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measurement errors are small.

AMS classification: Primary 62G08; secondary 92B20.

Key words and phrases: least squares estimates, measurement error, neural networks, rate

of convergence, regression estimates, L2 error.

∗Corresponding author. Tel: +49-6151-16-5288, Fax: +49-6151-16-6822

Running title: Rate of convergence in case of measurement errors

1



1 Introduction

Let (X, Y ), (X1, Y1), (X2, Y2),... be independent identically distributed IRd × IR - valued

random vectors with EY 2 < ∞. In regression analysis we want to estimate Y after having

observed X, i.e., we want to determine a function f with f(X) “close” to Y . If “closeness”

is measured by the mean squared error, then one wants to find a function f∗ minimizing

the so-called L2-risk E
{
|f∗(X)− Y |2

}
, i.e., f∗ should satisfy

E
{
|f∗(X)− Y |2

}
= min

f
E
{
|f(X)− Y |2

}
. (1)

Let m(x) := E{Y |X = x} be the regression function. The well-known relation which

holds for each measurable function f

E{|f(X)− Y |2} = E{|m(X)− Y |2}+
∫
| f(x)−m(x) |2 PX(dx) (2)

implies that m is the solution of the minimization problem (1), E{|m(X) − Y |2} is the

minimum of (2) and for an arbitrary f , the L2 error
∫
| f(x) − m(x) |2 PX(dx) is the

difference between E{|f(X)− Y |2} and E{|m(X)− Y |2}.

In the regression estimation problem the distribution of (X, Y ) (and consequently m)

is unknown. Given a sequence Dn = {(X1, Y1),...,(Xn, Yn)} of independent observations of

(X, Y ), the goal is to construct an estimate mn(x)=mn(x,Dn) of m(x) such that the L2

error
∫
|mn(x)−m(x)|2PX(dx) is small. For a general introduction to regression estimation

see, e.g., Györfi et al. (2002).

Sometimes it is possible to observe data from the underlying distribution only with

measurement errors. In this context usually the problem is considered that the indepen-

dent variable X can be observed only with additional random errors which have mean

zero. More precisely, instead of Xi one observes Wi = Xi + Ui for some random variables

Ui which satisfy E{Ui|Xi} = 0, and the problem is to estimate the regression function

from {(W1, Y1), . . . , (Wn, Yn)}. In the literature in this context often estimates of the dis-

tribution of Ui are constructed and estimates of the regression function are defined by

using the estimated distribution of Ui (see, e.g., Fan and Truong (1993), Caroll, Maca

and Ruppert (1999), Delaigle and Meister (2007), Delaigle, Fan and Caroll (2009) and the

references therein).
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In this paper we consider a setting, where basically nothing is assumed on the nature

of the measurement errors. In particular, the measurement errors do not have to be

independent or identically distributed, and they do not need to have expectation zero. The

only assumption we are making is that these measurement errors are somehow “small”.

More precisely, we assume that we have given data

D̄n =
{
(X̄1,n, Y1), . . . , (X̄n,n, Yn)

}
,

where the only assumption on the random variables X̄1,n, . . . , X̄n,n is that the average

measurement error
1
n

n∑
i=1

‖Xi − X̄i,n‖2 (3)

is small, where ‖ · ‖2 denotes the Euclidean norm. In particular, D̄n does not need to be

independent or identically distributed, and E{Y1|X1,n = x} does not need to be equal to

m(x) = E{Y |X = x}. For notational simplicity we will supress in the sequel a possible

dependency of X̄i = X̄i,n on the sample size n in our notation.

It is not clear how the L2 error of an arbitrary regression estimate is influenced by

additional measurement errors. Due to the fact that we assume nothing on the nature of

these errors, in contrast to the classical setting described above there is now no chance to

get rid of these errors, so these errors will necessarily increase the L2 error of the estimate.

