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Abstract In this article we give a review of regression-based Monte Carlo methods
for pricing American options. The methods require in a first step that the generally
in continuous time formulated pricing problem is approximated by a problem in dis-
crete time, i.e., the number of exercising times of the considered option is assumed
to be finite. Then the problem can be formulated as an optimal stopping problem
in discrete time, where the optimal stopping time can be expressed by the aid of
so-called continuation values. These continuation valuesrepresent the price of the
option given that the option is exercised after timet conditioned on the value of
the price process at timet. The continuation values can be expressed as regression
functions, and regression-based Monte Carlo methods applyregression estimates to
data generated by the aid of artificial generated paths of theprice process in order
to approximate these conditional expectations. In this article we describe various
methods and corresponding results for estimation of these regression functions.

1 Pricing of American options as optimal stopping problem

In many financial contracts it is allowed to exercise the contract early before expiry.
E.g., many exchange traded options are of American type and allow the holder any
exercise date before expiry, mortgages have often embeddedprepayment options
such that the mortgage can be amortized or repayed, or life insurance contracts
allow often for early surrender. In this article we are interested in pricing of options
with early exercise features.

It is well-known that in complete and arbitrage free marketsthe price of a deriva-
tive security can be represented as an expected value with respect to the so called
martingale measure, see for instance Karatzas and Shreve (1998). Furthermore, the
price of an American option with maturityT is given by the value of the optimal
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stopping problem
V0 = sup

τ∈T ([0,T])

E{d0,τgτ(Xτ)} , (1)

wheregt is a nonnegative payoff function,(Xt)0≤t≤T is a stochastic process, which
models the relevant risk factors,T ([0,T]) is the class of all stopping times with
values in[0,T], andds,t are nonnegativeF ((Xu)s≤u≤t)–measurable discount factors
satisfyingd0,t = d0,s ·ds,t for s< t. Here, a stopping timeτ ∈ T ([0,T]) is a mea-
surable function of(Xt)0≤t≤T with values in[0,T] with the property that for any
r ∈ [0,T] the event{τ ≤ r} is contained in the sigma algebraFr = F ((Xs)0≤s≤r)
generated by(Xs)0≤s≤r .

There are various possibilities for the choice of the process (Xt)0≤t≤T . The most
simple examples are geometric Brownian motions, as for instance in the celebrated
Black-Scholes setting. More general models include stochastic volatility models,
jump-diffusion processes or general Levy processes. The model parameters are usu-
ally calibrated to observed time series data.

The first step in addressing the numerical solution of (1) is to pass from con-
tinuous time to discrete time, which means in financial termsto approximate the
American option by a so-called Bermudan option. The convergence of the discrete
time approximations to the continuous time optimal stopping problem is consid-
ered in Lamberton and Pages (1990) for the Markovian case butalso in the abstract
setting of general stochastic processes.

For simplicity we restrict ourselves directly to a discretetime scale and consider
exclusively Bermudan options. In analogy to (1), the price of a Bermudan option is
the value of the discrete time optimal stopping problem

V0 = sup
τ∈T (0,...,T)

E{ fτ(Xτ)} , (2)

whereX0,X1, . . . ,XT is now a discrete time stochastic process,ft is the discounted
payoff function, i.e.,ft (x) = d0,tgt(x), andT (0, . . . ,T) is the class of all{0, . . . ,T}–
valued stopping times. Here a stopping timeτ ∈ T (0, . . . ,T) is a measurable func-
tion of X0, . . . ,XT with the property that for anyk∈ {0, . . . ,T} the event{τ = k} is
contained in the sigma algebraF (X0, . . . ,Xk) generated byX0, . . . ,Xk.

2 The optimal stopping time

In the sequel we assume thatX0, X1, . . . ,XT is aR
d–valued Markov process record-

ing all necessary information about financial variables including prices of the under-
lying assets as well as additional risk factors driving stochastic volatility or stochas-
tic interest rates. Neither the Markov property nor the formof the payoff as a func-
tion of the stateXt are very restrictive and can often be achieved by including sup-
plementary variables.
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The computation of (2) can be done by determination of an optimal stopping time
τ∗ ∈ T (0, . . . ,T) satisfying

V0 = sup
τ∈T (0,...,T)

E{ fτ(Xτ )} = E{ fτ∗(Xτ∗)}. (3)

For 0≤ t < T let
qt(x) = sup

τ∈T (t+1,...,T)

E{ fτ (Xτ)|Xt = x} (4)

be the so–called continuation value describing the value ofthe option at timet given
Xt = x and subject to the constraint of holding the option at timet rather than exer-
cising it. Fort = T we define the corresponding continuation value by

qT(x) = 0 (x∈ R
d), (5)

because the option expires at timeT and hence we do not get any money if we sell
it after timeT.

In the sequel we will use techniques from the general theory of optimal stopping
(cf., e.g., Chow, Robbins and Siegmund (1971) or Shiryayev (1978)) in order to
show that the optimal stopping timeτ∗ is given by

τ∗ = inf{s∈ {0,1, . . . ,T} : qs(Xs) ≤ fs(Xs)}. (6)

Since qT(x) = 0 and fT(x) ≥ 0 there exists always some index where
qs(Xs) ≤ fs(Xs), so the right-hand side above is indeed well defined. The above
form of τ∗ allows a very nice interpretation: in order to sell the option in an optimal
way, we have to sell it as soon as the value we get if we sell it immediately is at least
as large as the value we get in the mean in the future, if we sellit in the future in an
optimal way.

In order to prove (6) we need the following notations: LetT (t,t + 1, . . . ,T) be
the subset ofT (0, . . . ,T) consisting of all stopping times which take on values only
in {t,t +1, . . . ,T} and let

Vt(x) = sup
τ∈T (t,t+1,...,T)

E
{

fτ (Xτ)
∣

∣Xt = x
}

(7)

be the so-called value function which describes the value weget in the mean if we
sell the option in an optimal way after timet − 1 given Xt = x. For
t ∈ {−1,0, . . . ,T −1} set

τ∗t = inf{s≥ t +1 : qs(Xs) ≤ fs(Xs)}, (8)

henceτ∗ = τ∗−1. Then the following result holds:

Theorem 1. Under the above assumptions we have for any t∈ {−1,0, . . . ,T} and
PXt -almost all x∈ R

d:

Vt(x) = E
{

fτ∗t−1
(Xτ∗t−1

)
∣

∣Xt = x
}

. (9)
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Furthermore we have
V0 = E{ fτ∗(Xτ∗)} . (10)

The above theorem is well-known in literature (cf., e.g., Chapter 8 in Glasserman
(2004)), but usually not proven completely. For the sake of completeness we present
a complete proof next.

