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Abstract

The problem of optimal stopping with finite horizon in discrete time is considered in view

of maximizing the expected gain. The algorithm proposed in this paper is completely

nonparametric in the sense that it uses observed data from the past of the process up

to time −n + 1, n ∈ N, not relying on any specific model assumption. Kernel regression

estimation of conditional expectations and prediction theory of individual sequences are

used as tools. It is shown that the algorithm is universally consistent: the achieved

expected gain converges to the optimal value for n → ∞ whenever the underlying process

is stationary and ergodic. An application to exercising American options is given, and the

algorithm is illustrated by simulated data.

AMS classification: Primary 60G40; secondary 62G08.
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1 Introduction

In this paper an optimal stopping problem with finite horizon L in discrete time is treated.

The problem is formulated as follows: Let (Zj)j∈Z be a sequence of real-valued random
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variables and let gj(Z
j
1), with measurable bounded and real-valued functions gj on R

j

(g0 = const) and notation Zj
1 = (Z1, . . . , Zj), be the gain when stopping at time j

(j ∈ {0, 1, . . . , L}. In case that one stops at time k ∈ {0, 1, . . . , L} any stopping rule

can rely only on the observed values of Zj at times j ≤ k. Therefore it can be described

by a stopping time τ , i.e., by a measurable function of ZL
−∞ := (. . . , Z−1, Z0, . . . , ZL)

where the event [τ = k] is contained in the σ-algebra F(Zk
−∞) generated by Zk

−∞. Let

T (0, 1, . . . , L) be the set of all such stopping times. Any stopping time τ ∈ T (0, 1, . . . , L)

yields the expected gain

E{gτ (Z
τ
1 )},

and it is this quantity which one wants to maximize, i.e., one wants to construct a stopping

time τ∗ ∈ T (0, 1, . . . , L) such that

V ∗
0 := sup

τ∈T (0,...,L)
E{gτ (Z

τ
1 )} = E{gτ∗(Z

τ∗
1 )}

(so-called value of the optimal stopping problem). In the sequel we assume only station-

arity and ergodicity and define decision rules on the basis of observed data. The unknown

underlying distribution is not used.

More precisely, for n ∈ N we assume that from the past of the process the random

variables Z−n+1, . . . , Z0 are observed and we want to construct a stopping time

τ̂n = τ̂n(Z
L
−n+1) ∈ T (0, 1, . . . , L)

such that

V̂0,n := E
{

gτ̂n(Z
τ̂n
1 )
}

converges to V ∗
0 .

In the definition of our estimates we firstly use results from the general theory of op-

timal stopping showing that an optimal stopping time can be constructed on the basis

of dynamic programming by recursively computing so-called continuation value functions,

which indicate the value of the optimal stopping problem (from time t on) given an ob-

served vector Zt
−∞ under the constraint of no stopping at time t (cf., e.g., Chow, Robbins

and Siegmund (1971) or Shiryayev (1978)). Secondly we use that these continuation values

can be represented as conditional expectations (cf., e.g., Tsitsiklis and van Roy (1999),
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Longstaff and Schwarz (2001) or Egloff (2005)), and our algorithm uses techniques from

nonparametric regression to estimate these conditional expectations from observed station-

ary and ergodic data Z−n+1, Z−n, . . . In contrast to the above references which study

regression-based Monte-Carlo methods for pricing American options, for our estimates we

do not use simulations of the underlying process, because in our case its distribution is

unknown, but use only the observation of the individual sequence back to time −n + 1.

This is in general a rather challenging task, where usually extremely complex and data

consuming algorithms are necessary (cf., e.g., Morvai, Yakowitz and Györfi (1996)). But

in case that it is enough to construct algorithms which converge in the so-called Cesàro

sense, a relatively simple and nice algorithm exists (cf., e.g., Section 27.5 in Györfi et al.

(2002)), which uses techniques from the theory of prediction of individual sequences (cf.,

e.g., Cesa-Bianchi and Lugosi (2006)). These techniques have already been used success-

fully in the context of portfolio optimization (cf., e.g., Györfi, Lugosi and Udina (2006),

Györfi, Udina and Walk (2008) and the references therein). In this paper we introduce as

main trick an averaging of such estimates and show that by using this trick we can derive

a consistency result of our estimated stopping rule from Cesàro consistency of the under-

lying regression estimates. So in the definition of our estimate we thirdly apply estimates

defined by use of ideas from the prediction theory of individual sequences.

As an application we consider the problem of exercising an American option in discrete

time (also called Bermudan option) in view of maximizing of the expected discounted

payoff.

The algorithm computing estimates of the optimal stopping time is described in Section

2 and the main result is formulated in Section 3, where also an application to American

options is described. In Section 4 we illustrate our algorithm by applying it to simulated

data, Section 5 contains the proof of the main result, the proof of an auxiliary result is

given in the appendix.
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2 Construction of an approximation of the optimal stopping

time

Our first idea is to use results from the general theory of optimal stopping in order to

determine the optimal stopping time τ∗. Let t ∈ {0, . . . , L − 1} be fixed and denote the

set of all stopping times with values in {t+ 1, . . . , L} by T (t+ 1, . . . , L).

For each τ ∈ T (t + 1, . . . , L) define the real random variable hτ on the probability

space (
∏t

−∞R,⊗t
−∞B,PZt

−∞

) with Borel product σ-algebra and distribution of Zt
−∞ by

hτ (z
t
−∞) := E

{

gτ (Z
τ
1 )|Z

t
−∞ = zt−∞

}

.

Then, according to Chow, Robbins and Siegmund (1971), Section 7.6,

ess sup
τ∈T (t+1,...,L)

hτ =: qt

is defined as a real-valued random variable y on this probability space such that

(i) PZt
−∞

{y ≥ hτ} = 1 for every τ ∈ T (t+ 1, . . . , L),

(ii) if y′ is any real random variable on the probability space satisfying

PZt
−∞

{y′ ≥ hτ} = 1 for every τ ∈ T (t+ 1, . . . , L),

then

PZt
−∞

{y′ ≥ y} = 1.

Thus qt is unique mod PZt
−∞

, i.e., two versions of qt coincide PZt
−∞

-almost everywhere.

By Theorem 1.5 in Chow, Robbins and Siegmund (1971), qt always exists, and there exists

a countable subset T ∗
t of T (t+ 1, . . . , L) such that

qt = sup
τ∈T ∗

t

hτ .

Furthermore we set qL := 0. qt is denoted as continuation value function (t ∈ {0, . . . , L}).

