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Abstract

Estimation of a regression function from independent and identical distributed data

is considered. The L2 error with integration with respect to the design measure is used

as error criterion. Upper bounds on the L2 error of least squares regression estimates

are presented, which bound the error of the estimate in case that in the sample given to

the estimate the values of the independent and the dependent variables are pertubated

by some arbitrary procedure. The bounds are applied to analyze regression-based Monte

Carlo methods for pricing American options in case of errors in modelling the price process.
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1 Introduction

Let (X, Y ) be a IRd × IR valued random vector with E
{
Y 2
}

< ∞. In nonparametric

regression we are interested in predicting Y after observing the value of X. More precisely,
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we want to find a function f∗ such that

E
{
|f∗ (X)− Y |2

}
= min

f
E
{
|f (X)− Y |2

}
. (1)

Denote the distribution of X by µ. For the regression function m(x) := E {Y |X = x} we

have for each measurable function f : IRd → IR, that

E
{
|f(X)− Y |2

}
= E

{
|m(X)− Y |2

}
+
∫
|f(x)−m(x)|2 µ(dx), (2)

which implies that m is the solution of the minimization problem (1), E
{
|m(X)− Y |2

}
is the minimum of (2) and the so called L2 error

∫
|f(x) − m(x)|2µ(dx) is the diffence

between E
{
|f(X)− Y |2

}
and E

{
|m(X)− Y |2

}
.

In the regression estimation problem the distribution of (X, Y ) (and consequently m)

is unknown. Given a sequence Dn = {(X1, Y1),...,(Xn, Yn)} of independent observations of

(X, Y ), the goal is to construct an estimate mn(x)=mn(x,Dn) of m(x) such that the L2

error
∫
|mn(x)−m(x)|2µ(dx) is small. For a general introduction to regression estimation

see, e.g., Györfi et al. (2002).

In this article we assume that we observe Dn only with some additional errors in the

variables, i.e., the values of the variables are pertubated by some arbitrary procedure.

In this context usually the problem is considered that the independent variable X can

be observed only with additional random errors which have mean zero. More precisely,

instead of Xi one observes Wi = Xi + Ui for some random variables Ui which satisfy

E{Ui|Xi} = 0, and the problem is to estimate the regression function from

{(W1, Y1), . . . , (Wn, Yn)}.

In the literature often estimates for the distribution of Ui are constructed and estimates

of the regression function are defined by using the estimated distribution of Ui (see, e.g.,

Fan and Truong (1993), Caroll, Maca and Ruppert (1999), Delaigle and Meister (2007),

Delaigle, Fan and Caroll (2009) and the references therein).

In this paper we consider a setting, where measurement errors occur simultaneously in

the dependent and in the independent variables and where basically nothing is assumed on

the nature of the measurement errors. In particular, the measurement errors do not have

to be independent or identically distributed, and they do not need to have expectation
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zero. The only assumption we are making is that these measurement errors are somehow

“small”. Related results can be found in Kohler (2006) (where additional measurement

errors occur only in the dependent variable) and in Kohler and Mehnert (2009) (where

additional measurement errors occur only in the independent variable and the rate of

convergence of least squares neural network regression estimates is analyzed in case of

“small” measurement errors).

In the sequel we assume that we have given an arbitrary data set

D̄n =
{
(X̄1,n, Ȳ1,n), . . . , (X̄n,n, Ȳn,n)

}
, (3)

where the average squared measurement errors

1
n

n∑
i=1

|Yi − Ȳi,n|2 (4)

and

1
n

n∑
i=1

|Xi − X̄i,n|2 (5)

are small, and where Y1, . . . , Yn and X̄1,n, . . . , X̄n,n are independent given X1, . . . , Xn.

Besides that we do not assume anything on the distribution of D̄n, in particular the

random variables in D̄n need not to be independent or identically distributed.

The basic idea behind the definition of our estimate is as follows: Since we assume

that the measurement errors (4) and (5) are small, it is reasonable to estimate the L2 risk

E{|f(X)− Y |2} of a Lipschitz continuous function f by the so-called empirical L2 risk

1
n

n∑
i=1

|f(X̄i,n)− Ȳi,n|2

computed with the aid of the data with measurement error, and to define least squares

estimates as if no measurement errors are present by

m̄n(·) = arg min
f∈Fn

1
n

n∑
i=1

|f(X̄i,n)− Ȳi,n|2 (6)

for some set Fn of Lipschitz continuous functions f : IRd → IR. Here z = arg minx∈A G(x)

is an abbreviation for z ∈ A and G(z) = minx∈A G(x) and we assume for simplicity that

the minimum in (6) exists, however we do not require it to be unique.
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It is not clear, how the L2 error of an arbitrary regression estimate is influenced by

the additional errors in the data (3). Due to the fact that we do not assume that these

additonal errors are in some sense in the mean zero, there is no chance to get rid of these

errors, so these errors will necessarily increase the L2 error of the estimate. Intuitively

one can expect that measurement errors influence the L2 error of the estimate not much

as long as these measurement errors are small. In this paper we prove that as long as the

underlying function space consists of Lipschitz continuous functions, this is indeed true

for least squares estimates. This result is used to analyze regression-based Monte Carlo

methods for pricing American options in case of errors in modelling the price process.

1.1 Notation

Throughout this paper we will use the following notations: IR, ZZ, IN denote the sets of real

numbers, of integers, of positive integers, resp., IN0 = IN∪{0}, [a, b) denotes the half–open

interval from a to b, log(x) is the natural logarithm of x > 0, |u| is the Euclidean norm of

u ∈ IRd. For a function f : IRd → IR

‖f‖∞ = sup
x∈IRd

|f(x)|

denotes its supremum norm. z = arg minx∈A G(x) is an abbreviation for z ∈ A and

G(z) = minx∈A G(x).

For x1, . . . , xn ∈ IRd set xn
1 = (x1, . . . , xn). For xn

1 fixed we define the (pseudo-)

distance d2(f, g) between to functions f, g : IRd → IR by

d2(f, g) = d2,xn
1
(f, g) =

√√√√ 1
n

n∑
i=1

|f(xi)− g(xi)|2.

An ε-cover of a set F of functions f : IRd → IR (w.r.t. the distance d2) is a finite collection

of functions f1, . . . , fk : IRd → IR with the property

min
1≤j≤k

d2(f, fj) ≤ ε for all f ∈ F .

Let N2(ε,F , xn
1 ) denote the size k of the smallest ε-cover of F w.r.t. the distance d2,

and set N2(ε,F , xn
1 ) = ∞ if no finite sized ε-cover of F exists. N2(ε,F , xn

1 ) is called

L2 − ε-covering number of F on xn
1 .
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We say that random variables an, bn satisfy an = OP(bn) if lim supn→∞P(an > c·bn) =

0 for some finite constant c.

