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Abstract In this article we give a review of regression-based Montdddaethods
for pricing American options. The methods require in a fitepghat the generally
in continuous time formulated pricing problem is approxiettby a problem in dis-
crete time, i.e., the number of exercising times of the atergid option is assumed
to be finite. Then the problem can be formulated as an optitogpig problem
in discrete time, where the optimal stopping time can be esged by the aid of
so-called continuation values. These continuation vatlapeesent the price of the
option given that the option is exercised after timeonditioned on the value of
the price process at tinte The continuation values can be expressed as regression
functions, and regression-based Monte Carlo methods apgigssion estimates to
data generated by the aid of artificial generated paths obtice process in order
to approximate these conditional expectations. In thiglartve describe various
methods and corresponding results for estimation of theggeession functions.

1 Pricing of American options as optimal stopping problem

In many financial contracts it is allowed to exercise the @mitearly before expiry.
E.g., many exchange traded options are of American type kol e holder any
exercise date before expiry, mortgages have often embgu@payment options
such that the mortgage can be amortized or repayed, or Kigramce contracts
allow often for early surrender. In this article we are iet#ed in pricing of options
with early exercise features.

Itis well-known that in complete and arbitrage free markleésprice of a deriva-
tive security can be represented as an expected value \gipeceto the so called
martingale measure, see for instance Karatzas and Shr@®8)(Furthermore, the
price of an American option with maturify is given by the value of the optimal
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stopping problem

Vo= sup E{do:gc(Xc)}, (2)

1e7([0,T))

whereg; is a nonnegative payoff functiofX )o<t<7 is a stochastic process, which
models the relevant risk factors; ([0, T]) is the class of all stopping times with
values in[0, T], andds; are nonnegative? ((Xy)s<u<t)—-measurable discount factors
satisfyingdo; = dos- dsy for s < t. Here, a stopping time € .7 ([0,T]) is a mea-
surable function of % )o<t<7 With values in[0,T] with the property that for any
r € [0,T] the evenf{t <r} is contained in the sigma algebfg = .7 ((Xs)o<s<r)
generated byXs)o<s<r-

There are various possibilities for the choice of the pre¢¥go<t<t. The most
simple examples are geometric Brownian motions, as foant# in the celebrated
Black-Scholes setting. More general models include sttah&olatility models,
jump-diffusion processes or general Levy processes. Thiehparameters are usu-
ally calibrated to observed time series data.

The first step in addressing the numerical solution of (1pipadss from con-
tinuous time to discrete time, which means in financial tetmapproximate the
American option by a so-called Bermudan option. The coremecg of the discrete
time approximations to the continuous time optimal stogganoblem is consid-
ered in Lamberton and Pages (1990) for the Markovian casaléwiin the abstract
setting of general stochastic processes.

For simplicity we restrict ourselves directly to a discrétee scale and consider
exclusively Bermudan options. In analogy to (1), the pritea Bermudan option is
the value of the discrete time optimal stopping problem

Vo= sup E{fi(Xr)}, (2
1€7(0,...,T)

whereXg, X1, ..., Xt is now a discrete time stochastic procefkss the discounted
payoff function, i.e. fi (x) = do0t(x), and.7 (0,...,T) is the class of al{0,..., T }—
valued stopping times. Here a stopping time .7 (0,...,T) is a measurable func-
tion of Xp, ..., Xt with the property that for anlg € {0,..., T} the event{ T =k} is
contained in the sigma algebfa(Xo, ..., Xk) generated by, . .., Xk.

2 Theoptimal stopping time

In the sequel we assume thé&f, X1, ..., Xt is aR%—valued Markov process record-
ing all necessary information about financial variabletuding prices of the under-
lying assets as well as additional risk factors driving kastic volatility or stochas-
tic interest rates. Neither the Markov property nor the fafrthe payoff as a func-
tion of the stateX; are very restrictive and can often be achieved by including s
plementary variables.
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The computation of (2) can be done by determination of amzgdtstopping time
™€ .7(0,...,T) satisfying

Vo= sup E{fi(Xr)} =E{fr-(Xe)}. 3)
1€7(0,...,T)
ForO<t<T let
a(x)= sup  E{fr(Xr)X =x} (4)
1€ (t+1,....T)

be the so—called continuation value describing the valtleeobption at time given
X% = x and subject to the constraint of holding the option at timether than exer-
cising it. Fort = T we define the corresponding continuation value by

qr(x) =0 (xeRY), (5)

because the option expires at tifieand hence we do not get any money if we sell
it after timeT.

In the sequel we will use techniques from the general theboptimal stopping
(cf., e.g., Chow, Robbins and Siegmund (1971) or Shiryay®&78)) in order to
show that the optimal stopping tinté is given by

" =inf{se {0,1,...,T} : gs(Xs) < fs(Xs)}- (6)

Since gr(x) = 0 and fr(x) > 0 there exists always some index where
gs(Xs) < fs(Xs), so the right-hand side above is indeed well defined. The e@bov
form of t* allows a very nice interpretation: in order to sell the optilo an optimal
way, we have to sell it as soon as the value we get if we sellritédiately is at least
as large as the value we get in the mean in the future, if wetselthe future in an
optimal way.