Proof. We prove (9) by induction. Fort = T we have

τ∗T−1 = T

and anyτ ∈ T (T) satisfies
τ = T.

So in this case we have

VT(x) = sup
τ∈T (T)

E
{

fτ (Xτ)
∣

∣XT = x
}

= E
{

fT(XT)
∣

∣XT = x
}

= E
{

fτ∗T−1
(Xτ∗T−1

)
∣

∣XT = x
}

.

Let t ∈ {0, . . . ,T −1} and assume that

Vs(x) = E
{

fτ∗s−1
(Xτ∗s−1

)
∣

∣Xs = x
}

holds for allt < s≤ T. In the sequel we prove (9). To do this, letτ ∈T (t, . . . ,T) be
arbitrary. Then

fτ (Xτ) = fτ (Xτ) ·1{τ=t} + fτ(Xτ) ·1{τ>t}

= ft (Xt) ·1{τ=t}+ fmax{τ,t+1}(Xmax{τ,t+1}) ·1{τ>t}.

Since 1{τ=t} and 1{τ>t} = 1−1{τ≤t} are measurable with respect toX0, . . . ,Xt and
since(Xt)0≤t≤T is a Markov process we have

E{ fτ (Xτ)|Xt}

= E{ ft(Xt) ·1{τ=t}|X0, . . . ,Xt}+ E{ fmax{τ,t+1}(Xmax{τ,t+1}) ·1{τ>t}|X0, . . . ,Xt}

= ft (Xt) ·1{τ=t} +1{τ>t} ·E{ fmax{τ,t+1}(Xmax{τ,t+1})|X0, . . . ,Xt}

= ft (Xt) ·1{τ=t} +1{τ>t} ·E{ fmax{τ,t+1}(Xmax{τ,t+1})|Xt}.

Using the definition ofVt+1 together with max{τ,t + 1} ∈ T (t + 1, . . . ,T) and the
Markov property we get

E{ fmax{τ,t+1}(Xmax{τ,t+1})|Xt} = E{E{ fmax{τ,t+1}(Xmax{τ,t+1})|Xt+1}|Xt}

≤ E{Vt+1(Xt+1)|Xt},

from which we can conclude

E{ fτ(Xτ)|Xt} ≤ ft(Xt) ·1{τ=t} +1{τ>t} ·E{Vt+1(Xt+1)|Xt}
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≤ max{ ft(Xt),E{Vt+1(Xt+1)|Xt}}.

Now we make the same calculations usingτ = τ∗t−1. We get

E{ fτ∗t−1
(Xτ∗t−1

)|Xt}

= ft(Xt) ·1{τ∗t−1=t} +1{τ∗t−1>t} ·E{ fmax{τ∗t−1,t+1}(Xmax{τ∗t−1,t+1})|Xt}.

By definition ofτ∗t we have on{τ∗t−1 > t}

max{τ∗t−1,t +1}= τ∗t .

Using this, the Markov property and the induction hypothesis we can conclude

E{ fτ∗t−1
(Xτ∗t−1

)|Xt} = ft (Xt) ·1{τ∗t−1=t} +1{τ∗t−1>t} ·E{E{ fτ∗t (Xτ∗t )|Xt+1}|Xt}

= ft (Xt) ·1{τ∗t−1=t} +1{τ∗t−1>t} ·E{Vt+1(Xt+1)|Xt}.

Next we show
E{Vt+1(Xt+1)|Xt} = qt(Xt). (11)

To see this, we observe that by induction hypothesis, Markovproperty and because
of τ∗t ∈ T (t +1, . . . ,T) we have

E{Vt+1(Xt+1)|Xt} = E{E{ fτ∗t (Xτ∗t )|Xt+1}|Xt} = E{ fτ∗t (Xτ∗t )|Xt}

≤ sup
τ∈T (t+1,...,T)

E{ fτ (Xτ)|Xt} = qt(Xt).

Furthermore the definition ofVt+1 implies

E{Vt+1(Xt+1)|Xt} = E

{

sup
τ∈T (t+1,...,T)

E{ fτ (Xτ)|Xt+1}|Xt

}

≥ sup
τ∈T (t+1,...,T)

E{E{ fτ (Xτ)|Xt+1}|Xt} = qt(Xt).

Using the definition ofτ∗t−1 we conclude

ft (Xt) ·1{τ∗t−1=t} +1{τ∗t−1>t} ·E{Vt+1(Xt+1)|Xt}

= ft (Xt) ·1{τ∗t−1=t} +1{τ∗t−1>t} ·qt(Xt)

= max{ ft(Xt),qt(Xt)}.

Summarizing the above results we have

Vt(x) = sup
τ∈T (t,t+1,...,T)

E
{

fτ(Xτ)
∣

∣Xt = x
}

≤ max{ ft(x),E{Vt+1(Xt+1)|Xt = x}}

= max{ ft(x),qt(x)} = E{ fτ∗t−1
(Xτ∗t−1

)|Xt = x},

which proves
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Vt(x) = max{ ft(x),qt(x)} = E{ fτ∗t−1
(Xτ∗t−1

)|Xt = x}. (12)

In order to prove (10) we observe that by arguing as above we get

V0 = sup
τ∈T (0,...,T)

E{ fτ (Xτ)}

= sup
τ∈T (0,...,T)

E
{

f0(X0) ·1{τ=0}+ fmax{τ,1}(Xmax{τ,1}) ·1{τ>0}
}

= E
{

f0(X0) ·1{ f0(X0)≥q0(X0)} + fτ∗0 (Xτ∗0 ) ·1{ f0(X0)<q0(X0)}

}

= E
{

f0(X0) ·1{ f0(X0)≥q0(X0)} + E{V1(X1)|X0} ·1{ f0(X0)<q0(X0)}

}

= E
{

f0(X0) ·1{ f0(X0)≥q0(X0)} +q0(X0) ·1{ f0(X0)<q0(X0)}

}

= E{max{ f0(X0),q0(X0)}}

= E{ fτ∗(Xτ∗)} .

