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1 Department of Mathematics, Technische Universität Darmstadt, Schlossgartenstr. 7,

D-64289 Darmstadt, Germany, email: kohler@mathematik.tu-darmstadt.de

2 Department of Computer Science and Software Engineering, Concordia University,

1455 De Maisonneuve Blvd. West, Montreal, Quebec, Canada H3G 1M8, email:

krzyzak@cs.concordia.ca

March 27, 2009

Abstract

Pricing of American options in discrete time is considered, where the option is allowed to be

based on several underlying stocks. It is assumed that the price processes of the underlying

stocks are given Markov processes. We use the Monte Carlo approach to generate artificial

sample paths of these price processes, and then we use nonparametric regression estimates

to estimate from this data so-called continuation values, which are defined as mean values

of the American option for given values of the underlying stocks at time t subject to

the constraint that the option is not exercised at time t. As nonparametric regression

estimates we use least squares estimates with complexity penalties, which include as special

cases least squares spline estimates, least squares neural networks, smoothing splines and

orthogonal series estimates. General results concerning rate of convergence are presented

and applied to derive results for the special cases mentioned above. Furthermore the

pricing of American options is illustrated by simulated data.
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1 Introduction

Monte Carlo methods for pricing of American options are very attractive in comparison

to other methods in case of options which are based on several (correlated) stocks (so-

called basket options). Because in this case in the standard approach, in which the whole

problem is reformulated as a free boundary problem for partial differential equations (cf.,

e.g., Chapter 8 in Elliott and Kopp (1999)), the numerical solution of this free boundary

problem gets very complicated. And alternative methods based on binomial trees (cf., e.g.,

Chapter 1 in Elliott and Kopp (1999)) are in practice not able to model the correlation

structure of more than two stocks correctly.

In this paper we consider American options in discrete time (sometimes also called

Bermudan options). The price of such an option can be represented in a risk neutral

market as a solution of an optimal stopping problem

V0 = sup
τ∈T (0,...,T )

E {fτ (Xτ )} . (1)

Here ft is the (discounted) payoff function, X0, X1, . . . , XT is the underlying stochastic

process describing e.g. the prices of the underlying assets and the financial environment

(like interest rates, etc.) and T (0, . . . , T ) is the class of all {0, . . . , T}-valued stopping

times, i.e., τ ∈ T (0, . . . , T ) is a measurable function of X0, . . . , XT satisfying

{τ = α} ∈ F(X0, . . . ,Xα) for all α ∈ {0, . . . , T}.

In the sequel we assume that X0, X1, . . . , XT is a IRd–valued Markov process recording

all necessary information about financial variables including prices of the underlying assets

as well as additional risk factors driving stochastic volatility or stochastic interest rates.

Neither the Markov property nor the form of the payoff as a function of the state Xt is

restrictive and can always be achieved by including supplementary variables.

The computation of (1) can be done by determination of an optimal stopping rule

τ∗ ∈ T (0, . . . , T ) satisfying

V0 = E{fτ∗(Xτ∗)}. (2)

Let

qt(x) = sup
τ∈T (t+1,...,T )

E {fτ (Xτ )|Xt = x} (3)
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be the so–called continuation value describing the value of the option at time t given

Xt = x and subject to the constraint of holding the option at time t rather than exercising

it. Here T (t + 1, . . . , T ) is the class of all {t + 1, . . . , T}–valued stopping times. Set

qT (x) = 0. It can be shown that

τ∗ = inf{s ≥ 0 : qs(Xs) ≤ fs(Xs)} (4)

satisfies (2), i.e., τ∗ is an optimal stopping time (cf., e.g., Chow, Robbins and Siegmund

(1971) or Shiryayev (1978)). Therefore it suffices to compute the continuation values (3)

in order to solve the optimal stopping problem (1).

One way to compute the continuation values is to use a regression representation like

qt(x) = E {max{ft+1(Xt+1), qt+1(Xt+1)}|Xt = x} (t = 0, 1, . . . , T − 1) (5)

(cf. Tsitsiklis and Van Roy (1999), further regression representations can be found in

Longstaff and Schwartz (2001) and Egloff (2005)). Typically, the underlying distributions

are rather complicated, therefore it is not possible to compute the conditional expectation

in (5) directly.

The basic idea of regression-based Monte Carlo methods for pricing American options

is to apply recursively regression estimates to artificially created samples of

(Xt,max {ft+1(Xt+1), q̂t+1(Xt+1)})

(so–called Monte Carlo samples) to construct estimates q̂t of qt. In connection with linear

regression this was proposed in Tsitsiklis and Van Roy (1999), and, based on a different

regression estimation than (5), in Longstaff and Schwartz (2001). Nonparametric least

squares regression estimates have been applied and investigated in this context in Egloff

(2005), Egloff, Kohler and Todorovic (2007) and Kohler, Krzyżak and Todorovic (2006),

smoothing spline regression estimates have been analyzed in Kohler (2008b), recursive ker-

nel regression estimates have been considered in Barty et al. (2006), and local polynomial

kernel estimates have been studied in Belomestny (2009).

In this article we develop a general theory which covers the estimates of most of the

above papers as well as additional ones (e.g., orthogonal series estimates). Our main

theoretical results provide a unifying tool which enables to derive rate of convergence
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results for many estimates at once. Furthermore we illustrate the estimates by applying

them to an option based on the average of three correlated stocks. The simulations show

that the nonparametric estimates studied in this article produce better results than the

existing parametric ones.

1.1 Notation. The sets of natural numbers, natural numbers including zero, integers, real

numbers and non-negative real numbers are denoted by N, N0, Z, R and R+, respectively.

The least integer greater than or equal to a real number x will be denoted by ⌈x⌉. log(x)

denotes the natural logarithm of x > 0. For a function f : R
d → R the partial derivative

with respect to the j-th component will be denoted by

∂f

∂xj
.

We say that an = OP(bn) if lim supn→∞ P(an > c · bn) = 0 for some finite constant c.

1.2 Outline of the paper. The precise definition of the estimates and the main theo-

retical results concerning rate of convergence of the estimate are given in Sections 2 and

3, respectively. The application of the estimates to simulated data will be described in

Section 4, and the proofs will be given in Section 5.

2 Definition of the estimate

The definition of the estimates depends on a finite set of parameters Pn, sets of functions

Gp (p ∈ Pn) and penalties

pen2
p(g) = pen2

n,p(g) ≥ 0

for g ∈ Gp and p ∈ Pn. Here we supress the dependency of pen2
p(g) on the sample size for

ease of notation. Set nl = ⌈n/2⌉. Furthermore choose βn ∈ IR+ such that

βn → ∞ (n → ∞).

Let

(X
(l)
i,t )t∈{0,...,T} (i ∈ {1, . . . , n}, l ∈ {0, . . . , T − 1})

be independent copies of the price process

(Xt)t∈{0,...,T}.

4



We define recursively estimates q̂n,t of qt as follows: Set

q̂n,T (x) = 0 (x ∈ IRd).

In order to define q̂n,t given q̂n,t+1 for t ∈ {0, 1, . . . , T − 1}, set

Ŷi,t = max
(

ft+1(X
(t)
i,t+1), q̂n,t+1(X

(t)
i,t+1)

)

(i ∈ {1, . . . , n}).

Define for each p ∈ Pn estimates q̃
(p)
nl,t

of qt by

q̃
(p)
nl,t

= arg min
g∈Gp

(

1

nl

nl
∑

i=1

|Ŷi,t − g(X
(t)
i,t )|2 + pen2

p(g)

)

and set

q̂
(p)
nl,t

(x) = Tβn
q̃
(p)
nl,t

(x) (x ∈ IRd),

where

Tβn
z = max {−βn,min {βn, z}}

for z ∈ IR. We use sample splitting to determine p as follows

p̂ = arg min
p∈Pn

1

nt

n
∑

i=nl+1

|Ŷi,t − q̂
(p)
nl,t

(X
(t)
i,t )|2.