The so-called continuation values

qt(z
t
−∞) =: ess sup

τ∈T (t+1,...,L)
E
{

gτ (Z
τ
1 )|Z

t
−∞ = zt−∞

}

(t ∈ {0, . . . , L− 1}),

qL(z
L
−∞) = 0
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describe the values of the optimal stopping problem from t on given Zt
−∞ = zt−∞ subject

to the constraint of not stopping at time t.

Replacing T (t+ 1, . . . , L) by T (t, . . . , L) leads to the so-called value functions

ess sup
τ∈T (t,...,L)

hτ =: Vt (t ∈ {0, . . . , L}). (1)

Vt(z
t
−∞) describes the value of the optimal stopping problem (from t on) given Zt

−∞ = zt−∞.

For t ∈ {−1, 0, . . . , L− 1} set

τ∗t := inf
{

s ≥ t+ 1 : qs(Z
s
−∞) ≤ gs(Z

s
1)
}

. (2)

We can conclude from the general theory of optimal stopping (see, e.g., Chow, Robbins

and Siegmund (1971) or Shiryayev (1978)):

Lemma 1 It holds

Vt(z
t
−∞) = E

{

gτ∗t−1
(Z

τ∗t−1

1 )|Zt
−∞ = zt−∞

}

(3)

PZt
−∞

-almost everywhere for t ∈ {0, . . . , L}. Furthermore

V ∗
0 := sup

τ∈T (0,...,L)
E {gτ (Z

τ
1 )} = E

{

gτ∗(Z
τ∗
1 )
}

(4)

is fulfilled for

τ∗ := τ∗−1 = inf
{

j ∈ {0, 1, . . . , L} : gj(Z
j
1) ≥ qj(Z

j
−∞)

}

.

Lemma 1 can be proven as in the case of Markovian processes (cf., e.g., proof of Theorem 1

in Kohler (2010)), a complete proof of this lemma is available from the authors by request.

From Lemma 1 we get that it suffices to compute the continuation value functions

q0, . . . , qL−1 in order to construct the optimal stopping rule τ∗. In Tsitsiklis and van

Roy (1999), Longstaff and Schwarz (2001) and Egloff (2005) it is shown that in case of

Markovian processes the continuation values can be computed recursively by evaluation

of conditional expectations. The same can be shown also in the setting considered in this

paper.

Lemma 2 The continuation values satisfy

qj(z
j
−∞) = E

{

max
{

gj+1(Z
j+1
1 ), qj+1(Z

j+1
−∞)

}

|Zj
−∞ = zj−∞

}

= E
{

max
{

gj+1(z
j
1, Zj+1), qj+1(z

j
−∞, Zj+1)

}

|Zj
−∞ = zj−∞

}

(5)
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P
Zj
−∞

-almost everywhere and

qj(z
j
−∞) = E

{

gτ∗j (Z
τ∗j
1 )|Zj

−∞ = zj−∞

}

(6)

P
Zj
−∞

-almost everywhere for any j ∈ {0, 1, . . . , L− 1}.

Lemma 2 can be proven as in the case of Markovian processes (cf., e.g., proof of Theorem

2 in Kohler (2010)), again a complete proof of this lemma is available from the authors

by request.

Usually in applications the distribution of the underlying process (Zn)n is unknown

and therefore it is impossible to use (5) (or (6)) in order to compute the continuation

values. In the sequel we will try to estimate them by using (recursively defined) regression

estimates in order to approximate the conditional expectations in (5). To do this, for any

n ∈ N we use Z0
−n+1 in order to construct an estimate of the optimal stopping rule on the

data Z0, . . . , ZL.

Next we describe how we construct estimates q̂
(n)
j (Zj

−n+1) of qj(Z
j
−∞).

The estimates are defined recursively with respect to j ∈ {0, . . . , L}. For j = L we

have qL = 0 and in this case we set

q̂
(n)
L := 0.

Given q̂
(m)
j+1 (defined on R

j+m+1), m ≤ n, for some j ∈ {0, 1, . . . , L − 1} we define q̂
(n)
j as

follows.

To make the construction more transparent, for the function qj :
∏j

−∞R → R,

which by (5) is given as a regression function, we define a regression estimation func-

tion m̂
(n)
j,(k,h)(z

0
−n+1; ·) :

∏j
−n+1R → R+ with parameters k, h using realizations z0−n+1

of Z0
−n+1. The definition depends on parameters k ∈ N (indicating how far back the

estimate will look, and thus indicating also the dimension of the occuring regression es-

timation problem) and h > 0 (a so-called bandwidth which (roughly speaking) indicates

how similar observed values in the past must be to the current observed values in order to

be included in the prediction of the future value) and a kernel function K : Rj+k+1 → R+.

We define the latter by

K(v) := H
(

‖v‖j+k+1
2

)

,
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where ‖v‖2 denotes the Euclidean norm of v and H : R+ → R+ is a given nonincreasing

and continuous function satisfying

H(0) > 0 and t ·H(t) → 0 (t → ∞),

(e.g., H(v) = e−v2). The use of the exponent j + k + 1 in the definition of K and not for

the factor t in the condition on H allows to choose H independent of j and k.

We set m̂
(n)
L,(k,h)(z

0
−n+1; ·) := 0 and use local averaging to define

m̂
(n)
j,(k,h)(z

0
−n+1;u

j
−n+1)

:=

−(j+1)
∑

i=−n+k+1

max
{

gj+1(z
i+j+1
i+1 ), q̂

(n+i)
j+1 (zi+j+1

−n+1 )
}

·

K

(

uj

−k
−zi+j

i−k

h

)

∑−(j+1)
l=−n+k+1K

(

uj

−k
−zl+j

l−k

h

) (7)

for uj−n+1 ∈
∏j

−n+1R, where we set

m̂
(n)
j,(k,h)(z

0
−n+1; ·) := 0

for k ≥ n− j − 1, and 0
0 := 0. Then we set

q̂
(n)
j,(k,h)(z

j
−n+1) := m̂

(n)
j,(k,h)(z

0
−n+1; z

j
−n+1).

Let hr > 0 be such that hr → 0 for r → ∞ and set

P := {(k, hr) : k, r ∈ N} .

For (k, h) ∈ P define the cumulative loss of the corresponding estimate by

Q̂n,j(k, h) := Q̂n,j((z
j
−n+1, k, h)

:=
1

n

n−1
∑

i=1

(

q̂
(i)
j,(k,h)(z

−n+i+j
−n+1 )−max

{

gj+1

(

z−n+i+j+1
−n+i+1

)

, q̂
(i)
j+1(z

−n+i+j+1
−n+1 )

}

)2

. (8)

Put c = 8B2 (where we assume that the gain functions are bounded by B), let (pk,r)k,r

be a probability distribution such that pk,r > 0 for all k, r ∈ N, and define weights, which

depend on these cumulative losses, by

w
(j)
n,k,r := w

(j)
n,k,r(z

j
−n+1) := pk,r · e

−n·Q̂n,j(k,hr)/c

7



and their normalized values

v
(j)
n,k,r := v

(j)
n,k,r(z

j
−n+1) :=

w
(j)
n,k,r

∑∞
s,t=1w

(j)
n,s,t

.

