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Abstract

Static forecasting of stationary and ergodic time series is considered, i.e., inference of the

conditional expectation of the response variable at time zero given the infinite past. It

is shown that the mean squared error of a combination of suitably defined localized least

squares estimates converges to zero for all distributions where the response variable is

square integrable.

AMS classification: Primary 62G05; secondary 62G20.

Key words and phrases: dependent data, forecasting, time series, weak consistency, mean

squared error.

1 Introduction

In this paper we study the so-called static forecasting problem. More precisely, let

((Xn, Yn))n∈ZZ be a stationary and ergodic sequence of IRd × IR–valued random variables

with E
{
Y 2

0

}
<∞. Given the data set

D−1
−n = {(X−n, Y−n), . . . , (X−1, Y−1)}

∗Running title: Weakly universally consistent forecasting
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and X0, we consider the problem to construct estimates mn(X0,D−1
−n) of

E{Y0|X0
−∞, Y

−1
−∞}

such that

E
{∣∣mn(X0,D−1

−n)−E{Y0|X0
−∞, Y

−1
−∞}

∣∣2}→ 0 (n→∞).

For simplification, we have introduced the notation

Z lk = (Zk, Zk+1, . . . , Zl), k ≤ l

for arbitrary random variables Zn (n ∈ ZZ). Both the static forecasting problem and the

related, but more complicated dynamic forecasting problem (including the special case of

autoregression, cf., e.g., Chapter 27 in Györfi et al. (2002)) have evolved from the striving

for generality in the estimation of dependent series.

Most of the results in the existing literature provide consistency in some way under the

assumption of more or less strong mixing conditions on the data (see, e.g., the monograph

by Györfi et al. (1989) for a review). Although there exist models where these conditions

are met, they are very hard to verify - no satisfactory statistical tests are known. Therefore

the question arises, whether there are estimates which are consistent under considerably

weaker assumptions, e.g. stationarity and ergodicity of the data. As for the dynamic

forecasting problem, there are several negative findings, see for example Bailey (1976) or

Ryabko (1988), a summary can be found in Györfi, Morvai and Yakowitz (1998).

Concerning static forecasting, based on works of Ornstein (1978) and Algoet (1992),

Morvai, Yakowitz and Györfi (1996) proposed an estimator, a modification of which can

be shown to be strongly consistent for all stationary and ergodic data in the above de-

fined sense (see Györfi et al. (2002), Section 27.3). For more results in this respect and

concerning related problems, we refer to the works of Györfi, Lugosi and Morvai (1999),

Györfi and Lugosi (2000), Györfi and Ottucsák (2007), as well as Morvai, Yakowitz and

Algoet (1997).

Although the idea of the estimator of Morvai, Yakowitz and Györfi (1996) is natural

and although it is easy to define, it can be expected to require large amounts of data, the

same applies to the estimates of Algoet and Ornstein. This drawback makes the algorithms

hard to apply, to the knowledge of the authors none of them has ever been applied to any
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data sets yet, neither real nor simulated. This motivates to try to derive estimates which

can be computed easily, like the partition estimate for example. Unfortunately, there are

negative findings in a static forecasting setting similar to the one studied in this paper:

Györfi, Morvai and Yakowitz (1998) showed that a partitioning estimate which is strongly

universally consistent in the case of mixing assumptions fails to be consistent when the

data is only stationary and ergodic. It can therefore be assumed that one cannot expect

to find a “simple” estimate which is strongly universally consistent.

In many applications, it is sufficient, that weak universal consistency holds. Kohler

and Walk (2010) for example derived an optimal rule for exercising an American option by

estimating conditional expectations assuming only that the returns of the underlying asset

are stationary and ergodic. In the definition of the estimate, they use techniques from the

theory of the prediction of individual sequences (cf., e.g., Cesa-Bianchi and Lugosi (2006)),

which have already been successfully applied in connection with portfolio optimization (cf.,

e.g., Györfi, Lugosi and Udina (2006) and Györfi, Udina and Walk (2008)). In this paper

we will adapt the ideas of Kohler and Walk (2010) in order to derive an estimate which is

universally consistent for all stationary and ergodic data.

One of the main tricks in the proof is an averaging of estimates of different sample

sizes, which enables us to derive weak consistency results from Cesàro consistency of

the original estimates. Cesàro consistency of regression estimates in case of stationary

and ergodic data was already studied in Morvai and Weiss (2005), where local averaging

estimates in case of a finite alphabet were analyzed. In contrast, in this article we apply a

different estimation principle and use a combination of simple estimates in order to choose

the smoothing parameters of our procedure.

More precisely, we use local modeling combined with techniques from the theory of

the prediction of individual sequences in order to define forecasting rules applicable to

arbitrary stationary and ergodic time series. We show that the resulting estimate is

consistent whenever the response variable is square integrable.

We consider several function spaces for our localized least squares estimate. Piecewise

constant functions will lead to an estimate similar to the well-known kernel estimate. In

addition, we consider estimates based on polynomial splines.

The definition of the estimate is given in Section 2, the main results are formulated in

3



Section 3, the proofs are given in Section 4.

2 Definition of the estimate

First of all we choose an elementary estimate (so-called expert) for our problem, which will

be a localized least squares estimate. The idea is to select via the principle of localized least

squares the function, that would have performed best in the past at the task of predicting

Yi only with the knowledge of the string Xi
i−j+1, Y

i−1
i−j+1 and then to predict Y0 according

to this very function and the arguments X0
−j+1, Y

−1
−j+1. The parameter j quantizes how

far we look back for our prediction. We then define our prediction strategy as a convex

combination of these experts, where the weights depend on their performance in the past:

The better the performance of the expert in the past, the more reliable it seems and thus

the higher (with respect to the other experts) is the weight we assign to it.

In order to be able to show consistency of the estimate, we will at some point require

boundedness of the estimate and the response variable, which is why we will also use some

truncation techniques.

For j, k, r, s ∈ IN let Fj,k be a set of functions f :
(
IRd
)j × IRj−1 → IR (with an obvious

meaning in case j = 1). Let K be a kernel function with corresponding bandwidth hr

(which both will be specified later), and choose 0 < t < 1
2 . Given observed data

d−1
−n = {(x−n, y−n), . . . , (x−1, y−1)} ,

define the corresponding localized least squares estimate by

m̂n,(j,k,r,s)(·) := m̂n,(j,k,r,s)(·, d
−j
−n)

:= arg min
f∈Fjk

∑−j−s−1
i=−n+j+s

∣∣∣f(xii−j+1, y
i−1
i−j+1)− TBk

(yi)
∣∣∣2 ·K ( (xi−j

i−j−s,y
i−j
i−j−s)−(x−j

−j−s,y
−j
−j−s)

hr

)
∑−j−s−1

i=−n+j+sK

(
(xi−j

i−j−s,y
i−j
i−j−s)−(x−j

−j−s,y
−j
−j−s)

hr

) ,

where the truncation operator is defined as

TL(x) =


x if |x| ≤ L,

L sign(x) else.
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This definition only makes sense, if −n+ j + s ≤ −j − s− 1, so we set

mn,(j,k,r,s)(x0, d
−1
−n) =


Tnt

(
m̂n,(j,k,r,s)(x

0
−j+1, y

−1
−j+1, d

−j
−n)
)

if n ≥ 2j + 2s+ 1,

0 else

(with d−j−n = {(x−n, y−n), . . . , (x−j , y−j)}). For every (j, k, r, s), this gives us an expert who

guesses the outcome of the next observation with knowledge of the observations of the past

and the current value of the variable X. Here j quantizes how far we look back for our

prediction, k is the number of the function space considered, r describes the bandwidth

which we use and s quantizes how far we look back in the localized least squares problem.