Intuitively one can expect that measurement errors influence the error of the estimate not

much as long as these measurement errors are small. In this article we show that this is

indeed true for suitably defined least squares neural network estimates.

The basic idea behind the definition of our estimate is as follows: Since we assume

that (3) is small, it is reasonable to estimate the L2 risk of a Lipschitz continuous function

f by the so-called empirical L2 risk

1
n

n∑
i=1

|f(X̄i)− Yi|2

computed with the aid of the data with measurement error, and to define least squares

estimates as if no measurement errors are present by

m̄n(·) = arg min
f∈Fn

1
n

n∑
i=1

|f(X̄i)− Yi|2 (4)
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for some set Fn of Lipschitz continuous functions f : IRd → IR. Here z = arg minx∈A G(x)

is an abbreviation for z ∈ A and G(z) = minx∈A G(x) and we assume for simplicity that

the minima in (4) exist, however we do not require them to be unique.

In this article we will use for Fn suitably defined sets of neural networks. Our main

result is that if we restrict the weights of the neural networks such that the resulting

functions are Lipschitz continuous with respect to some Lipschitz constant depending

on the sample size, then the L2 error of the corresponding least squares neural network

regression estimates applied to data with additional measurement errors in the independent

variables is basically the sum of the usually error bound for such an estimate applied to

data without measurement errors and the product of the measurement error (3) and the

Lipschitz constant.

1.1 Notation

The sets of natural, real numbers and d-dimensional real numbers are denoted by IN, IR

and IRd, respectively. For x ∈ Rd we denote by ‖x‖2 the Euclidian norm of x. The least

integer greater than or equal to a real number x will be denoted by dxe. For a function

f : Rd → R

||f ||∞ = sup
x∈Rd

|f(x)|

denotes the supremum norm. IA is the indicator function of a set A, and |Q| is the

cardinality of a set Q. For z ∈ IR and β > 0 we define

Tβz = min{max{z,−β}, β}.

1.2 Outline

The definition of the estimate is given in Section 2, the main result is formulated in Section

3. Section 4 contains the proofs.
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2 Definition of the least squares neural network regression

estimates

A feedforward neural network with one hidden layer and k hidden neurons is a real-valued

function on IRd of the form

f(x) =
k∑

i=1

ci · σ(aT
i x + bi) + c0 (5)

where σ : IR → [0, 1] is called a sigmoidal function and a1, . . . , ak ∈ IRd, b1, . . . , bk,

c0, c1, . . . , ck ∈ IR are the parameters that specify the network. For the sigmoidal function

σ one often uses so-called squashing functions, i.e. a function which is non-decreasing and

satisfies

lim
x→−∞

σ(x) = 0 and lim
x→∞

σ(x) = 1.

It is well-known that feedforward neural networks with one hidden layer are dense on

compact sets with respect to the supremum norm in the set of continuous functions.

In other words, every continuous function on IRd can be approximated arbitrarily close

uniformly over any compact set by functions realized by neural networks, see, e.g., Cybenko

(1989), Hornik, Stinchcombe and White (1989), and Funahashi (1989). For a survey of

such denseness results we refer the reader to Barron (1989) and Hornik (1993).

Motivated by these approximation results neural networks have been applied to various

estimation problems, see, e.g., the monographs Hertz, Krogh and Palmer (1991), Devroye,

Györfi and Lugosi (1996), Ripley (1996), Anthony and Bartlett (1999) and Györfi et al.

(2002). The papers Barron (1991, 1993), Mielniczuk and Trycha (1993), McCaffrey and

Gallant (1994), Lugosi and Zeger (1995), Kohler and Krzyżak (2005) and Hamers and

Kohler (2006) contain various theoretical results concerning regression estimation with

neural networks in case that measurement errors do not occur. In particular it follows

from Barron (1993) that in case of regression functions for which the Fourier transform has

a finite first moment the L2 error of suitably defined neural network estimates converges

(up to some logarithmic factor) to zero with rate n−1/2 (cf., e.g., Section 16.3 in Györfi et

al. (2002)).