In order to avoid measurability problems in the case of uncountable collections of

functions, we assume throughout this paper that the function classes in the definition of

our least squares estimates are permissible in the sense of Pollard (1984), Appendix C. This

mild measurability condition is satisfied for most classes of functions used in application.

1.2 Outline

The main result is fomulated in Section 2. An application in financial mathematics in the

context of regression-based Monte Carlo methods for pricing American options is described

in Section 3. The proofs are given in Section 4.

2 Main results

Our main result is the following theorem.

Theorem 1. Let (X, Y ), (X1, Y1), . . . , (Xn, Yn) be independent and identically distributed

IRd×IR valued random vectors with E
{
Y 2
}

< ∞. Assume that Y −m(X) is sub-Gaussian

in the sense that

K2E
{

exp
(

(Y −m(X))2

K2
− 1
)∣∣∣∣X} ≤ σ2

0 almost surely (7)

for some K, σ0 > 0. Let βn ≥ β > 1 and assume that the regression function is bounded

in absolute value by β. Let Fn be a set of functions f : IRd → [−βn, βn] that are Lipschitz-

continuous with Lipschitz-constant Ln in the sense, that for all f ∈ Fn and for all x, y ∈

IRd we have

|f(x)− f(y)| ≤ Ln |x− y| . (8)

Given an arbitrary dataset

D̄n =
{
(X̄1,n, Ȳ1,n), . . . , (X̄n,n, Ȳn,n)

}
with the property that Y1, . . . , Yn and X̄1,n, . . . , X̄n,n are independent given X1, . . . , Xn,

define the estimate m̄n by

m̄n(·) = arg min
f∈Fn

1
n

n∑
i=1

∣∣f(X̄i,n)− Ȳi,n

∣∣2 .
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Then there exist constants c1, c2 > 0 depending only on σ0 and K such that for any δn

which satisfies

δn → 0 (n →∞) and
n · δn

β2
n

→∞ (n →∞) (9)

and

√
n

δ

β2
n

≥ c1

∫ √
δ

c2δ/β2
n

(
logN2

(
u

4βn
, {f − g : f ∈ Fn,

1
n

n∑
i=1

|f(xi)− g(xi)|2 ≤ δ

}
, xn

1

)) 1
2

du (10)

for all δ ≥ δn
4 , all x1, . . . , xn ∈ IRd and all g ∈ Fn ∪ {m} we have∫

|m̄n(x)−m(x)|2µ(dx) = OP(Zn) and
1
n

n∑
i=1

|m̄n(X̄i,n)−m(Xi)|2 = OP(Zn)

where

Zn =
1
n

n∑
i=1

∣∣Yi − Ȳi,n

∣∣2 + L2
n ·

1
n

n∑
i=1

∣∣Xi − X̄i,n

∣∣2 + δn + inf
f∈Fn

∫
|f(x)−m(x)|2µ(dx).

Remark 1. The proof of the theorem (which can be found in Section 4) shows that if we

have Xi = X̄i,n for alle i ∈ {1, . . . , n}, we don’t need the Lipschitz condition anymore. In

this case we get exactly Theorem 1 in Kohler (2006).

Remark 2. In the proof we show a stronger result, namely that for c3 sufficiently large

we have for any n ∈ IN

P
{∫

|m̄n(x)−m(x)|2µ(dx) > c3 · Zn

}
≤ c3 · exp

(
−c3 ·

n · δn

β2
n

)
and

P

{
1
n

n∑
i=1

|m̄n(X̄i,n)−m(Xi)|2 > c3 · Zn

}
≤ c3 · exp

(
−c3 ·

n · δn

β2
n

)

If we choose in the above theorem Fn as a subset of a finite dimensional linear vector

space, the entropy condition (10) can be simplified and we get
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Corollary 1. Assume that (X, Y ), (X1, X̄1,n, Y1, Ȳ1,n), . . . (Xn, X̄n,n, Yn, Ȳn,n) satisfy the

assumptions of Theorem 1, let Fn be a set of functions f : IRd → [−βn, βn] that are

Lipschitz-continuous with Lipschitz-constant Ln and assume that Fn is a subset of a linear

vector space of dimension Kn. Let the estimate be defined as in Theorem 1. Then∫
|m̄n(x)−m(x)|2µ(dx) = OP

{
1
n

n∑
i=1

∣∣Yi − Ȳi,n

∣∣2 + L2
n ·

1
n

n∑
i=1

∣∣Xi − X̄i,n

∣∣2
+β5

n ·
Kn

n
+ inf

f∈Fn

∫
|f(x)−m(x)|2µ(dx)

}
.

Proof. The result follows from Theorem 1 and the bound

N2

(
v,

{
f ∈ F :

1
n

n∑
i=1

|f(zi)|2 ≤ R2

}
, zn

1

)
≤
(

4R + v

v

)dim(F)

.

for the covering number of a linear vector space F of dimension dim(F) (cf. Corollary

2.6 and Example 9.3.1 in van de Geer (2000), or Lemma 9.3 and proof of Lemma 19.1 in

Györfi et al. (2002)). �

In the sequel we demonstrate the usefullness of the above corollary by applying it to

least squares spline estimates. Choose M ∈ IN0, Kn ∈ IN, A,B ∈ IR with A < B and set

uk = k · (B − A)/Kn for k ∈ ZZ. Let {Bj,M,K : j = 1, ...,K + M} be the B–spline with

support [uj , uj+M+1] with respect to the knot sequence (uk)k∈ZZ (see, e.g., de Boor (1978),

Chapter IX or Györfi et al. (2002), Section 14.1). The spline spaces which we will use for

our estimates will be defined as subspaces of

SKn,M ([A,B]) =

 ∑
j∈ZZ:supp(Bj,M,Kn )∩[A,B] 6=∅

ajBj,M,Kn : j ∈ ZZ, aj ∈ IR

 .

Restricted on [A,B] the space SKn,M ([A,B]) consists of all functions f that are (M − 1)-

times continuously differentiable on [A,B] and that are on each interval [uj , uj+1) equal

to a polynomial of degree M (or less). For our function space we restrict the coefficients

in SKn,M ([A,B]) such that the functions are Lipschitz continuous. More precisely, we set

SKn,M,βn,γn([A,B]) =

{∑
j∈ZZ

ajBj,M,Kn : |aj | ≤ βn, |aj − aj−1| ≤ γn/Kn,

aj = 0 if supp(Bj,M,Kn) ∩ [A,B] = ∅ (j ∈ ZZ)

}
.
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By standard results on B-splines and its derivatives (cf., e.g., Lemmas 14.4 and 14.6 in

Györfi et al. (2002)) we have that each function in SKn,M,βn([A,B]) is bounded in absolute

value by βn and Lipschitz continuous with Lipschitz constant γn.