Our final estimate is defined by

q̂n,t(x) = q̂
(p̂)
nl,t

(x).

Special choices of the function spaces Gp and the penalties pen2
p(g) lead to various

estimates. If we set

pen2
n(g) = 0 for all g ∈ Gp, p ∈ Pn

(i.e., if we do not use a penalty term), then we get the least squares estimates for pricing

of American options (e.g., the least squares spline estimates similar to the estimates in

Egloff, Kohler and Todorovic (2007), or least squares neural network estimates like in

Kohler, Krzyżak and Todorovic (2006)).

If we set p = (k, λ) and let

Gp = G

be the class of all functions g : IRd → IR with derivatives of all order and set

pen2
p(g) = λ ·

∑

α1,...,αd∈N0, α1+...+αd=k

k!

α1! · . . . · αd!

∫

IRd

∣

∣

∣

∣

∂kg

∂xα1
1 . . . ∂xαd

d

(x)

∣

∣

∣

∣

2

dx
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then we get the smoothing spline estimates for pricing of American options as in Kohler

(2008b).

Furthermore we can also include in our framework the orthogonal series estimates with

hard-thresholding. In this case we choose p = c ∈ IR+, choose function spaces

Gp = G(X
(t)
1,t , . . . ,X

(t)
nl,t

) = span {hi : i ∈ {1, . . . , nl}} ,

where h1, . . . , hnl
are the generalized Haar-Wavelets from Kohler (2008a), which are

orthogonal with respect to the empirical scalar product

< hi, hj >=
1

nl

nl
∑

k=1

hi(X
(t)
k,t) · hj(X

(t)
k,t),

and set

pen2
p

(

nl
∑

k=1

ak · hk

)

= c · log nl ·
#{1 ≤ k ≤ nl : ak 6= 0}

nl
.

As it is shown in Kohler (2008a) we have in this case

q̃
(p)
nl,t

=

nl
∑

k=1

η√
c·log nl
√

nl

(

1

nl

nl
∑

k=1

Ŷi,t · hk(X
(t)
k,t)

)

· hk,

where ηδ is the hard-thresholding defined by

ηδ(a) =







a if |a| > δ,

0 if |a| ≤ δ.

3 Theoretical results

3.1 Main result

In order to be able to formulate our main result we need the notion of covering numbers.

Let x1, . . . , xn ∈ IRd and set xn
1 = (x1, . . . , xn). Define the distance d2(f, g) between

f, g : IRd → IR by

d2(f, g) =

(

1

n

n
∑

i=1

|f(xi) − g(xi)|2
)1/2

.

An ǫ-cover of F (w.r.t. the distance d2) is a set of functions f1, . . . , fκ : IRd → IR with the

property

min
1≤j≤κ

d2(f, fj) < ǫ for all f ∈ F .
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Let N2(ǫ,F , xn
1 ) denote the size κ of the smallest ǫ-cover of F w.r.t. the distance d2, and

set N2(ǫ,F , xn
1 ) = ∞ if there does not exist any ǫ-cover of F of a finite size.

Our main theoretical result is the following theorem.

Theorem 1 Let L ≥ 1 and let βn ≥ L for n ∈ N. Assume that X0,X1, . . . ,XT is a IRd-

valued Markov process and that the discounted payoff function ft is bounded in absolute

value by L. Define the estimate q̂n,t as in Section 2. Assume

|Pn| → ∞ (n → ∞) and
|Pn|
nr

→ 0 (n → ∞)

for some r > 0 and let pn ∈ Pn be an arbitrary sequence of parameters. Assume that (δn)n

is monotonically decreasing such that δn > c1/n,

δn → 0 (n → ∞) and
n · δn

β2
n · log n

→ ∞ (n → ∞),

and

√
nl · δ
β2

n

≥ c2

∫

√
48δ

c3δ/β2
n

(

logN2

(

u, {Tβn
f − g : f ∈ Gpn ,

1

nl

nl
∑

i=1

|Tβn
f(xi) − g(xi)|2 ≤ 4δ, pen2

pn
(f) ≤ 4δ}, xnl

1

)

)1/2

du (6)

for all δ ≥ δnl
/6, all g ∈ Gpn ∪{qt}, all t ∈ {0, 1, . . . , T − 1} and all x1, . . . , xnl

∈ IR. Then
∫

|q̂n,t(x) − qt(x)|2PXt(dx)

= OP

(

δnl
+ max

s∈{t,t+1,...,T−1}
inf

f∈Gpn ,‖f‖∞≤βn

(

pen2
pn

(f) +

∫

|f(x) − qs(x)|2PXs(dx)

))

(7)

for all t ∈ {0, 1, . . . , T − 1}.

Remark 1. Theorem 1 cannot be applied in case of the orthogonal series estimate, where

the function spaces are data-dependent which is not allowed in Theorem 1. But in this

case we can use the following modification of Theorem 1, which is implied by the proof of

the theorem.

Assume that there exist sets

Fk ⊆ F̄k

of functions f : IRd → IR for k ∈ {1, . . . , nl} and penalties

pen2
p(k) = pen2

n,p(k) ≥ 0 (k ∈ {1, . . . , nl}, p ∈ Pn)
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such that the estimate q̃
(p)
n,t satisfies for some (random) k∗ ∈ {1, . . . , nl}

q̃
(p)
n,t(·, ((X

(t)
1,t , Ŷ1,t), . . . , (X

(t)
nl,t

, Ŷnl,t))) ∈ F̄k∗ and pen2
p(q̃

(p)
n,t) = pen2

p(k
∗) (8)

and

1

nl

nl
∑

i=1

(q̃
(p)
n,t(X

(t)
i,t )−Ŷi,t)

2+pen2
p(q̃

(p)
n,t) ≤ inf

k∈{1,...,nl}

(

inf
f∈Fk

1

nl

nl
∑

i=1

(f(X
(t)
i,t ) − Ŷi,t)

2 + pen2
p(k)

)

(9)

for all p ∈ Pn. Let the conditions of Theorem 1 be satisfied with (6) replaced by

√
nl · (δ + pen2

pn
(k))

β2
n

≥ c2

∫

√
48(δ+pen2

pn
(k))

c3(δ+pen2
pn

(k))/β2
n

(

logN2

(

u, {Tβn
f − g : f ∈ F̄k,

1

nl

nl
∑

i=1

|Tβn
f(xi) − g(xi)|2 ≤ 4δ, pen2

pn
(k) ≤ 4δ}, xnl

1

)

)1/2

du

for all k ∈ {1, . . . , nl}, all δ ≥ δnl
/6, all g ∈ F̄k ∪ {qt}, all t ∈ {0, 1, . . . , T − 1} and all

x1, . . . , xnl
∈ IR. Then

∫

|q̂n,t(x) − qt(x)|2PXt(dx)

= OP

(

δnl
+ max

s∈{t,t+1,...,T−1}
inf

k∈{1,...,nl}

(

pen2
pn

(k) + inf
f∈Fk ,‖f‖∞≤βn

∫

|f(x) − qs(x)|2PXs(dx)

))

for all t ∈ {0, 1, . . . , T − 1}.

3.2 Application to least squares estimates

From Theorem 1 various results concerning least squares estimates can be derived. For

simplicity we restrict ourselves to the neural network estimates introduced in Kohler,

Krzyżak and Todorovic (2006).

Let σ : IR → [0, 1] be a sigmoid function, i.e., assume that σ is monotonically increasing

and satisfies

σ(x) → 0 (x → −∞) and σ(x) → 1 (x → ∞).

An example of such a sigmoid function is the logistic squasher defined by σ(x) = 1
1+e−x

(x ∈ IR). Let Pn = {1, . . . , n} and set

Gk =

{

k
∑

i=1

ci · σ(aT
i x + bi) + c0 : ai ∈ IRd, bi ∈ IR,

k
∑

i=0

|ci| ≤ βn

}

where σ is the sigmoid function from above. Define the least squares estimate as described

in Section 2 using p = k as parameter and Gk as function spaces. Then Theorem 1 implies
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Corollary 1 (Kohler, Krzyżak and Todorovic (2006)).