The aim of this paper is to show a similar result in case of “small” measurement errors.
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To do this we will use as sigmoidal function the so-called logistic squasher

σ(x) =
1

1 + exp(−x)
(x ∈ IR).

We have

σ′(x) =
exp(−x)

(1 + exp(−x))2
=

1
exp(x) + 2 + exp(−x)

∈ [0, 1],

hence (5) satisfies for any x, z ∈ IRd

|f(x)− f(z)| =

∣∣∣∣∣
k∑

i=1

ci · (σ(aT
i x + bi)− σ(aT

i z + bi))

∣∣∣∣∣
≤

k∑
i=1

|ci| · |aT
i x + bi − (aT

i z + bi)|

≤
k∑

i=1

|ci| · max
j=1,...,k

‖aj‖2 · ‖x− z‖2.

Choose αn, βn > 0 and define for k ∈ IN

Fk,n =

{
k∑

i=1

ci · σ(aT
i x + bi) + c0 : ai ∈ IRd, bi, ci ∈ IR, max

j=1,...,k
‖aj‖2 ≤ αn,

k∑
i=1

|ci| ≤ βn

}
.

Then the functions in Fk,n are all Lipschitz continuous with Lipschitz constant bounded

by αn · βn. Furthermore, since σ is bounded in absolute value by 1, the functions in Fk,n

are bounded in absolute value by βn.

We define our regression estimate as a truncated version of the corresponding least

squares estimate, where the number k of neurons is chosen by splitting of the sample.

More precisely, set

Pn = {1, 2, . . . , n}.

We subdivide the given data in a learning sample of size nl = dn/2e and a testing sample

of size nt = n− nl and define for a given k ∈ Pn = {1, . . . , n} our regression estimate by

mnl,k(·) = arg min
f∈Fk,n

(
1
nl

nl∑
i=1

|f(X̄i)− Yi|2
)

. (6)

Then we minimize the empirical L2 risk on the testing sample in order to choose the value

of parameter k. So we choose

k̂ = arg min
k∈Pn

1
nt

n∑
i=nl+1

|mnl,k(X̄i)− Yi|2 (7)

and define our final neural networks regression estimate by

mn(x) = mn,k̂(x) (x ∈ IRd). (8)
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3 Main results

Our main result is the following theorem.

Theorem 1 Set βn = c1 · log(n) for some c1 > 0 and define the estimate mn as in

Section 2. Assume that D̄nl
is independent of (X, Y ), (Xnl+1, Ynl+1), . . . , (Xn, Yn), that Y

is sub-Gaussian in the sense that

E
{

ec2Y 2
}

< ∞ (9)

for some c2 > 0 and that the regression function is bounded in absolute value by some

0 ≤ L ≤ βn. Then

E
∫
|mn(x)−m(x)|2PX(dx) ≤ c3 ·

(
αn · log(n)2 ·E

{
1
n

n∑
i=1

‖Xi − X̄i,n‖2

}

+ min
k∈Pn

(
k · log(n)5

n
+ inf

f∈Fk,n

∫
|f(x)−m(x)|2PX(dx)

))

for some constant c3 > 0.

Remark 1. The sub-Gaussian condition (9) is in particular satisfied if

Y = m(X) + ε,

where m : IRd → IR is bounded, X and ε are independent and ε is normally distributed

with mean zero.

Theorem 1 implies a rate of convergence result as soon as we impose some smooth-

ness condition on the regression function. For neural networks usually such smoothness

conditions are defined by imposing conditions on the Fourier transform of the regression

function. The Fourier transform F̃ of a function f ∈ L1(IRd) is defined by

F̃ (ω) =
1

(2π)d/2

∫
IRd

e−i·ωT xf(x)dx (ω ∈ IRd).