�

Remark 1. The continuation values and the value function are closely related. As
we have seen already in the proof of Theorem 1 (cf., (11) and (12)) we have

qt(x) = E{Vt+1(Xt+1)|Xt = x}

and
Vt(x) = max{ ft(x),qt(x)}.

Remark 2. Remark 1 shows thatqs(Xs) ≤ fs(Xs) is equivalent toVs(Xs) ≤ fs(Xs).
Hence the optimal stopping time can be also expressed via

τ∗ = inf{s∈ {0, . . . ,T} : Vs(Xs) ≤ fs(Xs)}. (13)

3 Regression representations for continuation values

The previous section shows that it suffices to determine the continuation values
q0, . . . ,qT−1 in order to determine the optimal stopping time. We show in our next
theorem three different regression representations forqt , which have been intro-
duced in Longstaff and Schwartz (2001), Tsitsiklis and Van Roy (1999) and Egloff
(2005), resp. In principle they allow a direct (and sometimes recursive) computation
of the continuation values by computing conditional expectations.

Theorem 2. Under the above assumptions for any t∈ {0, . . . ,T−1} andPXt -almost
all x ∈ R

d the following relations hold:
a)

qt(x) = E
{

fτ∗t (Xτ∗t )
∣

∣Xt = x
}

, (14)
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b)
qt(x) = E

{

max{ ft+1(Xt+1),qt+1(Xt+1)}
∣

∣Xt = x
}

(15)

c)
qt(x) = E

{

Θ (w)
t+1,t+w+1

∣

∣Xt = x
}

(16)

for any w∈ {0,1, . . . ,T − t−1}, where

Θ (w)
t+1,t+w+1

=
t+w+1

∑
s=t+1

fs(Xs) ·1{ ft+1(Xt+1)<qt+1(Xt+1),..., fs−1(Xs−1)<qs−1(Xs−1), fs(Xs)≥qs(Xs)}

+qt+w+1(Xt+w+1) ·1{ ft+1(Xt+1)<qt+1(Xt+1),..., ft+w+1(Xt+w+1)<qt+w+1(Xt+w+1)}.

Proof. a) By (11), Theorem 1 and Markov property we get we get

qt(Xt) = E
{

Vt+1(Xt+1)
∣

∣Xt
}

= E
{

E
{

fτ∗t (Xτ∗t )
∣

∣Xt+1
}∣

∣Xt
}

= E
{

E
{

fτ∗t (Xτ∗t )
∣

∣X0, . . . ,Xt+1
}∣

∣X0, . . .Xt
}

= E
{

fτ∗t (Xτ∗t )
∣

∣X0, . . .Xt
}

= E
{

fτ∗t (Xτ∗t )
∣

∣Xt
}

.

b) Because of

fτ∗t (Xτ∗t ) = ft+1(Xt+1) ·1{τ∗t =t+1} + fτ∗t (Xτ∗t ) ·1{τ∗t >t+1}

= ft+1(Xt+1) ·1{ ft+1(Xt+1)≥qt+1(Xt+1)} + fτ∗t+1
(Xτ∗t+1

) ·1{ ft+1(Xt+1)<qt+1(Xt+1)}

we can conclude from a) and Markov property

qt(Xt)

= E
{

ft+1(Xt+1) ·1{ ft+1(Xt+1)≥qt+1(Xt+1)} + fτ∗t+1
(Xτ∗t+1

) ·1{ ft+1(Xt+1)<qt+1(Xt+1)}

∣

∣Xt

}

= E
{

E
{

. . .
∣

∣X0, . . .Xt+1
}∣

∣X0, . . .Xt
}

= E
{

ft+1(Xt+1) ·1{ ft+1(Xt+1)≥qt+1(Xt+1)}

+E
{

fτ∗t+1
(Xτ∗t+1

)
∣

∣Xt+1

}

·1{ ft+1(Xt+1)<qt+1(Xt+1)}

∣

∣Xt

}

= E
{

ft+1(Xt+1) ·1{ ft+1(Xt+1)≥qt+1(Xt+1)} +qt+1(Xt+1) ·1{ ft+1(Xt+1)<qt+1(Xt+1)}

∣

∣Xt
}

= E
{

max{ ft+1(Xt+1),qt+1(Xt+1)}
∣

∣Xt
}

.

c) For anyw∈ {0,1, . . . ,T − t−1} we have

fτ∗t (Xτ∗t )
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=
w

∑
s=0

ft+s+1(Xt+s+1) ·1{τ∗t =t+s+1} + fτ∗t (Xτ∗t ) ·1{τ∗t >t+w+1}

=
w

∑
s=0

ft+s+1(Xt+s+1)

·1{ ft+1(Xt+1)<qt+1(Xt+1),..., ft+s(Xt+s)<qt+s(Xt+s), ft+s+1(Xt+s+1)≥qt+s+1(Xt+s+1)}

+ fτ∗t+w
(Xτ∗t+w

) ·1{ ft+1(Xt+1)<qt+1(Xt+1),..., ft+w+1(Xt+w+1)<qt+w+1(Xt+w+1)}.