In order to prove (6) we need the following notations: L%&tt,t +1,...,T) be
the subset o7 (0,...,T) consisting of all stopping times which take on values only
in{t,t+1,...,T}andlet

V)= sup E{fi(%)[% =x} ")
€7 (tt+1,...,T)

be the so-called value function which describes the valugetén the mean if we
sell the option in an optimal way after timé — 1 given X = x. For
te{-1,0,...,T —1} set

T =inf{s>t+1:qs(Xs) < fs(Xe)}, 8)

hencer* = t*,. Then the following result holds:

Theorem 1. Under the above assumptions we have for aay{t-1,0,...,T} and
Py -almost all xc RY:

V09 = E { fre (%)X =} (©)
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Furthermore we have

The above theorem is well-known in literature (cf., e.g.apter 8 in Glasserman
(2004)), but usually not proven completely. For the sakeoofigleteness we present
a complete proof next.

Proof. We prove (9) by induction. Fdr=T we have
Tt =T

and anyr € .7 (T) satisfies
T=T.

So in this case we have

Vr(x) = sup E{f:(X;)[Xr =x} =E{fr(Xr)|%r =x}
1€e7(T)

=E { ijt—l(xT'lt—l)‘xT = X} '

Lett € {0,...,T — 1} and assume that

V() = E{ fry , 0%z )X =]

holds for allt < s<T. In the sequel we prove (9). To do this, et 7 (t,...,T) be
arbitrary. Then

fr(xr) =f (Xr) : 1{r:t} +fr (Xr) ’ 1{r>t}

= fi (xt) ’ 1{r:t} + fmax{r,t+1} (Xmax{r,t+1}) ’ 1{T>I}'

Since Yy and Yoy = 1— 11y are measurable with respectX, ..., X and
since(Xt )o<t<T IS @ Markov process we have

E{fr (X)X}

=E{ft(X) - Lr=ty X0, - -, X} + E{ frnaxir.t+1) Kmaxire+1y) - Lirsty [Xo, -+, %}
= fi (Xt) : 1{r:t} + 1{r>t} : E{ fmax{r,t+1} (xmax{r,t+1})|XOa e 7Xt}
= fi (Xt) : 1{r:t} + 1{r>t} : E{ fmax{r,t+1} (xmax{r,t+1})|xt}-

Using the definition o¥.1 together with magr,t+1} € (t+1,...,T) and the
Markov property we get

E{ fmax{r,t+l} (Xmax{r,tJrl}) |xt} = E{E{ fmax{r,t+1} (Xmax{r,tJrl}) |xt+1} |X(}
< M1 (X)X},

from which we can conclude

E{fr(X0)IX} < ft(X) - L=ty + Loty - B2 (Xeq 1) %}
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< max{ fr (X ), E{My1(X41)[ % }}-

Now we make the same calculations using 1;* ;. We get

E{fr X )X}

T1

= fit(X) Lirr =ty + Lz sty E{fmaxry 1) Kmaxr | eray) Xt
By definition of ;" we have on(1;* ; >t}
maxt ,t+1}=1"
Using this, the Markov property and the induction hypoth@g can conclude
E{fr, (Xer )X} = (X)L oy + Lo o - ELEL Fre (%) X1} X
= f(X)- 1{rt*71:t} + 1{rt*71>t} "E{Vir1 (X)X}

Next we show

EfVii1 (X)X} = ae (%) (11)

To see this, we observe that by induction hypothesis, Mapkoperty and because
of i € 7(t+1,...,T) we have

E{Visa (X)X} = E{E{frr (X ) X1} X} = E{fr (X ) [ X}

< sup E{fi(X)[X} =a(X).
€7 (t+1,....T)

Furthermore the definition &%, 1 implies

E{M41(X11) %} = E{ sup T)E{fr(xr)|xt+1} |X¢}

€7 (t+1,...,

> sup E{E{fi(Xe)[Xa} X} = (X).
€7 (t+1,...,T)

Using the definition off;" ; we conclude

fe (%) Lir = + L >t E{Mea (X)X}
= fi(X) L =ty + Lo st h(X)
= max{ fi (%), (%)}

Summarizing the above results we have

Vi (X) = sup  E{fr(Xo)[X =x} < max{fi(x),E{V+1(X+1)[% = x}}
1€ (tt+1,....T)

— max{ fi(0),& (0} = E{fr: (X )% =x}.

which proves
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Vi(x) = max{ ft(x),a (%)} = E{frs | (X )[X =X} 12)
In order to prove (10) we observe that by arguing as above we ge

