Upper bounds for Bermudan options on Markovian data
using nonparametric regression and a reduced number of

nested Monte Carlo steps
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Summary: This paper is concerned with evaluation of American optials® called Bermudan options in discrete
time. We use the dual approach to derive upper bounds on itte @fr such options using only a reduced number of
nested Monte Carlo steps. The key idea is to apply nonpar@megression to estimate continuation values and all
other required conditional expectations and to combineekelting estimate with another estimate computed by using
only a reduced number of nested Monte Carlo steps. The etpmcdf the resulting estimate is an upper bound on the
option price. It is shown that the estimates of the optiong®iare universally consistent, i.e., they converge tortlee t
price regardless of the structure of the continuation \&ldée finite sample behavior is validated by experiments on

simulated data.

1 Introduction

The main advantage of Monte Carlo methods for pricing Anarioptions in discrete time, also called
Bermudan options, is that they can be computed quickly coeap® other methods when the number of
underlying assets or state variables is large. One way tly #pgm is to use the dual representation of the

priceV, of an American option in discrete time given by

o= il B{ max (060 -0 | (L.1)
Here Xy, X1, ..., X7 denote the underlying Markovian process describing, thg.prices of the under-

lyings and the financial environment (like interest ratés,)ef; is the discounted payoff function and
is the set of all martingale&/y, ..., Mt with My = 0 (cf. Rogers (2001), Haugh and Kogan (2004), or

AMS 1991 subject classification: Primary 91B28, 60G40, 62&G@condary 65C05, 93E24
Key words and phrases: American options, consistency,rdatilod, nonparametric regression, regression-basedeM@arto meth-

ods



2 Kohler — Krzyzak — Walk

Section 8.7 in Glasserman (2004)). Neither the Markov pitgpeor the form of the payoff as a function of
the stateX; is restrictive and can always be achieved by including smpphtary variables.

We next describe the optimal martingdlé" at which the infimum in (1.1) is reached. L&t +
1,...,T)betheclassofalft+1, ..., T}—valued stopping times, i.e., of all functions= (X, ..., Xr)

with values in{t + 1, ..., T} satisfying
{r=a} e F(Xo,...,X,) forallae{t+1,...,T}.

Let

q(r) = sup  E{fr(X;)|X: =2}
T€T (t+1,...,T)

(t € {0,...,T —1}) be the so—called continuation values describing the véitleecoption at time given
X, = x and subject to the constraint of holding the option at tinrather than exercising it. It can be
shown that the optimal martingald;" is given by

t

My = (max{£u(X.), 6s(Xo)} — go1(Xomr))  (EE{L,...,T}) (12)

s=1

(cf., e.g., Section 8.7 in Glasserman (2004)). Because of

@s—1(Xs-1) = E{max{fs(Xs), ¢s(Xs)}HXs-1} (1.3)

(cf. Tsitsiklis and van Roy (1999))/;" is indeed a martingale.

Using (1.3) (or other regression representations like tressdn Longstaff and Schwartz (2001) or Egloff
(2005)) the continuation values can be estimated recuydiyehe Monte Carlo method. This approach has
been proposed for linear regression in Tsitsiklis and vay @899) and Longstaff and Schwartz (2001).
Egloff (2005), Egloff, Kohler and Todorovic (2007), Kohlé€rzyzak and Todorovic (2006), and Kohler
(2008a) introduced various estimates based on nonpaiamegjression.

With such estimateg; of ¢, the optimal martingald/,* can be estimated by

t

Mt = Z (max{fs(Xs), 4s(Xs)} — E {max{ f,(X,), Qs(Xs)}|Xs—1}) (ted{1,...,T}H (1.4)

s=1

andM, = 0. As long asE is an unbiased estimate of the corresponding condition@etation M, will

be a martingale and according to (1.1)

B {m (o0 - Mt)}

will be an upper bound on the price of the option. Similarraaties have been introduced in Rogers (2001)
and Haugh and Kogan (2004), where linear regression wastassiimate the continuation values recur-

sively, and where nested Monte Carlo was used to get unbessizdatedt of the conditional expectation
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occuring in (1.2) (cf. (1.3)). Jamshidian (2007) studiedtiplicative versions of this method. A compara-
tive study of multiplicative and additive duals is contairie Chen and Glasserman (2007). Andersen and
Broadie (2004) derive upper and lower bounds for Americaioap based on duality.