The estimate q̂
(n)
j is defined on

∏j
−n+1R as the convex combination of the estimates q̂

(n)
j,(k,hr)

using the weights v
(j)
n,k,r, i.e., q̂

(n)
j is defined by

q̂
(n)
j (zj−n+1) :=

∞
∑

k,r=1

v
(j)
n,k,r · q̂

(n)
j,(k,hr)

(zj−n+1). (9)

Finally, for the computation of our estimated stopping rule we use the arithmetic mean of

the first n estimates, i.e., we use

q̂j,n(z
j
−n+1) :=

1

n

n
∑

l=1

q̂
(l)
j (zj−l+1) (10)

for j ∈ {0, 1, . . . , L− 1} and q̂L,n := qL = 0.

With this estimate of qj we estimate the optimal stopping rule

τ∗ := inf
{

j ∈ {0, 1, . . . , L} : gj(Z
j
1) ≥ qj(Z

j
−∞)

}

by

τ̂n := inf
{

j ∈ {0, 1, . . . , L} : gj(Z
j
1) ≥ q̂j,n(Z

j
−n+1)

}

.

3 Main theoretical result

In Theorem 1 below we assume that the underlying process (Zj)j∈Z in R is (strictly)

stationary and ergodic, i.e., for each B ∈ BZ (where BZ is the Borel σ-algebra in R
Z) and

each k ∈ Z

P{(Zj)j∈Z ∈ B} = P{(Zj+k)j∈Z ∈ B},

and for each B ∈ BZ such that the event

A := {(Zj+k)j∈Z ∈ B}

does not depend on k ∈ Z one has

P(A) ∈ {0, 1}
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(cf., e.g., Gänssler and Stute (1977) or Györfi et al. (2002), p. 565).

Let the estimate τ̂n of the optimal stopping rule τ∗ be defined as in the previous section.

Then the following result is valid:

Theorem 1 Let (Zj)j∈Z be an arbitrary stationary and ergodic sequence of real-valued

random variables. Assume that the gain functions gl : R
l → R (l = 0, . . . , L) with g0 =

const are measurable, nonnegative and bounded (in absolute value) by B > 0. Let the

estimate be defined as in Section 2, where the kernel K is given by

K(v) = H
(

‖v‖j+k+1
2

)

,

for some H : R+ → R+ which is a nonincreasing and continuous function satisfying

H(0) > 0 and t ·H(t) → 0 (t → ∞).

Then

V̂0,n := E
{

gτ̂n(Z
τ̂n
1 )
}

→ V ∗
0 = E

{

gτ̂∗(Z
τ̂∗

1 )
}

for n → ∞.

As an application we consider the problem of exercising an American option in discrete

time in view of maximization of the expected payoff. Let Xj , j ∈ Z, be positive random

variables defined on the same probability space describing the values of the underlying

asset of the option at time points j ∈ Z. For simplicity we consider only the case that

Xj be real-valued, i.e., we consider only options on a single asset. Hereby we assume only

that the corresponding returns Zj := Xj/Xj−1 form a stationary and ergodic sequence.

The unknown underlying distribution is not used. Let f : R → R+ be the payoff function

of the option, which we assume to be nonnegative, bounded and measurable, e.g., f(x) =

max{K − x, 0} in case of an American put option with strike K. Let r∗ be the riskless

interest rate. If we get the payoff at time t > 0 we discount it towards zero by the factor

e−r∗·t, so for asset value x at time t the discounted payoff of the option is e−r∗·t · f(x).

Let L > 0 be the expiration date of our option. In the sequel we renormalize the payoff

function such that we can assume X0 = 100, and we consider an American option on Xj

with exercise opportunities restricted to {0, 1, . . . , L} (sometimes also called Bermudan

option). Any rule for exercising such an option within {0, 1, . . . , L} can be described by

9



a stopping time τ ∈ T (0, . . . , L). Any stopping time τ describing the exercising of an

American option yields in the mean the payoff

E
(

e−r∗·τ · f(Xτ )
)

,

which we want to maximize, i.e., we want to construct a stopping time τ∗ ∈ T (0, . . . , L)

such that

V ∗
0 := sup

τ∈T (0,...,L)
E
{

e−r∗·τ · f(Xτ )
}

= E
{

e−r∗·τ∗ · f(Xτ∗)
}

.

It should be noted that V0 is not the price of the option as defined in financial mathematics

since we ignore the rest of the financial market, in particular we do not buy, sell or borrow

additional stocks in parallel. Instead, we are dealing with the situation of a holder of the

option who has no other possibilities than to exercise the option.

We assume that X−n, . . . ,X0 or - equivalently - Z−n+1, . . . , Z0 are observed. Then we

set g0 = f(X0) = f(100), gj(Z
j
1) = e−r∗·jf(Xj) = e−r∗·jf(100·Z1 ·Z2 . . . Zj) (j = 1, . . . , L)

and define the sequence of stopping times τ̂n as in Section 2. Immediately from Theorem

1 we can conclude:

Corollary 1 Let (Xj)j∈Z be an arbitrary sequence of positive random variables such that

the corresponding returns are stationary and ergodic. Assume that the payoff function is

measurable, nonnegative and bounded by B > 0. Let the estimate be defined as above,

where the kernel K is given by

K(v) = H
(

‖v‖j+k+1
2

)

,

for some H : R+ → R+ which is a nonincreasing and continuous function satisfying

H(0) > 0 and t ·H(t) → 0 (t → ∞).

Then

V̂0,n := E
{

e−r∗·τ̂n · f(Xτ̂n)
}

→ V ∗
0 = E

{

e−r∗·τ∗ · fτ∗(Xτ∗)
}

for n → ∞.
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Figure 1: Butterfly spread payoff function used in the simulation.