Let LM be the norm of the quasi interpoland in the proof of Theorem 14.4 in Györfi

et al. (2002) in case of equidistant knots and Qj,k chosen independent of k. In our next

corollary we will define the parameter βn of the spline space by βn = LM · ‖m‖∞, which

implies that the quasi interpoland of the regression function is contained in our spline

space provided the regression function is Lipschitz continuous.

Using this function space in Corollary 1 we get

Corollary 2. Assume that (X, Y ), (X1, X̄1,n, Y1, Ȳ1,n), . . . (Xn, X̄n,n, Yn, Ȳn,n) satisfy the

assumptions of Theorem 1, and that, in addition, X ∈ [0, 1] a.s. and that the regression

functions is p–times continuously differentiable on [0, 1] for some p ≥ 1. Set

Kn = dn1/(2p+1)e

and

βn = LM ·B,

where LM is defined as above and B is a bound on the supremum norm of the regression

function, and assume

γn →∞ (n →∞).

Set Fn = SKn,M,βn,γn([0, 1]) and let the estimate be defined as in Theorem 1. Then∫
|m̄n(x)−m(x)|2µ(dx) = OP

{
1
n

n∑
i=1

∣∣Yi − Ȳi,n

∣∣2 + γ2
n ·

1
n

n∑
i=1

∣∣Xi − X̄i,n

∣∣2 + n
− 2p

2p+1

}
.

Proof. It follows from Theorem 14.3 and the proof of Theorem 14.4 in Györfi et al. (2002)

that for n sufficiently large we have

inf
f∈SKn,M,βn,γn ([0,1])

∫
|f(x)−m(x)|2µ(dx) ≤ c4 ·

(
1

Kn

)2p

.

From this we get the assertion by an application of Corollary 1. �

Remark 3. In case Xi = X̄i,n and Yi = Ȳi,n for all i ∈ {1, . . . , n} it follows from Stone

(1982) that the rate of convergence in Corollary 2 is optimal.
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Remark 4. In any application the parameters of the spline space have to be chosen using

the given data only. This can be done e.g. by splitting of the sample. Here the sample

D̄n is divided into a learning sample consisting of the first nl data points and a testing

sample of size nt = n− nl (e.g. with nl ≈ n/2 ≈ nt). Given a finite list Pn of parameters

and for each parameter k ∈ Pn a set of functions Fn,k (which we assume to be bounded

in absolute value by βn and to be Lipschitz continuous with Lipschitz constant Ln) we

define estimates

m̄n,k(·) = arg min
f∈Fn,k

1
nl

nl∑
i=1

|f(X̄i,n)− Ȳi,n|2,

and choose the value of the parameter by minimizing the error on the testing data, i.e. we

set

m̄n(·) = m̄n,k̂(·)

where

k̂ = arg min
k∈Pn

1
nt

nl+nt∑
i=nl+1

|m̄n,k(X̄i,n)− Ȳi,n|2.

If we assume that the learning data {(X̄i,n, Ȳi,n) : i = 1, . . . , nl} is independent from

{(Xj , Yj) : i = nl + 1, . . . , n} then we can apply Theorem 1 conditioned on the learning

data, bound the covering number in (10) by the finite cardinality of the parameter set Pn

and conclude∫
|m̄n(x)−m(x)|2µ(dx) = OP

{
1
nt

n∑
i=nl+1

∣∣Yi − Ȳi,n

∣∣2 + L2
n ·

1
nt

n∑
i=nl+1

∣∣Xi − X̄i,n

∣∣2
+β4

n ·
log |Pn|

nt
+ min

k∈Pn

∫
|m̄n,k(x)−m(x)|2µ(dx)

}
.

3 Application in option pricing

In the sequel we describe how our main result can be used to analyze regression-based

Monte Carlo methods for pricing American options in discrete time in case of errors in

modelling the price process of the underlying asset.

An American option can be excercised at any time up to maturity. In complete and

arbitrage-free markets the price of an American option with maturity T is given by the

value of the optimal stopping problem (cf., e.g., Karatzas and Shreve (1998))

V0 = sup
t∈T [0,T ]

E {fτ (Xτ )} .
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Here ft denotes the discounted payoff function at time t ∈ [0, T ] (e.g.,

ft(x) = e−r·t ·max{K − x, 0}

in case of a put option with strike K and disounting factor e−r·t) and the IRd-valued

stochastic process (Xt)0≤t≤T models the underlying risk factors such as the stock value

of the underlying. T [0, T ] is the class of all [0, T ]-valued stopping times, i.e. τ ∈ T [0, T ]

is a measurable function of (Xt)0≤t≤T with values in [0, T ] with the property that for

any r ∈ [0, T ] the event [τ ≤ r] is contained in the sigma algebra Fr = F((Xs)0≤s≤r))

generated by (Xs)0≤s≤r.

The first step to treat this problem numerically is to consider only discrete time steps.

In terms of finance this means that we approximate the price of an American option by

a Bermudan option. In the sequel we assume that X0, X1, . . . , XT is a discrete Markov

process (maybe with augmented space state in order to ensure the Markovian property)

and the price of our Bermudan option is now given by

V0 = sup
τ∈T (0,...,T )

E {fτ (Xτ )} = E {fτ∗ (Xτ∗)} ,

where T (0, . . . , T ) is the class of alle {0, . . . , T}-valued stopping times, and τ∗ is the

optimal stopping time.

One way to compute the price of such an option numerically, which is especially useful

in case of option based on several underlying assets, is to compute so-called continuation

values qt(x) which describe the value of the option at time t in case that Xt = x has been

observed subject to the constraint of holding the option rather than exercising it.