The last truncation ensures that for fixed sample size all estimates are bounded by the

same constant. After a certain rounds of play, we consider for n ≥ 2 the “cumulative loss”

Ln(j, k, r, s) = Ln((j, k, r, s), d−1
−n) =

1

n− 1

n−1∑
i=1

(
mi,(j,k,r,s)

(
x−n+i, d

−n+i−1
−n

)
− Tnt (y−n+i)

)2
.

The cumulative loss quantizes how well our prediction strategy performed in the past.

Let (q(j,k,r,s))j,k,r,s∈IN be a probability distribution such that q(j,k,r,s) > 0 for all j, k ∈ IN.

Set cn = 8n2t and define weights (depending on the cumulative loss)

wn,(j,k,r,s) = q(j,k,r,s) · e−(n−1)·Ln(j,k,r,s)/cn ,

and their normalized values

vn,(j,k,r,s) =
wn,(j,k,r,s)∑∞

α,β,γ,δ=1wn,(α,β,γ,δ)
.

Set

m̄n(x0, d
−1
−n) =

∞∑
j,k,r,s=1

vn,(j,k,r,s) ·mn,(j,k,r,s)(x0, d
−1
−n),

which is a convex combination of the experts with weights vn,(j,k,r,s). The final estimate m̂n

is defined by the arithmetic mean of these convex combinations extending their “backsight”

with growing index i:

m̂n(X0,D−1
−n) =

1

n

n∑
i=1

m̄i(X0,D−1
−i ).

3 Main Results

In order to formulate our main result, we need the notion of sup-norm covering numbers,

which we introduce in the next definition.
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Definition 1. Let ε > 0 and let G be a set of functions IRd → IR. Every finite collection

of functions g1, ..., gN : IRd → IR with the property that for every g ∈ G there is a j =

j(g) ∈ {1, ..., N} such that

‖g − gj‖∞ := sup
z
|g(z)− gj(z)| < ε,

is called an ε-cover of G with respect to ‖·‖∞. Let N (ε,G, ‖·‖∞) be the size of the small-

est ε-cover of G w.r.t. ‖·‖∞, take N (ε,G, ‖·‖∞) = ∞ if no finite ε-cover exists. Then

N (ε,G, ‖·‖∞) is called the ε-covering number of G w.r.t. ‖·‖∞ and will be abbreviated

to N∞ (ε,G).

Our main theorem is valid for all (strictly) stationary and ergodic sequences

((Xj , Yj))j∈ZZ. Here a sequence of IRl-valued random variables (Zj)j∈ZZ defined on the

same probability space is (strictly) stationary and ergodic if for each B ∈ BZZ (where BZZ

is the Borel σ-algebra in (IRl)ZZ) and each k ∈ ZZ

P{(Zj)j∈ZZ ∈ B} = P{(Zj+k)j∈ZZ ∈ B},

and if for each B ∈ BZZ with the property that the event

A := {(Zj+k)j∈ZZ ∈ B}

does not depend on k ∈ ZZ one has

P(A) ∈ {0, 1}

(cf., e.g., Breiman (1968), pp. 118, 119, Doob (1954), Section X.1, or Györfi et al. (2002),

p. 565).

Theorem 1. For j, k ∈ IN let Fj,k be a set of functions such that the following conditions

are satisfied:

N∞ (ε,Fj,k) <∞ for all ε > 0, (1)

and there exists a finite ε-cover consisting of piecwise constant functions with respect to a

finite partition.

There exist Bk ∈ IR (k ∈ IN) with

sup
f∈Fj,k

‖f‖∞ ≤ Bk <∞ (2)
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for all j and

lim
k→∞

Bk =∞. (3)

Furthermore for all j suppose that for any probability measure µ on
(
IRd
)j × IRj−1 and

for every g ∈ L2

((
IRd
)j × IRj−1, µ

)
lim inf
k→∞

inf
f∈Fj,k

∫
|g − f |2 dµ = 0. (4)

Assume that ((Xj , Yj))j∈ZZ is a stationary and ergodic sequence of IRd× IR–valued random

variables with E
{
Y 2

0

}
< ∞. Define the estimate m̂n as in Section 2, where the kernel

function K : IR(s+1)·(d+1) → IR+ is given by

K(v) := H
(
‖v‖(s+1)·(d+1)

2

)
,

with a nonincreasing and continuous function H : IR+ → IR+ satisfying

H(0) > 0 and t ·H(t)→ 0 (t→∞).

Suppose that the bandwidth satisfies

lim
r→∞

hr = 0.

Then

E
{∣∣m̂n(X0,D−1

−n)−E(Y0|X0
−∞, Y

−1
−∞)

∣∣2}→ 0 (n→∞).

Next we apply Theorem 1 to piecewise constant functions. In this particular case, the

local modeling estimate is given by a truncated localized kernel estimate which solves the

localized least squares problem in case of bounded piecewise constant functions. Applica-

tion of Theorem 1 yields

Corollary 1. For every j ∈ IN let
{
Pj,k =

{
A1
j,k, A

2
j,k, ..., A

Nj,k

j,k

}}
k∈IN

be a sequence of

partitions of
(
IRd
)j × IRj−1 consisting of Borel sets Alj,k ⊆

(
IRd
)j × IRj−1 which satisfy

lim
k→∞

sup
1≤l≤Nj,k:Al

j,k∩S 6=∅
diam(Alj,k) = 0, (5)

for every sphere S centered at the origin, where diam(A) denotes the diameter of A ⊆ IRt.

Set

Fj,k =


Nj,k∑
l=1

al1Al
j,k

: al ∈ IR, |al| ≤ βk

 .
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Let βk > 0 (k ∈ IN) be such that

lim
k→∞

βk =∞. (6)

Let ((Xj , Yj))j∈ZZ be a stationary and ergodic sequence of IRd× IR–valued random variables

with E
{
Y 2

0

}
<∞. Define the estimate m̂n(X0,D−1

−n) as in Section 2. Then

E
{∣∣m̂n(X0,D−1

−n)−E(Y0|X0
−∞, Y

−1
−∞)

∣∣2}→ 0 (n→∞).

Proof. It is easy to see that we have for the ε–supremum norm covering number

N∞ (ε,Fj,k) ≤
(⌈

2βk
ε

⌉
+ 1

)Nj,k

<∞,

where dze denotes the smallest integer greater than or equal to z. Here the functions of

the ε-cover can be chosen as piecewise constant with respect to Pj,k. Furthermore

sup
f∈Fj,k

‖f‖∞ = βk =: Bk,

with limk→∞Bk =∞, so (1), (2) and (3) hold. It remains to check the denseness condition.

Let µ be a probability measure on
(
IRd
)j× IRj−1. As the continuous functions of bounded

support are dense in L2(µ) (cf., e.g., Theorem A.1. in Györfi et al. (2002)), it suffices to

show that for each ε > 0 and for each continuous function g of compact support and for

each K ∈ IN there exists f̄ ∈ {f : f ∈ Fj,k, k ≥ K} such that∫ ∣∣f̄(x)− g(x)
∣∣2 µ(dx) < ε.