Vo = sup E{fr(xr)}

= sup E { fO(XO) ’ 1{1:0} + fmax{r,l} (Xmax{r,l}) ’ 1{r>0}}

{ 0(X0) * Lto(x0)za0(x0)} T Frg (Xrg) - Lito(xg )<QO(X0)}}
—E{fo(xo) L o(x0)200%)} + E{VLX) X0} - L to(x0)<ao(x0)} |
_E{fo )1{fo >QOX0)}+q0(X°) Lt to0x0)<a0(%o }}
= E{max{ fo(Xo0),qo(X0)} }

— E{fr (X))

O

Remark 1. The continuation values and the value function are clossbted. As
we have seen already in the proof of Theorem 1 (cf., (11) aR})) (&e have

G (X) = E{Vi11(Xe1 1) [ X = X}

and
Vi (x) = max{ fi(x), c (x) }-

Remark 2. Remark 1 shows thais(Xs) < fs(Xs) is equivalent tdvs(Xs) < fs(Xs).
Hence the optimal stopping time can be also expressed via

T =inf{se {0,...,T}: Vs(Xs) < fs(Xs)}- (13)

3 Regression representations for continuation values

The previous section shows that it suffices to determine tmgirmuation values
do,---,q7_1 in order to determine the optimal stopping time. We show inraxt
theorem three different regression representationggfowhich have been intro-
duced in Longstaff and Schwartz (2001), Tsitsiklis and Vay R1999) and Egloff
(2005), resp. In principle they allow a direct (and somesimezursive) computation
of the continuation values by computing conditional expgons.

Theorem 2. Under the above assumptions for any/ {0, ..., T — 1} andPx -almost
all x € RY the following relations hold:
a)

qt(x) =E { frt* (Xrl*) X

=x}, (14)
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b)
o (X) = E {max{ frs1(Xt1), k1 (Xer) } X =X} (15)
0)
®(x) =E {@t(xvi,tthﬂ’xt = X} (16)
forany we {0,1,..., T —t—1}, where
@I(jf/*vit+w+l
t+w+1
= > 10X Ly (K1) <2 ) s 1% 1)< 1% 1), Fs(X6) 20s(X6)}
s=t+1

+qt+w+1(xt+w+1) ’ 1{ fra (Ko 1) <O+ (K1) o P 1 (Kbt 1) <Ot 2 Kepwr2)

Proof. a) By (11), Theorem 1 and Markov property we get we get

(%) = E{Viy1(X11)|% }
= E{E{fy (Xg)[ X1} X}
= E{E{fr{‘(xr{‘) XOv---7Xt+1}|X07---Xt}
= E{frt*(xr{‘) )(07"')(1}
= E{frt*(xrt*) X}

b) Because of

fre Ker) = froa (K1) - Lgp—trny + Fr Xy ) - Lystrny
= fra () Ltgaoenzanaoe ) + fr X ) Lo <anaen)
we can conclude from a) and Markov property
O (%)
= B { fua(%er2) Lt 2ae10600) 7 Frios Ke)* Licatke<a it P
—E{E{...[X,... X1} [ X0 X}

= E{ ft+1(xt+1) ’ 1{ft+1(xt+1)2(1t+1(xt+l)}

+E { th*+1 (Xrt*ﬂ) ’XH]'} L)<t (%)} ‘Xt }

= E{fia(%1) Lt a0 2020603 T 01 ) - Lga ke <aa i X
= E{max{f:1(X1),0s1(%2)} %}

c) Foranyw € {0,1,..., T —t—1} we have

frt* (Xrt* )
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w
= % firsra(XKerst1) - L =tesray + frp X)Ly stoweny
&

= &; ft+S+1 (><t+5+1)

Using a) and Markov property we conclude

G (%)
=E { th* (th*) X(}

E{ % firsri(Xeysi1)

'1{ frra(Xer 1) <Or1 (Ko1)o frars(Kegs) <Ot s(Xets) frosrn (Kersr1) >Gtrs 1 (Kersr1)

=E{E{...[Xo,- s Xeyws1}|X0..., % }
= E{ Zofwsu(stu)

'1{ft+1(xt+1)<Qt+1(Xt+1)7~-~7ft+s(xt+s)<Qt+s(Xt+s)7ft+sr1(xt+sr1)2fh+srl(xt+s+1)} +

+Qt+w+1(xt+w+1) ’ 1{ frea(Xer 1) <Or2(Xer ) Faows 1 (Kerwr ) <Grwr 1 (Xesws 1) |Xt }’

which implies the assertion. O

Remark 3. Because of

@t(f)l,tﬂ = max{ frr1(Xer1), Gr1(Xevn)}

and (T—t—1)
@t+1,T = fT(‘(th*)

the regression representation (16) includes (14) f(ferT —t — 1) and (15) (for
t = 0) as special cases.