If F̃ ∈ L1(IRd) then the inverse formula

f(x) =
1

(2π)d/2

∫
IRd

ei·ωT xF̃ (ω)dω (10)

7



holds almost everywhere with respect to the Lebesgue measure. Let 0 < C < ∞ and

consider the class of functions FC for which (10) holds on IRd and, in addition,∫
IRd

‖ω‖2F (ω)dω ≤ C. (11)

A class of functions satisfying (11) is a subclass of functions with Fourier transform having

first absolute moment finite, i.e.,
∫
IRd ‖ω‖2F (ω)dω < ∞ (these functions are continuously

differentiable on IRd). The next corollary provides the rate of convergence of the estimate.

Corollary 1 Assume that ‖X‖2 is bounded almost surely, that Y is sub-Gaussian in the

sense that (9) holds, that m ∈ FC for some C > 0 and that

‖m‖∞ = sup
x∈IRd

|m(x)| ≤ L < ∞

for some L > 0. Define the estimate mn as in Section 2 with

αn = c4 · n1/4 and βn = c5 · log(n).

Assume that the measurement error satisfies

E

{
1
n

n∑
i=1

‖Xi − X̄i,n‖2

}
≤ c6 · n−3/4. (12)

Then

E
∫
|mn(x)−m(x)|2PX(dx) ≤ c7

√
log(n)5

n

for some constant c7 > 0 for n sufficiently large.

Proof. Application of Theorem 1 yields

E
∫
|mn(x)−m(x)|2 PX(dx) ≤ c8 ·

(
log(n)2

n1/2

+
k · log(n)5

n
+ inf

f∈Fk,n

∫
|f(x)−m(x)|2 PX(dx)

)
for any k ∈ Pn and for sufficiently large constant c8 > 0. Let r > 0 such that ‖X‖2 ≤ r

a.s. Theorem 3 of Baron (1993) gives us that there exists f ∈ Fk,n such that∫
(f(x)−m(x))2 µ(dx) ≤ 8C2r2

(
1
k

+
(1 + 2 log(αn))2

α2
n

)

= 8C2r2

(
1
k

+

(
1 + 2 log(c4 · n1/4)

)2
c2
4 · n1/2

)
.
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By setting k =
⌈

n1/2

log(n)2.5

⌉
we get the assertion. �

Remark 2. In Corollary 1 we show for “small” measurement errors up to a logarithmic

factor the same rate of convergence as follows from the approximation result in Barron

(1993) for regression estimation from data without measurement errors (cf., e.g., Section

16.3 in Györfi et al. (2002)). It is clear from the proof, that the rate of convergence will

change as soon as the measurement error will be larger than in (12). In this situation

it makes sense to change the definition of αn in order to optimize the resulting rate of

convergence. It is an open problem how to choose this parameter in a data-dependent

way such that it achieves the best possible rate of convergence in view of the magnitude

of the measurement errors.

4 Proofs

The following lemma is an extension of Lemma 1 in Bagirov, Clausen and Kohler (2008)

to data with measurement errors. It is about bounding the L2 error of estimates, which

are defined by splitting of the sample. Let n = nl +nt, let Qn be a finite set of parameters

and assume that for each parameter h ∈ Qn an estimate

m(h)
nl

(·) = m(h)
nl

(·, D̄nl
)

is given, which depends only on the training data D̄nl
= {(X̄1, Y1), . . . , (X̄nl

, Ynl
)}, and

which is Lipschitz continuous with Lipschitz constant Ln. Then we define

mn(x) = m(H)
nl

(x) for all x ∈ Rd, (13)

where H ∈ Qn is chosen such that

1
nt

n∑
i=nl+1

|m(H)
nl

(X̄i)− Yi|2 = min
h∈Qn

1
nt

n∑
i=nl+1

|m(h)
nl

(X̄i)− Yi|2. (14)

Lemma 1 Assume that D̄nl
is independent of (X, Y ), (Xnl+1, Ynl+1), . . . , (Xn, Yn). Let