4 Application to simulated data

In this section we evaluate the behaviour of our newly proposed estimate for finite sample

size by applying it to simulated data. Here we consider the optimal exercising of an

American option in discrete time which can be exercised on one of the five equidistant

time points t0 = 0, t1 = 0.25, t2 = 0.5, t3 = 0.75 and t4 = 1. The starting value of

the stock is x0 = 100, for the payoff function we use a butterfly payoff function given by

f(x) = max{0,min{x − 99, 107 − x}} (cf., Figure 1). As model for generating the stock

values we consider a GARCH(1,1) model in the form of Duan (1995). Here we simulate

the price process according to

Xi+1 = Xi · exp

(

r∗

4
−

1

2
· σ2

i+1 + σi+1 · ǫi+1

)

,

σ2
i+1 = δ0 + δ1 · (σi · ǫi − λ · σi)

2 + ξ1 · σ
2
i ,

where r∗ = 0.05, λ = 0.7136, δ0 = 0.0000664, δ1 = 0.144, ξ1 = 0.776 and where (ǫt)t∈Z are

independent normally distributed random variables with expectation zero and variance

one. We start our simulation with X0 = x0 = 100. For σ0 we use the random value we

get if we start the second recursion with σ2
−1600 = 0.

We consider four different algorithms to estimate the optimal stopping time: The first

two algorithms are simple methods where we exercise the option at the first time when the

11



payoff is greater than zero (simple1) or at the expiration date of the option (simple2). The

third algorithm is the newly proposed algorithm of this article (new algorithm), and the

fourth algorithm (optstop) is a regression-based Monte Carlo estimate of the optimal stop-

ping rule based on the true price process, where we extend the state space in order to get a

3-dimensional Markovian process (i.e., we use (Xi, σi, ǫi) as variables of the algorithm). As

regression-based Monte Carlo procedure we use the smoothing spline algorithm described

in Kohler (2008), which gives results which are usually at least comparable but often better

than the algorithms of Tsitsiklis and Van Roy (1999) and Longstaff and Schwarz (2001)

based on parametric regression (cf. Kohler (2010)). This algorithm can never be used in

a real application since it requires that the distribution of the underlying data is known

and since its decisions depend on the not observable random variables σi and ǫi, however

it can be considered as an approximation of the theoretical optimal stopping rule.

In contrast to algorithms one and two, the algorithms three and four require training

data. Our newly proposed algorithm three uses a path of values of length 1500 (which

is part of the path of length 1600 preceeding our evaluation paths) in order to learn its

stopping rule, i.e., it depends on observable values of the stock from the past. The theo-

retical algorithm four requires a training set consisting of paths generated independently

and identically to the path for which it should generate the stopping rule (which is never

available in any real application). In our simulation the algorithm is based on 1000 paths

of length 5 starting with x0 = 100, each of them extending the same path before time

t0 = 0 used also in the evaluation of the stopping rule.

All algorithms are evaluated by applying them to 1000 paths of length 5 starting with

x0 = 100, where each of them extends the same path before time t0 = 0, and we compute

the average of the 1000 payoffs achieved. Since for two of our four algorithms this result

depends on the random training data, we repeat this whole procedure 100 times and report

the means and the standard deviations of the resulting values for each algorithm.

In the practical implementation of our newly proposed algorithm we consider as band-

widths h ∈ {0.001, 0.01, 0.1} and use the k ∈ {0, 1, 2} last values of the returns for pre-

diction of the value at the next time step. Each of these 3 · 3 = 9 models gets the same

probability pk,r =
1
9 , and for the constant used for computing the weights of the estimate

from the cumulative empirical losses we use c = 8B2 where B is the maximal value of

12



simple1 simple2 new algorithm optstop

Mean value 1.00 0.61 1.70 1.72

(Standard deviation) (0.00) (0.04) (0.44) (0.04)

Table 1: Achieved payoffs by the four different algorithms.

the payoff function. In addition, we make the following modifications: Firstly, we simplify

the computation of the algorithm in such a way that we do not use the final averaging

step (10), because otherwise we are not able to compute the result of our algorithm in

a reasonable time on a standard computer. Secondly, we do not use returns relative to

the previous day as x-values for our regression estimates, instead we use returns relative

to the beginning of the time interval of an option. With the later modification it can be

shown that the theoretical result above is still valid, because a consecutive sequence of

these modified returns generates the same σ-algebra as the corresponding original returns.

Finally, we ignore the first n0,t = (L − 1 − t) · 200 data points during the computation

of q̂
(t)
j since we think that the first n0,t values of q̂

(t+1)
j are not reliable because they are

based on too few data points.

The results of the four algorithms are reported in Table 1. As we can see from Table 1

both simple algorithms are clearly outperformed by our newly proposed algorithm, which

achieves results which are very close to the results of the exercising strategy optstop relying

on information not available in a real application.

From Table 1 we see that in principle our new algorithm could also be used as a numer-

ical tool to evaluate American options as the algorithms of Tsitsiklis and Van Roy (1999),

Longstaff and Schwarz (2001) or its nonparametric version used for optstop. However it

should be mentioned that our new algorithm needs much more time to compute its results:

For one of the 100 values computed for Table 1 it needs approximately 2 hours as opposed

to 4 minutes needed by the optstop algorithm.
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5 Proofs

5.1 Preliminaries to the proof of Theorem 1

Once we have constructed approximations q̂j(z
j
−∞) of the continuation values qj(z

j
−∞) we

can use them to construct an approximation

τ̂ = inf
{

j ∈ {0, 1, . . . , L} : gj(Z
j
1) ≥ q̂j(Z

j
−∞)

}

of the optimal stopping time τ∗.

As our next lemma shows the errors of the estimates q̂j determine the quality of the

constructed stopping time.

Lemma 3 Assume q̂L = 0. Then

E
{

gτ∗(Z
τ∗
1 )|Z−1

−∞

}

−E
{

gτ̂ (Z
τ̂
1 )|Z

−1
−∞

}

≤

L−1
∑

j=0

E

{

∣

∣

∣
q̂j(Z

j
−∞)− qj(Z

j
−∞)

∣

∣

∣

∣

∣

∣

∣

Z−1
−∞

}

.

The assertion follows from a modification of the proof of Proposition 21 in Belomestny

(2010). For the sake of completeness a complete proof is given in the appendix.

5.2 Proof of Theorem 1

Stationarity of (Zn)n∈Z implies that

Zj
−∞ and Zj+l

−∞ have the same distribution for all l ∈ Z. (11)

In the sequel we want to bound

V0 − V̂0,n = E
{

gτ∗(Z
τ∗
1 )− gτ̂n(Z

τ̂n
1 )
}

= E
{

E
{

gτ∗(Z
τ∗
1 )− gτ̂n(Z

τ̂n
1 )|Z1

−∞

}}

.