More precisely,

qt(x) = sup
τ∈T (t+1,t+2,...,T )

E {fτ (Xτ )}

where T (t + 1, . . . , T ) is the set of all stopping times with values in {t + 1, . . . , T}, and

qT (x) = 0 (x ∈ IRd). The general theory of optimal stopping (cf., eg., Shiryayev (1978))

implies that once we know the contnuation values qt, we can compute the optimal stopping

time τ∗ via

τ∗ = min {t ∈ {0, . . . , T} : ft(Xt) ≥ qt(Xt)} .
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In order to compute the continuation values a regression representation of qt(x) like

qt(x) = E {max {ft+1(Xt+1), qt+1(Xt+1)}|Xt = x} (11)

(cf. Tsitsiklis and van Roy (1999), see also Longstaff and Schwartz (2001) or Egloff

(2005) for additional regression representations) can be used. Typically in applications,

the underlying distributions are rather complicated and therefore it is not clear how the

conditional expectation in (11) can be calculated. The idea behind regression-based Monte

Carlo methods is that the conditional expectations in (11) can be computed numerically

by applying recursively a regression estimate to a sample of

(Xt,max {ft+1(Xt+1), q̂n,t+1(Xt+1)}) ,

where q̂n,t+1 is an estimate of qt+1 computed in the step before and q̂n,T = 0. In the context

of linear regression this was proposed by Tsitsiklis an van Roy (1999) and Longstaff and

Schwartz (2001), and based on a regression representation for the so-called value function

vt(x) = max{ft(x), qt(x)} this was proposed in Carrier (1996). Nonparametric regression

estimates of continuation values have been investigated in Egloff (2005), Egloff, Kohler and

Todorovich (2007), Kohler, Krzyżak and Todorovich (2006), Kohler (2008), Belomestny

(2009) and Kohler and Krzyżak (2009).

The estimates there are applied to a sample

{(Xt,i,max {ft+1(Xt+1,i), q̂n,t+1(Xt+1,i)}) : i = 1, . . . , n}

which can be considered as a sample of

(Xt,max {ft+1(Xt+1), qt+1(Xt+1)})

with additional measurement errors in the dependent variable.

In order to apply such methods in practice a model for the price process has to be

chosen. The most simple case is a Black-Scholes model, where (in case d = 1)

Xt = x0 · exp
((

r − 1
2
σ2

)
t + σWt

)
. (12)

Here {Wt : t ∈ [0, T ]} is a Wiener process, r is the (riskless) interest rate and σ > 0 is the

volatility of the asset. As long as the interest rate r is the same as the interest rate used for
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discounting (which is necessary in order to get an arbitrage free market) the corresponding

price will not depend on r. But critical for the price is the choice of the volatility σ. Its

value has to be estimated from observed data in the past, so in that model we use in fact

X̄t,n = x0 · exp
((

r − 1
2
σ̂2

n

)
t + σ̂nWt

)
(13)

for some estimate σ̂n of σ.

Clearly, in an application the value of σ̂n will be not equal to σ. This rises the question

how robust the estimation procedure is with respect to errors in σ. In the sequel we show

for suitably defined regression-based Monte Carlo methods that the price computed with

σ̂n instead of σ tends to the true price in case of σ̂n tending to σ.

More precisely, assume that we have estimates σ̂n of σ available. On the probabil-

ity space where these estimates are defined there exists independent Wiener processes

(Wt,i)t∈[0,T ] for i ∈ IN, which are independent of all data used in the estimate σ̂n (i.e., the

Wiener processes are independent of the estimates). Set

Xt,i = x0 · exp
((

r − 1
2
σ2

)
t + σWt,i

)
(14)

and

X̄t,i = x0 · exp
((

r − 1
2
σ̂2

n

)
t + σ̂nWt,i

)
. (15)

We consider X̄t,i as an observation of Xt,i with additional measurement errors.

In the sequel we define regression-based Monte Carlo estimates of the continuation

values depending on (X̄t,i)t∈{0,1,...,T} (i ∈ {1, . . . , n}).

We start with

q̂n,T (x) = 0 (x ∈ IR).

Given an estimate q̂n,t+1 of qt+1 for some t ∈ {0, . . . , T − 1} we define an estimate q̂n,t of

qt as follows:

Set

X̄i,n = X̄t,i

and

Ȳi,n = max{ft+1(X̄t+1,i), q̂n,t+1(X̄t+1,i)}

12



(i = 1, . . . , n) and define q̂n,t by

q̂n,t(·) = arg min
f∈Fn

1
n

n∑
i=1

∣∣f(X̄i,n)− Ȳi,n

∣∣2
where

Fn = SKn,M,βn,γn([−An, An])

is the spline space introduced in Corollary 2 and Kn ∈ IN,M ∈ IN0, βn > 0, γn > 0 and

An > 0 are parameters of the estimate.

Finally we estimate the price

V0 = E {max{f0(X0), q0(X0)}} =
∫

max{f0(x0), q0(x0)}dPX0(x0)

of the option by

V̂0,n =
∫

max{f0(x0), q̂n,0(x0)}dPX0(x0).

If we consider for fixed t ∈ {0, . . . , T − 1} the sample

(
X̄t,i,max{ft+1(X̄t+1,i), q̂n,t+1(X̄t+1,i)}

)
i=1,...,n

as a sample of (Xt,max{ft+1(Xt+1), qt+1(Xt+1)}) with additional measurement errors in

the variables we can conclude from Theorem 1:

Theorem 2. Let Kn ∈ IN,M ∈ IN0, βn > 0, γn > 0 and An > 0 such that

Kn →∞ (n →∞), (16)

An →∞ (n →∞), (17)

βn →∞ (n →∞), (18)

γn →∞ (n →∞), (19)

and
An · β5

n ·Kn

n
→ 0 (n →∞) (20)

for some δ > 0. Assume that the discounted payoff function ft is bounded and Lipschitz

continuous and that the price process of the underlying stock is given by (12). Let σ̂n be an

13



estimate of the volatility σ in the model (12) (based on data observed in the past, which we

assume to be independent of all data used in the Monte Carlo simulation) which satisfies

γn · (σ̂n − σ0) → 0 a.s. (21)

Let the estimates of the continuation values and the price of the option be defined as above.

Then we have for all t ∈ {0, . . . , T − 1}∫
|q̂n,t(x)− qt(x)|2PXt(dx) → 0 a.s. (22)

and, in addition, we have

V̂0,n → V0 a.s. (23)

4 Proofs

Throughout the proofs we will use the abbreviation X̄i = X̄i,n and Ȳi = Ȳi,n.

4.1 Preliminarien to the proof of Theorem 1

We start with a deterministic lemma. Let x1, . . . , xn, x̄1, . . . , x̄n ∈ IRd, y1, . . . , yn, ȳ1, . . . , ȳn ∈

IR. Let G be a set of functions g : IRd → IR and for g ∈ G define

ḡn = arg min
g∈G

(
1
n

n∑
i=1

|ȳi − g(x̄i)|2
)

.

Let m : IRd → IR be a fixed function and let h ∈ G.

