). (3.2)

Then

V̂1,n → V0 in probability (3.3)

and

V̂2,n → V0 in probability. (3.4)

The estimates defined in Egloff, Kohler and Todorovic (2007), Kohler, Krzyżak and Todorovic (2006)

and Kohler (2008) satisfy (3.1) for all bounded Markov processes. Hence if we use any of these estimates

in the definition of our new estimate, we get universally consistent upper bounds on the price ofV0.

Corollary 2 Let A, L > 0. Assume thatX0, X1, . . . , XT is a [−A, A]d–valued Markov process and that

the discounted payoff functionft is bounded in absolute value byL. Let the estimateŝV1,n and V̂2,n be

defined as in Section 2 whereqt is estimated by the least squares splines as in Egloff, Kohler and Todorovic

(2007), by the least squares neural networks as in Kohler, Krzẏzak and Todorovic (2006) or by the smoothing

splines as in Kohler (2008a). ChooseNn, N̄n andKn such that

Nn → ∞, N̄n → ∞ and
Kn

log N̄n

→ ∞, (n → ∞).

Then

V̂1,n → V0 in probability
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and

V̂2,n → V0 in probability.

Proof. The assertion follows from Theorem 1 above and Theorem 4.1 inEgloff, Kohler and Todorovic

(2007), Corollary 1 in Kohler, Krzyżak and Todorovic (2006) and Theorem 1 in Kohler (2008). 2

Remark. As stated in the last paragraph of Section 2 the expectation of V̂2,n is an upper bound onV0, i.e.,

EV̂2,n ≥ V0.

4 Application to simulated data

In this section, we illustrate the finite sample behavior of our algorithm by comparing it with algorithms

for computing dual upper bounds with linear regression using the regression representations proposed by

Tsitsiklis and Van Roy (1999) and Longstaff and Schwartz (2001), respectively, and by comparing it with

the algorithm in Kohler (2008b).

We consider an American option based on the average of five correlated stock prices. The stocks are

ADECCO R, BALOISE R, CIBA, CLARIANT and CREDIT SUISSE R. The stock prices were observed

from Nov. 10, 2000 until Oct. 3, 2003 on weekdays when the stock market was open for the total of 756

days. We estimate the volatility from data observed in the past by the historical volatility

σ =























0.3024 0.1354 0.0722 0.1367 0.1641

0.1354 0.2270 0.0613 0.1264 0.1610

0.0722 0.0613 0.0717 0.0884 0.0699

0.1367 0.1264 0.0884 0.2937 0.1394

0.1641 0.1610 0.0699 0.1394 0.2535























.

We simulate the paths of the underlying stocks with a Black-Scholes model by

Xi,t = x0 · er·t · e
P

5

j=1
(σi,j ·Wj(t)− 1

2
·σ2

i,jt) (i = 1, . . . , 5),

where{Wj(t) : t ∈ IR+} (j = 1, . . . , 5) are five independent Wiener processes and where the parameters

are chosen as follows:x0 = 100, r = 0.05 and componentsσi,j of the volatility matrix as above. The

time to maturity is assumed to be one year. To compute the payoff of the option we use a strangle spread

function (cf. Figure 4.1) with strikes 75, 90, 110 and 125 applied to the average of the five correlated stock

prices.

We discretize the time interval[0, 1] by dividing it into m = 48 equidistant time steps witht0 = 0 <

t1 < . . . < tm = 1 and consider a Bermudan option with payoff function as aboveand exercise dates

restricted to{t0, t1, . . . , tm}. We choose discount factorse−rtj for j = 0, . . . , m. For the algorithm in

Kohler (2008b) we setnq = 2000, nM = 1000 andln = 100, and for our newly proposed estimates we set
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15

75 90 110 125

Figure 4.1Strangle spread payoff with strike prices 75, 90, 110 and 125.

n = 2000, Kn = 20, Nn = 1000 andN̄n = 250. For the other algorithms we use parametersn = 2000,

Nn = 1000 andKn = 100.