Let L > 0. Assume that X0,X1, . . . ,XT is a IRd-valued Markov process and that the

discounted payoff function ft is bounded in absolute value by L. Define the estimate q̂n,t

as in Section 2 with Pn and Gp as above. Let kn ∈ Pn and assume that kn, βn satisfy

βn → ∞ (n → ∞), kn → ∞ (n → ∞),
β2

n · kn · log n

n
→ 0 (n → ∞).

Then

∫

|q̂n,t(x) − qt(x)|2PXt(dx)

= OP

(

β4
n · kn · log n

n
+ max

s∈{t,t+1,...,T−1}
inf

f∈Gkn

∫

|f(x) − qs(x)|2PXs(dx)

)

for all t ∈ {0, 1, . . . , T}.

Proof. Set

δn = c · β4
n · kn · log n

n
.

Then

δn → 0 (n → ∞) and
n · δn

β2
n · log n

→ ∞ (n → ∞).

Furthermore Lemma 1 in Kohler, Krzyżak and Todorovic (2006) implies that (6) is satisfied

(compare also step 5 in the proof of Theorem 1 in Kohler, Krzyżak and Todorovic (2006)).

Hence the assertion follows from Theorem 1. �

From this one can conclude as in Kohler, Krzyżak and Todorovic (2006):

Corollary 2 (Kohler, Krzyżak and Todorovic (2006)).

Let L > 0. Assume that X0,X1, . . . ,XT is an IRd-valued Markov process, Xt ∈ [−A,A]d

almost surely for some A > 0 and all t ∈ {0, 1, . . . , T}, that the discounted payoff function

ft is bounded in absolute value by L, i.e.,

|ft(x)| ≤ L for x ∈ IRd and t ∈ {0, 1, . . . , T},

and that the Fourier transform Q̃t of qt defined by

Q̃t(ν) =
1

(2π)d/2

∫

IRd
e−iνT xqt(x)dx (ν ∈ IRd)
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satisfies

qt(x) =
1

(2π)d/2

∫

IRd
eiνT xQ̃t(ν)dν and

∫

IRd
‖ν‖|Q̃t(ν)|dν ≤ C

for all x ∈ IRd and all t ∈ {0, . . . , T − 1}. Let βn = c4 · log n and define the estimate q̂n,t

as in Corollary 1. Then

∫

|q̂n,t(x) − qt(x)|2PXt(dx) = OP

(

(

log5 n

n

)1/2
)

for all t ∈ {0, 1, . . . , T}.

3.3 Application to smoothing spline estimates

Let

Pn =

{

(k, λ) : λ =
i

n
for some i ∈ {0, 1, . . . , n2}, k ∈

{⌈

d

2

⌉

, . . . ,K

}}

and define the smoothing spline estimate as described in Section 2. Then Theorem 1

implies the following result concerning the rate of convergence of the estimate:

Corollary 3 (Kohler (2008b)).

Let A,L > 0. Assume that X0,X1, . . . ,XT is a [−A,A]d–valued Markov process, that the

discounted payoff function ft is bounded in absolute value by L and that the continuation

values satisfy

qt ∈ {f ∈ G([−A,A]d) : J2
k∗(f) ≤ C} (t = 0, 1, . . . , T − 1)

for some k∗ ∈ {⌈d/2⌉, . . . ,K} and some C > 0. Let βn = c4 · log n and define the estimates

q̂n,t as in Section 2. Then q̂n,t satisfies for any t ∈ {0, 1, . . . , T − 1}
∫

|q̂n,t(x) − qt(x)|2PXt(dx) = OP



C
d

2k∗+d ·
(

log(n)

n

) 2k∗

2k∗+d



 .

Proof. Set

λ∗
n = C− 2k∗

2k∗+d ·
(

log(n)

n

) 2k∗

2k∗+d

and pn = (k∗, λ∗
n). Then Lemma 3 in Kohler (2008b) implies that

δn = C
d

2k∗+d ·
(

log(n)

n

)
2k∗

2k∗+d

satisfies inequality (6) (cf. proof of Theorem 2 in Kohler (2008b)). Theorem 1 implies the

assertion. �
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3.4 Application to orthogonal series estimates

Set Pn = {2k : k ∈ Z, |k| ≤ log(n)} and let q̂n,t be the orthogonal series estimate

introduced in Section 2.

In order to formulate our main result for the orthogonal series estimates we need the

following notation: Set Π1 = {{[−A,A]d}} and let Πk+1 be the set of all partitions which

one obtains from partitions in Πk by subdividing one of the sets into 2d equivolume subsets.

For a partition π let Fc ◦ π be the set of all piecewise constant functions with respect to

that partition.

The following result is implied by Theorem 1:

Corollary 4 Let A,L > 0. Assume that X0,X1, . . . ,XT is a [−A,A]d–valued Markov

process, that the discounted payoff function ft is bounded in absolute value by L. Let

βn = c4 ·log n. Then the estimates q̂n,t introduced above satisfy for any t ∈ {0, 1, . . . , T−1}:
∫

|q̂n,t(x) − qt(x)|2PXt(dx)

= OP

(

max
s∈{t,t+1,...,T−1}

min
k∈{1,...,n}

min
π∈Πk

{

(log(n))4 · |π|
n

+ inf
f∈Fc◦π

∫

|f(x) − qs(x)|2PXs(dx)

})

.

(10)

Proof. Choose pn = p ∈ Pn as a constant. Set

Fk = ∪π∈∪∞
l=1Πl,|π|=k Fc ◦ π.

Let Π be the family of sets defined recursively as follows: Π contains [−A,A]d, and for

each set contained in Π also the two sets are contained which one obains if one chooses one

component of the set and splits the interval there into two intervals of the same length.

Let F̄k be the set of all piecewise constant functions with respect to a partition of [−A,A]d

which can be constructed by choosing at most 2k + 1 sets of Π and by intersecting each

of the sets with the complements of all remaining sets. Set for p = c

pen2
p(k) = c · log nl ·

2k + 1

n
.

It follows from the proof of Theorem 1 in Kohler (2008a) that q̃
(p)
n,t satisfies (8) and (9)

and that we have for u > c5/n

N2

(

u, {Tβn
f − g : f ∈ F̄k}, xnl

1

)

≤ (c6 · n)4k+1
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for all x1, . . . , xnl
∈ IRd. Hence the assumptions of Remark 1 are satisfied if we set

δn =
β2

n log2 n

n
,

and Remark 1 implies the assertion. �

As in Kohler (2008a) we can derive from Corollary 4 various results concerning the

rate of convergence of the estimate, e.g. we get

Corollary 5 Let A,L > 0. Assume that X0,X1, . . . ,XT is a [−A,A]d–valued Markov

process, that the discounted payoff function ft is bounded in absolute value by L and that

the continuation values are (p,C)-Hölder-smooth on [−A,A]d for some 0 < p ≤ 1 and

some C ≥ 0. Then the estimate q̂n,t introduced in Corollary 4 satisfies for any t ∈
{0, 1, . . . , T − 1}

∫

|q̂n,t(x) − qt(x)|2PXt(dx) = OP



C
d

2p+d ·
(

log4(n)

n

)

2p
2p∗+d



 .

3.5 Remarks

Remark 2. In the corollaries above we assume that the stochastic process is bounded.

Usually in modelling of financial processes one models them by unbounded processes. In

this case we choose a large value A > 0 and replace Xt by its bounded approximation

XA
t = Xmin{t,τA} where τA = inf{s ≥ 0 : Xs /∈ [−A,A]d}.