Kohler (2008b) applied nonparametric regression in thist@xt. It was shown that the resulting esti-
mates of the option price converge to the true values regssadlf the structure of the continuation values,
and that their performance on simulated data was superibetestimates based on linear regression. How-
ever, the use of nested Monte Carlo substantially increisecbmputational burden. In a Brownian motion
setting Belomestny, Bender and Schoenmakers (2007) pedphsal estimates of option prices which do
not require nested Monte Carlo and hence can be computdticagily faster.

In this article we introduce for general Markovian procasdeal Monte Carlo estimates based on
nonparametric regression which do not require many nesiaté/Carlo steps. The key idea is to define
dual estimates where all conditional expectations arenastid by nonparametric regression. In general
there is no guarantee that the expectation of this kind afest¢ is an upper bound on the option price.
However, by combining it with a dual estimate of the optioit@tbased on nonparametric regression and
nested Monte Carlo we construct another estimate, whichttiagproperty, and which requires only a
reduced number of nested Monte Carlo steps. We show thatesuestimates are universally consistent,
i.e., they converge to the true price regardless of the tstreof the continuation values. We illustrate the
finite sample behavior of our estimates by experiments onlsired data.

The definition of the estimates is given in Section 2. Our ntla@ioretical result concerning consistency
of the estimates is presented in Section 3 and proven inddestiSection 4 contains an application of our

method to simulated data.

2 Definition of the estimate

Let Xo, X1, ..., X1 be alR%-valued Markov process and I¢t be the discounted payoff function which
we assume to be bounded in absolute valué bWe assume that the data generating process is completely
known, i.e., that all parameters of this process are alreatignated from historical data. In this section we
describe dual Monte Carlo methods for estimatiogf

We start with the algorithm from Kohler (2008b) using neskddnte Carlo and nonparametric re-
gression. The algorithm uses artificially generated inddpat Markov processeSX; ;}i—o,..7 (i =
1,2,...,n 4+ N,) which are identically distributed &X;},—o,....7. In addition we use random variables
X -1 the random variables

X, X0 XU

it

are i.i.d. and such that givel; ;_; the random variabIeXl.(_rlt), .. ,Xi(f") are independent of all other
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random variables introduced above. In a first step thedirgplications{ X, ;}+—o... 7 (i = 1,2,...,n)
of the Markov process are used to define regression basedceNiamto estimateg,, , of ¢;. Here any of
the estimates described in Egloff, Kohler and Todorovi®@QKohler, Krzyzak and Todorovic (2006) or
Kohler (2008a) can be applied. In a second step the marér{@a?) is estimated by

t

Kn
My;=3 (max{fs(Xs,j% s (Xei)} = 7 S max{ (X)) qn,s<X§f?>> (2.2)
" k=1

s=1
(te{1,...,T}) andM, = 0. Since

K
1 & N
© E max{fS(Xs(?)vqms(Xs(?)} (2.2)
" k=1

is an unbiased estimate of the corresponding expectatim{itoned on all dat®,, used in the definition of
dn,s and conditioned ot ;), this is indeed a martingale. Consequently the expectatithe estimate

n+N,
Von =5 D max (fi(Xe;) — M) (2.3)

is an upper bound oWj.

What makes the computation of the estimate time consummtharnested Monte Carlo steps needed
in (2.2). Here we need,, successors of the random varialife ; for eachj € {n +1,...,n+ N,}, so
we need to simulat&’,, - K,, random variables for each time step. The problem with thilkaswe need a
large numbetrV,, in order to ensure that the estimate (2.3) is close to its@agen.

In the sequel we want to modify the definition of the estimatsuch a way that the estimate can be
computed faster. The main idea is to use a regression estingitad of (2.2). A simple way to define such

an estimate is to set
t

My =" (max{fu(Xs),dn.s(Xo)} = Gno1(Xsm1))  (E€{L,...,T})

s=1
and to estimate the price of the option by

E* {t_%laxT ( F(X) — Mt) } , (2.4)

whereE* denotes the expectation conditioned®@p. However, since fot > 0

t—1

fe(Xp) = My < fo(Xy) — Z (Gn,s(Xs) = Gn,s—1(Xs—1)) = (fe(Xe) = Gn,t—1(Xt—1)) = Gn,0(X0),

s=1
where we have equality in case thas the first index withf;(X;) > ¢,.¢(X,), (2.4) is in fact equal to
E* {max{ fo(Xo), Gn,0(Xo)}} ,

and this will in general be no longer an upper boundfnwhich satisfies

Vo = E {max{ fo(Xo),q0(Xo)}}
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(cf., e.g., Section 8.7 in Glasserman (2004)).