For the algorithms using nonparametric regression we use smoothing splines as implemented in the

routineTps() from the library “fields” in the statistics packageR, where the smoothing parameter is chosen

by generalized cross-validation. For the Longstaff–Schwartz and Tsitsiklis–Van Roy algorithms we use

linear regression as implemented inR.

We apply all five algorithms to 100 independently generated sets of paths. For each algorithm and each

of the100 sets of paths we compute our Monte Carlo estimate of the option price. We would like to stress

that for all estimates except̂V1,n the expectations are upper bounds to the true option price, hence lower

values indicate a better performance of these algorithms.

We compare the algorithms using boxplots for the100 upper bounds computed for each algorithm. As

we can see in Figure 4.2, all algorithm using nonparametric regression are superior to Longstaff–Schwartz

and Tsitsiklis–Van Roy algorithms, since the lower boxplotof the upper bounds indicates better perfor-

mance.

Furthermore we can see that our newly proposed estimateV̂2,n achieves similar values to the estimate

proposed in Kohler (2008b). However,V̂2,n can be computed for sample sizeNn = 1000 approximately

20% faster. This computational advantage concerning computing time will grow if we want to have esti-

mates which are closer to their expectations and therefore increaseNn.

In Figure 4.3 we compare the empirical standard deviations of the values occuring in the arithmetic
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TTVR LS K V1 V2

12
.0

12
.5

13
.0

Figure 4.2 Upper bounds computed with a dual Monte-Carlo method based on linear regression and the Tsitsiklis–

Van Roy algorithm (TTVR), linear regression and the Longstaff–Schwartz algorithm (LS), the algorithm proposed in

Kohler (2008b) (K) and the newly proposed smoothing spline estimatesV̂1,n (V1) andV̂2,n (V2) in a 5-dimensional

case.
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1 2

0.
6

0.
8

1.
0

1.
2

Figure 4.3Comparison of the standard deviations occurring in our simulations during computation of̂V2,n

means in

1

Nn

n+Nn
∑

j=n+1

max
t=0,...,T

(

ft(Xt,j) − M̂t,j

)

and

1

N̄n

n+N̄n
∑

j=n+1

(

max
t=0,...,T

(

ft(Xt,j) − M̄t,j

)

− max
t=0,...,T

(

ft(Xt,j) − M̂t,j

)

)

occurring in our simulations marked by1 and2, resp. As one can see, the standard deviations of the terms

occurring in the second sum are indeed most of the time approximately at most half as large as the standard

deviations of the terms occurring in the first terms. This shows that we can usēNn of approximately one

quarter size ofNn.

5 Proof of Theorem 1

In the proof we will use the notation

V̄0,n =
1

Nn

n+Nn
∑

j=n+1

max
t=0,...,T

(

ft(Xt,j) − M∗
t,j

)

,
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where

M∗
t,j =

t
∑

s=1

(max{fs(Xs,j), qs(Xs,j)} − qs−1(Xs−1,j)) (t ∈ {1, . . . , T}).

In the first step of the proofwe show

V̄0,n → V0 in probability. (5.1)

Let (X̃t,j)t=0,...,T (j = 1, . . . , Nn) be independent copies of(Xt)t=0,...,T , which are independent of all

previously introduced data. Because of

V0 = E

{

max
t=0,...,T

(ft(Xt) − M∗
t )

}

(cf. (1.1) and (1.2)) we have for anyǫ > 0

P
{∣

∣V̄0,n − V0

∣

∣ > ǫ
}

= P

{∣

∣

∣

∣

∣

1

Nn

n+Nn
∑

j=n+1

max
t=0,...,T

(

ft(Xt,j) −
t
∑

s=1

(

max{fs(Xs,j), qs(Xs,j)}

−qs−1(Xs−1,j)
)

)

− V0

∣

∣

∣

∣

∣

> ǫ

}

= P

{∣

∣

∣

∣

∣

1

Nn

Nn
∑

j=1

max
t=0,...,T

(

ft(X̃t,j) −
t
∑

s=1

(

max{fs(X̃s,j), qs(X̃s,j)}

−qs−1(X̃s−1,j)
)

)

− V0

∣

∣

∣

∣

∣

> ǫ

}

.

¿From this we can conclude (5.1) by an application of the law of large numbers.