(Here we assume for simplicity that the stochastic process has continuous paths in order

to be able to neglect an additional truncation of XA
t ). This boundedness assumption

enables us to estimate the price of the American option from samples of polynomial size

in the number of free parameters, in contrast to Monte Carlo estimation from standard

(unbounded) Black-Scholes models, where Glasserman and Yu (2004) showed that samples

of exponential size in the number of free parameters are needed. For many industrial

models, the localization error can be estimated explicitely. For instance, section 4 in

Egloff, Kohler and Todorovic (2007) contains apriori bounds for the localization and payoff

truncation error in case of discretely sampled jump diffusion processes.

Remark 3. Assume X0 = x0 a.s. for some x0 ∈ IR. We can estimate the price

V0 = max{f0(x0), q0(x0)}

12
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Figure 1: Strangle spread payoff function with strikes 0.85, 0.95, 1.05 and 1.15

(cf., (1) and (3)) of the American option by

V̂0 = max{f0(x0), q̂n,0(x0)}.

Since the distribution of X0 is concentrated on x0, we have the following error bound:

|V̂0 − V0|2 = |max{f0(x0), q̂n,0(x0)} − max{f0(x0), q0(x0)}|2

≤ |q̂n,0(x0) − q0(x0)|2

=

∫

|q̂n,0(x) − q0(x)|2PX0(dx).

Therefore the above results imply bounds on the error of V̂0.

4 Application to simulated data

In this section, we illustrate the finite sample behavior of our algorithms by comparing

them with the Tsitsiklis–Van Roy algorithm and Longstaff–Schwartz algorithm proposed

by Tsitsiklis and Van Roy (1999) and Longstaff and Schwartz (2001), respectively.

We consider for the pricing problem a strangle spread function with strikes 0.85, 0.95,

1.05 and 1.15 (cf. Figure 1) for the average of three correlated stock prices. The stocks

are ADECCO R, BALOISE R and CIBA. We simulate the paths of the underlying stocks

with the following simple Black-Scholes model:

Xi,t = x0 · er·t · e
P3

j=1(σi,j ·Wj(t)− 1
2
σ2

i,jt) (i = 1, . . . , 3). (11)

13



Here r > 0 is the riskless interest rate, σi = (σi,1, σi,2, σi,3)
T is the volatility of the i-th

stock, x0 is the initial stock price, and {Wj(t) : t ∈ IR+} (j ∈ {1, 2, 3}) are independent

Wiener processes.

To fit the model to the three real stocks, we used stock prices observed from Nov. 10,

2000 until Oct. 3, 2003 on weekdays when the stock market was open for the total of

756 days. We estimate the volatility from this data observed in the past by the historical

volatility

σ = (σi,j)1≤i,j≤3 =











0.3024 0.1354 0.0722

0.1354 0.2270 0.0613

0.0722 0.0613 0.0717











.

The time to maturity of the option is assumed to be one year. We discretize the time

interval [0, 1] by dividing it into 48 equidistant time steps with t0 = 0 < t1 < . . . < t48 = 1.

The prices of the underlying stock at time points tk (k = 0, . . . , 48) are then given by (11)

with t replaced by tk and σi,j as above. Furthermore we set x0 = 1, r = 0.05 and use

discount factors e−r·tk for k = 0, . . . , 48.

We choose the sample size for our algorithms individually as large as possible in view of

a reasonable time to compute the estimates: For least squares splines estimates, smoothing

spline estimates and least squares neural networks we choose sample size n = 4000,n =

2000 and n = 2000, resp. For the orthogonal series estimate, which can be computed

approximately in linear time in the sample size, we choose sample size n = 30000. For the

parametric algorithms we choose sample size of 10000 since due to problems with the bias

of the estimates a larger sample size did not improve the estimates.

For the least squares splines we use B-splines with degree M ∈ {0, 1, 2} and equidistant

knots with knot distance δ ∈ {0.25, 0.5, 0.67, 1}. For the neural network estimate we

use feedforward neural networks with one hidden layer and k ∈ {20, 21, . . . , 25} hidden

neurons fitted to the data by backpropagation. The implementation of the orthogonal

series estimate is described in Kohler (2008a). The parameters are each time selected by

splitting of the sample. We set the number of learning and training samples to nl = 2400

and nt = 1600 for least squares splines, to nl = nt = 1000 for least squares neural

networks, and to nl = 27000 and nt = 3000 for the orthogonal series estimate. To simplify

the implementation of the smoothing spline estimate we select the smoothing parameter of

14



this estimate by generalized cross-validation as implemented in the routine Tps() from the

library fields in the statistics package R. For the Longstaff–Schwartz and Tsitsiklis–Van

Roy algorithms we use polynomials of degree 1.

We apply all six algorithms to 100 independently generated sets of paths. We would like

to stress that all six algorithms provide lower bounds to the optimal stopping value. Since

we evaluate the approximative optimal stopping rule on newly generated data, a higher

MCE indicates a better performance of the algorithm. We compare the algorithms using

boxplots. Observe that the higher the boxplot of the MCE the better the performance of

the corresponding algorithm.

As we can see in Figure 2, all four algorithms based on nonparametric regression

are superior to Longstaff–Schwartz and Tsitsiklis–Van Roy algorithms, since the higher

boxplots of the MCE indicate better performance. Furthermore, the orthogonal series

estimate seems to be slightly worse than the algorithms based on least squares splines,

smoothing splines and neural networks. But on a modern PC this estimate needed only

one hour to compute a MCE for one of the 100 set of paths, while the other algorithms

needed between 2 and 6 hours. However, due to the use of tensor products it does not

produce good results for d > 3, which is in contrast to neural networks and smoothing

splines.

5 Proofs

5.1 A deterministic lemma

Let βn ≥ L > 0, x1, . . . , xn ∈ IRd, y1 . . . , yn ∈ IR, ȳ1, . . . , ȳn ∈ [−L,L]. Let G be a set of

functions g : IRd → IR and for g ∈ G let

pen2(g) ≥ 0

be a penalty term. Define

g̃n = arg min
g∈G

(

1

n

n
∑

i=1

|ȳi − g(xi)|2 + pen2(g)

)

and ĝn = Tβn
g̃n.

Let m : IRd → IR be a fixed function and define

h = arg min
g∈G

(

‖g − m‖2
n + pen2(g)

)
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Figure 2: Realized option prices for the strangle spread-payoff of the Tsitsiklis–Van Roy

(ttvr), Longstaff–Schwartz (ls), least squares spline (spline), least squares neural network

(neuro), smoothing spline (smoothspline) and orthogonal series (ortho) algorithms in a

3-dimensional case. The values of the least squares spline and the least squares neural

network algorithms have been computed in Todorovic (2007).
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where

‖g‖2
n =

1

n

n
∑

i=1

|g(xi)|2.

Lemma 1 Assume

‖ĝn − m‖2
n + pen2(ĝn) ≥ 3(‖h − m‖2

n + pen2(h)) + 128 · 1

n

n
∑

i=1

|yi − ȳi|2 + δ2 (12)

for some δ ≥ 0. Then

1

n

n
∑

i=1

(yi − m(xi)) · (ĝn(xi) − h(xi)) ≥
1

24
·
(

‖ĝn − h‖2
n + pen2(ĝn)

)

+
δ2

6
. (13)

Proof. The proof is inspired by the first part of the proof of Theorem 2.1 in van de Geer

(2001). Because of |ȳi| ≤ L ≤ βn we have

1

n

n
∑

i=1

|ȳi − ĝn(xi)|2 ≤ 1

n

n
∑

i=1

|ȳi − g̃n(xi)|2.

By definition of the estimate and because of h ∈ G this implies

1

n

n
∑

i=1

|ȳi − ĝn(xi)|2 + pen2(ĝn) ≤ 1

n

n
∑

i=1

|ȳi − h(xi)|2 + pen2(h),

hence

1

n

n
∑

i=1

|ȳi − m(xi)|2 +
2

n

n
∑

i=1

(ȳi − m(xi)) · (m(xi) − ĝn(xi)) + ‖m − ĝn‖2
n + pen2(ĝn)

≤ 1

n

n
∑

i=1

|ȳi − m(xi)|2 +
2

n

n
∑

i=1

(ȳi − m(xi)) · (m(xi) − h(xi)) + ‖m − h‖2
n + pen2(h),

which implies

‖m − ĝn‖2
n + pen2(ĝn) − ‖m − h‖2

n − pen2(h)

≤ 2

n

n
∑

i=1

(ȳi − m(xi)) · (ĝn(xi) − h(xi))

=
2

n

n
∑

i=1

(ȳi − yi) · (ĝn(xi) − h(xi)) +
2

n

n
∑

i=1

(yi − m(xi)) · (ĝn(xi) − h(xi))

=: T1 + T2.