By Lemma 3 we have

V0 − V̂0,n ≤

L−1
∑

j=0

E
{
∣

∣

∣
q̂j,n(Z

j
−n+1)− qj(Z

j
−∞)

∣

∣

∣

}

,

so it suffices to show

E
{
∣

∣

∣
q̂j,n(Z

j
−n+1)− qj(Z

j
−∞)

∣

∣

∣

}

→ 0 (n → ∞) (12)

for j ∈ {0, 1, . . . , L− 1}.
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Using the definition of q̂j,n as arithmetic mean and the triangle inequality we get

E
{
∣

∣

∣
q̂j,n(Z

j
−n+1)− qj(Z

j
−∞)

∣

∣

∣

}

= E

{∣

∣

∣

∣

∣

1

n

n
∑

l=1

q̂
(l)
j (Zj

−l+1)− qj(Z
j
−∞)

∣

∣

∣

∣

∣

}

≤
1

n

n
∑

l=1

E
{
∣

∣

∣
q̂
(l)
j (Zj

−l+1)− qj(Z
j
−∞)

∣

∣

∣

}

(11)
=

1

n

n
∑

l=1

E
{
∣

∣

∣
q̂
(l)
j (Zj+l

1 )− qj(Z
j+l
−∞)

∣

∣

∣

}

= E

{

1

n

n
∑

l=1

∣

∣

∣
q̂
(l)
j (Zj+l

1 )− qj(Z
j+l
−∞)

∣

∣

∣

}

.

Because of the Cauchy-Schwarz inequality it suffices to show

E

{

1

n

n
∑

l=1

∣

∣

∣
q̂
(l)
j (Zj+l

1 )− qj(Z
j+l
−∞)

∣

∣

∣

2
}

→ 0 (13)

(n → ∞) for all j ∈ {0, . . . , L − 1}. And because of boundedness of the estimates and of

qj this in turn follows from

1

n

n
∑

l=1

∣

∣

∣
q̂
(l)
j (Zj+l

1 )− qj(Z
j+l
−∞)

∣

∣

∣

2
→ 0 (14)

in probability for all j ∈ {0, . . . , L− 1}.

The idea is now to use techniques from Section 27.5 (in particular Corollary 27.1) in

Györfi et al. (2002). We have in mind definitions (7), (8) and (9), also q̂
(n)
L := 0, and

define estimates m̂
(n)
j (zn1 , ·) of mj := qj using realizations z1, . . . , zn of Z1, . . . , Zn, with

arguments u1, . . . , un+j. We start with

m̂
(n)
L (zn1 ; ·) := 0.

Given m̂
(n)
j+1(z

n
1 ; ·) for j ∈ {0, 1, . . . , L− 1} we define m̂

(n)
j (zn1 ; ·) as follows:

We start with defining m̂j,n,(k,h)(z
n
1 ; ·) with parameters k ∈ N and h > 0 using local

averaging (around un+j
1 ) by

m̂j,n,(k,h)(z
n
1 ;u

n+j
1 )

:=

n−j−1
∑

i=k+1

max
{

gj+1(z
i+j+1
i+1 ), m̂

(i)
j+1(z

i
1; z

i+j+1
1 )

}

·

K

(

un+j

n−k
−zi+j

i−k

h

)

∑n−j−1
l=k+1 K

(

un+j

n−k
−zl+j

l−k

h

) . (15)
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Here we set

m̂j,n,(k,h)(z
n
1 ; ·) := 0

for k ≥ n− j − 1.

For (k, h) ∈ P (where P is the parameter set in the definition of the estimate) define

the cumulative loss of the estimate with parameter (k, h) by

L̂n,j(k, h) := L̂n,j(k, h; z
n−1
1 ;un+j

1 ) =

1

n

n−1
∑

i=1

(

m̂j,i,(k,h)(z
i
1;u

i+j
1 )−max

{

gj+1(u
i+j+1
i+1 ), m̂

(i)
j+1(z

i
1;u

i+j+1
1 )

}

)2

.

Put c := 8B2 (where B is the bound on the gain functions), let (pk,r)k,r be the

probability distribution used in the definition of the estimate (which satisfies pk,r > 0

for all k, r ∈ N) and define weights, which depend on these cumulative losses, by

w
(j)
n,k,r := w

(j)
n,k,r(z

n−1
1 ;un+j

1 ) = pk,r · e
−nL̂n,j(k,hr)/c

and their normalized values by

v
(j)
n,k,r := v

(j)
n,k,r(z

n−1
1 ;un+j

1 ) =
w

(j)
n,k,r

∑∞
s,t=1w

(j)
n,s,t

.

The estimate m̂
(n)
j is defined as the convex combination of all estimates m̂j,n,(k,hr) using

weights v
(j)
n,k,r, i.e., m̂

(n)
j is defined by

m̂
(n)
j (zn1 ;u

n+j
1 ) :=

∞
∑

k,r=1

v
(j)
n,k,r · m̂j,n,(k,hr)(z

n
1 ;u

n+j
1 ).

By using a backward induction with respect to j starting with L it is easy to see that

we have

m̂
(n)
j,(k,h) = mj,n,(k,h), q̂

(n)
j (zj−n+1) = m̂

(n)
j

(

z0−n+1; z
j
−n+1

)

,

further

Q̂n,j(k, h) = Q̂n,j(z
j
−n+1, k, h) = L̂n,j(k, h; z

−1
−n+1; z

j
−n+1).

Thus (14) means

1

n

n
∑

l=1

∣

∣

∣
m̂

(l)
t (Z l

1;Z
l+t
1 )−mt(Z

l+t
−∞)

∣

∣

∣

2
→ 0 (16)

in probability for all t ∈ {0, 1, . . . , L}, which we show by backward induction with respect

to t.
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We start with t = L in which the assertion is trivial since

m̂
(l)
L = 0 and mL = 0

for all l ∈ N.

Assume now that (16) holds for t = j + 1 for some j ∈ {0, 1, . . . , L − 1}. We have to

show that in this case it is also valid for t = j.

Set

Ln(m̂j) :=
1

n

n−1
∑

l=1

∣

∣

∣

∣

m̂
(l)
j (Z l

1;Z
l+j
1 )−max

{

gj+1(Z
l+j+1
l+1 ),mj+1(Z

l+j+1
−∞ )

}

∣

∣

∣

∣

2

,

Ln(m̂j,·,(k,h)) :=
1

n

n−1
∑

l=1

∣

∣

∣

∣

m̂j,l,(k,h)(Z
l
1;Z

l+j
1 )−max

{

gj+1(Z
l+j+1
l+1 ),mj+1(Z

l+j+1
−∞ )

}

∣

∣

∣

∣

2

,

L̂n(m̂j) :=
1

n

n−1
∑

l=1

∣

∣

∣

∣

m̂
(l)
j (Z l

1;Z
l+j
1 )−max

{

gj+1(Z
l+j+1
l+1 ), m̂

(l)
j+1(Z

l
1;Z

l+j+1
1 )

}

∣

∣

∣

∣

2

,

and

L̂n(m̂j,·,(k,h)) := L̂n,j(k, h;Z
n−1
1 ;Zn+j

1 )

:=
1

n

n−1
∑

l=1

∣

∣

∣

∣

m̂j,l,(k,h)(Z
l
1;Z

l+j
1 )−max

{

gj+1(Z
l+j+1
l+1 ), m̂

(l)
j+1(Z

l
1;Z

l+j+1
1 )

}

∣

∣

∣

∣

2

.