Remark 4. There exists also regression representations for the fiahetions. E.g.,
as we have seen already in Theorem 1 and its proof we have
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V(x) = E{ fr | (X )X =X}

T
and
V(%) = max{ fi(x), E{Vi+1(X11)[% = x}}.
Furthermore, similarly to Theorem 2 it can be shown

1
M(X) = E{@t(,\t,v:wjrﬂxt = X}.

Using Theorem 2 or Remark 4 we can compute the continuatimesand the
value functions by (recursive) evaluation of conditiongbectations. However, in
applications the underlying distributions will be rathenplicated and therefore it
is not clear how to compute these conditional expectatiopsactice.

4 Outline of regression-based Monte Carlo methods

The basic idea of regression-based Monte Carlo methodsusdaegression es-
timates as numerical procedures to compute the above camaliestimations ap-
proximately. To do this artificial samples of the price prexare generated which
are used to construct data for the regression estimatesal§bathms either con-
struct estimategn; of the continuation valueg; or estimateéf/n,t of the value func-
tions. Comparing the regression representations for théraation values like

G (¥) = E {max{ fiy1(Xer1), Q1 (Xera) } X = x}

with the regression representation for the value funciiam |

Vi (X) = max{ fi(x), E{Vt+1(X+2) X = X} },

we see that in the later relation the maximum occurs outsfd@e expectation
and as a consequence the value function will be in generatigifferentiable. In
contrast in the first relation the maximum will be smootheddking its conditional
expectation. Since it is always easier to estimate smogitession functions there
is some reason to focus on continuation values, which wedwilh the sequel.

Let Xg, X1,..., Xt be aR%valued Markov process and lgtbe the discounted
payoff function. We assume that the data generating prasessnpletely known,
i.e., that all parameters of this process are already etgdrfeom historical data.
In order to estimate the continuation valugsrecursively, we generate in a first
step artificial independent Markov procesge; }i—o

samples in a second step to generate recursively data teegsty by using one of
the regression representation given in Theorem 2.
We start with
GhT(X)=0 (xeRY).
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Given an estimatep 1 of gt41, we estimate
(%) = E { fre (X)X =X,
= E{maxX{ fis1(X+1), th+1(Xr1)} X =X}
=E {Ot(rli,wwﬂ’xt = X}

by applying a regression estimate to an “approximative”garof (X, Y;) where

Yt :Yt(xt+17'"7xTaqt+1a"'7qT)

is either given by
Yt :Yt()<l+17"';xt7qt+17"'7q-r) - th*(th*)a

Vi = Yo (X1, Ot1) = max{ fya (Xer1), Gera(Xeq1) }
or
Yo=Y (X1 Xerwi 1, G 1y Gpwr1) = GI(J\:V:?.,t+W+1
With the notation
?i,t - Yt(Xi’th]_, ce 7Xi,T7qn,t+15 ) qn,T)

(where we have suppressed the dependenﬁy ohn) this “approximative” sample
is given by

{(X,Yie) : i=1,..,n}. (17)

After having computed the estimatggn, . . ., drn we can use them in two different
ways to produce estimates\df. Firstly we can estimate

Vo = E{max{ fo(Xo),do(Xo)} }

(cf. proof of Theorem 1) by just replacirgg by its estimate, i.e., by a Monte Carlo
estimate of

E{max{ fo(Xo),Gno(Xo0)}}- (18)
Secondly, we can use our estimates to construct a plugimagst

of the optimal stopping rule* and estimat&y by a Monte Carlo estimate of
E{f:(X¢)}- (20)

Here in (19) and in (20) the expectation is taken only witlpees toXp, ..., Xt and
not with respect to the random variables used in the defindfdhe estimategy’s.
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This kind of recursive estimation scheme was firstly propdseCarrier (1996)
for the estimation of value functions. In Tsitsiklis and VRay (1999) and Longstaff
and Schwartz (2001) it was used to construct estimates diine@tion values.

In view of a theoretical analysis of the estimates it usulalips if new variables
of the price process are used for each recursive estimagpnls this way the error
propagation (i.e., the influence of the erroggf /1, . . . ,dn 1) can be analyzed much
easier, cf. Kohler, Krzyzak and Todorovic (2010) or Koh(2008).

5 Algorithmsbased on linear regression

In most applications the algorithm of the previous sect®applied in connection
with linear regression. Here basis functions

Bl,...,BKZRd—ﬂR

are chosen and the estimagg is defined by

K
Gne = Y & By, (21)
K=1
wheredj, ...,dk € R are chosen such that

ay,...,ak €R

10 K R 5 . 1n K ,
ﬁi;IYi,t—kZlak-Bk(N,t)l = min ﬁi;mt_k;ak'Bk(xiJ”- 22)

HereY;, are defined either by

Yie = max{ fry1(Xitr1),Gne+1(XKigs1)}

in case of the Tsitsiklis-Van-Roy algorithm, or by

?i,t = ffi,t (xi,fi‘t)
where
fi!t = Inf{SG {t + 1, e ,T} . fs(xj!s) 2 ans(xj!s)}
in case of the Longstaff-Schwartz algorithm.

