
Nonparametric estimation of non-stationary

velocity fields from 3D particle tracking

velocimetry data

Michael Kohler1 and Adam Krzyżak2,∗
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Abstract

Nonparametric estimation of nonstationary velocity fields from 3D particle tracking ve-

locimetry data is considered. The velocities of tracer particles are computed from their

positions measured experimentally with random errors by high-speed cameras observing

turbulent flows in fluids. Thus captured discrete data is plugged into a smoothing spline

estimate which is used to estimate the velocity field at arbitrary points. The estimate is

further smoothed over several time frames using fixed design kernel regression estimate.

Consistency of the resulting estimate is investigated. Its performance is validated on the

real data obtained by measuring a fluid flow of a liquid in a (rotating) squared tank

agitated by an oscillating grid.
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1 Introduction

In the recent years there has been tremendous progress in accurate and fast measurement

techniques in fluid mechanics. This resulted in large amount of data which presently

require development of new statistical tools to process and interpret the data.

In this article we analyze data produced by the 3D Particle Tracking Velocimetry

(3D-PTV), see, e.g., Raffel et al. (1998). This technique allows visualization of a flow

by recording the laser light scattered by naturally buoyant tracer particles in a fluid and

subsequently using it to determine positions of the particles in consecutive frames. To

do this 3D-PTV fits short trajectories of the particles to the observed pictures. These

trajectories consist of approximately 20 time steps and are modeled by cubic splines. From

these trajectories the estimates of the position and the velocity of the tracer particles are

derived (cf., e.g., Lüthi, Tsinober and Kinzelbach (2005)). Thus data is produced which

contains positions of particles and corresponding values of the fluid velocity field at these

positions. This data contains two kinds of errors: firstly errors due to measurement errors

for the locations of the tracer particles, and secondly errors due to fitting of the trajectories

to these locations of the tracer particles. In this paper we want to use this data to estimate

the velocity field at arbitrary locations and times.

Experimental studies on estimation of velocity fields in turbulent flows have been

carried out, among others, by Guala et al. (2008), Kunnen, Geurts and Clercx (2010),

Lüthi, Tsinober and Kinzelbach (2005), Messio et al. (2008) and Speetjens, Clercx and Van

Heijst (2004). These researchers used kernel regression and local linear kernel regression

estimates to smooth and interpolate the observed data. No theoretical analysis of the

estimates was provided.

In this paper we pose the problem of recovering velocity fields at arbitrary locations

and times as a non-stationary regression estimation problem with regression functions

changing in time. The regression functions are estimated by smoothing spline estimates

which are subsequently smoothed in time domain using the fixed design kernel regression

estimate.

We prove consistency of the estimates and apply them to real data obtained from the

3D-PTV measuring a time-dependent velocity field in a (rotating) water tank agitated by
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an oscillating grid.

2 Definition of the estimates

Let (Xt, Yt) (t ∈ [0, 1]) be R
d ×R

d-valued random vectors defined on the same probability

space. Let the corresponding time dependent d-dimensional velocity field

m : [0, 1] × R
d → R

d

be given by

m(t, x) = E{Yt|Xt = x},

and denote the distribution of Xt by µt. For N ∈ N we consider equidistant time points

tk = tk(N) =
k

N
(k = 0, . . . ,N)

and we assume that for each time point tk we are given a velocity field sample

Dntk
=
{

(X
(tk)
1 , Y

(tk)
1 ), . . . , (X(tk)

ntk
, Y (tk)

ntk
)
}

.

Let k ∈ N with 2k > d and denote by W k(Rd) the Sobolev space containing all functions

f : R
d → R

d where all derivatives of total order k of all components are in L2(Rd). The

condition 2k > d implies that the functions in W k(Rd) are continuous and hence the

evaluation of a function at a point is well defined. Let m
(tk)
ntk

(·) = m
(tk)
ntk

(·,Dntk
) be the

smoothing spline estimate of m(tk, ·) defined by

m̃(tk)
ntk

(·) = arg min
f∈W k(Rd)

[

1

ntk

ntk
∑

i=1

∥

∥

∥
Y

(tk)
i − f(X

(tk)
i )

∥

∥

∥

2

2
+ λtk · J2

k (f)

]

(1)

where

J2
k (f) =

∑

α1,...,αd∈N, α1+...+αd=k

k!