Instead, we use a second regression estifiate ; in order to estimate the conditional expectation
corresponding to (2.2). Here we will use a sample sitarger tham. To be able to compute this estimate
quickly, we seth = K, - n and compute the estimate by applying it to a sample af i. d. random

variables with the same distribution as
1 KTI,
<X517 K_n Z max{fs(Xs(k))a Ljns(ng))}> .
k=1
The regression function of this sample is

O s 1(2) = B* {max{fs(Xs), Gn,s(Xs) } | Xso1 = 2},

which is indeed the function we want to approximate.

Our corresponding estimate of the option price is

n+Np

. 1 .
Vl,n = N_n .2_1 t:%lf.i.).(,T (ft(Xt,j) — ]\/ftJ) (25)
Jj=n
where ,
Myj =" (max{fo(Xs ), Gn.s(Xe )} = Gasm1(Xam1,7)) - (2.6)

s=1

Unfortunately, there is no guarantee that the expectatidhi® estimate is indeed an upper bound on the
option price. To construct an estimate with that propertyuse an idea similar to control variates (cf., e.g.,

Section 4.1 in Glasserman (2004)) and combine (2.5) wit)(Zo do this, we define the estimate

1 n+Np
Vo = 37 20 s, (A(Xes) = Vs
Jj=n

n+Nn
-|-Ni Z (t max_(fi(Xy;) — M) — max_ (ft(Xt,j) - Mt])) ) (2.7)

=0,...,T t=0,...,
" j=n+1

whereN,, < N,, is an additional parameter of the estimate (apparentlydrctiseV,, = N,, the estimates
(2.3) and (2.7) coincide). Thus in the present paper estirffaB), which has been proposed in Kohler
(2008b), is replaced by estimates (2.5) and (2.7). Cletirgyexpectation of estimate (2.7) is equal to the

expectation of/o_n and hence it provides an upper bound on the option price. \Mecture that

%HlXT (ft(Xt,j) — Mt,j) and . %HlXT (ft(Xt,j) — Mt,j)

geeesd 722 1=0,...,

are close and therefore the standard deviation of

t:%lf_i_)fT (fe(Xeg) — M) — t:%lf.i.}fT (ft(Xt,j) - Mt,j) (2.8)

is smaller than the standard deviation of

max((fi(Xi5) = Vi) (2.9)

=0,...,
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As we will see in Section 4, this is indeed true in our simwiatiThere the standard deviation of (2.8) will
be approximately half of the standard deviation of (2.9nc8ithe error of a Monte Carlo estimate of an

expectation is of order
S

N
wheres is the standard deviation arid, is the sample size, this allows us to chodég ~ N,, /4, which

for (2.7) drastically reduces the number of nested MontéoGdeps compared to (2.3).

3 Main theorem
Our main theoretical result is the following theorem:
Theorem 1 LetL > 0, let X, X1,..., X7 be alR%-valued Markov process and assume that the dis-

counted payoff functiopfi, is bounded in absolute value liy Let the estimateﬁ’l,n andf/Q_,n be defined as

in Section 2. Assume that the estimafgs of ¢: are bounded in absolute value thyand satisfy

/|qn7t(a:) — q:(2)]*Px, (dz) — 0 in probability, (3.1)
and that
_ K,
N, — 00, N, — 00 and — — 00 (n— 00). (3.2)
log N,
Then
Vin — Vo in probability (3.3)
and
Vo, — Vo in probability. (3.4)

The estimates defined in Egloff, Kohler and Todorovic (20&0hler, Krzyzak and Todorovic (2006)
and Kohler (2008) satisfy (3.1) for all bounded Markov pres®s. Hence if we use any of these estimates

in the definition of our new estimate, we get universally ¢stesit upper bounds on the priceld.

Corollary 2 Let A, L > 0. Assume thaK, X1, ..., X7 is a[—A, A]?~valued Markov process and that
the discounted payoff functiofy is bounded in absolute value iy, Let the estimatekffl,n and ng be
defined as in Section 2 wheggis estimated by the least squares splines as in Egloff, Kainlé Todorovic
(2007), by the least squares neural networks as in Kohleny#ak and Todorovic (2006) or by the smoothing
splines as in Kohler (2008a). Choo8g,, N,, and K, such that

_ K,

N, — o0, N, — < and —
log N,

— 00, (n—o00).