Choose k such that ‖g‖∞ ≤ βk. Set

f̄(x) =

Nj,k∑
l=1

g(xlj,k)1Al
j,k

(x)

for some fixed xlj,k ∈ Alj,k, l = 1, ..., Nj,k. Then ‖f‖∞ ≤ ‖g‖∞ ≤ βk, so f ∈ Fj,k. Let ε > 0

be arbitrary and let C be the support of g. Choose a sphere S centered at the origin with

C ⊆ S and µ(Sc) ≤ ε
8‖g‖2∞

. Then∫ ∣∣f̄(x)− g(x)
∣∣2 µ(dx) ≤

∫
S

∣∣f̄(x)− g(x)
∣∣2 µ(dx) + 4 ‖g‖2∞ · µ(Sc)

≤ sup
1≤l≤Nj,k:Al

j,k∩S 6=∅
sup

x,y∈Al
j,k

|g(x)− g(y)|2 +
ε

2
.
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By uniform continuity of g on S and by (5) we can now increase k until

sup
1≤l≤Nj,k:Al

j,k∩S 6=∅
sup

x,y∈Al
j,k

|g(x)− g(y)|2 ≤ ε

2
.

�

The estimate above locally fits a piecewise constant function to the data. As we will see

from the proof of Theorem 1, these piecewise constant functions are used as approximation

of various multivariate regression functions. In case that some of these regression func-

tions are smooth, a smooth approximation might achieve a much smaller L2 error than a

piecewise constant function. Therefore we will define next an alternative estimate based

on function spaces consisting of polynomial spline functions (i.e., piecewise polynomials

which are globally smooth).

Depending on some parameters k ∈ IN, Lk ∈ IR and M ∈ IN0, we will define a space

of tensor product spline functions f : IRd → IR. Let B1
i,M be the univariate B-spline with

degree M , knot sequence
{
−Lk + l

k

}
l∈ZZ

, and support[
−Lk +

i

k
,−Lk +

i+M + 1

k

]
(cf., e.g., de Boor (1978), Chapter IX or Györfi et al. (2002), Section 14.1). For i =

(i1, ..., id) ∈ ZZd define the tensor product B-spline

Bd
i,M (x1, ..., xd) = Bd

i1,M (x1) · ... ·Bd
id,M

(xd) .

The tensor product spline space SM

(
[−Lk, Lk]d

)
is then defined as

SM

(
[−Lk, Lk]d

)
= span

{
Bd

i,M : supp
(
Bd

i,M

)
∩ [−Lk, Lk]d 6= ∅

}
.

We will now impose some conditions on the parameters of the tensor product space which

will assure that we can apply Theorem 1 to the resulting set of functions.

Corollary 2. For every j ∈ IN put lj = d · j + j − 1 and consider the following set of

functions on IRlj (where we identify
(
IRd
)j × IRj−1 and IRlj ):

Fj,k =


∑

i∈ZZlj :supp

(
B

lj
i,M

)
∩[−Lk,Lk]lj 6=∅

ai B
lj
i,M : |ai| ≤ βk

 ,
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where the parameters fulfil M ≤Mmax(k) for Mmax(k) ∈ IN0 and where

βk →∞ (k →∞), (7)

Lk →∞ (k →∞), (8)

Mmax(k) + 1

k
→ 0 (k →∞). (9)

Let ((Xj , Yj))j∈ZZ be a stationary and ergodic sequence of IRd× IR–valued random variables

with E
{
Y 2

0

}
<∞. Define the estimate m̂n(X0,D−1

−n) as in Section 2. Then

E
{∣∣m̂n(X0,D−1

−n)−E(Y0|X0
−∞, Y

−1
−∞)

∣∣2}→ 0 (n→∞).

Proof. Consider the set of functions

F̄j,k =


∑

i∈ZZlj :supp

(
B

lj
i,M

)
∩[−Lk,Lk]lj 6=∅

ai B
lj
i,M : ai ∈

{
−βk,−βk + ε, ...,−βk +

⌊
2βk
ε

⌋
· ε
} ,

where bzc denotes the largest integer less than or equal to z. Using the fact, that the

B-splines are nonnegative and sum up to one (cf. de Boor (1978), p. 109, 110), it can

easily be seen that F̄j,k is an ε–supremum norm cover of Fj,k. Thus

N∞ (ε,Fj,k) ≤
∣∣F̄j,k∣∣ <∞,

where |·| denotes the cardinality of a set. Furthermore F̄j,k consists of piecewise polyno-

mials with bounded coefficients. These can be approximated arbitrarily well in supremum

norm by piecewise constant functions and hence (1) holds. By construction of Fj,k, (2)

and (3) hold. As for the denseness condition, let µ be an arbitrary probability measure

on IRlj . As in Corollary 1, it suffices to show that any continuous function g of bounded

support can be approximated arbitrarily well with respect to the lim inf–condition (4).

Because of (7) and (8), we may further assume that ‖g‖∞ ≤ βk and that the support of g

is contained in [−Lk, Lk]j .

Set I =

{(
i1, ..., ilj

)
∈ ZZlj : supp

(
B
lj
(i1,...,ilj ),M

)
∩ [−Lk, Lk]lj 6= ∅

}
. For i ∈ I choose

ui ∈ supp
(
B
lj
i,M

)
and set

f =
∑
i∈I

g(ui) ·B
lj
i,M .
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Because of the fact that the B-splines sum up to one and are nonnegative, we have that

‖f‖∞ ≤ ‖g‖∞ and f ∈ Fj,k. This implies∫
IRlj

|g(x)− f(x)|2 µ(dx)

≤ 4 ‖g‖2∞ · µ
(

IRlj \ [−Lk, Lk]lj
)

+

∫
[−Lk,Lk]lj

|g(x)− f(x)|2 µ(dx)

≤ 4 ‖g‖2∞ · µ
(

IRlj \ [−Lk, Lk]lj
)

+ sup
x∈[−Lk,Lk]lj

|g(x)− f(x)|2 .

By (8) we have that

µ
(

IRlj \ [−Lk, Lk]lj
)
→ 0 (k →∞).

By using once more the fact that the B-splines sum up to one and are nonnegative we

have that, for given x ∈ [−Lk, Lk]lj ,

|g(x)− f(x)| ≤
∑
i∈I
|g(ui)− g(x)| ·Blj

i,M (x)

≤ sup

i:x∈supp(B
lj
i,M )

|g(ui)− g(x)|

≤ sup
u,v∈IRlj , ‖u−v‖∞≤(Mmax(k)+1)/k

|g(u)− g(v)| .

Because of (9) and the fact that g is continuous and of bounded support we can conclude

sup
x∈[−Lk,Lk]lj

|g(x)− f(x)|2 → 0 (k →∞).

�

4 Proof of Theorem 1

In the proof of Theorem 1 we will apply Lemma 27.3 in Györfi et al. (2002), which we

reformulate here as

Lemma 1. For a prediction strategy g based on the sequence of decision functions {gi}∞i=1

with

gi :
(

IRd
)i
× IRi−1 → IR,
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define the normalized cumulative prediction error on the string xn1 , y
n
1 as

Ln(g) =
1

n

n∑
i=1

(
gi
(
xi1, y

i−1
1

)
− yi

)2
.

Let h̃1, h̃2, ... be a sequence of prediction strategies (experts), and let {qk}k be a probability

distribution on the set of positive integers. Assume that h̃i(x
n
1 , y

n−1
1 ) ∈ [−B,B] and

yn1 ∈ [−B,B]n. Define

wt,k = qk · e−(t−1)Lt−1(h̃k)/c,

with c ≥ 8B2, and

vt,k =
wt,k∑∞
i=1wt,i

.