Using a) and Markov property we conclude

qt(Xt)

= E
{

fτ∗t (Xτ∗t )
∣

∣Xt
}

E
{ w

∑
s=0

ft+s+1(Xt+s+1)

·1{ ft+1(Xt+1)<qt+1(Xt+1),..., ft+s(Xt+s)<qt+s(Xt+s), ft+s+1(Xt+s+1)≥qt+s+1(Xt+s+1)}

+ fτ∗t+w
(Xτ∗t+w

) ·1{ ft+1(Xt+1)<qt+1(Xt+1),..., ft+w+1(Xt+w+1)<qt+w+1(Xt+w+1)}

∣

∣Xt

}

= E{E{. . . |X0, . . . ,Xt+w+1}|X0 . . . ,Xt}

= E
{ w

∑
s=0

ft+s+1(Xt+s+1)

·1{ ft+1(Xt+1)<qt+1(Xt+1),..., ft+s(Xt+s)<qt+s(Xt+s), ft+s+1(Xt+s+1)≥qt+s+1(Xt+s+1)} +

E{ fτ∗t+w
(Xτ∗t+w

)|Xt+w+1} ·1{ ft+1(Xt+1)<qt+1(Xt+1),..., ft+w+1(Xt+w+1)<qt+w+1(Xt+w+1)}

∣

∣Xt

}

= E
{ w

∑
s=0

ft+s+1(Xt+s+1)

·1{ ft+1(Xt+1)<qt+1(Xt+1),..., ft+s(Xt+s)<qt+s(Xt+s), ft+s+1(Xt+s+1)≥qt+s+1(Xt+s+1)}

+qt+w+1(Xt+w+1) ·1{ ft+1(Xt+1)<qt+1(Xt+1),..., ft+w+1(Xt+w+1)<qt+w+1(Xt+w+1)}

∣

∣Xt

}

,

which implies the assertion. �

Remark 3. Because of

Θ (0)
t+1,t+1 = max{ ft+1(Xt+1),qt+1(Xt+1)}

and
Θ (T−t−1)

t+1,T = fτ∗t (Xτ∗t )

the regression representation (16) includes (14) (fort = T − t − 1) and (15) (for
t = 0) as special cases.

Remark 4. There exists also regression representations for the valuefunctions. E.g.,
as we have seen already in Theorem 1 and its proof we have
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Vt(x) = E{ fτ∗t−1
(Xτ∗t−1

)|Xt = x}

and
Vt(x) = max{ ft(x),E{Vt+1(Xt+1)|Xt = x}}.

Furthermore, similarly to Theorem 2 it can be shown

Vt(x) = E{Θ (w+1)
t,t+w+1|Xt = x}.

Using Theorem 2 or Remark 4 we can compute the continuation values and the
value functions by (recursive) evaluation of conditional expectations. However, in
applications the underlying distributions will be rather complicated and therefore it
is not clear how to compute these conditional expectations in practice.

4 Outline of regression-based Monte Carlo methods

The basic idea of regression-based Monte Carlo methods is touse regression es-
timates as numerical procedures to compute the above conditional estimations ap-
proximately. To do this artificial samples of the price process are generated which
are used to construct data for the regression estimates. Thealgorithms either con-
struct estimates ˆqn,t of the continuation valuesqt or estimateŝVn,t of the value func-
tions. Comparing the regression representations for the continuation values like

qt(x) = E
{

max{ ft+1(Xt+1),qt+1(Xt+1)}
∣

∣Xt = x
}

with the regression representation for the value function like

Vt(x) = max{ ft(x),E{Vt+1(Xt+1)|Xt = x}},

we see that in the later relation the maximum occurs outside of the expectation
and as a consequence the value function will be in generally not differentiable. In
contrast in the first relation the maximum will be smoothed bytaking its conditional
expectation. Since it is always easier to estimate smooth regression functions there
is some reason to focus on continuation values, which we willdo in the sequel.

Let X0,X1, . . . ,XT be aR
d–valued Markov process and letft be the discounted

payoff function. We assume that the data generating processis completely known,
i.e., that all parameters of this process are already estimated from historical data.
In order to estimate the continuation valuesqt recursively, we generate in a first
step artificial independent Markov processes{Xi,t}t=0,...,T (i = 1,2, . . . ,n) which
are identically distributed as{Xt}t=0,...,T . Then we use these so-called Monte Carlo
samples in a second step to generate recursively data to estimateqt by using one of
the regression representation given in Theorem 2.

We start with
q̂n,T(x) = 0 (x∈ R

d).
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Given an estimate ˆqn,t+1 of qt+1, we estimate

qt(x) = E
{

fτ∗t (Xτ∗t )
∣

∣Xt = x
}

,

= E
{

max{ ft+1(Xt+1),qt+1(Xt+1)}
∣

∣Xt = x
}

= E
{

Θ (w)
t+1,t+w+1

∣

∣Xt = x
}

by applying a regression estimate to an “approximative” sample of (Xt ,Yt) where

Yt = Yt(Xt+1, . . . ,XT ,qt+1, . . . ,qT)

is either given by

Yt = Yt(Xt+1, . . . ,Xt ,qt+1, . . . ,qT) = fτ∗t (Xτ∗t ),

Yt = Yt(Xt+1,qt+1) = max{ ft+1(Xt+1),qt+1(Xt+1)}

or
Yt = Yt(Xt+1, . . . ,Xt+w+1,qt+1, . . . ,qt+w+1) = Θ (w)

t+1,t+w+1

With the notation

Ŷi,t = Yt(Xi,t+1, . . . ,Xi,T , q̂n,t+1, . . . , q̂n,T)

(where we have suppressed the dependency ofŶi,t onn) this “approximative” sample
is given by

{(

Xi,t ,Ŷi,t
)

: i = 1, . . . ,n
}

. (17)

After having computed the estimates ˆq0,n, . . . , q̂T,n we can use them in two different
ways to produce estimates ofV0. Firstly we can estimate

V0 = E{max{ f0(X0),q0(X0)}}

(cf. proof of Theorem 1) by just replacingq0 by its estimate, i.e., by a Monte Carlo
estimate of

E{max{ f0(X0), q̂n,0(X0)}} . (18)

Secondly, we can use our estimates to construct a plug-in estimate

τ̂ = inf{s∈ {0,1, . . . ,T} ≥ 0 : q̂n,s(Xs) ≤ fs(Xs)} (19)

of the optimal stopping ruleτ∗ and estimateV0 by a Monte Carlo estimate of

E{ fτ̂(Xτ̂)} . (20)

Here in (19) and in (20) the expectation is taken only with respect toX0, . . . ,XT and
not with respect to the random variables used in the definition of the estimates ˆqn,s.
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This kind of recursive estimation scheme was firstly proposed by Carrier (1996)
for the estimation of value functions. In Tsitsiklis and VanRoy (1999) and Longstaff
and Schwartz (2001) it was used to construct estimates of continuation values.