Then
Vin — Vo in probability
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and

Va.n — Vo in probability.

Proof. The assertion follows from Theorem 1 above and Theorem 4Hgioff, Kohler and Todorovic
(2007), Corollary 1 in Kohler, Krzyzak and Todorovic (2Q0@®hd Theorem 1 in Kohler (2008). m]

Remark. As stated in the last paragraph of Section 2 the expectatidiﬁ,g) is an upper bound ok, i.e.,

EVy, > Vo

4 Application to simulated data

In this section, we illustrate the finite sample behavior of algorithm by comparing it with algorithms
for computing dual upper bounds with linear regressiongifiire regression representations proposed by
Tsitsiklis and Van Roy (1999) and Longstaff and SchwartD@0respectively, and by comparing it with
the algorithm in Kohler (2008b).

We consider an American option based on the average of fivelated stock prices. The stocks are
ADECCO R, BALOISE R, CIBA, CLARIANT and CREDIT SUISSE R. Theosk prices were observed
from Nov. 10, 2000 until Oct. 3, 2003 on weekdays when thekstoarket was open for the total of 756

days. We estimate the volatility from data observed in that pg the historical volatility

0.3024 0.1354 0.0722 0.1367 0.1641
0.1354 0.2270 0.0613 0.1264 0.1610
o= 0.0722 0.0613 0.0717 0.0884 0.0699
0.1367 0.1264 0.0884 0.2937 0.1394
0.1641 0.1610 0.0699 0.1394 0.2535

We simulate the paths of the underlying stocks with a Blackefes model by

Xiy =g et eXim @i Wil =500,0 (=1 . 5)

)

where{W;(t) : t € R4} (j = 1,...,5) are five independent Wiener processes and where the paramete
are chosen as followsz, = 100, » = 0.05 and components; ; of the volatility matrix as above. The
time to maturity is assumed to be one year. To compute thefpafythe option we use a strangle spread
function (cf. Figure 4.1) with strikes 75, 90, 110 and 125Iaggto the average of the five correlated stock
prices.

We discretize the time interv), 1] by dividing it into m = 48 equidistant time steps withy = 0 <
t1 < ... < t, = 1 and consider a Bermudan option with payoff function as akanet exercise dates
restricted to{tg, %1, ...,tn . We choose discount factoes™ for j = 0,...,m. For the algorithm in

Kohler (2008b) we set, = 2000, n); = 1000 andl,, = 100, and for our newly proposed estimates we set
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| | =
75 90 110 125

Figure 4.1 Strangle spread payoff with strike prices 75, 90, 110 and 125

n = 2000, K,, = 20, N,, = 1000 andN,, = 250. For the other algorithms we use parameters 2000,
N,, = 1000 andK,, = 100.

For the algorithms using nonparametric regression we usm#rmg splines as implemented in the
routineT'ps() from the library “fields” in the statistics packadg where the smoothing parameter is chosen
by generalized cross-validation. For the Longstaff—Sctmwand Tsitsiklis—Van Roy algorithms we use

linear regression as implementedzin

We apply all five algorithms to 100 independently generagtsl sf paths. For each algorithm and each
of the 100 sets of paths we compute our Monte Carlo estimate of the mptice. We would like to stress
that for all estimates exceﬁyn the expectations are upper bounds to the true option prexg;ehlower

values indicate a better performance of these algorithms.

We compare the algorithms using boxplots for 1@ upper bounds computed for each algorithm. As
we can see in Figure 4.2, all algorithm using nonparameggoassion are superior to Longstaff-Schwartz
and Tsitsiklis—Van Roy algorithms, since the lower boxmbthe upper bounds indicates better perfor-

mance.

Furthermore we can see that our newly proposed estiﬁ?@g;eachieves similar values to the estimate
proposed in Kohler (2008b). HOWGVé:fgm can be computed for sample si2g, = 1000 approximately
20% faster. This computational advantage concerning comgtitine will grow if we want to have esti-

mates which are closer to their expectations and therefioreaseVv,, .