The estimate can be computed easily by solving a linear egusstem. Indeed,
it is well-known from numerical analysis (cf., e.g., Sto&893), Chapter 4.8.1) that
(22) is equivalent to

B'Ba=B"Y (23)
where . A
Y =Mt Y0, B=(Be(Xit))i nk-1..K
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and
a=(a,....,a)".
It was observed e.g. in Longstaff and Schwartz (2001) theatove estimate
combined with the corresponding plug-in estimate (19) efdptimal stopping rule

is rather robust with respect to the choice of the basis fanst The most simplest
possibility are monomials, i.e.,

Be(Us, .., Ug) = U™ - U2 ... ud™
for some nonnegative integess, ...y x. Ford = 1 this reduce to fitting a polyno-
mial of a fixed degree (e.gK — 1) to the data. Fod large the degree of the multi-
nomial polynomial (e.g. defined bs(x + ... +sqx Or by max—_y _qx-1,.k Sjk has
chosen to be small in order to avoid that there are too manig fasctions. It is
well-known in practice that the estimate gets much bettérafpayoff function is
chosen as one of the basis functions.

The Longstaff-Schwartz algorithm was proposed in Londstafl Schwartz
(2001). It was further theoretical examined in Clement, banon and Protter
(2002). The Tsitsiklis-Van-Roy algorithm was introducedidaheoretical examined
in Tsitsiklis and Van Roy (1999, 2001).

6 Algorithms based on nonparametric regression

Already in Carrier (1996) it was proposed to use nonparameggression to esti-
mate value functions. In the sequel we describe various ar@mpetric regression
estimates of continuation values.

According to Gyorfi et al. (2002) there are four (related)gugms for defining
nonparametric regression estimates. The first is locabagueg, where the estimate
is defined by

Gnt(x) = _iWn,i (% X1ty Xnt) - Vi (24)

with weights\Wh i (X, X1¢, ..., Xnt) € R depending on the-values of the sample. The
most popular example of local averaging estimates is theaNga-Watson kernel
estimate, where a kernel function

K:RYI =R

(e.g., the so-called naive kerni€(u) = 1y <1, or the Gaussian kern&(u) =

exp(—||ul|?/2)) and a so-called bandwidti, > 0 are chosen and the weights are
defined by

Xf)(i?
Whi (% X1, - -, Xnt) = M

IED)
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Here the estimate is given by

2| 1K(X XH) '?i,t
STk (Rt

The second paradigm is global modelling (or least squargmatson), where a
function space%, consisting of functions : RY — R is chosen and the estimate is
defined by

Gnt(x) =

. 10
Gnt € #n and Zl|Ylt—qu|t = GIDEZJYlt—qut . (25)

In case that%, is a linear vector space (with dimension depending on thepkam
size) this estimate can be computed by solving a linear equsgstem correspond-
ing to (23). Such linear function spaces occur e.g. in thendiefin of least squares
spline estimates with fixed knot sequences, where theé7gés chosen as a set of
piecewise polynomials satisfying some global smoothnesditions (like differen-
tiability).

Especially for largel it is also useful to consider nonlinear function spaces. The
most popular example are neural networks, where for the siogtle model#, is
defined by

kn
T = {ZCi-G(&Tx+ b)+c : acRI be R} (26)
i=

for some sigmoid functioo : R — [0, 1]. Here it is assumed that the sigmoid func-
tion o is monotonically increasing and satisfies

0(x) =0 (x— —o) and og(x) —1 (x— o).

An example of such a sigmoid function is the logistic squasle¢ined by

o(x) = (xeR).

l+eX
There exists a deepest decent algorithm (so-called baegjitvhich computes the
corresponding least squares estimate approximatelye(cf., Rumelhart and Mc-
Clelland (1986)).

The third paradigm is penalized modelling. Instead of retéhig the set of func-
tions over which the so called empiridai risk

1 no . 2
ﬁi;m,t — (X0



14 Michael Kohler

is minimized, in this case a penalty term penalizing the hmags of the function
is added to the empiricdl, risk and this penalized empiricb risk is basically
minimized with respect to all functions.The most populaareple of this kind of
estimates are smoothing spline estimates. Here the estimdéfined by

Gnt() = min ( Zl”x” .,t|2+/\n~JE(f)>, (27)

feWk RY)

wherek € N with 2k > d, WK(RY) denotes the Sobolev space
f'aikfeL(Rd)foralla ag € Nwith a3 +...+ag =k
-axgl'”axgd 2 1,...,Ud 1T d— )

and

2

okt
i (x)| dx

ox3t...oxg

k! '
‘]IE(f): Z I....-ag! ./Rd

1o 0gENT ot ag=k T1

HereA, > 0 is the smoothing parameter of the estimate.