In view of a theoretical analysis of the estimates it usuallyhelps if new variables
of the price process are used for each recursive estimation step. In this way the error
propagation (i.e., the influence of the error of ˆqn,t+1, . . . ,q̂n,T) can be analyzed much
easier, cf. Kohler, Krzyżak and Todorovic (2010) or Kohler(2008).

5 Algorithms based on linear regression

In most applications the algorithm of the previous section is applied in connection
with linear regression. Here basis functions

B1, . . . ,BK : R
d → R

are chosen and the estimate ˆqn,t is defined by

q̂n,t =
K

∑
k=1

âk ·Bk, (21)

whereâ1, . . . , âK ∈ R are chosen such that

1
n

n

∑
i=1

|Ŷi,t −
K

∑
k=1

âk ·Bk(Xi,t)|
2 = min

a1,...,aK∈R

1
n

n

∑
i=1

|Ŷi,t −
K

∑
k=1

ak ·Bk(Xi,t)|
2. (22)

HereŶi,t are defined either by

Ŷi,t = max{ ft+1(Xi,t+1), q̂n,t+1(Xi,t+1)}

in case of the Tsitsiklis-Van-Roy algorithm, or by

Ŷi,t = fτ̂i,t (Xi,τ̂i,t )

where
τ̂i,t = inf{s∈ {t +1, . . . ,T} : fs(Xi,s) ≥ q̂n,s(Xi,s)}

in case of the Longstaff-Schwartz algorithm.
The estimate can be computed easily by solving a linear equation system. Indeed,

it is well-known from numerical analysis (cf., e.g., Stoer (1993), Chapter 4.8.1) that
(22) is equivalent to

BT Bâ = BT Y (23)

where
Y = (Ŷ1,t , . . . ,Ŷn,t)

T , B = (Bk(Xi,t))i=1,...,n,k=1,...,K
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and
â = (â1, . . . , âK)T .

It was observed e.g. in Longstaff and Schwartz (2001) that the above estimate
combined with the corresponding plug-in estimate (19) of the optimal stopping rule
is rather robust with respect to the choice of the basis functions. The most simplest
possibility are monomials, i.e.,

Bk(u1, . . . ,ud) = u
s1,k
1 ·u

s2,k
2 · · ·u

sd,k
d

for some nonnegative integerss1,k, . . .sd,k. Ford = 1 this reduce to fitting a polyno-
mial of a fixed degree (e.g.,K −1) to the data. Ford large the degree of the multi-
nomial polynomial (e.g. defined bys1,k + . . .+sd,k or by maxj=1,...,d,k=1,...,K sj ,k has
chosen to be small in order to avoid that there are too many basis functions. It is
well-known in practice that the estimate gets much better ifthe payoff function is
chosen as one of the basis functions.

The Longstaff-Schwartz algorithm was proposed in Longstaff and Schwartz
(2001). It was further theoretical examined in Clement, Lamberton and Protter
(2002). The Tsitsiklis-Van-Roy algorithm was introduced and theoretical examined
in Tsitsiklis and Van Roy (1999, 2001).

6 Algorithms based on nonparametric regression

Already in Carrier (1996) it was proposed to use nonparametric regression to esti-
mate value functions. In the sequel we describe various nonparametric regression
estimates of continuation values.

According to Györfi et al. (2002) there are four (related) paradigms for defining
nonparametric regression estimates. The first is local averaging, where the estimate
is defined by

q̂n,t(x) =
n

∑
i=1

Wn,i(x,X1,t , . . . ,Xn,t) ·Ŷi,t (24)

with weightsWn,i(x,X1,t , . . . ,Xn,t)∈ R depending on thex-values of the sample. The
most popular example of local averaging estimates is the Nadaraya-Watson kernel
estimate, where a kernel function

K : R
d → R

(e.g., the so-called naive kernelK(u) = 1{‖u‖≤1} or the Gaussian kernelK(u) =

exp(−‖u‖2/2)) and a so-called bandwidthhn > 0 are chosen and the weights are
defined by

Wn,i(x,X1,t , . . . ,Xn,t) =
K
(

x−Xi,t
hn

)

∑n
j=1K

(

x−Xj,t
hn

) .
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Here the estimate is given by

q̂n,t(x) =
∑n

i=1K
(

x−Xi,t
hn

)

·Ŷi,t

∑n
j=1K

(

x−Xj,t
hn

)

.

The second paradigm is global modelling (or least squares estimation), where a
function spaceFn consisting of functionsf : R

d → R is chosen and the estimate is
defined by

q̂n,t ∈ Fn and
1
n

n

∑
i=1

|Ŷi,t − q̂n,t(Xi,t)|
2 = min

f∈Fn

1
n

n

∑
i=1

|Ŷi,t − f (Xi,t)|
2. (25)

In case thatFn is a linear vector space (with dimension depending on the sample
size) this estimate can be computed by solving a linear equation system correspond-
ing to (23). Such linear function spaces occur e.g. in the definition of least squares
spline estimates with fixed knot sequences, where the setFn is chosen as a set of
piecewise polynomials satisfying some global smoothness conditions (like differen-
tiability).

Especially for larged it is also useful to consider nonlinear function spaces. The
most popular example are neural networks, where for the mostsimple modelFn is
defined by

Fn =

{

kn

∑
i=1

ci ·σ(aT
i x+bi)+c0 : ai ∈ R

d, bi ∈ R

}

(26)

for some sigmoid functionσ : R → [0,1]. Here it is assumed that the sigmoid func-
tion σ is monotonically increasing and satisfies

σ(x) → 0 (x→−∞) and σ(x) → 1 (x→ ∞).

An example of such a sigmoid function is the logistic squasher defined by

σ(x) =
1

1+e−x (x∈ R).

There exists a deepest decent algorithm (so-called backfitting) which computes the
corresponding least squares estimate approximately (cf.,e.g., Rumelhart and Mc-
Clelland (1986)).