By Lemma 27.3 in Györfi et al. (2002) we get

L̂n(m̂j) ≤ inf
k,r∈N

(

L̂n(m̂j,·,(k,hr))− c ·
ln pk,r
n

)

. (17)

Set

L∗
j := E

{

∣

∣

∣

∣

mj(Z
j
−∞)−max

{

gj+1(Z
j+1
1 ),mj+1(Z

j+1
−∞)

}

∣

∣

∣

∣

2
}

.

In order to show (16) we use the following lemma which we prove directly after the end

of this proof.

Lemma 4 Let j ∈ {0, . . . , L− 1}. If (16) holds for t = j + 1, then

Ln(m̂j) → L∗
j in probability. (18)
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We use (18) to show (16) for t = j. To do this we proceed as in the proof of Corollary

27.1 in Györfi et al. (2002). Consider the following decomposition:

(

m̂
(l)
j (Z l

1;Z
l+j
1 )−max

{

gj+1(Z
l+j+1
l+1 ),mj+1(Z

l+j+1
−∞ )

})2

=
(

m̂
(l)
j (Z l

1;Z
l+j
1 )−mj(Z

l+j
−∞)

)2

+
(

mj(Z
l+j
−∞)−max

{

gj+1(Z
l+j+1
l+1 ),mj+1(Z

l+j+1
−∞ )

})2

+2 ·
(

m̂
(l)
j (Z l

1;Z
l+j
1 )−mj(Z

l+j
−∞)

)

·
(

mj(Z
l+j
−∞)−max

{

gj+1(Z
l+j+1
l+1 ),mj+1(Z

l+j+1
−∞ )

})

.

By (18) we know

1

n

n
∑

l=1

(

m̂
(l)
j (Z l

1;Z
l+j
1 )−max

{

gj+1(Z
l+j+1
l+1 ),mj+1(Z

l+j+1
−∞ )

})2
→ L∗

j

in probability. Furthermore, by the ergodic theorem we have

1

n

n
∑

l=1

(

mj(Z
l+j
−∞)−max

{

gj+1(Z
l+j+1
l+1 ),mj+1(Z

l+j+1
−∞ )

})2
→ L∗

j a.s.

Hence it suffices to show

1

n

n
∑

l=1

(

m̂
(l)
j (Z l

1;Z
l+j
1 )−mj(Z

l+j
−∞)

)

·
(

mj(Z
l+j
−∞)−max

{

gj+1(Z
l+j+1
l+1 ),mj+1(Z

l+j+1
−∞ )

})

→ 0 a.s. (19)

The random variables

(

m̂
(l)
j (Z l

1;Z
l+j
1 )−mj(Z

l+j
−∞)

)

·
(

mj(Z
l+j
−∞)−max

{

gj+1(Z
l+j+1
l+1 ),mj+1(Z

l+j+1
−∞ )

})

are martingale differences because of mj = qj, (5), stationarity and dependence of the

first factor on Z l+j
−∞ (not on Z l+j+1

−∞ ), and they are bounded by 4B2. Therefore (19) is a

consequence of Theorem A.6 in Györfi et al. (2002) (which we apply with ci = 1). �

5.3 Proof of Lemma 4.

By |max{a, b} −max{a, c}| ≤ |b− c| (a, b, c ∈ R) and (16) for t = j + 1 we get

1

n

n−1
∑

l=1

∣

∣

∣

∣

max
{

gj+1(Z
l+j+1
l+1 ),mj+1(Z

l+j+1
−∞ )

}

−max
{

gj+1(Z
l+j+1
l+1 ), m̂

(l)
j+1(Z

l
1;Z

l+j+1
1 )

}

∣

∣

∣

∣

2

≤
1

n

n−1
∑

l=1

∣

∣

∣

∣

m̂
(l)
j+1(Z

l
1;Z

l+j+1
1 )−mj+1(Z

l+j+1
−∞ )

∣

∣

∣

∣

2

→ 0 in probability.
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Using

1

n

n−1
∑

l=1

|al − bl|
2 −

1

n

n−1
∑

l=1

|al − cl|
2 =

1

n

n−1
∑

l=1

(al − bl + al − cl) · (cl − bl)

≤

(

1

n

n−1
∑

l=1

(al − bl + al − cl)
2

)1/2

·

(

1

n

n−1
∑

l=1

(cl − bl)
2

)1/2

and the boundedness of the gain functions we see that this implies

Ln(m̂j)− L̂n(m̂j) → 0 and Ln(m̂j,·,(k,h))− L̂n(m̂j,·,(k,h)) → 0 (20)

in probability. Hence for an arbitrary subsequence (nl)l of (n)n we find a subsubsequence

(nls)s of (nl)l such that we have with probability one

lim sup
s→∞

Lnls
(m̂j) = lim sup

s→∞
L̂nls

(m̂j)

(17)

≤ lim sup
s→∞

inf
k,r∈N

(

L̂nls
(m̂j,·,(k,hr))− c ·

ln pk,r
nls

)

≤ inf
k,r∈N

lim sup
s→∞

(

L̂nls
(m̂j,·,(k,hr))− c ·

ln pk,r
nls

)

= inf
k,r∈N

lim sup
s→∞

Lnls
(m̂j,·,(k,hr)). (21)

Of course, this relation also holds if we replace (nls)s by any of its subsequences (which

we will do later in the proof).

Next we analyze Ln(m̂j,·,(k,hr)). According to (15) we have

m̂j,n,(k,h)(Z
n
1 ; v

j
−n+1)

=

∑n−j−1
i=k+1 max

{

gj+1(Z
i+j+1
i+1 ), m̂

(i)
j+1(Z

i
1;Z

i+j+1
1 )

}

·K

(

vj
−k

−Zi+j

i−k

h

)

∑n−j−1
i=k+1 K

(

vj
−k

−Zi+j

i−k

h

)

=
An

Cn
+

Bn −An

Cn

where

An :=
1

n− j − k − 1

n−j−1
∑

i=k+1

max
{

gj+1(Z
i+j+1
i+1 ),mj+1(Z

i+j+1
−∞ )

}

·K

(

vj−k − Zi+j
i−k

h

)

,

Bn :=
1

n− j − k − 1

n−j−1
∑

i=k+1

max
{

gj+1(Z
i+j+1
i+1 ), m̂

(i)
j+1(Z

i
1;Z

i+j+1
1 )

}

·K

(

vj−k − Zi+j
i−k

h

)
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and

Cn :=
1

n− j − k − 1

n−j−1
∑

i=k+1

K

(

vj−k − Zi+j
i−k

h

)

.