If the prediction strategy g̃ is defined by

g̃t(x
t
1, y

t−1
1 ) =

∞∑
k=1

vt,kh̃k(x
t
1, y

t−1
1 ),

then, for every n ≥ 1,

Ln(g̃) ≤ inf
k

(
Ln(h̃k)−

c ln qk
n

)
.

Here − ln(0) is treated as ∞.

Proof. See proof of Lemma 27.3 in Györfi et al. (2002). �

Proof of Theorem 1. The proof will be divided into several steps. In the first step

of the proof we show that the assertion follows from

lim sup
n→∞

E

{
1

n

n∑
i=1

∣∣Yi − m̄i(Xi,Di−1
0 )

∣∣2} ≤ L∗, (10)

where

L∗ := E
{∣∣Y0 −E(Y0|X0

−∞, Y
−1
−∞)

∣∣2} .
Because of

E
{∣∣m̂n(X0,D−1

−n)−E(Y0|X0
−∞, Y

−1
−∞)

∣∣2}
= E

{∣∣Y0 − m̂n(X0,D−1
−n)
∣∣2}−E

{∣∣Y0 −E(Y0|X0
−∞, Y

−1
−∞)

∣∣2} , (11)

the assertion of Theorem 1 follows from

E
{∣∣Y0 − m̂n(X0,D−1

−n)
∣∣2}→ L∗ (n→∞). (12)

12



By (11) we have that

L∗ ≤ E
{∣∣Y0 − m̂n(X0,D−1

−n)
∣∣2} .

The definition of the estimate, the inequality of Jensen and the stationarity of the data

imply

E
{∣∣Y0 − m̂n(X0,D−1

−n)
∣∣2} = E


∣∣∣∣∣Y0 −

1

n

n∑
i=1

m̄i(X0,D−1
−i )

∣∣∣∣∣
2


≤ 1

n

n∑
i=1

E
{∣∣Y0 − m̄i(X0,D−1

−i )
∣∣2}

=
1

n

n∑
i=1

E
{∣∣Yi − m̄i(Xi,Di−1

0 )
∣∣2}

= E

{
1

n

n∑
i=1

∣∣Yi − m̄i(Xi,Di−1
0 )

∣∣2} ,
so (12) follows indeed from (10).

In the second step of the proof we show that (10) follows in turn from

inf
j,k,r,s∈IN

lim sup
n→∞

E

{∣∣∣m̂n,(j,k,r,s)(X
0
−j+1, Y

−1
−j+1,D

−j
−n)− Y0

∣∣∣2} ≤ L∗. (13)

Let δ > 0 be arbitrary. By using the inequality

(a+ b)2 ≤ (1 + δ) a2 + (1 +
1

δ
) b2 (14)

for arbitrary a, b ∈ R, δ > 0 we get

1

n

n∑
i=1

∣∣m̄i(Xi,Di−1
0 )− Yi

∣∣2
≤ (1 + δ)

1

n

n∑
i=1

∣∣m̄i(Xi,Di−1
0 )− Tnt (Yi)

∣∣2 + (1 +
1

δ
)
1

n

n∑
i=1

|Yi − Tnt (Yi)|2 .

From Y0 being square integrable, Lebesgue’s dominated convergence theorem and the

stationarity of the sequence we conclude

lim sup
n→∞

(1 +
1

δ
)E

{
1

n

n∑
i=1

|Yi − Tnt (Yi)|2
}

= lim sup
n→∞

(1 +
1

δ
)
1

n

n∑
i=1

E
{
|Yi − Tnt (Yi)|2

}
= (1 +

1

δ
) lim sup

n→∞
E
{
|Y0 − Tnt (Y0)|2

}
≤ (1 +

1

δ
) lim sup

n→∞
E
{
Y 2

0 1{|Y0|>nt}
}

= 0.

13



By Lemma 1 (applied in an obviously modified version for a finite sequence of prediction

strategies) we have

1

n

n∑
i=1

∣∣m̄i(Xi,Di−1
0 )− Tnt (Yi)

∣∣2
≤ inf

j,k,r,s∈IN

(
1

n

n∑
i=1

∣∣mi,(j,k,r,s)(Xi,Di−1
0 )− Tnt (Yi)

∣∣2 − cn · ln qj,k,r,s
n

)
,

which implies (noting limn→∞
cn
n = 0)

lim sup
n→∞

E

{
1

n

n∑
i=1

∣∣m̄i(Xi,Di−1
0 )− Tnt (Yi)

∣∣2}

≤ lim sup
n→∞

E

{
inf

j,k,r,s∈IN

(
1

n

n∑
i=1

∣∣mi,(j,k,r,s)(Xi,Di−1
0 )− Tnt (Yi)

∣∣2 − cn · ln qj,k,r,s
n

)}

≤ inf
j,k,r,s∈IN

lim sup
n→∞

E

{
1

n

n∑
i=1

∣∣mi,(j,k,r,s)(Xi,Di−1
0 )− Tnt (Yi)

∣∣2}

= inf
j,k,r,s∈IN

lim sup
n→∞

1

n

n∑
i=1

E
{∣∣mi,(j,k,r,s)(Xi,Di−1

0 )− Tnt (Yi)
∣∣2}

≤ inf
j,k,r,s∈IN

lim sup
n→∞

E
{∣∣mn,(j,k,r,s)(Xn,Dn−1

0 )− Tnt (Yn)
∣∣2}

= inf
j,k,r,s∈IN

lim sup
n→∞

E
{∣∣mn,(j,k,r,s)(X0,D−1

−n)− Tnt (Y0)
∣∣2} . (15)

The last equality is due to the stationarity of the sequence. We observe that in the

analysis of the limes superior of mn,(j,k,r,s) we can assume without loss of generality that

n ≥ 2j + 2s+ 1, thus by definition

mn,(j,k,r,s)(X0,D−1
−n) = Tnt

(
m̂n,(j,k,r,s)(X

0
−j+1, Y

−1
−j+1,D

−j
−n)
)
.

Now by |Tβ (z) − y| ≤ |z − y| for |y| ≤ β and inequality (14) it holds for arbitrary α > 0

that

E
{∣∣(mn,(j,k,r,s)(X0,D−1

−n)
)
− Tnt (Y0)

∣∣2}
≤ E

{∣∣∣m̂n,(j,k,r,s)(X
0
−j+1, Y

−1
−j+1,D

−j
−n)− Tnt (Y0)

∣∣∣2}
≤ (1 + α)E

{∣∣∣m̂n,(j,k,r,s)(X
0
−j+1, Y

−1
−j+1,D

−j
−n)− Y0

∣∣∣2}+ (1 +
1

α
)E
{
|Y0 − Tnt (Y0)|2

}
.

Similar reasoning as before yields

lim sup
n→∞

E
{∣∣mn,(j,k,r,s)(X0,D−1

−n)− Tnt (Y0)
∣∣2}

14



≤ lim sup
n→∞

(1 + α)E

{∣∣∣m̂n,(j,k,r,s)(X
0
−j+1, Y

−1
−j+1,D

−j
−n)− Y0

∣∣∣2}
for arbitrary α > 0 and hence

lim sup
n→∞

E
{∣∣mn,(j,k,r,s)(X0,D−1

−n)− Tnt (Y0)
∣∣2}

≤ lim sup
n→∞

E

{∣∣∣m̂n,(j,k,r,s)(X
0
−j+1, Y

−1
−j+1,D

−j
−n)− Y0

∣∣∣2} .
From this and (15) we see that (10) is indeed implied by (13).