We show next that T1 ≤ T2. Assume to the contrary that this is not true. Then

‖m − ĝn‖2
n + pen2(ĝn) − ‖m − h‖2

n − pen2(h)
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<
4

n

n
∑

i=1

(ȳi − yi) · (ĝn(xi) − h(xi))

≤ 4 ·

√

√

√

√

1

n

n
∑

i=1

(ȳi − yi)2 ·

√

√

√

√

1

n

n
∑

i=1

(ĝn(xi) − h(xi))2

≤ 4 ·

√

√

√

√

1

n

n
∑

i=1

(ȳi − yi)2 ·
√

2‖ĝn − m‖2
n + 2pen2(ĝn) + 2‖h − m‖2

n + 2pen2(h).

Using (12) we see that the left-hand side of the above inequality is bounded from below

by

1

2
·
(

‖m − ĝn‖2
n + pen2(ĝn)

)

+
1

2
·
(

3(‖h − m‖2
n + pen2(h)) + 128 · 1

n

n
∑

i=1

|yi − ȳi|2 + δ2

)

−‖m − h‖2
n − pen2(h)

≥ 1

2
·
(

‖ĝn − m‖2
n + pen2(ĝn) + ‖h − m‖2

n + pen2(h)
)

,

which implies

1

2
·
√

‖ĝn − m‖2
n + pen2(ĝn) + ‖h − m‖2

n + pen2(h) < 4 ·
√

2 ·

√

√

√

√

1

n

n
∑

i=1

|yi − ȳi|2

i.e.,

‖ĝn − m‖2
n + pen2(ĝn) + ‖h − m‖2

n + pen2(h) < 128 · 1

n

n
∑

i=1

|yi − ȳi|2.

But this is a contradiction to (12), so we have indeed proved T1 ≤ T2. As a consequence

we can conclude

4

n

n
∑

i=1

(yi −m(xi)) · (ĝn(xi)− h(xi)) ≥ ‖ĝn −m‖2
n + pen2(ĝn)− ‖h−m‖2

n − pen2(h). (14)

By (12) the right-hand side of (14) is bounded from below by

1

3
(‖ĝn − m‖2

n + pen2(ĝn)) +
2

3

(

2‖h − m‖2
n + 2pen2(h) + δ2

)

− ‖h − m‖2
n − pen2(h)

=
1

3
‖ĝn − m‖2

n +
1

3
pen2(ĝn) +

1

3
‖h − m‖2

n +
1

3
pen2(h) +

2

3
δ2. (15)

Because of a2/2 − b2 ≤ (a − b)2 (a, b ∈ IR) we have

1

2
‖ĝn − h‖2

n − ‖h − m‖2
n ≤ (‖ĝn − h‖n − ‖h − m‖n)2 ≤ ‖ĝn − m‖2

n.
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Using this we can bound (15) from below by

1

6
‖ĝn − h‖2

n − 1

3
‖h − m‖2

n +
1

3
pen2(ĝn) +

1

3
‖h − m‖2

n +
1

3
pen2(h) +

2

3
δ2

=
1

6
‖ĝn − h‖2

n +
1

3
pen2(ĝn) +

1

3
pen2(h) +

2

3
δ2

≥ 1

6

(

‖ĝn − h‖2
n + pen2(ĝn)

)

+
2

3
δ2.

Summing up the above results we get the desired inequality

4 · 1

n

n
∑

i=1

(yi − m(xi)) · (ĝn(xi) − h(xi)) ≥
1

6
·
(

‖ĝn − h‖2
n + pen2(ĝn)

)

+
2δ2

3
.

�

5.2 Results for fixed design regression

Let

Yi = m(xi) + Wi (i = 1, . . . , n)

for some x1, . . . , xn ∈ IRd, m : IRd → IR and some random variables W1, . . . , Wn which

are independent and have expectation zero. We assume that the Wi’s are sub-Gaussian

in the sense that

max
i=1,...,n

K2E{eW 2
i /K2 − 1} ≤ σ2

0 (16)

for some K,σ0 > 0. Our goal is to estimate m from (x1, Ȳ1,n), . . . , (xn, Ȳn,n), where

Ȳ1,n, . . . , Ȳn,n ∈ [−L,L] are arbitrary (bounded) random variables with the property that

the average squared measurement error

1

n

n
∑

i=1

|Yi − Ȳi,n|2

is “small”. Let Fn be a set of functions f : IRd → IR and consider the least squares

estimate with complexity penalty

m̃n(·) = arg min
f∈Fn

(

1

n

n
∑

i=1

|f(xi) − Ȳi,n|2 + pen2
n(f)

)

and mn = Tβn
m̃n, (17)

where

pen2
n(f) ≥ 0

for all f ∈ Fn and βn ≥ L.
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Lemma 2 Assume that the sub-Gaussian condition (16) holds and let the estimate be

defined by (17). Then there exist constants c6, c7 > 0 which depend only on σ0 and K

such that for any δn > c1/n with

√
n · δ ≥ c6

∫

√
48δ

δ/(12σ0)

(

logN2

(

u, {Tβn
f − g : f ∈ Fn,

1

n

n
∑

i=1

|Tβn
f(xi) − g(xi)|2 + pen2

n(f) ≤ 4δ}, xn
1

))1/2

du (18)

for all δ ≥ δn/6 and all g ∈ Fn we have

P

{

‖mn − m‖2
n + pen2

n(m̃n) > c7

(

1

n

n
∑

i=1

|Yi − Ȳi,n|2 + δn + min
f∈Fn

(

‖f − m‖2
n + pen2

n(f)
)

)}

≤ c7 · exp

(

−n · min{δn, σ2
0}

c7

)

.

Lemma 2 follows from Lemma 1 and the techniques introduced in the proof of Theorem

2.1 in van de Geer (2000). For the sake of completeness we give nevertheless a detailed

proof, which is in fact a modification of the proof of Lemma 2 in Kohler (2006).

Proof. Set

m∗
n(·) = arg min

f∈Fn

(

‖f − m‖2
n + pen2

n(f)
)

.

By Lemma 1,

P

{

‖mn − m‖2
n + pen2

n(m̃n) ≥ 128
1

n

n
∑

i=1

|Yi − Ȳi,n|2 + δn + 3
(

‖m∗
n − m‖2

n + pen2
n(m∗

n)
)

}

≤ P

{

‖mn − m∗
n‖2

n + pen2
n(m̃n) + 4δn ≤ 24

n

n
∑

i=1

(mn(xi) − m∗
n(xi)) · Wi

}

≤ P1 + P2

where

P1 = P

{

1

n

n
∑

i=1

W 2
i > 2σ2

0

}

and

P2 =

P

{

1

n

n
∑

i=1

W 2
i ≤ 2σ2

0 , ‖mn − m∗
n‖2

n + pen2
n(m̃n) + 4δn ≤ 24

n

n
∑

i=1

(mn(xi) − m∗
n(xi)) · Wi

}

.
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Application of Chernoff’s exponential bounding method (cf. Chernoff (1952)) together

with (16) yields

P1 = P

{

n
∑

i=1

W 2
i /K2 > 2nσ2

0/K
2

}

≤ P

{

exp

(

n
∑

i=1

W 2
i /K2

)

> exp
(

2nσ2
0/K

2
)

}

≤ exp
(

−2nσ2
0/K

2
)

· E
{

exp(
n
∑

i=1

W 2
i /K2)

}

≤ exp
(

−2nσ2
0/K

2
)

·
(

1 + σ2
0/K

2
)n

≤ exp
(

−2nσ2
0/K

2
)

· exp
(

n · σ2
0/K

2
)

= exp
(

−nσ2
0/K

2
)

.