βn = c1 · log(n) for some constant c1 > 0 and assume that the estimates m
(h)
nl are bounded

in absolute value by βn for h ∈ Qn. Assume furthermore that the distribution of (X, Y )

satisfies the Sub-Gaussian condition (9) for some constant c2 > 0, and that the regression
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function fulfils ||m||∞ ≤ L for some L ∈ IR+, with L ≤ βn. Then, for every estimate mn

defined by (13) and (14) and any δ > 0,

E
∫
|mn(x)−m(x)|2PX(dx)

≤ (1 + δ) min
h∈Q

E
∫
|m(h)

nl
(x)−m(x)|2PX(dx) + c9 · β2

n ·
1 + log |Qn|

nt
+ c10

log(n)
n

+8βn · (1 + δ) · Ln ·E

{
1
nt

n∑
i=n1+1

‖Xi − X̄i,n‖2

}

holds, with c9 = 16/δ + 35 + 19δ and a sufficiently large constant c10 > 0.

In the proof we will need the following lemma, which follows from the proof of Lemma

1 in Bagirov, Clausen and Kohler (2008).

Lemma 2 Let βn = c1 · log(n) for some constant c1 > 0, let (X, Y ) and Z be random

variables and assume that Y satisfies

E{exp(c2|Y |2)} < ∞

and that |Z| ≤ βn a.s. Set

m(X) = E{Y |X} and mβn(X) = E{TβnY |X},

where

TβnY = min{βn,max{−βn, Y }},

and assume |m(X)| ≤ L a.s. for some 0 ≤ L ≤ βn. Then

∣∣E(|Z − Y |2)−E(|Z − TβnY |2)
∣∣ ≤ c11 ·

log(n)
n

and ∣∣E(|m(X)− Y |2)−E(|mβn(X)− TβnY |2)
∣∣ ≤ c11 ·

log(n)
n

for some sufficiently large constant c11 > 0.

For the sake of completeness we give the proof of Lemma 2 in the appendix.

10



Proof of Lemma 1. We use the following error decomposition

E
(∫

|mn(x)−m(x)|2PX(dx)
∣∣∣∣ D̄nl

)
= E

(∫
|m(H)

nl
(x)−m(x)|2PX(dx)

∣∣∣∣ D̄nl

)
=

[
E
(
|m(H)

nl
(X)− Y |2

∣∣∣ D̄nl

)
−E

(
|m(X)− Y |2

)
−E

(
|m(H)

nl
(X)− TβnY |2

∣∣∣ D̄nl

)
−E

(
|mβn(X)− TβnY |2

) ]

+

[
E
(
|m(H)

nl
(X)− TβnY |2

∣∣∣ D̄nl

)
−E

(
|mβn(X)− TβnY |2

)
−(1 + δ) · 1

nt

n∑
i=nl+1

(
|m(H)

nl
(Xi)− TβnYi|2 − |mβn(Xi)− TβnYi|2

)]

+

[
(1 + δ) · 1

nt

n∑
i=nl+1

(
|m(H)

nl
(Xi)− TβnYi|2 − |mβn(Xi)− TβnYi|2

)
−(1 + δ) · 1

nt

n∑
i=nl+1

(
|m(H)

nl
(X̄i)− TβnYi|2 − |mβn(Xi)− TβnYi|2

)]

+

[
(1 + δ) · 1

nt

n∑
i=nl+1

(
|m(H)

nl
(X̄i)− TβnYi|2 − |mβn(Xi)− TβnYi|2

)
−(1 + δ) · 1

nt

n∑
i=nl+1

(
|m(H)

nl
(X̄i)− Yi|2 − |m(Xi)− Yi|2

)]

+

(1 + δ) · 1
nt

n∑
i=nl+1

(
|m(H)

nl
(X̄i)− Yi|2 − |m(Xi)− Yi|2

) =
5∑

i=1

Ti,n,

where TβnY denotes the truncated version of Y and mβn(x) = E {TβnY |X = x} .