The third paradigm is penalized modelling. Instead of restricting the set of func-
tions over which the so called empiricalL2 risk

1
n

n

∑
i=1

|Ŷi,t − f (Xi,t)|
2
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is minimized, in this case a penalty term penalizing the roughness of the function
is added to the empiricalL2 risk and this penalized empiricalL2 risk is basically
minimized with respect to all functions.The most popular example of this kind of
estimates are smoothing spline estimates. Here the estimate is defined by

q̂n,t(·) = arg min
f∈Wk(Rd)

(

1
n

n

∑
i=1

| f (Xi,t)− Ŷi,t |
2 + λn ·J

2
k ( f )

)

, (27)

wherek∈ N with 2k > d, Wk(Rd) denotes the Sobolev space

{

f :
∂ k f

∂xα1
1 . . .∂xαd

d

∈ L2(R
d) for all α1, . . . ,αd ∈ N with α1 + . . .+ αd = k

}

,

and

J2
k( f ) = ∑

α1,...,αd∈N,α1+...+αd=k

k!
α1! · . . . ·αd!

∫

Rd

∣

∣

∣

∣

∣

∂ k f

∂xα1
1 . . .∂xαd

d

(x)

∣

∣

∣

∣

∣

2

dx.

Hereλn > 0 is the smoothing parameter of the estimate.
The fourth (and last) paradigm is local modelling. It is similar to global mod-

elling, but this time the function is fitted only locally to the data and a new function
is used for each point inRd. The most popular example of this kind of estimate are
local polynomial kernel estimates. Here the estimate, which depends on a nonnega-
tiv integerM and a kernel functionK : R

d → R, is given by

q̂n,t(x) = p̂x(x) (28)

where

p̂x(·) ∈ FM =

{

∑
0≤ j1,..., jd≤M

a j1,..., jd · (x
(1)) j1 · . . . · (x(d)) jd : a j1,..., jd ∈ R

}

(29)
satisfies

1
n

n

∑
i=1

|p̂x(Xi,t)− Ŷi,t |
2K

(

x−Xi

hn

)

= min
p∈FM

1
n

n

∑
i=1

|p(Xi,t)− Ŷi,t |
2K

(

x−Xi

hn

)

. (30)

The estimate can be computed again by solving a linear equation system, but this
time of sizen timesn (insteadKn timesKn as for least squares estimates).

Each estimate above contains a smoothing parameter which determines how
smooth the estimate should be. E.g., for the Nadaraya-Watson kernel estimate it
is the bandwidthhn > 0, where a small bandwidth leads to a very rough estimate.
For the smoothing spline estimate it is the parameterλn > 0, and for the least squares
neural network estimate the smoothing parameter is the numberkn of neurons. For
a succesful application of the estimates these parameters need to be chosen data-
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dependent. The most simple way of doing this is splitting of the sample (cf., e.g.,
Chapter 7 in Györfi et al. (2002)): Here the sample is dividedinto two parts, the first
part is used to compute the estimate for different values of the parameter, and the
second part is used to compute the empirical error of each of these estimates and
that estimate is chosen where this empirical error is minimal. Splitting of the sam-
ple is in case of regression-based Monte Carlo methods the best method to choose
the smoothing parameter, because there the data is chosen artificially with arbitrary
sample size so it does not hurt at all if the estimate depends primary on the first part
of the sample (since this first part can be as large as possiblein view of computation
of the estimate).

The first article where the use of nonparamtetric regressionfor the estimation of
continuation values was examined theoretically was Egloff(2005). There nonpara-
metric least squares estimates have been used, where the parameters where cho-
sen by complexity regularization (cf., e.g., Chapter 12 in Györfi et al. (2002)) and
the consistency for general continuation values and the rate of convergence of the
estimate in case of smooth continuation values has been investigated. For smooth
continuation values Egloff (2005) showed the usual optimalrate of convergence for
estimation of smooth regression functions. However, due toproblems with the er-
ror propagation the estimate was defined such that it was veryhard to compute it
in practice, and it was not possible to check with simulated data whether nonpara-
metric regression is not only useful asymptotically (i.e.,for sample size tending to
infinity, as was shown in the theoretical results), but also for finite sample size.

In Egloff, Kohler and Todorovic (2007) the error propagation was simplified by
generating new data for each time point which was (conditioned on the data corre-
sponding to timet) independent of all previously used data. In addition, a truncation
of the estimate was introduced which allowed to choose linear vector spaces as func-
tion spaces for the least squares spline estimates, so that they can be computed by
solving a linear equation system. The parameter (here the vector space dimension
of the function space) of the least squares estimates were chosen by splitting of
the sample. As regression representation the general formula of Egloff (2005) (cf.
Theorem 2 c)) has been used. Consistency and rate of convergence results for these
estimates have been derived, where as a consequence of the truncation of the esti-
mate the rates contained an additional logarithmic factor.But the main advantage of
these estimates is that they are easy to compute, so it was possible to analyze the the
finite sample size behaviour of the estimates.

In Kohler, Krzyżak and Todorovic (2010), Kohler (2008) andKohler and Krzyżak
(2009) the error propagation was further simplified by generation of new paths of
the price process for each recursive estimation step and by using only the simple
regression representation of Tsitsiklis and Van Roy (1999)(cf. Theorem 2 b)). As
a consequence it was possible to analyze the estimates by using results derived in
Kohler (2006) for regression estimation in case of additional measurement errors
in the dependent variable. Kohler, Krzyżak and Todorovic (2010) investigated least
squares neural network estimates, which are very promisingin case of larged, and
Kohler (2008) considered smoothing spline estimates. In both papers results con-
cerning consistency and rate of convergence of the estimates have been derived.
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Kohler and Krzyżak (2009) presents a unifying theory whichcontains the results
of the previous papers as well as results concerning new estimates (e.g., orthogonal
series estimates).

The above papers focus on properties of the estimates of the continuation values,
i.e., they consider the error between the continuation values and its estimates. As
was pointed out by Belomestny (2009), sometimes much betterrate of convergence
results can be derived for the Monte Carlo estimate of (20) considered as estimate
of the priceV0 of the option. Because in view of a good performance of the stopping
time it is not important that the estimate of the continuation values are close to the
continuation values, instead it is important that they leadto the same decision as the
optimal stopping rule. And for this it is only important that

ft(Xt) ≥ q̂n,t(Xt)

is equivalent to
ft(Xt) ≥ qt(Xt)

and not that ˆqn,t(Xt) andqt(Xt) are close. Belomestny (2009) introduces a kind of
margin condition (similar to margin conditions in pattern recognition) measuring
how quicklyqt(Xt) approachesft (Xt), and shows under this margin condition much
better rate of convergence for the estimate (20) than previous results on the rates of
convergence of the continuation values imply for the estimate (19).