α1! · . . . · αd!

∫

Rd

∥

∥

∥

∥

∂kf

∂xα1
1 . . . ∂xαd

d

(x)

∥

∥

∥

∥

2

2

dx, (2)

and by

m(tk)
ntk

(x) = TβN
m̃(tk)

ntk
(x) := max

(

min
(

m̃(tk)
ntk

(x), βN

)

,−βN

)

(x ∈ R
d). (3)

Here ‖·‖2 denotes the Euclidean norm in R
d and the truncation level βN > 0 is a parameter

of the estimate which we will choose later such that βN → ∞ (N → ∞).
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Let l =
(

d+k−1
d

)

and let φ1, . . . , φl be all monomials xα1
1 · . . . · xαd

d of total degree

α1 + . . . + αd less than k. Define R : R+ → R by

R(u) =







u2k−d · log(u) if 2k − d is even,

u2k−d if 2k − d is odd,

where log(z) is the natural logarithm of z > 0. It follows from Section V in Duchon (1976)

that there exists a function of the form

m̃(tk)
ntk

(x) =
n
∑

i=1

aiR(‖x − X
(tk)
i ‖2) +

l
∑

j=1

bjφj(x) (4)

which achieves the minimum in (1), and that the coefficients a1, . . . , an, b1, . . . , bl ∈ R
d

of this function can be computed by solving d linear systems of equations. Under some

additional assumptions on the X
(tk)
1 , . . . , X

(tk)
n this is also shown in Section 2.4 of Wahba

(1990).

In order to estimate the velocity field continuously in time, we make local averaging of

the above regression estimates. Let K : R → R be a function (so-called kernel) satisfying

c1 · I[−a1,a1](x) ≤ K(x) ≤ c2 · I[−a2,a2](x) (x ∈ R) (5)

for some a2 ≥ a1 > 0, c2 ≥ c1 > 0, where IA denotes the indicator function of the set A,

and let hN > 0 be the so-called bandwidth of the kernel estimate. We define the kernel

estimate of the velocity field by

m̂N (t, x) =

∑N
k=0 m

(tk)
ntk

(x) · K
(

t−tk
hN

)

∑N
l=0 K

(

t−tl
hN

) . (6)

3 Main theoretical result

In our main theoretical result we impose the following conditions on the underlying dis-

tribution:

(A1) (Xt, Yt) ∈ [0, 1]d × R
d a.s. for all t ∈ [0, 1].

(A2) The random variables

(Xtk , Ytk), (X
(tk)
1 , Y

(tk)
1 ), . . . , (X(tk)

nk
, Y (tk)

nk
)

are independent and identically distributed (k ∈ {0, . . . ,N}).
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(A3) supt∈[0,1] E{|Yt|8|} ≤ c3 for some constant c3 ∈ R+.

(A4) m (defined by m(t, x) = E{Yt|Xt = x}) is continuous on [0, 1] × [0, 1]d.

(A5)

β2
N · sup

k:|t−tk|≤hN

sup
A∈Bd

|µt(A) − µtk(A)| → 0 (N → ∞)

for all t ∈ [0, 1].

Remark 1. Assumptions (A4) and (A5) are plausible in the application described in

Section 4 due to the viscosity of the water.

Remark 2. In case that a density f(t, ·) of µt exists (with respect to the Lebesgue-Borel

measure), which is Holder continuous with exponent α with respect to t, i.e., which satisfies

|f(t, x) − f(s, x)| ≤ C · |t − s|α (s, t ∈ [0, 1], x ∈ [0, 1]d),

we have for any A ∈ Bd, A ⊆ [0, 1]d

|µt(A) − µtk(A)| ≤
∫

A
|f(t, x) − f(tk, x)| dx ≤ C · |t − tk|α.

Hence in this case condition (A6) is implied by

β2
N · hα

N → 0 (N → ∞).