Lemma 1. Assume

1
n

n∑
i=1

|ḡn(x̄i)−m(xi)|2 ≥ 3 · 1
n

n∑
i=1

|h(x̄i)−m(xi)|2 + 128 · 1
n

n∑
i=1

|yi − ȳi|2 + δ (24)

for some δ ≥ 0. Then

1
n

n∑
i=1

(yi −m(xi)) · (ḡn(x̄i)− h(x̄i)) ≥
1
16

·

(
1
n

n∑
i=1

|ḡn(x̄i)− h(x̄i)|2
)

+
δ

8
. (25)

Proof. By definition of the estimate and because of h ∈ G we have

1
n

n∑
i=1

|ȳi − ḡn(x̄i)|2 ≤
1
n

n∑
i=1

|ȳi − h(x̄i)|2

14



hence

1
n

n∑
i=1

|ȳi −m(xi)|2 +
2
n

n∑
i=1

(ȳi −m(xi)) · (m(xi)− ḡn(x̄i)) +
1
n

n∑
i=1

|m(xi)− ḡn(x̄i)|2

≤ 1
n

n∑
i=1

|ȳi −m(xi)|2 +
2
n

n∑
i=1

(ȳi −m(xi)) · (m(xi)− h(x̄i)) +
1
n

n∑
i=1

|m(xi)− h(x̄i)|2,

which implies

1
n

n∑
i=1

|ḡn(x̄i)−m(xi)|2 −
1
n

n∑
i=1

|h(x̄i)−m(xi)|2

≤ 2
n

n∑
i=1

(ȳi −m(xi)) · (ḡn(x̄i)− h(x̄i))

=
2
n

n∑
i=1

(ȳi − yi) · (ḡn(x̄i)− h(x̄i)) +
2
n

n∑
i=1

(yi −m(xi)) · (ḡn(x̄i)− h(x̄i))

=: T1 + T2.

We show next that T1 ≤ T2. Assume to the contrary that this is not true. Then

1
n

n∑
i=1

|ḡn(x̄i)−m(xi)|2 −
1
n

n∑
i=1

|h(x̄i)−m(xi)|2

<
4
n

n∑
i=1

(ȳi − yi) · (ḡn(x̄i)− h(x̄i))

≤ 4 ·

√√√√ 1
n

n∑
i=1

(ȳi − yi)2 ·

√√√√ 1
n

n∑
i=1

(ḡn(x̄i)− h(x̄i))2

≤ 4 ·

√√√√ 1
n

n∑
i=1

(ȳi − yi)2 ·

√√√√2
1
n

n∑
i=1

|ḡn(x̄i)−m(xi)|2 + 2
1
n

n∑
i=1

|h(x̄i)−m(xi)|2.

Using (24) we see that the left-hand side of the above inequality is bounded from below

by

1
2
·

(
1
n

n∑
i=1

|ḡn(x̄i)−m(xi)|2
)

+
1
2
·

(
3 · 1

n

n∑
i=1

|h(x̄i)−m(xi)|2 + 128 · 1
n

n∑
i=1

|yi − ȳi|2 + δ

)

− 1
n

n∑
i=1

|h(x̄i)−m(xi)|2

≥ 1
2
·

(
1
n

n∑
i=1

|ḡn(x̄i)−m(xi)|2 +
1
n

n∑
i=1

|h(x̄i)−m(xi)|2
)

+
δ

2
, (26)
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which implies

1
n

n∑
i=1

|ḡn(x̄i)−m(xi)|2 +
n∑

i=1

|h(x̄i)−m(xi)|2

< 8 ·
√

2 ·

√√√√ 1
n

n∑
i=1

|ḡn(x̄i)−m(xi)|2 +
n∑

i=1

|h(x̄i −m(xi)|2 ·

√√√√ 1
n

n∑
i=1

|yi − ȳi|2

i.e.,
1
n

n∑
i=1

|ḡn(x̄i)−m(xi)|2 +
1
n

n∑
i=1

|h(x̄i −m(xi)|2 < 128 · 1
n

n∑
i=1

|yi − ȳi|2.

But this is a contradiction to (24), so we have indeed proved T1 ≤ T2.

As a consequence we can conclude

4
n

n∑
i=1

(yi −m(xi)) · (ḡn(x̄i)− h(x̄i))

≥ 1
n

n∑
i=1

|ḡn(x̄i)−m(xi)|2 −
1
n

n∑
i=1

|h(x̄i)−m(xi)|2. (27)

As before we can bound the right-hand side of (27) from below by (26) and get

4
n

n∑
i=1

(yi −m(xi))(ḡn(x̄i)− h(x̄i))

≥ 1
2
·

(
1
n

n∑
i=1

|ḡn(x̄i)−m(xi)|2 +
1
n

n∑
i=1

|h(x̄i)−m(xi)|2
)

+
δ

2
. (28)

Because of a2/2− b2 ≤ (a− b)2 (a, b ∈ IR) we have

1
2
· 1
n

n∑
i=1

|ḡn(x̄i)− h(x̄i)|2 −
1
n

n∑
i=1

|h(x̄i)−m(xi)|2

≤ 1
n

n∑
i=1

(|ḡn(x̄i)− h(x̄i)| − |h(x̄i)−m(xi)|)2

≤ 1
n

n∑
i=1

|ḡn(x̄i)−m(xi)|2.

Using this we can bound the right-hand side of (28) from below by

1
2
·

(
1
2
· 1
n

n∑
i=1

|ḡn(x̄i)− h(x̄i)|2
)

+
δ

2
=

1
4

1
n

n∑
i=1

|ḡn(x̄i)−m(x̄i)|2 +
δ

2

Summing up the above results we get the desired inequality. �

Next we work conditionally on X1, . . . , Xn, X̄1, . . . , X̄n and measure the error by the

empirical L2 error. To formulate the result we use a fixed design regression model.
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Let

Yi = m(xi) + Wi (i = 1, . . . , n)

for some x1, . . . , xn ∈ IRd,m : IRd → IR and some random variables W1, . . . ,Wn which

are independent and have expectation zero. Additionally we assume that the Wi’s are

sub-Gaussian, i.e.

max
i=1,...,n

K2E
{

exp
(

W 2
i

K2

)
− 1
}
≤ σ2

0 (29)

for some K, σ0 > 0. Instead of x1, . . . , xn, we observe only x̄1, . . . , x̄n ∈ IRd. Our goal is

to estimate m from (x̄1, Ȳ1), . . . , (x̄n, Ȳn), where Ȳ1, . . . , Ȳn are arbitrary random variables

with the property that the average squared measurement error

1
n

n∑
i=1

∣∣Yi − Ȳi

∣∣2
is ”small”.