In Figure 4.3 we compare the empirical standard deviatidnhe values occuring in the arithmetic
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Figure 4.2 Upper bounds computed with a dual Monte-Carlo method basdthear regression and the Tsitsiklis—

Van Roy algorithm (TTVR), linear regression and the Lonffs&chwartz algorithm (LS), the algorithm proposed in

Kohler (2008b) (K) and the newly proposed smoothing splistmmtesf/lm (V1) and \A/g,n (V2) in a 5-dimensional

case.
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1.2

1.0

0.6

Figure 4.3 Comparison of the standard deviations occurring in our Kitimns during computation df’g,n

means in
1 n+N,
~— Y, max (ft(Xt,j)—Mt,j)
" . t=0,...,T
j=n+1
and

n+Np
NL 2. ( max _(fi(Xp;) = My;) — max (ft(Xt’j) - Mt’j))

t=0,..., =0,...,

occurring in our simulations marked Byand2, resp. As one can see, the standard deviations of the terms
occurring in the second sum are indeed most of the time appetgly at most half as large as the standard
deviations of the terms occurring in the first terms. Thisvehthat we can usé’,, of approximately one

quarter size ofv,,.

5 Proof of Theorem 1

In the proof we will use the notation

Vo = — max_(f(Xe5) = M),
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where

t

M:g = Z (max{fs(Xs,j)a QS(XS.,J')} - QSfl(Xsfl,j)) (t S {17 .- 7T})

s=1

In the first step of the proafie show

Vo.n — Vo in probability.

77777777

.....

(cf. (2.1) and (1.2)) we have for ary> 0

P {|Von = Vo[ > ¢}

1 n+Nn, t

3 2, (#060) - S ({0}
J 5=

(R

_— maXT (ft(Xt,j) — i (ma)({fs(XsJ'), qs(XS,j)}

_qsl(Xsl.,j))> -V

g

_qsl(Xsl.,j))> -V

¢ From this we can conclude (5.1) by an application of the lalarge numbers.

In the second step of the progé show that foralk € {1,...,7 — 1}

n+Ny,
]Vi Z |Cjn,s(Xs,j) - QS(XS,J‘)| —0 (n — OO) in prObablllty
" j=n+1
and

n+N,
T D das(Xej) — qs(Xs )| = 0 (n— o0) in probability
j=n+1

Set

-

11

(5.1)

7, which are independent of all

(5.2)

(5.3)
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By the Cauchy-Schwarz inequality we have
1 n+N,
BA O linn(Xos) 0Kl [Py
" j=n+1
Dn}
pn}
- \/ [ @) — 4@ (o).

Sinceg,, s andg; are bounded, assumption (3.1) together with the dominatedsrgence theorem yields

=E {lqAn,S(Xs) - QS(XS)|

S \/E {mn,s(Xs) - qS(XS)|2

™ j=n+1

1 n+Ny,
B 3 s (Xas) — 0s(Xo) SE\/ [ (@) = @), () = 00— %),

which in turn implies (5.2). By replacind, s by g;_s in the above proof we get (5.3) as well.
In the third step of the proafie show (3.3). Observe

‘A/l n - %,n
1 n+N,
= N_n t:Hll.,é.lf(, ’Mt’J Mt*]
Jj=n+1
1 n+Np t
< N, t:Dilfl)fT Z(maX{fs(Xs,j)v Gn,s(Xs,5)} — max{fs(Xs ), qs(Xs5)})
j=n+1 s=1
1 n+N, t
o 2 e D (e (Xey) = o1 (Xemy))
j=n+1 s=1
T—1 1 n+N,
<Y w2 e (Xey) — as(Xa)
s=1 """ j=n+1
T—-1 1 n+Ny
D5 2 ldas1(Xey) — g (Xemng)l,

s=1 n j=n+1
where we have used
Gor(x) = Gar(z) = qr(z) =0 (z € RY).

By applying (5.2) and (5.3) we get
Vi — Vo — 0 in probability: (5.4)

Finally (5.4) together with (5.1) yields (3.3).
In the fourth step of the proafe show (3.4). Here we observe that the first three steps qirtad yield

Vi — Vo in probability.
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In the same way one can prove

N L (ft(Xt,j) —Mt,j) —V, in probability.

n+N,
1 — . -
oA  nax_ (fe(Xi;) — My j) — Vo in probability.
n Ly =0
¢, From this we conclude
1 n+N,
Von = A Z Jpax (ft(Xt,j) - Mt,j)
j=n+1
1 n+1\7n 1 n+Nn
i O (hX) = M) = g 3 e (£Xey) = M)
j=n+1 Jj=n-+1
—Vo+W— Vo=V, inprobability.
The proof is complete. |
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