To bound P2, we observe first that 1/n
∑n

i=1 W 2
i ≤ 2σ2

0 together with the Cauchy-

Schwarz inequality implies

24

n

n
∑

i=1

(mn(xi) − m∗
n(xi)) · Wi ≤ 24 ·

√

√

√

√

1

n

n
∑

i=1

(mn(xi) − m∗
n(xi))2 ·

√

2σ2
0

≤ 24 ·

√

√

√

√

1

n

n
∑

i=1

(mn(xi) − m∗
n(xi))2 + pen2

n(m̃n) ·
√

2σ2
0

hence inside of P2 we have

1

n

n
∑

i=1

(mn(xi) − m∗
n(xi))

2 + pen2
n(m̃n) ≤ 1152σ2

0 .

Set

S = min{s ∈ N0 : 4 · 2sδn > 1152σ2
0}.

Application of the peeling device (cf. Section 5.3 in van de Geer (2000)) yields

P2 =
S
∑

s=1

P

{

1

n

n
∑

i=1

W 2
i ≤ 2σ2

0 , 4 · 2s−1δn · I{s 6=1} ≤ ‖mn − m∗
n‖2

n + pen2
n(m̃n) < 4 · 2sδn,

‖mn − m∗
n‖2

n + pen2
n(m̃n) + 4δn ≤ 24

n

n
∑

i=1

(mn(xi) − m∗
n(xi)) · Wi

}

≤
S
∑

s=1

P

{

1

n

n
∑

i=1

W 2
i ≤ 2σ2

0 , ‖mn − m∗
n‖2

n + pen2
n(m̃n) < 4 · 2sδn,

4 · 2s−1δn ≤ 24

n

n
∑

i=1

(mn(xi) − m∗
n(xi)) · Wi

}
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The probabilities in the above sum can be bounded by Corollary 8.3 in van de Geer (2000)

(use there R =
√

4 · 2sδn, δ = 1
12 · 2sδn and σ =

√
2σ0). This yields

P2 ≤
∞
∑

s=1

c9 exp

(

−n · ( 1
12 · 2sδn)2

4c9 · 4 · 2sδn

)

=
∞
∑

s=1

c9 exp

(

−n · 2s · δn

c10

)

≤
∞
∑

s=1

c9 exp

(

−n · (s + 1) · δn

c10

)

≤ c11 exp

(

−nδn

c11

)

.

�

5.3 Results for random design regression

Let (X,Y ), (X1, Y1), . . . be independent and identically distributed IRd×IR valued random

variables with EY 2 < ∞. Let m(x) = E{Y |X = x} be the corresponding regression

function. Assume that we want to estimate m from observed data, but instead of a

sample

Dn = {(X1, Y1), . . . , (Xn, Yn)}

of (X,Y ) we have only available a set of data

D̄n = {(X1, Ȳ1,n), . . . , (Xn, Ȳn,n)}

where the only assumption on Ȳ1,n, . . . , Ȳn,n is that the measurement error

1

n

n
∑

i=1

|Yi − Ȳi,n|2 (19)

is small.

Define the estimate mn by

m̃n(·) = arg min
f∈Fn

(

1

n

n
∑

i=1

|f(Xi) − Ȳi,n|2 + pen2
n(f)

)

,

where Fn is a set of functions f : IRd → IR and for f ∈ Fn

pen2
n(f) ≥ 0

is the penalty term penalizing the complexity of f . Set

mn = Tβn
m̃n.

Then the following result holds.
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Lemma 3 Assume that Y − m(X) is sub-Gaussian in the sense that

C2E
{

e(Y −m(X))2/C2 − 1|X
}

≤ σ2
0 almost surely (20)

for some C, σ0 > 0. Let βn ≥ L ≥ 1 and assume that the regression function is bounded

in absolute value by L. Let Fn be a set of functions f : IRd → IR and define the estimate

mn as above. Then there exist constants c12, c13, c14 > 0 depending only on σ0 and C such

that for any δn > c12/n which satisfies

δn → 0 (n → ∞) and
n · δn

β2
n

→ ∞ (n → ∞),

c12

√
nδ

β2
n

≥
∫

√
δ

c13δ/β2
n

(

logN2

(

u, {Tβn
f − m : f ∈ Fn,

1

n

n
∑

i=1

|Tβn
f(xi) − m(xi)|2 ≤ δ

β2
n

, pen2
n(f) ≤ 2δ}, xn

1

))1/2

du

for all δ ≥ δn and all x1, . . . , xn ∈ IRd and

√
n · δ ≥ c12

∫

√
48δ

δ/(12σ0)

(

logN2

(

u, {Tβn
f − g : f ∈ Fn,

1

n

n
∑

i=1

|Tβn
f(xi) − g(xi)|2 + pen2

n(f) ≤ 4δ}, xn
1

))1/2

du

for all δ ≥ δn/6, all x1, . . . , xn ∈ IRd and all g ∈ Fn we have

P

{∫

|mn(x) − m(x)|2PX(dx) >

c14

(

1

n

n
∑

i=1

|Yi − Ȳi,n|2 + δnl
+ inf

f∈Fn,‖f‖∞≤βn

(

pen2
n(f) +

∫

|f(x) − m(x)|2PX(dx)

)

)

}

→ 0

for n → ∞.

Proof. We have

P

{∫

|mn(x) − m(x)|2PX(dx) >

3c7
1

n

n
∑

i=1

|Yi − Ȳi,n|2 + (6c7 + 1)δn + 9c7 inf
f∈Fn,‖f‖∞≤βn

(

pen2
n(f) +

∫

|f(x) − m(x)|2PX(dx)

)}

≤ P1,n + P2,n + P3,n,
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where

P1,n = P

{

∫

|mn(x) − m(x)|2PX(dx) > δn + 3 · pen2
n(m̃n) + 3

1

n

n
∑

i=1

|mn(Xi) − m(Xi)|2
}

,

P2,n = P

{

inf
f∈Fn,‖f‖∞≤βn

(

pen2
n(f) +

1

n

n
∑

i=1

|f(Xi) − m(Xi)|2
)

>

δn + 3 inf
f∈Fn,‖f‖∞≤βn

(

pen2
n(f) +

∫

|f(x) − m(x)|2PX(dx)

)

}

and

P3,n =

P

{

∫

|mn(x) − m(x)|2PX(dx) >

3c7
1

n

n
∑

i=1

|Yi − Ȳi,n|2 + (6c7 + 1)δn + 9c7 inf
f∈Fn,‖f‖∞≤βn

(

pen2
n(f) +

∫

|f(x) − m(x)|2PX(dx)

)

,

∫

|mn(x) − m(x)|2PX(dx) ≤ δn + 3 · pen2
n(m̃n) + 3

1

n

n
∑

i=1

|mn(Xi) − m(Xi)|2,

inf
f∈Fn,‖f‖∞≤βn

(

pen2
n(f) +

1

n

n
∑

i=1

|f(Xi) − m(Xi)|2
)

≤

δn + 3 inf
f∈Fn,‖f‖∞≤βn

(

pen2
n(f) +

∫

|f(x) − m(x)|2PX(dx)

)

}

.