Let Fn be a set of functions f : IRd → IR and consider the least squares estimate

m̂n = arg min
f∈Fn

1
n

n∑
i=1

|f(x̄i)− Ȳi|2. (30)

To shorten some of the expressions in the next proof, we use the following notations:

For IRd-valued random variables Z1, . . . , Zn we write

PZn
1

=
1
n

n∑
i=1

δZi ,

where δZi denotes the point mass at Zi. Then for a function g : IRd → IR we have∫
gdPZn

1
=

1
n

n∑
i=1

g(Zi).

If z1, . . . , zn ∈ IRd, we can define in the same way Pzn
1

and
∫

gdPzn
1
.

Lemma 2. Assume that the sub-Gaussian condition (29) holds and let the estimate be

defined by (30). Then there exists a constant c5 > 0 which depends only on σ0 and K such

that for any δn with

δn → 0 (n →∞) and nδn →∞ (n →∞)

17



and

√
n · δ ≥ c5

√
δ∫

δ
8·
√

2·σ0

√
logN2

(
u,

{
f − h : f ∈ Fn,

∫
(f − h)2dPxn

1
≤ δ

}
, xn

1

)
du (31)

for all δ ≥ δn, all x1, . . . , xn ∈ IRd and all h ∈ Fn, we have for a sufficiently large constant

c6

P

{
1
n

n∑
i=1

|m̂n(x̄i)−m(xi)|2 > 3
1
n

n∑
i=1

|h(x̄i)−m(xi)|2 + 128
1
n

n∑
i=1

|Yi − Ȳi|2 + δn

}
≤ c6 · exp(−c6 · n · δn) → 0 (n →∞).

Proof. Let h ∈ Fn be arbitrary. It follows from

2
1
n

n∑
i=1

|m̂n(x̄i)− h(x̄i)|2 + 2
1
n

n∑
i=1

|h(x̄i)−m(xi)|2 ≥
1
n

n∑
i=1

|m̂n(x̄i)−m(xi)|2 ,

that

1
n

n∑
i=1

|m̂n(x̄i)−m(xi)|2 > 3
1
n

n∑
i=1

|h(x̄i)−m(xi)|2 + 128
1
n

n∑
i=1

|Yi − Ȳi|2 + δn

implies

δn

2
<

1
n

n∑
i=1

|m̂n(x̄i)− h(x̄i)|2.

By combining this with Lemma 1 we get

P

{
1
n

n∑
i=1

|m̂n(x̄i)−m(xi)|2 > 3
1
n

n∑
i=1

|h(x̄i)−m(xi)|2 + 128
1
n

n∑
i=1

|Yi − Ȳi|2 + δn

}

≤ P

{
δn

2
≤
∫
|m̂n − h|2dPx̄n

1
≤ 16

n

n∑
i=1

(m̂n(x̄i)− h(x̄i)) ·Wi

}

≤ P

{
1
n

n∑
i=1

W 2
i > 2σ2

0

}
︸ ︷︷ ︸

=:P1

+P

{
1
n

n∑
i=1

W 2
i ≤ 2σ2

0,
δn

2
≤
∫
|m̂n − h|2dPx̄n

1
≤ 16

n

n∑
i=1

(m̂n(x̄i)− h(x̄i)) ·Wi

}
︸ ︷︷ ︸

=:P2

.
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Application of Chernoff’s exponential bounding method (cf. Chernoff (1952)) yields

P1 = P

{
n∑

i=1

W 2
i

K2
≥ 2nσ2

0

K2

}

≤ P

{
exp

(
n∑

i=1

W 2
i

K2

)
> exp

(
2nσ2

0

K2

)}

≤ exp
(
−2nσ2

0

K2

)
·E

{
exp

(
n∑

i=1

W 2
i

K2

)}
(29)

≤ exp
(
−2nσ2

0

K2

)
·
(

1 +
σ2

0

K2

)n

≤ exp
(
−2nσ2

0

K2

)
· exp

(
n · σ2

0

K2

)
≤ exp(−c7 · n · δn) → 0 (n →∞).

To bound P2, we observe first that 1
n

∑n
i=1 W 2

i ≤ 2σ2
0 together with the Cauchy-

Schwarz inequality implies

16
n

n∑
i=1

(m̂n(x̄i)− h(x̄i)) ·Wi ≤ 16 ·

√∫
|m̂n − h|2dPx̄n

1
·
√

2σ2
0,

hence inside of P2 we have
∫
|m̂n − h|2dPx̄n

1
≤ 512σ2

0.

Define

S = min
{
s ∈ IN0 : 2sδn ≥ 512σ2

0

}
.

Application of the peeling device (cf., e.g., Section 5.3 in van de Geer (2000)) yields

P2 (32)

≤
S∑

s=0

P

{
1
n

n∑
i=1

W 2
i ≤ 2σ2

0, 2
s−1δn <

∫
|m̂n − h|2dPx̄n

1
≤ 2sδn,

∫
|m̂n − h|2dPx̄n

1
≤ 16

n

n∑
i=1

(m̂(x̄i)− h(x̄i))Wi

}

≤
S∑

s=0

P

{
1
n

n∑
i=1

W 2
i ≤ 2σ2

0,

∫
|m̂n − h|2dPx̄n

1
≤ 2sδn,

1
n

n∑
i=1

(m̂(x̄i)− h(x̄i))Wi >
2sδn

32

}
.

Because of nδn →∞ (n →∞), we may assume that
√

nδn > 32c5. So the probabil-

ities in above sums can be bounded by Corollary 8.3 in van de Geer (2000) (use there 2C =

c5, R =
√

2sδn, δ = 2sδn
32 , σ =

√
2σ0 and G =

{
f − h : f ∈ Fn,

∫
|f − h|2dPxn

1
≤ 2sδn

}
).

This yields

P2 ≤
S∑

s=0

c8 · exp

(
−

n
(

2sδn
32

)2
4c82sδn

)
≤

S∑
s=0

c8 · exp
(
− n2s

4 · 322c8
δn

)
≤ c9 · exp(−c9 · n · δn) → 0
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for n →∞, where c9 is a constant which does only depend on K and σ0. �

Finally we need a lemma which enables us to bound the L2 error by some constant

times the empirical L2 error.

Lemma 3. Let β ≥ 1, let m : IRd → [−β, β] and let Fn be a class of functions f : IRd →

[−β, β]. Let 0 < ε < 1 and α > 0. Assume that

√
nε
√

α ≥ 1152β

and that, for all x1, . . . , xn ∈ IR and all δ > 2β2α, we have
√

nεδ

768
√

2β2

≥
∫ √

δ

εδ
128β2

√
logN2

(
u

4β
,

{
f −m : f ∈ Fn,

∫
|f −m|2dPxn

1
≤ δ

β2

}
, xn

1

)
du. (33)

Then

P

{
sup

f∈Fn

∣∣∫ |f −m|2dµ−
∫
|f −m|2dPXn

1

∣∣
α +

∫
|f −m|2dµ +

∫
|f −m|2dPXn

1

> ε

}
≤ 15 exp

(
− nαε2

512 · 2304β2

)
.