By the ergodic theorem we get

An → E

{

max
{

gj+1(Z
j+1
1 ),mj+1(Z

j+1
−∞)

}

·K

(

vj−k − Zj
−k

h

)}

a.s.

and

Cn → E

{

K

(

vj−k − Zj
−k

h

)}

a.s.

If we use the continuity of the kernel function we can even apply an ergodic theorem in

the separable Banach space of continuous functions vanishing at infinity (with supremum

norm) and get that the almost sure convergence of An and Cn is uniformly with respect

to vj−k (cf., e.g., Krengel (1985), Chapter 4, Theorem 2.1).

Furthermore, using the triangle inequality,

|max{a, b} −max{a, c}| ≤ |b− c| (a, b, c ∈ R),

and the Cauchy-Schwarz inequality we can conclude

|Bn −An|

≤
1

n− j − k − 1

n−j−1
∑

i=k+1

∣

∣

∣
m̂

(i)
j+1(Z

i
1;Z

i+j+1
1 )−mj+1(Z

i+j+1
−∞ )

∣

∣

∣
·K

(

vj−k − Zi+j
i−k

h

)

≤

√

√

√

√

1

n− j − k − 1

n−j−1
∑

i=k+1

∣

∣

∣
m̂

(i)
j+1(Z

i
1;Z

i+j+1
1 )−mj+1(Z

i+j+1
−∞ )

∣

∣

∣

2

·

√

√

√

√

1

n− j − k − 1

n−j−1
∑

i=k+1

K

(

vj−k − Zi+j
i−k

h

)2

.

By the ergodic theorem the second factor on the right-hand side above converges to

√

√

√

√

√E







K

(

vj−k − Zj
−k

h

)2






< ∞

with probability one (where we have again uniform convergence with respect to vj−k), and

the first factor converges in probability to zero by (16) for t = j+1. Because of K ≥ c·IS0,r
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for suitable c > 0, r > 0, where S0,r is the ball in R
j+k+1 centered at 0 with radius r, we

have

E

{

K

(

vj−k − Zj
−k

h

)}

≥ c ·P
Zj

−k

(

vj−k + S0,r·h

)

> 0 P
Zj

−k

−almost everywhere (22)

(cf., e.g., Györfi et al. (2002), pp. 499, 500). (If K > 0 everywhere, then (22) also holds

everywhere.) Therefore

Bn −An

Cn
→ 0 in probability P

Zj

−k

− almost everywhere,

from which we get

m̂j,n,(k,h)(Z
n
1 ; v

j
−n+1) → mj,(k,h)(v

j
−k) in probability

P
Zj

−k

-almost everywhere, where

mj,(k,h)(v−k, . . . , vj)

=

E

{

max
{

gj+1(Z
j+1
1 ),mj+1(Z

j+1
−∞)

}

·K

(

Zj

−k
−vj

−k

h

)}

E

{

K

(

Zj

−k
−vj

−k

h

)} .

Let ǫ > 0 be arbitrary and set

Sǫ =

{

vj−k ∈ R
k+j+1 : E

{

K

(

vj−k − Zj
−k

h

)}

> ǫ

}

.

By (22) we know

P
Zj

−k

(Sǫ) → 1 (ǫ → 0).

Since the numerators and the denominators above converge uniformly with respect to vj−k

and since the limit of the denominators is greater than ǫ on Sǫ we know in addition

sup
v−n+1,...,v−k−1∈R,vj

−k
∈Sǫ

∣

∣

∣
m̂j,n,(k,h)(Z

n
1 ; v

j
−n+1)−mj,(k,h)(v

j
−k)
∣

∣

∣
→ 0 (23)

in probability. In the sequel we want to use this to show

Ln,j(m̂j,·,(k,h))

=
1

n

n−1
∑

i=1

(

m̂j,i,(k,h)(Z
i
1;Z

i+j
1 )−max

{

gj+1(Z
i+j+1
i+1 ),mj+1(Z

i+j+1
−∞ )

}

)2

→ E

{

∣

∣

∣

∣

mj,(k,h)(Z
j
−k)−max

{

gj+1(Z
j+1
1 ),mj+1(Z

j+1
−∞)

}

∣

∣

∣

∣

2
}

(24)
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in probability. To do this, we observe first that the ergodic theorem implies

Ln,j(mj,(k,h))

=
1

n

n−1
∑

i=1

(

mj,(k,h)(Z
i+j
i−k)−max

{

gj+1(Z
i+j+1
i+1 ),mj+1(Z

i+j+1
−∞ )

}

)2

→ E

{

∣

∣

∣

∣

mj,(k,h)(Z
j
−k)−max

{

gj+1(Z
j+1
1 ),mj+1(Z

j+1
−∞)

}

∣

∣

∣

∣

2
}

almost surely. Because of boundedness of the payoff function we have in addition

∣

∣Ln,j(m̂j,·,(k,h))− Ln,j(mj,(k,h))
∣

∣

≤ c1 ·
1

n

n−1
∑

i=1

∣

∣

∣

∣

m̂j,i,(k,h)(Z
i
1;Z

i+j
1 )−mj,(k,h)(Z

i+j
i−k)

∣

∣

∣

∣

≤ c2 ·
1

n

n−1
∑

i=1

ISc
ǫ
(Zi+j

i−k)

+c1 ·
1

n

n−1
∑

i=1

sup
v−i+1,...,v−k−1∈R,v

j

−k
∈Sǫ

∣

∣

∣
m̂j,i,(k,h)(Z

i
1; v

j
−i+1)−mj,(k,h)(v

j
−k)
∣

∣

∣

→ c2 ·PZj

−k

(Sc
ǫ )

in probability by (23) and by the ergodic theorem. By letting ǫ → 0 we get (24). And by

replacing (nls) by a suitable subsequence of (nls)s we can assume w.l.o.g. even that (24)

holds for almost sure convergence if we replace n by nls in (24).

Next we use Lemma 24.8 in Györfi et al. (2002) which implies

mj,(k,h)(z
j
−k) → mj,k(z

j
−k) P

Zj

−k

− almost everywhere

for h → 0, where

mj,k(z
j
−k) := E

{

max
{

gj+1(Z
j+1
1 ),mj+1(Z

j+1
−∞)

}

∣

∣

∣

∣

Zj
−k = zj−k

}

.