7 Dual methods

The above estimates yield estimates

τ̂ = inf {s∈ {0, . . . ,T} : q̂s(Xn,s) ≤ fs(Xs)}

of the optimal stopping timeτ∗. By Monte Carlo these estimates yields estimates of
V0, such that expectation

E{ fτ̂(Xτ̂ )}

of the estimate is less than or equal to the true priceV0. It was proposed indepen-
dently by Rogers (2001) and Haugh and Kogan (2004) that by using a dual method
Monte Carlo estimates can be constructed such that the expectation of the estimate
is greater than or equal toV0. The key idea is the next theorem, which is already
well-known in literature (cf., e.g., Section 8.7 in Glasserman (2004)).

Theorem 3. LetM be the set of all martingales M0, . . . , MT with M0 = 0. Then

V0 = inf
M∈M

E
{

max
t=0,...,T

( ft(Xt)−Mt)

}

= E
{

max
t=0,...,T

( ft(Xt)−M∗
t )

}

, (31)

where
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M∗
t =

t

∑
s=1

(max{ fs(Xs),qs(Xs)}−E{max{ fs(Xs),qs(Xs)}|Xs−1}) . (32)

For the sake of completeness we present next a complete proofof Theorem 3.

Proof. We first prove

max
t=0,...,T

(

ft (Xt)−
t

∑
s=1

(max{ fs(Xs),qs(Xs)}−E{max{ fs(Xs),qs(Xs)}|Xs−1})

)

= max{ f0(X0),q0(X0)}. (33)

To do this, we observe that we have by Theorem 2 b)

max
t=0,...,T

(

ft (Xt)−
t

∑
s=1

(max{ fs(Xs),qs(Xs)}−E{max{ fs(Xs),qs(Xs)}|Xs−1})

)

= max
t=0,...,T

(

ft (Xt)−
t

∑
s=1

(max{ fs(Xs),qs(Xs)}−qs−1(Xs−1))

)

.

For anyt ∈ {1, . . . ,T} we have

ft(Xt)−
t

∑
s=1

(max{ fs(Xs),qs(Xs)}−qs−1(Xs−1))

≤ ft(Xt)−
t−1

∑
s=1

(qs(Xs)−qs−1(Xs−1))− ( ft(Xt)−qt−1(Xt−1))

= q0(X0),

furthermore in caset = 0 we get

ft(Xt)−
t

∑
s=1

(max{ fs(Xs),qs(Xs)}−qs−1(Xs−1)) = f0(X0),

which shows

max
t=0,...,T

(

ft (Xt)−
t

∑
s=1

(max{ fs(Xs),qs(Xs)}−qs−1(Xs−1))

)

≤max{ f0(X0),q0(X0)}.

But for t = τ∗ we get in case ofq0(X0) > f0(X0) by definition ofτ∗

fτ∗(Xτ∗)−
τ∗

∑
s=1

(max{ fs(Xs),qs(Xs)}−qs−1(Xs−1))

= fτ∗(Xτ∗)−
τ∗−1

∑
s=1

(qs(Xs)−qs−1(Xs−1))− ( fτ∗(Xτ∗)−qτ∗−1(Xτ∗−1))

= q0(X0),
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and in case ofq0(X0) ≤ f0(X0) (which impliesτ∗ = 0) we have

fτ∗(Xτ∗)−
τ∗

∑
s=1

(max{ fs(Xs),qs(Xs)}−qs−1(Xs−1)) = f0(X0).

This completes the proof of (33).
As shown at the end of the proof of Theorem 1 we have

V0 = E{max{ f0(X0),q0(X0)}} .

Using this together with (33) we get

E
{

max
t=0,...,T

( ft(Xt)−M∗
t )

}

= E{max{ f0(X0),q0(X0)}} = V0.

Thus it suffices to show: For any martingaleM0, . . . ,MT with M0 = 0 we have

E
{

max
t=0,...,T

( ft (Xt)−Mt)

}

≥ sup
τ∈T (0,...,T)

E{ fτ(Xτ )} = V0.

But this follows from the optional sampling theorem, because if M0, . . . , MT is a
martingale withM0 = 0 andτ is a stopping time we know

EMτ = EM0 = 0

and hence

E{ fτ (Xτ)} = E{ fτ (Xτ)−Mτ} ≤ E
{

max
t=0,...,T

( ft (Xt)−Mt)

}

.

This completes the proof. �

Given estimates ˆqn,s (s∈ {0,1, . . . ,T}) of the continuation values, we can esti-
mate the martingale (32) by

M̂t =
t

∑
s=1

(max{ fs(Xs), q̂n,s(Xs)}−E∗{max{ fs(Xs), q̂n,s(Xs)}|Xs−1}) . (34)

Provided we use unbiased andF (X0, . . . ,Xt)-measurable estimatesE∗ of the inner
expectation in (32) (which can be constructed, e.g., by nested Monte Carlo) this
leads to a martingale, too. This in turn can be used to construct Monte Carlo esti-
mates ofV0, for which the expectation

E
{

max
t=0,...,T

(

ft(Xt)− M̂t
)

}
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is greater than or equal toV0. As a consequence we get two kind of estimates with
expectation lower and higher thanV0, resp., so we have available an interval in which
our true price should be contained.

In connection with linear regression these kind of estimates have been studied
in Rogers (2001) and Haugh and Kogan (2004). Jamshidian (2007) studies multi-
plicative versions of this method. A comparative study of multiplicative and additive
duals is contained in Chen and Glasserman (2007). Andersen and Broadie (2004)
derive upper and lower bounds for American options based on duality. Belomestny,
Bender and Schoenmakers (2009) propose in a Brownian motionsetting estimates
with expectation greater than or equal to the true price, which can be computed
without nested Monte Carlo (and hence are quite easy to compute).

In Kohler (2008b) dual methods have been combined with nonparametric smooth-
ing spline estimates of the continuation values and consistency of the resulting esti-
mates was shown for all bounded Markov processes. In Kohler,Krzyżak and Walk
(2008) it is shown how these estimates can be modified such that less nested Monte
Carlo steps are needed in an application.