Since the estimates are Lipschitz continuous with Lipschitz constant Ln and bounded

by βn we get

T3,n

= (1 + δ) · 1
nt

n∑
i=nl+1

(
|m(H)

nl
(Xi)− TβnYi|2 − |m(H)

nl
(X̄i)− TβnYi|2

)
≤ (1 + δ) · 1

nt

n∑
i=nl+1

|m(H)
nl

(Xi)−m(H)
nl

(X̄i)| · |m(H)
nl

(Xi)− TβnYi + m(H)
nl

(X̄i)− TβnYi|

≤ (1 + δ) · 4βn · Ln ·
1
nt

n∑
i=nl+1

‖Xi − X̄i,n‖2. (15)
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By Lemma 2 we get furthermore

T1,n + E{T4,n|D̄nl
} ≤ c11

log(n)
n

.

And by bounding T2,n as in the proof of Theorem 7.1 in Györfi et al. (2002) we get

E{T2,n|D̄nl
} ≤ c9 · β2

n ·
1 + log |Qn|

nt
.

So it remains to bound T5,n. By definition of the estimate we have for any h ∈ Qn

T5,n ≤ (1 + δ) · 1
nt

n∑
i=nl+1

(
|m(h)

nl
(X̄i)− Yi|2 − |m(Xi)− Yi|2

)
=

[
(1 + δ) · 1

nt

n∑
i=nl+1

(
|m(h)

nl
(X̄i)− Yi|2 − |m(Xi)− Yi|2

)
−(1 + δ) · 1

nt

n∑
i=nl+1

(
|m(h)

nl
(X̄i)− TβnYi|2 − |m(Xi)− Yi|2

)]

+

[
(1 + δ) · 1

nt

n∑
i=nl+1

(
|m(h)

nl
(X̄i)− TβnYi|2 − |m(Xi)− Yi|2

)
−(1 + δ) · 1

nt

n∑
i=nl+1

(
|m(h)

nl
(Xi)− TβnYi|2 − |m(Xi)− Yi|2

)]

+

[
(1 + δ) · 1

nt

n∑
i=nl+1

(
|m(h)

nl
(Xi)− TβnYi|2 − |m(Xi)− Yi|2

)
−(1 + δ) · 1

nt

n∑
i=nl+1

(
|m(h)

nl
(Xi)− Yi|2 − |m(Xi)− Yi|2

)]

+

[
(1 + δ) · 1

nt

n∑
i=nl+1

(
|m(h)

nl
(Xi)− Yi|2 − |m(Xi)− Yi|2

)]

=
9∑

i=6

Ti,n.

As in (15) we get

T7,n ≤ (1 + δ) · 4βn · Ln ·
1
nt

n∑
i=nl+1

‖Xi − X̄i,n‖2.

Bounding T6,n and T8,n by Lemma 2 we get

E{T6,n|D̄nl
}+ E{T8,n|D̄nl

} ≤ c11
log(n)

n
.
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Finally we get

E{T9,n|D̄nl
} = (1 + δ)E

∫
|m(h)

nl
(x)−m(x)|2PX(dx).

Summarizing the above results we get the assertion. �

Proof of Theorem 1. By Lemma 1 we get

E
∫
|mn(x)−m(x)|2PX(dx) ≤ 2 min

k∈Pn

E
∫
|mnl,k(x)−m(x)|2PX(dx) + c12

(log n)3

nt

+16 · αn · β2
n ·E

{
1
nt

n∑
i=n1+1

‖Xi − X̄i,n‖2

}
.

Hence it suffices to show:

E
∫
|mnl,k(x)−m(x)|2PX(dx) ≤ c13 ·

(
αn · β2

n ·E

{
1
nl

nl∑
i=1

‖Xi − X̄i,n‖2

}
(16)

+
k · log(n)5

n
+ inf

f∈Fk,n

∫
|f(x)−m(x)|2PX(dx)

)
.