Proof. See Lemma 5 in Kohler (2006) and the literatur cited there.

Remark 5. By Lemma 3 we can bound the L2 error by some constant times the empirical

L2 error:

E
{
|f(X)−m(X)|2

}
> α + 2

∫
|f −m| dPXn

1

is equivalent to

E
{
|f(X)−m(X)|2

}
−
∫
|f −m|2 dPXn

1

2α + E
{
|f(X)−m(X)|2

}
+
∫
|f −m|2 dPXn

1

>
1
3
.

Hence

P
{
∃f ∈ Fn : E

{
|f(X)−m(X)|2

}
> α + 2 ·

∫
|f −m|2dPXn

1

}

≤ P

 sup
f∈Fn

∣∣∣E{|f(X)−m(X)|2
}
−
∫
|f −m|2dPXn

1

∣∣∣
2α + E

{
|f(X)−m(X)|2

}
+
∫
|f −m|2dPXn

1

>
1
3

 .
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Similary one can show

P
{
∃f ∈ Fn :

∫
|f −m|2dPXn

1
> α + 2 ·E

{
|f(X)−m(X)|2

}}

≤ P

 sup
f∈Fn

∣∣∣∫ |f −m|2dPXn
1
−E

{
|f(X)−m(X)|2

}∣∣∣
2α +

∫
|f −m|2dPXn

1
+ E

{
|f(X)−m(X)|2

} >
1
3

 .

4.2 Proof of Theorem 1

Set

hn(·) = arg min
f∈Fn

∫
|f(x)−m(x)|2 µ(dx).

In the proof we use the error decomposition∫
|m̄n −m|2dµ

=
∫
|m̄n −m|2dµ− 2

∫
|m̄n −m|2dPXn

1

+ 2
∫
|m̄n −m|2dPXn

1
− 4

n

n∑
i=1

|m̄n(Xi)− m̄n(X̄i)|2 −
4
n

n∑
i=1

|m̄n(X̄i)−m(Xi)|2

+
4
n

n∑
i=1

|m̄n(X̄i)−m(Xi)|2 −
24
n

n∑
i=1

|hn(X̄i)− hn(Xi)|2

−24
∫
|hn −m|2dPXn

1
− 512

n

n∑
i=1

|Yi − Ȳi|2

+
24
n

n∑
i=1

|hn(Xi)− hn(X̄i)|2 +
4
n

n∑
i=1

|m̄n(Xi)− m̄n(X̄i)|2 +
512
n

n∑
i=1

|Ȳi − Yi|2

+ 24
∫
|hn −m|2dPXn

1
− 48

∫
|hn −m|2dµ + 48

∫
|hn −m|2dµ

By Remark 5 we can conclude

P
{∫

|m̄n −m|2dµ− 2
∫
|m̄n −m|2dPXn

1
> δn

}

≤ P

 sup
f∈Fn

∣∣∣E{|f(X)−m(X)|2
}
−
∫
|f −m|2dPXn

1

∣∣∣
2δn + E

{
|f(X)−m(X)|2

}
+
∫
|f −m|2dPXn

1

>
1
3

 .

Condition (33) of Lemma 3 is implied by

√
n

δn

β2
n

≥ c1

∫ √
δ

4

c2δ/β2
n

√
logN2

(
u

4β2
n

,

{
f −m : f ∈ Fn,

∫
|f −m|2dPxn

1
≤ δ

}
, xn

1

)
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which in turn is implied by condition (10) of the theorem. Because of (9) we may assume

that √
nδn >

3 · 1152 · βn√
2

.

Now Lemma 3 implies

P
{∫

|m̄n −m|2dµ− 2
∫
|m̄n −m|2dPXn

1
> δn

}
≤ 15 exp

(
− n · 2 · δn

512 · 2304 · 9 · β2
n

)
.

So by using again (9) we get∫
|m̄n −m|2dµ− 2

∫
|m̄n −m|2dPXn

1
= OP (δn) .

In the same way one can show that

24
∫
|hn −m|2dPXn

1
− 48

∫
|hn −m|2dµ = OP (δn) . (34)

Because of (a + b)2 ≤ 2a2 + 2b2 we have

2
∫
|m̄n −m|2dPXn

1
− 4

n

n∑
i=1

|m̄n(Xi)− m̄n(X̄i)|2 −
4
n

n∑
i=1

|m̄n(X̄i)−m(Xi)|2 ≤ 0,

and therefore

2
∫
|m̄n −m|2dPXn

1
− 4

n

n∑
i=1

|m̄n(Xi)− m̄n(X̄i)|2 −
4
n

n∑
i=1

|m̄n(X̄i)−m(Xi)|2 = OP(0).

Application of Lemma 2 (conditioned on (Xi, X̄i) (i = 1, . . . , n)) implies

P

{
4
n

n∑
i=1

|m̄n(Xi)−m(Xi)|2 −
24
n

n∑
i=1

|hn(X̄i)− hn(Xi)|2

−24
n

n∑
i=1

|hn(Xi)−m(Xi)|2 −
512
n

n∑
i=1

|Yi − Ȳi|2 > δn

}

≤ P

{
1
n

n∑
i=1

|m̄n(Xi)−m(Xi)|2 −
3
n

n∑
i=1

|hn(X̄i)−m(Xi)|2 −
128
n

n∑
i=1

|Yi − Ȳi|2 >
δn

4

}
→ 0 (n →∞).

This means

4
n

n∑
i=1

|m̄n(Xi)−m(Xi)|2 −
24
n

n∑
i=1

|hn(X̄i)− hn(Xi)|2

−24
n

n∑
i=1

|hn(Xi)−m(Xi)|2 −
512
n

n∑
i=1

|Yi − Ȳi|2 = OP(δn). (35)

22



The functions m̄n and hn are Lipschitz-continuous, which means

24
n

n∑
i=1

|hn(Xi)− hn(X̄i)|2 +
4
n

n∑
i=1

|m̄n(Xi)− m̄n(X̄i)|2

≤ 24
n

L2
n

n∑
i=1

|Xi − X̄i|2 +
4
n

L2
n

n∑
i=1

|Xi − X̄i|2

= OP

(
L2

n

1
n

n∑
i=1

|X̄i −Xi|2
)

.