We have

P3,n

≤ P

{

δn + 3 · penn(m̃n) + 3
1

n

n
∑

i=1

|mn(Xi) − m(Xi)|2 >

3c7
1

n

n
∑

i=1

|Yi − Ȳi,n|2 + (3c7 + 1)δn + 3c7 inf
f∈Fn,‖f‖∞≤βn

(

pen2
n(f) +

1

n

n
∑

i=1

|f(Xi) − m(Xi)|2
)}

= P

{

1

n

n
∑

i=1

|mn(Xi) − m(Xi)|2 + pen2
n(m̃n) >

c7

(

1

n

n
∑

i=1

|Yi − Ȳi,n|2 + δn + inf
f∈Fn,‖f‖∞≤βn

(

pen2
n(f) +

1

n

n
∑

i=1

|f(Xi) − m(Xi)|2
))}

→ 0 (n → ∞)

by Lemma 2, where we have used that

min
f∈Fn

(

pen2
n(f) + ‖f − m‖2

n

)

≤ inf
f∈Fn,‖f‖∞≤βn

(

pen2
n(f) + ‖f − m‖2

n

)

.
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To bound P1,n we use

P1,n

= P

{

2

∫

|mn(x) − m(x)|2PX(dx) − 2‖mn − m‖2
n

> δn + 3 · pen2
n(m̃n) +

∫

|mn(x) − m(x)|2PX(dx) + ‖mn − m‖2
n

}

≤ P

{

∃f ∈ Fn :

∣

∣

∫

|Tβn
f(x) − m(x)|2PX(dx) − ‖Tβn

f − m‖2
n

∣

∣

δn + 3 · pen2
n(f) +

∫

|Tβn
f(x) − m(x)|2PX(dx) + ‖Tβn

f − m‖2
n

>
1

2

}

≤
∞
∑

s=1

P

{

∃f ∈ Fn : pen2
n(f) ≤ 2sδn,

∣

∣

∫

|Tβn
f(x) − m(x)|2PX(dx) − ‖Tβn

f − m‖2
n

∣

∣

2s−1δn +
∫

|Tβn
f(x) − m(x)|2PX(dx) + ‖Tβn

f − m‖2
n

>
1

2

}

.

The probabilities in the above sum can be bounded by Theorem 19.2 in Györfi et al.

(2002) (which we apply with K = 4β2
n, ǫ = 1/2, and α = 2s−1δn). This yields

P1,n ≤
∞
∑

s=1

15 · exp

(

−n · 2s · δn

c15β2
n

)

≤ c16 · exp

(

−n · δn

c16β2
n

)

→ 0 (n → ∞).

To bound P2,n we use

{f ∈ Fn : ‖f‖∞ ≤ βn} ⊆ TLFn

and conclude

P2,n ≤ P

{

∃f ∈ Fn : ‖Tβn
f − m‖2

n > δn + 2 · pen2
n(f) + 3

∫

|Tβn
f(x) − m(x)|2PX(dx)

}

≤
∞
∑

s=1

P

{

∃f ∈ Fn : pen2
n(f) ≤ 2sδn,

∣

∣

∫

|Tβn
f(x) − m(x)|2PX(dx) − ‖Tβn

f − m‖2
n

∣

∣

2s−1δn +
∫

|Tβn
f(x) − m(x)|2PX(dx) + ‖Tβn

f − m‖2
n

>
1

2

}

,

which can be bounded as above. �

The above lemma enables us to analyze the rate of convergence of the estimate for

fixed function space. Next we explain how we can use the data to choose an appropriate

parameter consisting of a function space Fn,k belonging to a finite collection

{Fn,k : k ∈ Pn}
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of function spaces and corresponding penalty terms

pen2
n,k(f) ≥ 0 (f ∈ Fn,k).

To do this we split the sample into a learning sample

D̂nl
=
{

(X1, Ȳ1,n), . . . , (Xnl
, Ȳnl,n)

}

of size nl = ⌈n/2⌉ and a testing sample

{

(Xnl+1, Ȳnl+1,n), . . . , (Xn, Ȳn,n)
}

of size nt = n − nl. For fixed k ∈ Pn we use the learning sample to define a estimate mk
nl

by

m̃k
nl

(·) = arg min
f∈Fn,k

(

1

nl

nl
∑

i=1

|f(Xi) − Ȳi,n|2 + pen2
n,k(f)

)

and

mk
nl

(x) = Tβn
m̃k

nl
(x) (x ∈ IRd).

Next we choose k̂ ∈ Pn by minimizing the empirical L2 risk on the testing sample, i.e., we

set

mn(x) = mk̂
nl

(x) (x ∈ IRd),

where

k̂ = arg min
k∈Pn

1

nt

n
∑

i=nl+1

|mk
nl

(Xi) − Ȳi,n|2.

Then the following result holds.

Lemma 4 Assume that Y −m(X) is sub-Gaussian in the sense that (20) holds for some

C, σ > 0 and assume |Pn| → ∞ (n → ∞). Assume furthermore that conditioned on

X1, . . . ,Xn the data sets

D̂nl
and {Ynl+1, . . . , Yn}

are independent. Let for each k ∈ Pn a set Fn,k of functions f : IRd → IR be given and let

the estimate mn be defined as above. Then

1

nt

n
∑

i=nl+1

|mn(Xi) − m(Xi)|2

= OP





β2
n · log |Pn|

nt
+

1

nt

n
∑

i=nl+1

|Yi − Ȳi,n|2 + min
k∈Pn

1

nt

n
∑

i=nl+1

|mk
nl

(Xi) − m(Xi)|2


 .
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Proof. The results follows by applying Lemma 3 conditioned on D̂nl
and X1, . . . ,Xn and

with

Fn = {mk
nl

: k ∈ Pn} and pen2
n(f) = 0.

Here we bound the covering number by the finite cardinality |Pn| of the set of estimates.

�

5.4 Proof of Theorem 1

Before we start with the proof, observe that the boundedness of the discounted payoff

function ft by L implies |qt(x)| ≤ L for x ∈ IRd.

In the sequel we will show

∫

|q̂n,s(x) − qs(x)|2PXs(dx)

= OP

(

δnl
+ max

t∈{s,s+1,...,T−1}
inf

f∈Gpn ,‖f‖∞≤βn

(

pen2
pn

(f) +

∫

|f(x) − qt(x)|2PXt(dx)

))

(21)

for all s ∈ {0, 1, . . . , T}.
For s = T we have q̂n,T (x) = 0 = qT (x), so the assertion is trivial. So let t < T and

assume that the assertion holds for s ∈ {t + 1, . . . , T}. By induction it suffices to show

(21) for s = t, which we will show in the sequel in seven steps.

In the first step of the proof we show

∫

|q̂n,t(x) − qt(x)|2PXt(dx) = OP





1

nt

n
∑

i=nl+1

|q̂n,t(X
(t)
i,t ) − qt(X

(t)
i,t )|2 +

β2
n · log |Pn|

nt



 .

Let Dn,t be the set of all X
(r)
j,s with either r ≥ t + 1, s ∈ {0, . . . , T} and j ∈ {1, . . . , n} or

r = t, s ∈ {0, . . . , T} and j ∈ {1, . . . , nl}. Conditioned on Dn,t,

{q̂(p)
nl,t

: p ∈ Pn}

consists of |Pn| different functions. Furthermore, because of boundedness of q̂
(p)
nl,t

and qt

by βn we have

σ2
p := Var{|q̂(p)

nl,t
(X

(t)
nl+1,t) − qt(X

(t)
nl+1,t)|2|Dn,t}

≤ E{|q̂(p)
nl,t

(X
(t)
nl+1,t) − qt(X

(t)
nl+1,t)|4|Dn,t}

≤ 4β2
n

∫

|q̂(p)
nl,t

(x) − qt(x)|2 PXt(dx).
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Using this and the Bernstein inequality (cf., e.g., Lemma A.2 in Györfi et al. (2002)) we

get using the notation ǫn = c17 · β2
n log |Pn|/nt:

P{
∫

|q̂n,t(x) − qt(x)|2 PXt(dx) > 2 · 1
nt

n
∑

i=nl+1
|q̂n,t(X

(t)
i,t ) − qt(X

(t)
i,t )|2 + ǫn |Dn,t}

≤ |Pn| · max
p∈Pn

P{
∫

|q̂(p)
nl,t

(x) − qt(x)|2PXt(dx)