Theorem 1 Let the estimate m̂n be defined as in Section 2, where the kernel K satisfies

(5), assume that

ntk ∈ {nmin(N), nmin(N) + 1, . . . , nmax(N)} , (7)

and assume that the parameters of the estimate satisfy

λtk ∈ [λmin(N), λmax(N)] , (8)

β4
N/nmin(N) → 0 (N → ∞), (9)

βN → ∞ (N → ∞), (10)

β2
N · nmax(N) − nmin(N)

nmin(N)2
→ 0 (N → ∞), (11)

nmin(N) · λmin(N)d/(2k)

β
4+d/k
N · log(nmax(N)2 · β2

N )
→ ∞ (N → ∞), (12)
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λmax(N) → 0 (N → ∞), (13)

and

hN → 0 (N → ∞). (14)

Assume furthermore that the underlying dsitribution satisfies (A1)-(A6). Then

E

∫

‖m̂N (t, x) − m(t, x)‖2
2 µt(dx) → 0 (N → ∞).

for all t ∈ [0, 1].

Remark 3. Assume that for some r > 0

nmin(N) ≥ log(N)5+2d/k , nmax(N) ≤ N r and log(n)2 · nmax(N)

nmin(N)2
→ 0 (N → ∞).

Then the above conditions on the parameters are e.g. satisfied if we set βN = log(N)

and choose λmax(N) and hN such that (13) and (14) are satisfied and choose λmin(N) ≤
λmax(N) such that

λmin(N) ≥ log(N)3+10k/d

nmin(N)2k/d
(N ∈ N).

4 Application to real data

In this section we apply our estimation procedure to real data collected by Kinzel (2010).

The aim of the experiment was to measure turbulent fluid flows in a water tank agitated

in the first experiment by an oscillating grid and in a second experiment by a rotation of

the water tank and by an oscillating grid in order to validate a theoretical model. The

measurements were performed by a 3D-PTV method. Two kinds of Polystrene particles

were seeded into the fluid and illuminated by a laser light. The scattered light was collected

by two high-speed cameras with 1024 × 1024 pixels resolution in combination with image

splitters that mimick a four-camera setup for each of the high-speed cameras. The cameras

collected images at a rate of 125 Hz over the period of 40 seconds yielding 5000 images

for each camera. The first camera collected data from 60µm Polystyrene tracer particles

within a large observation volume of size 50 × 50 × 40 mm3, while the second one was

focused on 80µm Polysterene Rhodamin tracer particles within a small observation volume

of size 15×15×15 mm3 inside the larger observation volume. With this setup the seeding
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density of 15 particles per 10 mm3 was achieved for the large observation volume and 200

particles for the small observation volume.

In the sequel our estimates are computed from the data collected within the large

observation volume. We use data from the small volume only for evaluation of the esti-

mates. Trajectories of tracer particles of approximately 20 time steps modeled by cubic

splines have been fitted to the observed pictures in order to estimate the positions and

the velocities of the tracer particles. Here not all particles were sucessfully matched, in

particular due to lack of light close to the boundaries of the observation volume. Hence it

is impossible to determine complete trajectories of the tracer particles. The correspond-

ing data consisting of pairs (x, y), where x ∈ R
3 is the location of a particle and y ∈ R

3

is its velocity, for time t = 20s is illustrated in Figure 1 (large tracer particles for the

experiment without rotation), Figure 2 (small tracer particles for the experiment without

rotation), Figure 3 (large tracer particles for the experiment with rotation) and Figure 4

(small tracer particles for the experiment with rotation). Here each data point (x, y) is

represented by an arrow located at the particles position with direction and length given

by y.

In Figures 5 and 6 we show the kernel smoothing spline estimate with naive kernel

applied to the data corresponding to the larger tracer particles for the experiment without

rotation and for the experiment with rotation, resp. Here the smoothing parameter of

the smoothing spline is chosen via generalized cross-validation, and the bandwidth of the

kernel estimate is chosen from the set {1, 2, 3, 4, 6, 8, 12} via 20-fold cross-validation. ¿From

Figures 5 and 6 we can clearly see the different shapes of the currents in the flow in the

two situations, and this is much better visible than in the originally measured data (cf.