Obviously it holds

512
n

n∑
i=1

|Ȳi − Yi|2 = OP

(
1
n

n∑
I=1

∣∣Yi − Ȳi

∣∣2) .

Finally we have∫
|hn −m|2dµ = OP

(
inf

f∈Fn

∫
|f(x)−m(x)|2µ(dx)

)
.

The additivity of the OP–symbol completes the proof of the first assertion. The second

assertion follows from (34), (35) and the Lipschitz continuity of hn. �

4.3 Preliminarien to the proof of Theorem 2

In this subsection we prove two auxiliary results, which we need in the proof of Theorem

2. We start with

Lemma 4. Let ft, qt, q̄t : IRd → IR and assume that ft are Lipschitz continuous with

Lipschitz constant L (t = 1, . . . , T ). For given IRd-valued stochastic processes (Xt)t=0,...,T

and, (X̄t)t=0,...,T we define

Yt = max{ft+1(Xt+1), qt+1(Xt+1)} and Ȳt = max{ft+1(X̄t+1), q̄t+1(X̄t+1)}.

Then we have for all s ∈ {0, . . . , T − 1}∣∣Ys − Ȳs

∣∣2 ≤ 2L2
∣∣Xs − X̄s

∣∣2 + 2
∣∣qs+1(Xs+1)− q̄s+1(X̄s+1)

∣∣2 .

Proof. (a + b)2 ≤ 2a2 + 2b2 and |max{a, b} −max{a, c}| ≤ |b− c| imply∣∣Ys − Ȳs

∣∣2 ≤ 2
∣∣max{fs+1(Xs+1), qs+1(Xs+1)} −max{fs+1(X̄s+1), qs+1(Xs+1)}

∣∣2
+2
∣∣max{fs+1(X̄s+1), qs+1(Xs+1)} −max{fs+1(X̄s+1), q̄s+1(X̄s+1)}

∣∣2
≤ 2

∣∣fs+1(Xs+1)− fs+1(X̄s+1)
∣∣2 + 2

∣∣qs+1(Xs+1)− q̄s+1(X̄s+1)
∣∣2 .
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By using the Lipschitz property of fs+1 we get the desired result. �

In our second auxiliary result we bound the measurement error occuring in the x-

variables in estimation of a Black-Scholes model.

Lemma 5. Let Xt,i and X̄t,i be defined as in (14) and (15). Assume that σ̂n satisfies

(21). Then we have for any t ∈ {0, . . . , T}

γ2
n ·

1
n

n∑
i=1

∣∣X̄t,i −Xt,i

∣∣2 → 0 a.s.

Proof. It holds

1
n

n∑
i=1

∣∣X̄t,i −Xt,i

∣∣2
= x2

0 exp(2rt)
1
n

n∑
i=1

∣∣∣∣exp
(

σ̂nWt,i −
σ̂2

n

2
t

)
− exp

(
σWt,i −

σ2

2
t

)∣∣∣∣2 .

By the mean value theorem it exists ξi ∈ [min{ai, bi},max{ai, bi}], where

ai = σWt,i −
σ2

2
t and bi = σ̂nWt,i −

σ̂2
n

2
t

such that ∣∣∣∣exp
(

σWt,i −
σ2

2
t

)
− exp

(
σ̂nWt,i −

σ̂2
n

2
t

)∣∣∣∣2
≤

∣∣∣∣(σ − σ̂n) Wt,i +
σ2

n − σ2

2
t

∣∣∣∣2 exp (2ξi)

≤
∣∣∣∣(σ − σ̂n) Wt,i +

σ2
n − σ2

2
t

∣∣∣∣2 exp
(

(|σ|+ |σ̂|) · |Wt,i|+ (
σ2

2
+

σ̂2
n

2
) · t
)

= |σ − σ̂n|2 ·
∣∣∣∣Wt,i +

σ̂n + σ

2
· t
∣∣∣∣2 exp

(
(|σ|+ |σ̂|) · |Wt,i|+ (

σ2

2
+

σ̂2
n

2
) · t
)

.

Since Wt is N(0, t)-distributed we have for any c10 > 0

E
{
||Wt,1|+ c10|2 exp (c10 · |Wt,1|+ c10)

}
< ∞.

Together with the strong law of large numbers and (21) we get the assertion. �

4.4 Proof of Theorem 2

We proof the theorem by backward induction. We start with t = T , in which case we have

q̂n,T (x) = qT (x) = 0, which implies∫
|q̂n,s(x)− qs(x)|2PXs(dx) → 0 a.s. (36)
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and
1
n

n∑
i=1

|q̂n,s(X̄s,i)− qs(Xs,i)|2 → 0 a.s. (37)

for s = T .

Let t ∈ {0, . . . , T − 1} be arbitrary and assume that (36) and (37) hold for s = t + 1.

In the sequel we show (36) and (37) for s = t. To do this we apply Theorem 1 in the form

described in Remark 2 and (by using the bounds on the covering number from the proof

of Corollaries 1 and 2) we get
∞∑

n=1

P
{∫

|q̂n,t(x)− qt(x)|2PXt(dx) > c11 · Zn

}
< ∞

and
∞∑

n=1

P

{
1
n

n∑
i=1

|q̂n,t(X̄t,i)− qt(Xt,i)|2 > c11 · Zn

}
< ∞

where

Zn =
1
n

n∑
i=1

∣∣max{ft+1(Xt+1,i), qt+1(Xt+1,i)} −max{ft+1(X̄t+1,i), q̂n,t+1(X̄t+1,i)}
∣∣2

+γ2
n ·

1
n

n∑
i=1

∣∣Xt,i − X̄t,i

∣∣2 +
An · β5

n ·Kn

n
+ inf

f∈Fn

∫
|f(x)− qt(x)|2PXt(dx).

By an application of the Borel-Cantelli lemma we get that it suffices to show

Zn → 0 a.s.

in order to prove (36) and (37) for s = t. But this in turn follows from the assumptions

of Theorem 2, Lemma 4 and Lemma 5. To see

inf
f∈Fn

∫
|f(x)− qt(x)|2PXt(dx) → 0 (n →∞)

we approximate qt by a smooth function with compact support (cf., e.g., Theorem A.1 in

Györfi et al. (2002)) and observe that we can approximate this smooth function arbitrarily

exact by spline functions in Fn. This completes the proof of (22).

By an easy application of Cauchy-Schwarz inequality together with

|max{a, b} −max{a, c}| ≤ |a− c| (a, b, c ∈ IR)

we get

V̂0,n =
∫

max{f0(x0), q̂n,0(x0)}dPX0(x0) →
∫

max{f0(x0), q0(x0)}dPX0(x0) = V0 a.s.

The proof is complete. �
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