In order to prove (16), set

mβn(x) = E{TβnY |X = x},

choose an arbitrary f ∈ Fk,n and consider the error decomposition

E
∫
|mnl,k(x)−m(x)|2PX(dx) = E{|mnl,k(X)− Y |2|D̄nl

} −E{|m(X)− Y |2}

=
9∑

i=1

Ti,n

where

T1,n = E{|mnl,k(X)− Y |2|D̄nl
} −E{|m(X)− Y |2}

−(E{|mnl,k(X)− TβnY |2|D̄nl
} −E{|mβn(X)− TβnY |2}),

T2,n = E{|mnl,k(X)− TβnY |2|D̄nl
} −E{|mβn(X)− TβnY |2}

− 2
nl

nl∑
i=1

(|mnl,k(Xi)− TβnYi|2 − |mβn(Xi)− TβnYi|2)

T3,n =
2
nl

nl∑
i=1

(|mnl,k(Xi)− TβnYi|2 − |mβn(Xi)− TβnYi|2)

− 2
nl

nl∑
i=1

(|mnl,k(X̄i)− TβnYi|2 − |mβn(Xi)− TβnYi|2)
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T4,n =
2
nl

nl∑
i=1

(|mnl,k(X̄i)− TβnYi|2 − |mβn(Xi)− TβnYi|2)

− 2
nl

nl∑
i=1

(|mnl,k(X̄i)− Yi|2 − |m(Xi)− Yi|2)

T5,n =
2
nl

nl∑
i=1

(|mnl,k(X̄i)− Yi|2 − |m(Xi)− Yi|2)

− 2
nl

nl∑
i=1

(|f(X̄i)− Yi|2 − |m(Xi)− Yi|2)

T6,n =
2
nl

nl∑
i=1

(|f(X̄i)− Yi|2 − |m(Xi)− Yi|2)

− 2
nl

nl∑
i=1

(|f(X̄i)− TβnYi|2 − |m(Xi)− Yi|2)

T7,n =
2
nl

nl∑
i=1

(|f(X̄i)− TβnYi|2 − |m(Xi)− Yi|2)

− 2
nl

nl∑
i=1

(|f(Xi)− TβnYi|2 − |m(Xi)− Yi|2)

T8,n =
2
nl

nl∑
i=1

(|f(Xi)− TβnYi|2 − |m(Xi)− Yi|2)

− 2
nl

nl∑
i=1

(|f(Xi)− Yi|2 − |m(Xi)− Yi|2)

T9,n =
2
nl

nl∑
i=1

(|f(Xi)− Yi|2 − |m(Xi)− Yi|2).

By Lemma 2 we get

E{Ti,n} ≤ c11 ·
log(n)

n

for i ∈ {1, 4, 6, 8}. Furthermore we get by Lipschitz continuity of the functions in Fk,n

E{Tj,n} ≤ c13 · αn · β2
n ·E

{
1
nl

nl∑
i=1

‖Xi − X̄i,n‖2

}
for j ∈ {3, 7} (cf. proof of (15)), and f ∈ Fk,n and the definition of the estimate implies

T5,n ≤ 0.
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Thus it remains to bound T2,n and T9,n. For T9,n we get

E{T9,n} = 2 ·
∫
|f(x)−m(x)|2PX(dx).

In order to bound T2,n, choose s > 0 and consider

P{T2,n > s}

≤ P

{
∃f ∈ Fk,n : E{|f(X)− TβnY |2} −E{|mβn(X)− TβnY |2}

− 1
nl

nl∑
i=1

(|f(Xi)− TβnYi|2| − |mβn(Xi)− TβnYi|2)

>
1
2
·
(
s + E{|f(X)− TβnY |2} −E{|mβn(X)− TβnY |2}

)}
.