In the following steps of the proof we will show

inf
j,k,r,s

lim sup
n→∞

E

{∣∣∣m̂n,(j,k,r,s)(X
0
−j+1, Y

−1
−j+1,D

−j
−n)− Y0

∣∣∣2}
≤ lim

N→∞
inf

j,k≥N
inf

f∈Fjk

E

{∣∣∣f(X0
−j+1, Y

−1
−j+1)− Y0

∣∣∣2} . (16)

Let δ > 0 be arbitrary. By using inequality (14) we get∣∣∣m̂n,(j,k,r,s)(X
0
−j+1, Y

−1
−j+1,D

−j
−n)− Y0

∣∣∣2
≤ (1 + δ)

∣∣∣m̂n,(j,k,r,s)(X
0
−j+1, Y

−1
−j+1,D

−j
−n)− TBk

(Y0)
∣∣∣2 + (1 +

1

δ
) |TBk

(Y0)− Y0|2 . (17)

For simplification put zml := (xml , y
m
l ) for l ≤ m and define

gf (z0
−j+1) :=

∣∣∣f(x0
−j+1, y

−1
−j+1)− TBk

(y0)
∣∣∣2

for f : (IRd)j × IRj−1 → IR. We notice that m̂n,(j,k,r,s) depends on z−j−n and write in this

context

gm̂n,(j,k,r,s)
(z0
−j+1; z−j−n) :=

∣∣∣m̂n,(j,k,r,s)(x
0
−j+1, y

−1
−j+1, d

−j
−n)− TBk

(y0)
∣∣∣2 .

For the same reason we will use below also the notation gf̂ (z0
−j+1; z−j−n).

Let ε > 0 be arbitrary. In the third step of the proof we show that for arbitrary

j, k, r, s ∈ IN and ε > 0

lim sup
n→∞

E
{
gm̂n,(j,k,r,s)

(Z0
−j+1;Z−j−n)

}
≤ lim sup

n→∞

∫ ∫
gm̂n,(j,k,r,s)

(z0
−j+1; z−j−n) dP

Z0
−j+1|Z

−j
−j−s=z−j

−j−s
(z0
−j+1) dP

Z−j
−n

(z−j−n)

+ 3ε+ T
(1)
jksε, (18)
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where

lim sup
s→∞

T
(1)
jksε = 0.

First of all we note that

E
{
gm̂n,(j,k,r,s)

(Z0
−j+1;Z−j−n)

}
= E

{
E
{
gm̂n,(j,k,r,s)

(Z0
−j+1;Z−j−n)

∣∣∣Z−j−n}}
=

∫ ∫
gm̂n,(j,k,r,s)

(z0
−j+1; z−j−n) dP

Z0
−j+1|Z

−j
−n=z−j

−n
(z0
−j+1) dP

Z−j
−n

(z−j−n).

Put ε1 := ε
4Bk

and denote by F̄ ε1jk a corresponding smallest ε1–supremum norm cover of

Fjk consisting of piecewise constant functions. Without loss of generality we can assume

that suph∈F̄ ε1
jk
‖h‖∞ ≤ Bk, so for f ∈ Fj,k, f̄ ∈ F̄ ε1jk we have by a2 − b2 ≤ |a+ b| |a− b| for

a, b ∈ R that ∥∥gf − gf̄∥∥∞ ≤ 4Bk
∥∥f − f̄∥∥∞ .

Choose (depending on z−j−n) f̂ ∈ F̄ ε1jk with
∥∥∥f̂ − m̂n,(j,k,r,s)

∥∥∥
∞
< ε1. Then∫

gm̂n,(j,k,r,s)
(z0
−j+1; z−j−n) dP

Z0
−j+1|Z

−j
−n=z−j

−n
(z0
−j+1)

≤
∫
gf̂ (z0

−j+1; z−j−n) dP
Z0
−j+1|Z

−j
−n=z−j

−n
(z0
−j+1) + ε

=

∫
gf̂ (z0

−j+1; z−j−n) dP
Z0
−j+1|Z

−j
−j−s=z−j

−j−s
(z0
−j+1) + ε

+

∫
gf̂ (z0

−j+1; z−j−n) dP
Z0
−j+1|Z

−j
−n=z−j

−n
(z0
−j+1)

−
∫
gf̂ (z0

−j+1; z−j−n) dP
Z0
−j+1|Z

−j
−j−s=z−j

−j−s
(z0
−j+1)

As TBk
(Y0) is bounded and F̄ ε1jk consists of piecewise constant functions, there exists a

finite partition Aεjk such that gf̂ can be approximated in supremum norm up to an error

of at most ε by a function which is piecewise constant with respect to Aεjk. Using this

result we see that the latter difference above can be bounded in absolute value by

4B2
k ·

∑
A∈Aε

jk

∣∣∣PZ0
−j+1|Z

−j
−n=z−j

−n
(A)−P

Z0
−j+1|Z

−j
−j−s=z−j

−j−s
(A)
∣∣∣+ ε.

Here we have used that for a piecwise constant function h with respect to a finite partition

A and measures ν, µ it holds that∣∣∣∣∫ hdµ−
∫
hdν

∣∣∣∣ ≤ ‖h‖∞ ·∑
A∈A
|µ(A)− ν(A)|.
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We conclude by the martingale convergence theorem (cf., e.g., Theorem 11.10 in Klenke

(2008)) and dominated convergence

lim sup
n→∞

E
{
gm̂n,(j,k,r,s)

(Z0
−j+1;Z−j−n)

}
≤ lim sup

n→∞

∫ ∫
gf̂ (z0

−j+1; z−j−n) dP
Z0
−j+1|Z

−j
−j−s=z−j

−j−s
(z0
−j+1) dP

Z−j
−n

(z−j−n) + 2ε

+ 4B2
k ·

∑
A∈Aε

jk

lim sup
n→∞

E
{∣∣∣E{1A (Z0

−j+1

) ∣∣∣Z−j−n}−E
{
1A
(
Z0
−j+1

) ∣∣∣Z−j−j−s}∣∣∣}
= lim sup

n→∞

∫ ∫
gf̂ (z0

−j+1; z−j−n) dP
Z0
−j+1|Z

−j
−j−s=z−j

−j−s
(z0
−j+1) dP

Z−j
−n

(z−j−n) + 2ε

+ 4B2
k ·

∑
A∈Aε

jk

E
{∣∣∣E{1A (Z0

−j+1

) ∣∣∣Z−j−∞}−E
{
1A
(
Z0
−j+1

) ∣∣∣Z−j−j−s}∣∣∣} .
≤ lim sup

n→∞

∫ ∫
gm̂n,(j,k,r,s)

(z0
−j+1; z−j−n) dP

Z0
−j+1|Z

−j
−j−s=z−j

−j−s
(z0
−j+1) dP

Z−j
−n

(z−j−n) + 3ε

+ 4B2
k ·

∑
A∈Aε

jk

E
{∣∣∣E{1A (Z0

−j+1

) ∣∣∣Z−j−∞}−E
{
1A
(
Z0
−j+1

) ∣∣∣Z−j−j−s}∣∣∣} ,
thus (18) holds.

In the fourth step of the proof we show that for arbitrary j, k, r, s ∈ IN and ε > 0

lim sup
n→∞

∫ ∫
gm̂n,(j,k,r,s)

(z0
−j+1; z−j−n) dP

Z0
−j+1|Z

−j
−j−s=z−j

−j−s
(z0
−j+1) dP

Z−j
−n

(z−j−n)

≤ lim sup
n→∞

E


∑−j−s−1

i=−n+j+s gm̂n,(j,k,r,s)
(Zii−j+1;Z−j−n) ·K

(
Z−j
−j−s−Z

i−j
i−j−s

hr

)
∑−j−s−1

i=−n+j+sK

(
Z−j
−j−s−Z

i−j
i−j−s

hr

)
+ T

(2)
jkrsε + 2ε,

(19)

with

lim sup
r→∞

T
(2)
jkrsε = 0.