The fourth (and last) paradigm is local modelling. It is danito global mod-
elling, but this time the function is fitted only locally todldata and a new function
is used for each point iRY. The most popular example of this kind of estimate are
local polynomial kernel estimates. Here the estimate, iwb&pends on a nonnega-
tivintegerM and a kernel functio : RY — R, is given by

Gnt (X) = Px(X) (28)
where
ﬁX( ) € Iu= { aJl-----,jd ! (X(l>)J1 (X(d>)1d aJl ----- Id eR
0<j1,...,Jg<M
(29)
satisfies

%iimxm,t) .t|K( - > | %me Lt|zK(x;_n>ﬁ). o)

The estimate can be computed again by solving a linear exusyistem, but this
time of sizen timesn (insteadK,, timesK; as for least squares estimates).

Each estimate above contains a smoothing parameter whiehndaes how
smooth the estimate should be. E.g., for the Nadaraya-Wdsmel estimate it
is the bandwidth, > 0, where a small bandwidth leads to a very rough estimate.
For the smoothing spline estimate it is the paramater 0, and for the least squares
neural network estimate the smoothing parameter is the aukplof neurons. For
a succesful application of the estimates these parametexsto be chosen data-
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dependent. The most simple way of doing this is splittinghef sample (cf., e.g.,
Chapter 7 in Gyorfi et al. (2002)): Here the sample is divitka two parts, the first
part is used to compute the estimate for different values®fparameter, and the
second part is used to compute the empirical error of eachesiet estimates and
that estimate is chosen where this empirical error is mihi®glitting of the sam-
ple is in case of regression-based Monte Carlo methods sterethod to choose
the smoothing parameter, because there the data is chdiieradly with arbitrary
sample size so it does not hurt at all if the estimate deperiaispy on the first part
of the sample (since this first part can be as large as possibiew of computation
of the estimate).

The first article where the use of nonparamtetric regredsiothe estimation of
continuation values was examined theoretically was EGRED5). There nonpara-
metric least squares estimates have been used, where dragiars where cho-
sen by complexity regularization (cf., e.g., Chapter 12 yofE et al. (2002)) and
the consistency for general continuation values and treeaatonvergence of the
estimate in case of smooth continuation values has beestigated. For smooth
continuation values Egloff (2005) showed the usual optiratd of convergence for
estimation of smooth regression functions. However, dugréblems with the er-
ror propagation the estimate was defined such that it washemy to compute it
in practice, and it was not possible to check with simulatethdvhether nonpara-
metric regression is not only useful asymptotically (ifer,sample size tending to
infinity, as was shown in the theoretical results), but atsdihite sample size.

In Egloff, Kohler and Todorovic (2007) the error propagatimas simplified by
generating new data for each time point which was (condktibon the data corre-
sponding to time) independent of all previously used data. In addition, a¢ation
of the estimate was introduced which allowed to choose tineetor spaces as func-
tion spaces for the least squares spline estimates, schéhatan be computed by
solving a linear equation system. The parameter (here tb@epace dimension
of the function space) of the least squares estimates wergenhby splitting of
the sample. As regression representation the general farofEgloff (2005) (cf.
Theorem 2 c)) has been used. Consistency and rate of comeergesults for these
estimates have been derived, where as a consequence afrtbation of the esti-
mate the rates contained an additional logarithmic faBotrthe main advantage of
these estimates is that they are easy to compute, so it waibled® analyze the the
finite sample size behaviour of the estimates.

In Kohler, Krzyzak and Todorovic (2010), Kohler (2008) &ahler and Krzyzak
(2009) the error propagation was further simplified by getien of new paths of
the price process for each recursive estimation step anding only the simple
regression representation of Tsitsiklis and Van Roy (19608)Theorem 2 b)). As
a consequence it was possible to analyze the estimates iy nesiults derived in
Kohler (2006) for regression estimation in case of add@laneasurement errors
in the dependent variable. Kohler, Krzyzak and Todoro2i1(Q) investigated least
squares neural network estimates, which are very promisingse of largel, and
Kohler (2008) considered smoothing spline estimates. th papers results con-
cerning consistency and rate of convergence of the estinfeee been derived.



16 Michael Kohler

Kohler and Krzyzak (2009) presents a unifying theory whicimtains the results
of the previous papers as well as results concerning nemaigs (e.g., orthogonal
series estimates).

The above papers focus on properties of the estimates obtitanaation values,
i.e., they consider the error between the continuationeshnd its estimates. As
was pointed out by Belomestny (2009), sometimes much bretteiof convergence
results can be derived for the Monte Carlo estimate of (2@8sictered as estimate
of the price\ of the option. Because in view of a good performance of thesta
time it is not important that the estimate of the continuatialues are close to the
continuation values, instead it is important that they legithe same decision as the
optimal stopping rule. And for this it is only important that

ft(X) > Gne (%)

is equivalent to

fr (%) = o (%)

and not thatnt (%) andq: (%) are close. Belomestny (2009) introduces a kind of
margin condition (similar to margin conditions in patteetognition) measuring
how quicklyq: (%) approaches (X;), and shows under this margin condition much
better rate of convergence for the estimate (20) than pusviesults on the rates of
convergence of the continuation values imply for the esiin(&9).