In the second step of the proofwe show that for alls ∈ {1, . . . , T − 1}

1

Nn

n+Nn
∑

j=n+1

|q̂n,s(Xs,j) − qs(Xs,j)| → 0 (n → ∞) in probability (5.2)

and

1

Nn

n+Nn
∑

j=n+1

|q̂ñ,s(Xs,j) − qs(Xs,j)| → 0 (n → ∞) in probability. (5.3)

Set

Dn = {Xi,s : i = 1, . . . , n, s = 1, . . . , T} .
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By the Cauchy-Schwarz inequality we have

E







1

Nn

n+Nn
∑

j=n+1

|q̂n,s(Xs,j) − qs(Xs,j)|
∣

∣

∣

∣

Dn







= E

{

|q̂n,s(Xs) − qs(Xs)|
∣

∣

∣

∣

Dn

}

≤
√

E

{

|q̂n,s(Xs) − qs(Xs)|2
∣

∣

∣

∣

Dn

}

=

√

∫

|q̂n,s(x) − qs(x)|2PXs
(dx).

Sinceq̂n,s andqs are bounded, assumption (3.1) together with the dominated convergence theorem yields

E







1

Nn

n+Nn
∑

j=n+1

|q̂n,s(Xs,j) − qs(Xs,j)|







≤ E

√

∫

|q̂n,s(x) − qs(x)|2PXs
(dx) → 0 (n → ∞),

which in turn implies (5.2). By replacinĝqn,s by q̂ñ,s in the above proof we get (5.3) as well.

In the third step of the proofwe show (3.3). Observe

∣

∣

∣
V̂1,n − V̄0,n

∣

∣

∣

≤ 1

Nn

n+Nn
∑

j=n+1

max
t=1,...,T

∣

∣

∣M̂t,j − M∗
t,j

∣

∣

∣

≤ 1

Nn

n+Nn
∑

j=n+1

max
t=1,...,T

∣

∣

∣

∣

∣

t
∑

s=1

(max{fs(Xs,j), q̂n,s(Xs,j)} − max{fs(Xs,j), qs(Xs,j)})
∣

∣

∣

∣

∣

+
1

Nn

n+Nn
∑

j=n+1

max
t=1,...,T

∣

∣

∣

∣

∣

t
∑

s=1

(q̂ñ,s−1(Xs,j) − qs−1(Xs−1,j))

∣

∣

∣

∣

∣

≤
T−1
∑

s=1

1

Nn

n+Nn
∑

j=n+1

|q̂n,s(Xs,j) − qs(Xs,j)|

+

T−1
∑

s=1

1

Nn

n+Nn
∑

j=n+1

|q̂ñ,s−1(Xs,j) − qs−1(Xs−1,j)| ,

where we have used

q̂n,T (x) = q̂ñ,T (x) = qT (x) = 0 (x ∈ IRd).

By applying (5.2) and (5.3) we get

V̂1,n − V̄0,n → 0 in probability. (5.4)

Finally (5.4) together with (5.1) yields (3.3).

In the fourth step of the proofwe show (3.4). Here we observe that the first three steps of theproof yield

V̂1,n → V0 in probability.
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In the same way one can prove

1

N̄n

n+N̄n
∑

j=n+1

max
t=0,...,T

(

ft(Xt,j) − M̂t,j

)

→ V0 in probability.

Furthermore, by Theorem 1 in Kohler (2008b) we know

1

N̄n

n+N̄n
∑

j=n+1

max
t=0,...,T

(

ft(Xt,j) − M̄t,j

)

→ V0 in probability.

¿From this we conclude

V̂2,n =
1

Nn

n+Nn
∑

j=n+1

max
t=0,...,T

(

ft(Xt,j) − M̂t,j

)

+
1

N̄n

n+N̄n
∑

j=n+1

max
t=0,...,T

(

ft(Xt,j) − M̄t,j

)

− 1

N̄n

n+N̄n
∑

j=n+1

max
t=0,...,T

(

ft(Xt,j) − M̂t,j

)

→ V0 + V0 − V0 = V0 in probability.

The proof is complete. 2
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