We return to f̂ at the expense of ε and proceed with∫
gf̂ (z0

−j+1; z−j−n) dP
Z0
−j+1|Z

−j
−j−s=z−j

−j−s
(z0
−j+1)

≤

∫
gf̂ (u0

−j+1; z−j−n) ·K
(
z−j
−j−s−u

−j
−j−s

hr

)
dPZ0

−j−s
(u0
−j−s)∫

K

(
z−j
−j−s−u

−j
−j−s

hr

)
dPZ0

−j−s
(u0
−j−s)
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+

∣∣∣∣ ∫ gf̂ (z0
−j+1; z−j−n) dP

Z0
−j+1|Z

−j
−j−s=z−j

−j−s
(z0
−j+1)

−

∫
gf̂ (u0

−j+1; z−j−n) ·K
(
z−j
−j−s−u

−j
−j−s

hr

)
dPZ0

−j−s
(u0
−j−s)∫

K

(
z−j
−j−s−u

−j
−j−s

hr

)
dPZ0

−j−s
(u0
−j−s)

∣∣∣∣,
where the latter term can be bounded by

sup
f∈F̄ ε1

jk

∣∣∣∣∣∣∣∣E
{
gf (Z0

−j+1)
∣∣Z−j−j−s = z−j−j−s

}
−

E

{
gf (Z0

−j+1) ·K
(
z−j
−j−s−Z

−j
−j−s

hr

)}
E

{
K

(
z−j
−j−s−Z

−j
−j−s

hr

)}
∣∣∣∣∣∣∣∣ .

This expression tends to 0 as r tends to infinity P
Z−j
−j−s

-almost surely by Lemma 24.8 in

Györfi et al. (2002) as F̄ ε1jk is finite. Furthermore dominated convergence can be applied

since we deal with bounded random variables. We continue with the analysis of the

remaining term, which can be rewritten as∑−j−s−1
i=−n+j+s gf̂ (zii−j+1; z−j−n) ·K

(
z−j
−j−s−z

i−j
i−j−s

hr

)
∑−j−s−1

i=−n+j+sK

(
z−j
−j−s−z

i−j
i−j−s

hr

)

+

∫
gf̂ (u0

−j+1; z−j−n) ·K
(
z−j
−j−s−u

−j
−j−s

hr

)
dPZ0

−j−s
(u0
−j−s)∫

K

(
z−j
−j−s−u

−j
−j−s

hr

)
dPZ0

−j−s
(u0
−j−s)

−

∑−j−s−1
i=−n+j+s gf̂ (zii−j+1; z−j−n) ·K

(
z−j
−j−s−z

i−j
i−j−s

hr

)
∑−j−s−1

i=−n+j+sK

(
z−j
−j−s−z

i−j
i−j−s

hr

) ,

where an upper bound for the last difference is given by

sup
f∈F̄ ε1

jk

∣∣∣∣∣∣∣∣
E

{
gf (Z0

−j+1) ·K
(
z−j
−j−s−Z

−j
−j−s

hr

)}
E

{
K

(
z−j
−j−s−Z

−j
−j−s

hr

)} −

∑−j−s−1
i=−n+j+s gf (zii−j+1) ·K

(
z−j
−j−s−z

i−j
i−j−s

hr

)
∑−j−s−1

i=−n+j+sK

(
z−j
−j−s−z

i−j
i−j−s

hr

)
∣∣∣∣∣∣∣∣ .

From this we conclude that the left-hand side of (19) is bounded from above by

lim sup
n→∞

E


∑−j−s−1

i=−n+j+s gm̂n,(j,k,r,s)
(Zii−j+1;Z−j−n) ·K

(
Z−j
−j−s−Z

i−j
i−j−s

hr

)
∑−j−s−1

i=−n+j+sK

(
Z−j
−j−s−Z

i−j
i−j−s

hr

)
+ 2ε

18



+

∫
sup
f∈F̄ ε1

jk

∣∣∣∣∣E{gf (Z0
−j+1)

∣∣Z−j−j−s = z−j−j−s

}

−
E

{
gf (Z0

−j+1) ·K
(
z−j
−j−s−Z

−j
−j−s

hr

)}
E

{
K

(
z−j
−j−s−Z

−j
−j−s

hr

)} ∣∣∣∣∣dPZ−j
−j−s

(z−j−j−s)

+ lim sup
n→∞

∫
sup
f∈F̄ ε1

jk

∣∣∣∣∣
E

{
gf (Z0

−j+1) ·K
(
z−j
−j−s−Z

−j
−j−s

hr

)}
E

{
K

(
z−j
−j−s−Z

−j
−j−s

hr

)}

−

∑−j−s−1
i=−n+j+s gf (zii−j+1) ·K

(
z−j
−j−s−z

i−j
i−j−s

hr

)
∑−j−s−1

i=−n+j+sK

(
z−j
−j−s−z

i−j
i−j−s

hr

) ∣∣∣∣∣dPZ−j
−n

(z−j−n).

In order to complete the proof of (19) we are reduced to verifying

lim sup
n→∞

∫
sup
f∈F̄ ε1

jk

∣∣∣∣∣
E

{
gf (Z0

−j+1) ·K
(
z−j
−j−s−Z

−j
−j−s

hr

)}
E

{
K

(
z−j
−j−s−Z

−j
−j−s

hr

)}

−

∑−j−s−1
i=−n+j+s gf (zii−j+1) ·K

(
z−j
−j−s−z

i−j
i−j−s

hr

)
∑−j−s−1

i=−n+j+sK

(
z−j
−j−s−z

i−j
i−j−s

hr

) ∣∣∣∣∣dPZ−j
−n

(z−j−n) = 0. (20)

Because of K ≥ c · IS0,r̄ for suitable c > 0, r̄ > 0, where S0,r̄ is the ball in (IRd)s+1× IRs+1

centered at 0 with radius r̄, we have

E

{
K

(
z−j−j−s − Z

−j
−j−s

hr

)}
≥ c ·P

Z−j
−j−s

(
z−j−j−s + S0,r̄·hr

)
> 0 (21)

P
Z−j
−j−s

-almost everywhere (cf., e.g., Györfi et al. (2002), pp. 499, 500). Let ε2 be arbitrary

and set

Sε2 =

{
z−j−j−s ∈ (IRd × IR)s+1 : E

{
K

(
z−j−j−s − Z

−j
−j−s

hr

)}
> ε2

}
.