7 Dual methods

The above estimates yield estimates

of the optimal stopping time*. By Monte Carlo these estimates yields estimates of
Vo, such that expectation

E{f:(X¢)}

of the estimate is less than or equal to the true pvicdt was proposed indepen-
dently by Rogers (2001) and Haugh and Kogan (2004) that mguwsdual method
Monte Carlo estimates can be constructed such that the tatjpecof the estimate

is greater than or equal ¥). The key idea is the next theorem, which is already
well-known in literature (cf., e.g., Section 8.7 in Glassan (2004)).

Theorem 3. Let.# be the set of all martingalesM. .., My with Mg = 0. Then

Vo= MIQL/E {t maxT(ft(Xt) - Mt)} =E {t max_ (fi (%) — Mt*)}, (31)

where
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t
M = Z (max{ fs(Xs),ds(Xs) } — E{max{ fs(Xs), as(Xs) }[Xs-1}).  (32)
s=1
For the sake of completeness we present next a completegfrdbeorem 3.

Proof. We first prove

t
t:rgﬁf(T <ft (%) — ;1 (max{ fs(Xs), ds(Xs)} — E{max{ fs(Xs), as(Xs) } |X31})>
= max{ fo(Xo), Go(Xo) }- (33)

To do this, we observe that we have by Theorem 2 b)

t
t:rgﬁf(T <ft (%) — ;1 (max{ fs(Xs), ds(Xs)} — E{max{ fs(Xs), as(Xs) } |X31})>

= max < i (max{ fs(Xs),as(Xs) } — Gs—1(Xs— 1)))

s=1

Foranyt € {1,...,T} we have

t
ft (%) — ;(max{ fs(Xs), As(Xs) } — Os—1(Xs-1))
t

-1

< (X)) = ) (As(Xs) = Os-1(Xs-1)) — (fe (%) — Gr-2(Xe-1))

s=1
= QO(XO)a
furthermore in case= 0 we get

t

fi (%) - ;(max{ fs(Xs), Gs(Xs) } — As-1(Xs-1)) = fo(X0),

which shows

max. (ft 04)~ 3 (max{1504).6s0%)} - qsl<xsl>>) < max{ f0(X0).do(¥o)}-

s=1
But fort = * we get in case afip(Xp) > fo(Xo) by definition ofT*

frs (Xge) — i(max{ fs(Xs), As(Xs) } — Os—1(Xs-1))
-1

= fe06) = 3 (006) 8 106 2) = (fr (Xe) = G- 2Xe 1)

= 0o(X0),
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and in case ofjp(Xp) < fp(Xo) (which impliest* = 0) we have

T*

fr* (XT*) - Z(max{ fs(xs)a qS(XS)} - QS—l(xs—l)) = fO(XO)-

S=

This completes the proof of (33).
As shown at the end of the proof of Theorem 1 we have

Vo = E{max{ fo(Xo),0o(X0)}} .

Using this together with (33) we get

E{ max_(f(X) M{‘)} = E{max{fo(Xo),q0(Xo0)}} = Vo.

Thus it suffices to show: For any martingdg, . .., Mt with Mg = 0 we have

E{ max. (fe (%) — Mt)} > re?s(g‘?.,T)E{fT(Xr)} =Vp.

But this follows from the optional sampling theorem, be@iidMy, ..., M7 is a
martingale withMg = 0 andt is a stopping time we know

EM; = EMg = 0

and hence
E{f:(X;)} =E{f:(Xr)—M;} <E {t_rB]g“xT(ft(&) - Mt)}.

This completes the proof. O

Given estimatesihs (s€ {0,1,...,T}) of the continuation values, we can esti-
mate the martingale (32) by

t
My = > (max{ fs(Xs),Gns(Xs) } — E* {max{ fs(Xs), Gns(Xs) }HXs-1}) . (34)

s=1

Provided we use unbiased afl(Xo, . .., X )-measurable estimat&s of the inner
expectation in (32) (which can be constructed, e.g., byegebtonte Carlo) this
leads to a martingale, too. This in turn can be used to carctdtlonte Carlo esti-
mates oM, for which the expectation
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is greater than or equal ¥. As a consequence we get two kind of estimates with
expectation lower and higher thl, resp., so we have available an interval in which
our true price should be contained.

In connection with linear regression these kind of estim#tave been studied
in Rogers (2001) and Haugh and Kogan (2004). Jamshidian7j220Qdies multi-
plicative versions of this method. A comparative study oftiplicative and additive
duals is contained in Chen and Glasserman (2007). AnderstBroadie (2004)
derive upper and lower bounds for American options baseduatfity. Belomestny,
Bender and Schoenmakers (2009) propose in a Brownian megibing estimates
with expectation greater than or equal to the true priceclwvizian be computed
without nested Monte Carlo (and hence are quite easy to ctanpu

In Kohler (2008b) dual methods have been combined with n@mpetric smooth-
ing spline estimates of the continuation values and casigtof the resulting esti-
mates was shown for all bounded Markov processes. In KdKiey,zak and Walk
(2008) it is shown how these estimates can be modified sutkegsmnested Monte
Carlo steps are needed in an application.