8 Application to simulated data

The PhD thesis Todorovic (2007) contains various comparisons of regression-based
Monte Carlo methods on simulated data. Using the standard monomial basis for
linear regression (without including the payoff function)it turns out that for lin-
ear regression the regression representation of Longstaffand Schwartz (2001) pro-
duces often better results than the regression representation of Tsitsiklis and Van
Roy (1999) in view of the performance of the estimated stopping rule on new data.
But for nonparametric regression it does not seem to make a difference whether the
regression representation of Longstaff and Schwartz (2001), of Tsitsiklis and Van
Roy (1999) or the more general form of Egloff (2005) is used. Furthermore Todor-
ovic (2007) shows that nonparametric regression estimate lead sometimes to much
better performance than the linear regression estimates (and in his simulations never
really worse performance) as long as the payoff function is not included in the basis
function.

It turns out that this is less obvious if the payoff function is used as one of the
basis functions for linear regression. But as we show below,in this case a very
high sample size for the Monte Carlo estimates leads again tobetter results for
the nonparametric regression estimate. The reason for thisis that the bias of the
nonparametric regression estimates can be decreased by increasing the sample size,
which is not true for linear regression.

In the sequel we consider an American option based on the average of three
correlated stock prices. The stocks are ADECCO R, BALOISE R and CIBA. The
stock prices were observed from Nov. 10, 2000 until Oct. 3, 2003 on weekdays when
the stock market was open for the total of 756 days. We estimate the volatility from
data observed in the past by the historical volatility
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10

  85 105   95 115

Fig. 1 Strangle spread payoff with strike prices 85, 95, 105 and 115.

σ = (σi, j)1≤i, j≤3 =





0.3024 0.1354 0.0722
0.1354 0.2270 0.0613
0.0722 0.0613 0.0717



 .

We simulate the paths of the underlying stocks with a Black-Scholes model by

Xi,t = x0 ·e
r·t ·e∑3

j=1(σi, j ·Wj (t)−
1
2 ·σ

2
i, j t) (i = 1, . . . ,3),

where{Wj(t) : t ∈ R+} ( j = 1, . . . ,3) are three independent Wiener processes and
where the parameters are chosen as follows:x0 = 100,r = 0.05 and componentsσi, j

of the volatility matrix as above. The time to maturity is assumed to be one year. To
compute the payoff of the option we use a strangle spread function (cf. Figure 1)
with strikes 85, 95, 105 and 115 applied to the average of the three correlated stock
prices.

We discretize the time interval[0,1] by dividing it into m= 48 equidistant time
steps witht0 = 0 < t1 < .. . < tm = 1 and consider a Bermudan option with payoff
function as above and exercise dates restricted to{t0,t1, . . . ,tm}. We choose discount
factorse−r·t j for j = 0, . . . ,m. For all three algorithms we use sample sizen= 40000
for the regression estimates of the continuation values.

For the nonparametric regression estimate we use smoothingsplines as imple-
mented in the routine Tps from the library “fields” in the statistics packageR,
where the smoothing parameter is chosen by generalized cross-validation. For the
Longstaff–Schwartz and Tsitsiklis–Van Roy algorithms we use linear regression as
implemented inRwith degree 1 and payoff function included in the basis.

For each of these algorithms we compute Monte Carlo estimates of lower bounds
on the option price defined using the corresponding estimated stopping rule, and
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Fig. 2 Boxplots for 100 Monte Carlo estimates of lower bounds (lb) and upper bounds (ub) based
on the estimates of the continuation values generated by thealgorithm of Tsitsiklis and Van Roy
(TTVR), Longstaff and Schwartz (LS) and nonparametric smoothing splines (SS)

Monte Carlo estimates of upper bounds on the option price using the corresponding
estimated optimal martingale. Here we use 100 nested Monte Carlo steps to approx-
imate the conditional expectation occuring in the optimal martingale. The sample
size of the Monte Carlo estimates is 10000 in case of estimation of upper bounds
and 40000 in case of estimation of lower bounds.

We apply all six algorithms for computing lower or upper bounds to 100 inde-
pendently generated sets of paths and we compare the algorithms using boxplots
for the 100 lower or upper bounds computed for each algorithm. We would like to
stress that for all three algorithms computing upper boundsthe expectation of the
values are upper bounds to the true option price, hence lowervalues indicates a bet-
ter performance of the algorithms, and that for all three algorithms computing lower
bounds the expectation of the values are lower bounds to the true option price, hence
higher values indicates a better performance of the algorithms.

As we can see in Figure 2, the algorithms based on nonparametric regression are
superior to Longstaff–Schwartz and Tsitsiklis–Van Roy algorithms, since the lower
boxplot of the upper bounds for this algorithm and the higherboxplot of the lower
bounds for this algorithm indicate better performance.
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331–355 (1990)

22. Longstaff, F. A., Schwartz, E. S.: Valuing American options by simulation: a simple least-
squares approach.Review of Financial Studies14, 113-147 (2001).

23. Rogers, L.: Monte Carlo Valuation of American Options.Mathematical Finance12, 271-286
(2001).

24. Rumelhart, D.E., McClelland, J.L.:Parallel distributed processing: explorations in the mi-
crostructure of cognition. Volume 1. Foundations.MIT Press, Cambridge (1986).

25. Shiryayev, A. N.:Optimal Stopping Rules. Applications of Mathematics, Springer Verlag
(1978).

26. Stoer, J.:Numerische Mathematik, Vol. 1. Springer, Berlin (1993).
27. Todorovic, N.:Bewertung Amerikanischer Optionen mit Hilfe von regressionsbasierten

Monte-Carlo-Verfahren.PhD thesis. Shaker Verlag, Aachen (2007).
28. Tsitsiklis, J. N., Van Roy, B.: Optimal stopping of Markov processes: Hilbert space theory, ap-

proximation algorithms, and an application to pricing high-dimensional financial derivatives.
IEEE Trans Autom. Control44, 1840-1851 (1999).

29. Tsitsiklis, J. N., Van Roy, B.: Regression methods for pricing complex American-style op-
tions.IEEE Transactions on Neural Networks12, 694-730 (2001)