The boundedness of the considered functions yields
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∫
sup
f∈F̄ ε1

jk

∣∣∣∣∣
E

{
gf (Z0

−j+1) ·K
(
z−j
−j−s−Z

−j
−j−s

hr

)}
E

{
K

(
z−j
−j−s−Z

−j
−j−s

hr

)}

−

∑−j−s−1
i=−n+j+s gf (zii−j+1) ·K

(
z−j
−j−s−z

i−j
i−j−s

hr

)
∑−j−s−1

i=−n+j+sK

(
z−j
−j−s−z

i−j
i−j−s

hr

) ∣∣∣∣∣dPZ−j
−n

(z−j−n)

≤
∫
Sε2×(IRd)n−j−s×IRn−j−s

sup
f∈F̄ ε1

jk

∣∣∣∣∣
E

{
gf (Z0

−j+1) ·K
(
z−j
−j−s−Z

−j
−j−s

hr

)}
E

{
K

(
z−j
−j−s−Z

−j
−j−s

hr

)}

−

∑−j−s−1
i=−n+j+s gf (zii−j+1) ·K

(
z−j
−j−s−z

i−j
i−j−s

hr

)
∑−j−s−1

i=−n+j+sK

(
z−j
−j−s−z

i−j
i−j−s

hr

) ∣∣∣∣∣dPZ−j
−n

(z−j−n)

+ c1 ·PZ−j
−j−s

(
Scε2
)

for some c1 ∈ IR+. By (21) we know

P
Z−j
−j−s

(Scε2)→ 0 (ε2 → 0).

In addition it holds that

∫
Sε2×(IRd)n−j−s×IRn−j−s

sup
f∈F̄ ε1

jk

∣∣∣∣∣
E

{
gf (Z0

−j+1) ·K
(
z−j
−j−s−Z

−j
−j−s

hr

)}
E

{
K

(
z−j
−j−s−Z

−j
−j−s

hr

)}

−

∑−j−s−1
i=−n+j+s gf (zii−j+1) ·K

(
z−j
−j−s−z

i−j
i−j−s

hr

)
∑−j−s−1

i=−n+j+sK

(
z−j
−j−s−z

i−j
i−j−s

hr

) ∣∣∣∣∣dPZ−j
−n

(z−j−n)

=

∫ ∫
Sε2

sup
f∈F̄ ε1

jk

∣∣∣∣∣
E

{
gf (Z0

−j+1) ·K
(
z−j
−j−s−Z

−j
−j−s

hr

)}
E

{
K

(
z−j
−j−s−Z

−j
−j−s

hr

)}

−

∑−j−s−1
i=−n+j+s gf (zii−j+1) ·K

(
z−j
−j−s−z

i−j
i−j−s

hr

)
∑−j−s−1

i=−n+j+sK

(
z−j
−j−s−z

i−j
i−j−s

hr

) ∣∣∣∣∣ dPZ−j
−j−s|Z

−j−s−1
−n =z−j−s−1

−n
(z−j−j−s)

dP
Z−j−s−1
−n

(z−j−s−1
−n )
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≤
∫

sup
z−j
−j−s∈Sε2

sup
f∈F̄ ε1

jk

∣∣∣∣∣
E

{
gf (Z0

−j+1) ·K
(
z−j
−j−s−Z

−j
−j−s

hr

)}
E

{
K

(
z−j
−j−s−Z

−j
−j−s

hr

)}

−

∑−j−s−1
i=−n+j+s gf (zii−j+1) ·K

(
z−j
−j−s−z

i−j
i−j−s

hr

)
∑−j−s−1

i=−n+j+sK

(
z−j
−j−s−z

i−j
i−j−s

hr

) ∣∣∣∣∣ dPZ−j−s−1
−n

(z−j−s−1
−n )

= E

{
sup

z−j
−j−s∈Sε2

sup
f∈F̄ ε1

jk

∣∣∣∣∣
E

{
gf (Z0

−j+1) ·K
(
z−j
−j−s−Z

−j
−j−s

hr

)}
E

{
K

(
z−j
−j−s−Z

−j
−j−s

hr

)}

−

1
n−2j−2s

∑−j−s−1
i=−n+j+s gf (Zii−j+1) ·K

(
z−j
−j−s−Z

i−j
i−j−s

hr

)
1

n−2j−2s

∑−j−s−1
i=−n+j+sK

(
z−j
−j−s−Z

i−j
i−j−s

hr

) ∣∣∣∣∣
}
.

Because of the fact that K is continuous and vanishes at infinity nominator and denomina-

tor of the second term above almost surely converge uniformly with respect to z−j−j−s ∈ Sε2
by the ergodic theorem and the circumstance that the ε-cover is finite (cf., e.g., Krengel

(1985), Chapter 4, Theorem 2.1). Since the limit of the denominator is greater than ε2

on Sε2 we even have uniform convergence of the fracture. Application of the dominated

convergence theorem completes the proof of (20) which in turn implies the proof of (19).

The fifth step of the proof will be to demonstrate

lim sup
n→∞

E


∑−j−s−1

i=−n+j+s gm̂n,(j,k,r,s)
(Zii−j+1;Z−j−n) ·K

(
Z−j
−j−s−Z

i−j
i−j−s

hr

)
∑−j−s−1

i=−n+j+sK

(
Z−j
−j−s−Z

i−j
i−j−s

hr

)


≤ inf
f∈Fjk

E

{∣∣∣f(X0
−j+1, Y

−1
−j+1)− TBk

Y0

∣∣∣2}+ 2ε+ T
(3)
jkrsε (22)

for arbitrary j, k, r, s ∈ IN and ε > 0 where

lim sup
r→∞

T
(3)
jkrsε = 0.

By definition of the estimate we have

lim sup
n→∞

E


∑−j−s−1

i=−n+j+s gm̂n,(j,k,r,s)
(Zii−j+1;Z−j−n) ·K

(
Z−j
−j−s−Z

i−j
i−j−s

hr

)
∑−j−s−1

i=−n+j+sK

(
Z−j
−j−s−Z

i−j
i−j−s

hr

)

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= lim sup
n→∞

E

 inf
f∈Fjk

∑−j−s−1
i=−n+j+s gf (Zii−j+1) ·K

(
Z−j
−j−s−Z

i−j
i−j−s

hr

)
∑−j−s−1

i=−n+j+sK

(
Z−j
−j−s−Z

i−j
i−j−s

hr

)


≤ inf
f∈Fjk

lim sup
n→∞

E


∑−j−s−1

i=−n+j+s gf (Zii−j+1) ·K
(
Z−j
−j−s−Z

i−j
i−j−s

hr

)
∑−j−s−1

i=−n+j+sK

(
Z−j
−j−s−Z

i−j
i−j−s

hr

)


= inf
f∈Fjk

lim sup
n→∞

∫ ∑−j−s−1
i=−n+j+s gf (zii−j+1) ·K

(
z−j
−j−s−z

i−j
i−j−s

hr

)
∑−j−s−1

i=−n+j+sK

(
z−j
−j−s−z

i−j
i−j−s

hr

) dP
Z−j
−n

(z−j−n)

≤ inf
f∈Fjk

(
lim sup
n→∞

∫ ∣∣∣∣
∑−j−s−1

i=−n+j+s gf (zii−j+1) ·K
(
z−j
−j−s−z

i−j
i−j−s

hr

)
∑−j−s−1

i=−n+j+sK

(
z−j
−j−s−z

i−j
i−j−s

hr

)

−
E

{
gf (Z0

−j+1) ·K
(
z−j
−j−s−Z

−j
−j−s

hr

)}
E

{
K

(
z−j
−j−s−Z

−j
−j−s

hr

)} ∣∣∣∣ dPZ−j
−n

(z−j−n)

+

∫ E

{
gf (Z0

−j+1) ·K
(
z−j
−j−s−Z

−j
−j−s

hr

)}
E

{
K

(
z−j
−j−s−Z

−j
−j−s

hr

)} dP
Z−j
−j−s

(z−j−j−s)

)

= inf
f∈Fjk

∫ E

{
gf (Z0

−j+1) ·K
(
z−j
−j−s−Z

−j
−j−s

hr

)}
E

{
K

(
z−j
−j−s−Z

−j
−j−s

hr

)} dP
Z−j
−j−s

(z−j−j−s),

where the last equality follows from the proof of (20). With the same arguments as already

used, we see that this can be bounded by

inf
f∈Fjk

E
{
gf (Z0

−j+1)
}

+ 2ε

+

∫
sup
f̄∈F̄ ε1

jk

∣∣∣∣E{gf̄ (Z0
−j+1)|Z−j−j−s = z−j−j−s

}

−
E

{
gf̄ (Z0

−j+1) ·K
(
z−j
−j−s−Z

−j
−j−s

hr

)}
E

{
K

(
z−j
−j−s−Z

−j
−j−s

hr

)} ∣∣∣∣ dPZ−j
−j−s

(z−j−j−s),

where the latter term tends to zero as r tends to infinity by Lemma 24.8 in Györfi et al.