> 2 · 1
nt

n
∑

i=nl+1
|q̂(p)

nl,t
(X

(t)
i,t ) − qt(X

(t)
i,t )|2 + ǫn | Dn,t}

≤ |Pn| · max
p∈Pn

P{2
∫

|q̂(p)
nl,t

(x) − qt(x)|2PXt(dx)

> 2 · 1
nt

n
∑

i=nl+1
|q̂(p)

nl,t
(X

(t)
i,t ) − qt(X

(t)
i,t )|2 + ǫn +

σ2
p

4β2
n
| Dn,t}

≤ |Pn| · max
p∈Pn

P{
∫

|q̂(p)
nl,t

(x) − qt(x)|2 PXt(dx) − 1
nt

n
∑

i=nl+1
|q̂(p)

nl,t
(X

(t)
i,t ) − qt(X

(t)
i,t )|2

> 1
2 ·
(

σ2
p

4β2
n

+ ǫn

)

|Dn,t}

≤ |Pn| · max
p∈Pn

exp





−nt·
„

σ2
p

8β2
n

+ ǫn
2

«2

2σ2
p+2

σ2
p

8β2
n

+ ǫn
2
· 4β2

n
3





≤ |Pn| · max
p∈Pn

exp

(

− nt(σ2
p+ǫn)

16β2
n+

8β2
n

3

)

≤ |Pn| · exp
(

− 1
(32+8/3)·β2

n
· ntǫn

log |Pn| · log |Pn|
)

→ 0 (n → ∞).

In the second step of the proof we show

1

nt

n
∑

i=nl+1

|q̂n,t(X
(t)
i,t ) − qt(X

(t)
i,t )|2

= OP

(

1

nt

n
∑

i=nl+1

|q̂n,t+1(X
(t)
i,t+1) − qt+1(X

(t)
i,t+1)|2 +

β2
n log |Pn|

nt

+ min
p∈Pn

1

nt

n
∑

i=nl+1

|q(p)
nl,t

(X
(t)
i,t ) − qt(X

(t)
i,t )|2

)

.

To do this we apply Lemma 4. In the context of Lemma 4 we have Xi = X
(t)
i,t ,

Yi = max{ft+1(X
(t)
i,t+1), qt+1(X

(t)
i,t+1)} and Ȳi,n = max{ft+1(X

(t)
i,t+1), q̂n,t+1(X

(t)
i,t+1)}. (22)
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Observing

1

nt

n
∑

i=nl+1

|Yi − Ȳi,n|2 ≤ 1

nt

n
∑

i=nl+1

|qt+1(X
(t)
i,t+1) − q̂n,t+1(X

(t)
i,t+1)|2

the assertion follows from Lemma 4 if we apply it conditioned on Dn,t.

In the third step of the proof we show

1
nt

n
∑

i=nl+1
|q̂n,t+1(X

(t)
i,t+1) − qt+1(X

(t)
i,t+1)|2 = OP

(

∫

|q̂n,t+1(x) − qt+1(x)|2PXt+1(dx) + β2
n log |Pn|

nt

)

.

Using

P{ 1
nt

n
∑

i=nl+1
|q̂n,t+1(X

(t)
i,t+1) − qt+1(X

(t)
i,t+1)|2

> 2
∫

|q̂n,t+1(x) − qt+1(x)|2PXt+1(dx) + ǫn|Dn,t}

= P{ 1
nt

n
∑

i=nl+1
|q̂n,t+1(X

(t)
i,t+1) − qt+1(X

(t)
i,t+1)|2 −

∫

|q̂n,t+1(x) − qt+1(x)2PXt+1(dx)

>
∫

|q̂n,t+1(x) − qt+1(x)|2PXt+1(dx) + ǫn|Dn,t}

this follows as in the first step by an application of the Bernstein inequality.

In the fourth step of the proof we show

min
p∈Pn

1
nt

n
∑

i=nl+1
|q̂(p)

nl,t
(X

(t)
i,t ) − qt(X

(t)
i,t )|2 = OP

(

∫

|q̂(pn)
nl,t

(x) − qt(x)|2PXt(dx) + β2
n log |Pn|

nt

)

.

To see this, we observe that we have as in the third step of the proof

1
nt

n
∑

i=nl+1
|q̂(pn)

nl,t
(X

(t)
i,t ) − qt(X

(t)
i,t )|2 = OP

(

∫

|q̂(pn)
nl,t

(x) − qt(x)|2PXt(dx) + β2
n log |Pn|

nt

)

,

hence the assertion follows from

min
p∈Pn

1
nt

n
∑

i=nl+1
|q̂(p)

nl,t
(X

(t)
i,t ) − qt(X

(t)
i,t )|2 ≤ 1

nt

n
∑

i=nl+1
|q̂(pn)

nl,t
(X

(t)
i,t ) − qt(X

(t)
i,t )|2.

In the fifth step of the proof we show

∫

|q̂(pn)
nl,t

(x) − qt(x)|2PXt(dx)

= OP

(

1
nl

nl
∑

i=1
|Yi − Ŷi,n|2 + δnl

+ inff∈Gpn ,‖f‖∞≤βn

(

pen2
pn

(f) +
∫

|f(x) − qt(x)|2PXt(dx)
)

)

,

where Yi and Ŷi,n are defined in (22). This follows immediately from Lemma 3 (applied

with Ȳi,n = Ŷi,n). Here we observe that the sub-Gaussian condition is satisfied because
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the random variables are bounded and that (6) implies

√
nl · δ ≥ c12

∫

√
48δ

c13δ

(

logN2

(

u, {Tβn
f − g : f ∈ Gpn ,

1

nl

nl
∑

i=1

|Tβn
f(xi) − g(xi)|2 + pen2

pn
(f) ≤ 4δ}, xnl

1

)

)1/2

du (23)

for all δ ≥ δnl
/6, all g ∈ Gpn and all x1, . . . , xnl

∈ IR, and

√
nl · δ
β2

n

≥ c12

∫

√
δ

c13δ/β2
n

(

logN2

(

u, {Tβn
f − qt : f ∈ Gpn ,

1

nl

nl
∑

i=1

|Tβn
f(xi) − qt(xi)|2 ≤ δ

β2
n

, pen2
pn

(f) ≤ 2δ}, xnl

1

)

)1/2

du (24)

for all δ ≥ δnl
, all t ∈ {0, 1, . . . , T − 1} and all x1, . . . , xnl

∈ IR.

In the sixth step of the proof we show

1
nl

nl
∑

i=1
|Yi − Ŷi,n|2 = OP

(

∫

|q̂n,t+1(x) − qt+1(x)|2PXt+1(dx) + β2
n log |Pn|

nl

)

.

First we observe

1

nl

nl
∑

i=1

|Yi − Ŷi,n|2 ≤ 1

nl

nl
∑

i=1

|q̂n,t+1(X
(t)
i,t+1) − qt+1(X

(t)
i,t+1)|2.

To show

1
nl

nl
∑

i=1
|q̂n,t+1(X

(t)
i,t+1) − qt+1(X

(t)
i,t+1)|2 = OP(

∫

|q̂n,t+1(x) − qt+1(x)|2PXt+1(dx) + β2
n log |Pn|

nl
)

we condition on all data points X
(r)
j,s with r ≥ t + 1, s ∈ {0, . . . , T} and j ∈ {1, . . . , n}.

Then the assertion follows by an application of Bernstein inequality as in steps 1 and 3.

In the seventh (and last) step of the proof we observe that we get by induction

∫

|q̂n,t+1(x) − qt+1(x)|2PXt+1(dx)

= OP

(

δnl
+ maxs∈{t+1,...,T−1} inff∈G(pn),‖f‖∞≤L

(

pen2
pn

(f) +
∫

|f(x) − qt(x)|2PXs(dx)
)

)

.

We complete the proof by using

β2
n log |Pn|

n
= O(δn),

which follows from

n · δn

β2
n · log n

→ ∞ (n → ∞) and
|Pn|
nr

→ 0 (n → ∞),

and by gathering the above results. �
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