The last probability can be bounded by Theorem 11.4 in Györfi et al. (2002). With the

usual bounds for covering numbers of classes of neural networks (cf. Lemma 16.6 in Györfi

et al. (2002)) we get

P{T2,n > s} ≤ (c14nl)c15kn · exp
(
− s · nl

c16 log(n)4

)
.

Using

ET2,n ≤ u +
∫ ∞

u
P{T2,n > s} ds

and minimizing the above bound with respect to u > 0 we get after some tedious calcula-

tions

ET2,n ≤
k · log(n)5

n
.

Summarizing the above results, the proof is complete. �

A Proof of Lemma 2

By using a2 − b2 = (a− b)(a + b) we get

|T1,n| =
∣∣∣E(|Z − Y |2 − |Z − TβnY |2

)∣∣∣ = ∣∣∣E((TβnY − Y )(2Z − Y − TβnY )
)∣∣∣ .

With the Cauchy-Schwarz inequality and

I{|Y |>βn} ≤
exp(c2/2 · |Y |2)
exp(c2/2 · β2

n)
, (17)
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the last term can be bounded by√
E(|TβnY − Y |2) ·

√
E(|2Z − Y − TβnY |2|)

≤
√

E(|Y |2 · I{|Y |>βn}) ·
√

E(2 · |2Z − TβnY |2 + 2 · |Y |2)

≤

√√√√E

(
|Y |2 · exp(c2/2 · |Y |2)

exp(c2/2 · β2
n)

)
·
√

2(3βn)2 + 2E(|Y |2)

≤
√

E
(
|Y |2 exp(c2/2 · |Y |2)

)
exp

(
−c2 · β2

n

4

)√
2(3βn)2 + 2E(|Y |2),

owing to the boudedness of Z. With x ≤ exp(x) for x ∈ R we get

|Y |2 ≤ 2
c2
· exp

(c2

2
|Y |2

)
and hence E

(
|Y |2 · exp(c2/2 · |Y |2)

)
is bounded by

E
(

2
c2
· exp

(
c2/2 · |Y |2

)
· exp(c2/2 · |Y |2)

)
≤ E

(
2
c2
· exp

(
c2 · |Y |2

))
≤ c17,

which is less than infinity by the assumptions of the theorem. Furthermore the third term

is bounded by
√

18β2
n + 2 · c18, because

E(|Y |2) ≤ E(1/c2 · exp(c2 · |Y |2) ≤ c18 < ∞,

which follows again as above. With the setting βn = c1 ·log(n) it follows for some constants

c19, c20, c21, c22 > 0

|T1,n| ≤
√

c19 · exp
(
−c20 · log(n)2

)
·
√

(18 · c2
1 · log(n)2 + 2c21) ≤ c22 ·

log(n)
n

.

Arguing in the same way we get from the Cauchy-Schwarz inequality

T2,n =
∣∣E(|m(X)− Y |2)−E(|mβn(X)− TβnY |2)

∣∣
≤

√√√√2E

(
|(m(X)−mβn(X))|2

)
+ 2E

(
|(TβnY − Y )|2

)

·

√√√√E

(∣∣∣m(X) + mβn(X)− Y − TβnY
∣∣∣2),

where we can bound the second factor on the right hand-side in the above inequality in the

same way we have bounded the second factor from T1,n, because by assumption |m(X)| is

16



bounded a.s., and |mβn(X)| is clearly also bounded, namely by βn. Thus, we get for some

constant c23 > 0,√√√√E

(∣∣∣m(X) + mβn(X)− Y − TβnY
∣∣∣2) ≤ c23 · log(n).

Next we consider the first term. With the inequality from Jensen it follows

E
(
|m(X)−mβn(X)|2

)
≤ E

(
E
(
|Y − TβnY |2

∣∣∣X)) = E
(
|Y − TβnY |2

)
.

Hence we get,

T2,n ≤
√

4E (|Y − TβnY |2) · c23 · log(n),

and therefore the calculations from T1,n imply T2,n ≤ c24 · log(n)/n, which completes the

proof. �
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