8 Application to simulated data

The PhD thesis Todorovic (2007) contains various compasisd regression-based
Monte Carlo methods on simulated data. Using the standarbmial basis for
linear regression (without including the payoff functigh}urns out that for lin-
ear regression the regression representation of LongstdfSchwartz (2001) pro-
duces often better results than the regression reprementdt Tsitsiklis and Van
Roy (1999) in view of the performance of the estimated stogpule on new data.
But for nonparametric regression it does not seem to mak#exatice whether the
regression representation of Longstaff and Schwartz (R@O 1T sitsiklis and Van
Roy (1999) or the more general form of Egloff (2005) is usadttirermore Todor-
ovic (2007) shows that nonparametric regression estingai $ometimes to much
better performance than the linear regression estimatelsifanis simulations never
really worse performance) as long as the payoff functiortdmcluded in the basis
function.

It turns out that this is less obvious if the payoff functienuised as one of the
basis functions for linear regression. But as we show beilowhis case a very
high sample size for the Monte Carlo estimates leads agabeti®r results for
the nonparametric regression estimate. The reason forsthist the bias of the
nonparametric regression estimates can be decreasedrbgsing the sample size,
which is not true for linear regression.

In the sequel we consider an American option based on thegwesf three
correlated stock prices. The stocks are ADECCO R, BALOISEh& @IBA. The
stock prices were observed from Nov. 10, 2000 until Oct. 83th weekdays when
the stock market was open for the total of 756 days. We estithatvolatility from
data observed in the past by the historical volatility
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Fig. 1 Strangle spread payoff with strike prices 85, 95, 105 and 115

1 } Lo
105 115

0.3024 01354 00722
0= (i j)1<ij<s= | 0.1354 02270 00613
0.0722 00613 00717

We simulate the paths of the underlying stocks with a Blackefes model by

)

Xip = ¥o- €t 203050 1 3

where{W;(t) :t e R} (j =1,...,3) are three independent Wiener processes and
where the parameters are chosen as follews: 100,r = 0.05 and components |

of the volatility matrix as above. The time to maturity is@sed to be one year. To
compute the payoff of the option we use a strangle spreadifum¢cf. Figure 1)
with strikes 85, 95, 105 and 115 applied to the average oftitemtcorrelated stock
prices.

We discretize the time intervd, 1] by dividing it into m = 48 equidistant time
steps withtp =0 < t; < ... < tm = 1 and consider a Bermudan option with payoff
function as above and exercise dates restrictéthtty, . .. ,tm}. We choose discount
factorse "t for j =0,...,m. For all three algorithms we use sample size 40000
for the regression estimates of the continuation values.

For the nonparametric regression estimate we use smoadghiimes as imple-
mented in the routine Tps from the library “fields” in the stts packageR,
where the smoothing parameter is chosen by generalized-vadislation. For the
Longstaff-Schwartz and Tsitsiklis—VVan Roy algorithms vge linear regression as
implemented irR with degree 1 and payoff function included in the basis.

For each of these algorithms we compute Monte Carlo estsmdiewer bounds
on the option price defined using the corresponding estiinstigpping rule, and
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Fig. 2 Boxplots for 100 Monte Carlo estimates of lower bounds (H) epper bounds (ub) based
on the estimates of the continuation values generated bglgfoeithm of Tsitsiklis and Van Roy
(TTVR), Longstaff and Schwartz (LS) and nonparametric stiiog splines (SS)

Monte Carlo estimates of upper bounds on the option prigggubie corresponding
estimated optimal martingale. Here we use 100 nested Maie €teps to approx-
imate the conditional expectation occuring in the optimaktingale. The sample
size of the Monte Carlo estimates is 10000 in case of estmatf upper bounds
and 40000 in case of estimation of lower bounds.

We apply all six algorithms for computing lower or upper bderio 100 inde-
pendently generated sets of paths and we compare the higeriising boxplots
for the 100 lower or upper bounds computed for each algorithvawould like to
stress that for all three algorithms computing upper bouhdsexpectation of the
values are upper bounds to the true option price, hence leabees indicates a bet-
ter performance of the algorithms, and that for all threedthms computing lower
bounds the expectation of the values are lower bounds toub@ption price, hence
higher values indicates a better performance of the alyost

As we can see in Figure 2, the algorithms based on nonpariamegression are
superior to Longstaff-Schwartz and Tsitsiklis—Van Royoaidnms, since the lower
boxplot of the upper bounds for this algorithm and the hid@tplot of the lower
bounds for this algorithm indicate better performance.
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