And by the martingale convergence theorem we have

mj,k(Z
j
−k) → mj(Z

j
−∞) a.s.

for k → ∞ (since the almost sure limit X of the left-hand side satisfies

∫

A
X dP =

∫

A
mj(Z

j
−∞) dP
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for all A ∈ F(Zj
−k) and all k ∈ N, cf., e.g., Chapter 32.4A in Loève (1977) for more general

results in this respect). From this we conclude by dominated convergence

lim sup
s→∞

Lnls
(m̂j)

(21)

≤ inf
k,r∈N

lim sup
s→∞

Lnls
(m̂j,·,(k,hr))

(24)
= inf

k,r∈N
E

{

∣

∣

∣

∣

mj,(k,hr)(Z
j
−k)−max

{

gj+1(Z
j+1
1 ),mj+1(Z

j+1
−∞)

}

∣

∣

∣

∣

2
}

≤ L∗
j a.s.

Because of

lim inf
n→∞

Ln(m̂j) ≥ L∗
j a.s.

(cf., e.g., Section 27.5 in Györfi et al. (2002)) this completes the proof of (18). �

A Appendix

Proof of Lemma 3. Set

τ̂∗t = inf{s ≥ t+ 1 : q̂s(Z
s
−∞) ≤ gs(Z

s
1)},

and let Ft be the σ-algebra generated by Zt
−∞. In the sequel we prove

E
{

gτ∗t−1
(Z

τ∗t−1

1 )− gτ̂∗t−1
(Z

τ̂∗t−1

1 )|Ft−1

}

≤
L−1
∑

k=t

E
{

|q̂k(Z
k
−∞)− qk(Z

k
−∞)||Ft−1

}

(25)

for t ∈ {0, . . . , L}, from which we get the assertion of Lemma 3 by setting t = 0.

We prove (25) by induction. The assertion is trivial for t = L (since τ∗L−1 = L = τ̂∗L−1).

Assume that (25) holds for t ∈ {s+1, . . . , L} for some s ∈ {0, 1, . . . , L− 1}. In the sequel

we prove that in this case it also holds for t = s. To do this, we use

E
{

gτ∗t−1
(Z

τ∗t−1

1 )− gτ̂∗t−1
(Z

τ̂∗t−1

1 )|Ft−1

}

=

L−1
∑

k=t

E
{

(gτ∗t−1
(Z

τ∗t−1

1 )− gτ̂∗t−1
(Z

τ̂∗t−1

1 )) · 1{τ̂∗t−1
=k,τ∗t−1

>k}|Ft−1

}

+

L−1
∑

k=t

E
{

(gτ∗t−1
(Z

τ∗t−1

1 )− gτ̂∗t−1
(Z

τ̂∗t−1

1 )) · 1{τ̂∗t−1
>k,τ∗t−1

=k}|Ft−1

}
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=
L−1
∑

k=t

E
{

(gτ∗
k
(Z

τ∗
k

1 )− gk(Z
k
1 )) · 1{τ̂∗t−1

=k,τ∗t−1
>k}|Ft−1

}

+

L−1
∑

k=t

E
{

(gk(Z
k
1 )− qk(Z

k
−∞)) · 1{τ̂∗t−1

>k,τ∗t−1
=k}|Ft−1

}

+

L−1
∑

k=t

E
{

(qk(Z
k
−∞)− gτ̂∗

k
(Z

τ̂∗
k

1 )) · 1{τ̂∗t−1
>k,τ∗t−1

=k}|Ft−1

}

= T1 + T2 + T3,

where we have used that τ̂∗t−1 = τ̂∗k on {τ̂∗t−1 > k} and that τ∗t−1 = τ∗k on {τ∗t−1 > k}. The

random variables

1{τ̂∗t−1
=k,τ∗t−1

>k} and 1{τ̂∗t−1
>k,τ∗t−1

=k}

are Fk-measurable, hence we get by Lemma 2

T1 =

L−1
∑

k=t

E
{

(E{gτ∗
k
(Z

τ∗
k

1 ))|Fk} − gk(Z
k
1 )) · 1{τ̂∗t−1

=k,τ∗t−1
>k}|Ft−1

}

=
L−1
∑

k=t

E
{

(qk(Z
k
−∞)− gk(Z

k
1 )) · 1{τ̂∗t−1

=k,τ∗t−1
>k}|Ft−1

}

≤

L−1
∑

k=t

E
{

(qk(Z
k
−∞)− q̂k(Z

k
−∞)) · 1{τ̂∗t−1

=k,τ∗t−1
>k}|Ft−1

}

,

since τ̂∗t−1 = k implies

gk(Z
k
1 ) ≥ q̂k(Z

k
−∞).

Similarly, τ̂∗t−1 > k implies

gk(Z
k
1 ) < q̂k(Z

k
−∞),

from which we can conclude

T2 ≤

L−1
∑

k=t

E

{

(q̂k(Z
k
−∞)− qk(Z

k
−∞)) · 1{τ̂∗t−1

>k,τ∗t−1
=k}|Ft−1

}

.

Finally we have by Lemma 2

T3 =

L−1
∑

k=t

E
{

E
{

qk(Z
k
−∞)− gτ̂∗

k
(Z

τ̂∗
k

1 )|Fk

}

· 1{τ̂∗t−1
>k,τ∗t−1

=k}|Ft−1

}

=

L−1
∑

k=t

E
{

E
{

gτ∗
k
(Z

τ∗
k

1 )− gτ̂∗
k
(Z

τ̂∗
k

1 )|Fk

}

· 1{τ̂∗t−1
>k,τ∗t−1

=k}|Ft−1

}

,
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and by using the induction hypothesis we get

T3 ≤
L−1
∑

k=t

E

{

L−1
∑

j=k+1

E
{

|q̂j(Z
j
−∞)− qj(Z

j
−∞)||Fk

}

· 1{τ̂∗t−1
>k,τ∗t−1

=k}|Ft−1

}

=

L−1
∑

k=t

E

{

L−1
∑

j=k+1

|q̂j(Z
j
−∞)− qj(Z

j
−∞)| · 1{τ̂∗t−1

>k,τ∗t−1
=k}|Ft−1

}

=

L−1
∑

j=t+1

E

{

|q̂j(Z
j
−∞)− qj(Z

j
−∞)| ·

j−1
∑

k=t

1{τ̂∗t−1
>k,τ∗t−1

=k}|Ft−1

}

=

L−1
∑

k=t+1

E

{

|q̂k(Z
k
−∞)− qk(Z

k
−∞)| ·

k−1
∑

j=t

1{τ̂∗t−1
>j,τ∗t−1

=j}|Ft−1

}

.

Summarizing the above results, we get the assertion. �
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