(2002) and dominated convergence. This completes the proof of (22).

22



We sum up the results of steps three to five of the proof: Noticing (17), we have shown

that for arbitrary ε, δ > 0

inf
j,k,r,s∈IN

lim sup
n→∞

E

{∣∣∣m̂n,(j,k,r,s)(X
0
−j+1, Y

−1
−j+1,D

−j
−n)− Y0

∣∣∣2}
≤ inf

j,k,r,s∈IN

(
(1 + δ) ·

(
inf

f∈Fjk

E

{∣∣∣f(X0
−j+1, Y

−1
−j+1)− TBk

(Y0)
∣∣∣2}

+ Sjksε + Tjkrsε + 7 · ε
)

+

(
1 +

1

δ

)
·E
{
|TBk

(Y0)− Y0|2
})

≤ inf
j,k,r,s∈IN

(
(1 + δ)2 ·

(
inf

f∈Fjk

E

{∣∣∣f(X0
−j+1, Y

−1
−j+1)− Y0

∣∣∣2}+ Sjksε

+ Tjkrsε + 7 · ε
)

+ (2 + δ) ·
(

1 +
1

δ

)
·E
{
|TBk

(Y0)− Y0|2
})

,

where

lim sup
s→∞

Sjksε = 0,

for arbitrary j, k,

lim sup
r→∞

Tjkrsε = 0,

for arbitrary j, k, s. Using

inf
j,k,r,s

(ajkrs + bk) ≤ lim
N→∞

inf
j,k≥N

inf
r,s
ajkrs + lim

N→∞
sup
k≥N

bk

we can conclude

inf
j,k,r,s

lim sup
n→∞

E

{∣∣∣m̂n,(j,k,r,s)(X
0
−j+1, Y

−1
−j+1,D

−j
−n)− Y0

∣∣∣2}
≤ (1 + δ)2 · lim

N→∞

(
inf

j,k≥N

(
inf

f∈Fjk

E

{∣∣∣f(X0
−j+1, Y

−1
−j+1)− Y0

∣∣∣2}

+ inf
s

(
Sjksε + inf

r
Tjkrsε

)
+ 7 · ε

))

+ (2 + δ) ·
(

1 +
1

δ

)
· lim
N→∞

sup
k≥N

E
{
|TBk

(Y0)− Y0|2
}

≤ (1 + δ)2 · lim
N→∞

inf
j,k≥N

inf
f∈Fjk

E

{∣∣∣f(X0
−j+1, Y

−1
−j+1)− Y0

∣∣∣2}+ 7 · (1 + δ)2 · ε.

The choice of ε and δ was arbitrary, hence (16) holds.

The only point remaining is to bound

lim
N→∞

inf
j,k≥N

inf
f∈Fjk

E

{∣∣∣f(X0
−j+1, Y

−1
−j+1)− Y0

∣∣∣2}
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by L∗ which will be the sixth and last step of the proof. Straightforward calculation leads

to

E

{∣∣∣f(X0
−j+1, Y

−1
−j+1)− Y0

∣∣∣2} = L∗ + E

{∣∣∣E{Y0|X0
−∞, Y

−1
−∞} −E{Y0|X0

−j+1, Y
−1
−j+1}

∣∣∣2}
+ E

{∣∣∣E{Y0|X0
−j+1, Y

−1
−j+1} − f(X0

−j+1, Y
−1
−j+1)

∣∣∣2} .
Thus

lim
N→∞

inf
j,k≥N

inf
f∈Fjk

E

{∣∣∣f(X0
−j+1, Y

−1
−j+1)− Y0

∣∣∣2}
= L∗ + lim

N→∞
inf

j,k≥N

(
inf

f∈Fjk

E

{∣∣∣E{Y0|X0
−j+1, Y

−1
−j+1} − f(X0

−j+1, Y
−1
−j+1)

∣∣∣2}
+ E

{∣∣∣E{Y0|X0
−∞, Y

−1
−∞} −E{Y0|X0

−j+1, Y
−1
−j+1}

∣∣∣2})
≤ L∗ + lim sup

j→∞
E

{∣∣∣E{Y0|X0
−∞, Y

−1
−∞} −E{Y0|X0

−j+1, Y
−1
−j+1}

∣∣∣2}
+ lim
N→∞

inf
j,k≥N

inf
f∈Fj,k

E

{∣∣∣E{Y0|X0
−j+1, Y

−1
−j+1} − f(X0

−j+1, Y
−1
−j+1)

∣∣∣2} .
Considering the second term put

Wj := E{Y0|X0
−j+1, Y

−1
−j+1}.

The sequence (Wj)j∈IN is a martingale satisfying supj∈IN E
{
|Wj |2

}
≤ E

{
Y 2

0

}
< ∞.

Hence it converges almost surely and in L2 to a square integrable random variable (cf.

Theorem 11.10 in Klenke (2008)) and the limit is E{Y0|X0
−∞, Y

−1
−∞} (see Theorem 35.5 in

Billingsley (1979)).

In a final step, set lj = d · j + j − 1 and

mj(x, y) = E
{
Y0|X0

−j+1 = x, Y −1
−j+1 = y

}
.

Then, by the inequality of Jensen, mj ∈ L2

(
IRlj ,P(X0

−j+1,Y
−1
−j+1)

)
and

E

{∣∣∣E{Y0|X0
−j+1, Y

−1
−j+1

}
− f

(
X0
−j+1, Y

−1
−j+1

)∣∣∣2}
= E

{∣∣∣mj

(
X0
−j+1, Y

−1
−j+1

)
− f

(
X0
−j+1, Y

−1
−j+1

)∣∣∣2}
=

∫
IRlj

|mj(x, y)− f(x, y)|2 dP(X0
−j+1,Y

−1
−j+1)

(x, y),
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where we again identify
(
IRd
)j × IRj−1 and IRlj . This allows us to conclude by (4) that

lim
N→∞

inf
j,k≥N

inf
f∈Fj,k

E

{∣∣∣E{Y0|X0
−j+1, Y

−1
−j+1} − f(X0

−j+1, Y
−1
−j+1)

∣∣∣2}
≤ lim inf

j→∞
lim inf
k→∞

inf
f∈Fj,k

E

{∣∣∣E{Y0|X0
−j+1, Y

−1
−j+1} − f(X0

−j+1, Y
−1
−j+1)

∣∣∣2} = 0.

The proof is complete. �
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Inst. H. Poincaré Probab. Statist. 41, pp. 859–870

[22] Ornstein, D. (1978). Guessing the next output of a stationary process. Israel J. Math.

30, pp. 292–296.

[23] Ryabko, B. Y. (1988). Prediction of random sequences and universal coding. Problems

Inform. Transmission 24, pp. 87–96.

26