Figures 1 and 3).

If we compute the empirical L2 risk for this estimate on the data corresponding to the

smaller tracer particles (which is not used for computation of the estimate) we get for the

experiment without rotation 0.000833. Here the same value for the empirical L2 risk is
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also achieved for the smoothing spline estimate using only the data from time t = 20s.

Figure 1: Measured data for the large tracer particles in the experiment without rotation

for time t = 20s.

Figure 2: Measured data for the smaller tracer particles in the experiment without rotation

for time t = 20s.
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Figure 3: Measured data for the larger tracer particles in the experiment with rotation

for time t = 20s.

Figure 4: Measured data for the smaller tracer particles in the experiment with rotation

for time t = 20s.
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Figure 5: Kernel smoothing spline estimate for time t = 20s with naive kernel for the

experiment without rotation.

Figure 6: Kernel smoothing spline estimate for time t = 20s with naive kernel for the

experiment with rotation.

10



But if we compute the corresponding values for the experiments with rotation the empirical

L2 risks are 6.92 · 10−5 in case of our newly proposed estimate and 7.18 · 10−5 in case of

the smoothing spline estimate using only data at time t = 20s.

5 Proofs

We begin with two auxiliary lemmas needed in the proof of the main result. As we will see

in the proof of the main result, it suffices to formulate and prove these auxiliary results

for scalar response variables.

For our first lemma we introduce the following notation: For a random function f :

R
d → R (i.e., f(x) is a random variable for each x ∈ R

d) let E(f),Var(f) : R
d → R be

deterministic functions defined by

E(f)(x) = E{f(x)},

Var(f)(x) = Var{f(x} = E{|f(x) −E(f(x))|2}.

Set tk = k/N(k = 0, . . . , N), let m : [0, 1] × R
d → R and assume

Yk = m(tk, ·) + ǫk (k = 0, . . . ,N)

where ǫ0, . . . , ǫN : R
d → R are random functions satisfying

E(ǫl · ǫk) = 0 (l, k ∈ {0, . . . ,N}, l 6= k).

Let Ȳ0, . . . , ȲN be arbitrary random functions R
d → R and define

m̂N (t, ·) =

∑N
k=0 ȲkK

(

t−tk
hN

)

∑N
l=0 K

(

t−tl
hN

)

for some hN > 0 and some kernel K : R → R satisfying (5). For t ∈ [0, 1] let µt be a

probability measure on R
d. For f : R

d → R and p > 0 set

‖f‖Lp(µt) =

(∫

Rd

|f(x)|p µt(dx)

)1/p

.

Then the following result holds.
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Lemma 1 Assume N · hN > 1/a1. For any t ∈ [0, 1] we have

E

(

‖m̂N (t, ·) − m(t, ·)‖2
L2(µt)

)

≤ 3 · max
k:|t−tk|≤a2·hN

E‖Ȳk − Yk‖2
L2(µt)

+ 3 · c2

c1 · a1
· max

k:|t−tk|≤a2·hN

‖E(ǫ2
k)‖L1(µt) ·

1

N · hN

+3 · c2

c1 · a1
· max

k:|t−tk|≤a2·hN

‖m(tk, ·) − m(t, ·)‖2
L2(µt)

.

Proof.

E

(

‖m̂N (t, ·) − m(t, ·)‖2
L2(µt)

)

= E

(∥

∥

∥

∥

∥

∑N
k=0(Ȳk − Yk)K

(

t−tk
hN

)

∑N
l=0 K

(

t−tl
hN

) +

∑N
k=0 ǫkK

(

t−tk
hN

)

∑N
l=0 K

(

t−tl
hN

)

+

∑N
k=0(m(tk, ·) − m(t, ·))K

(

t−tk
hN

)

∑N
l=0 K

(

t−tl
hN

)

∥

∥

∥

∥

∥

2

L2(µt)

)

≤ 3 ·E







∥

∥

∥

∥

∥

∥

∑N
k=0(Ȳk − Yk)K

(

t−tk
hN

)

∑N
l=0 K

(

t−tl
hN

)

∥

∥

∥

∥

∥

∥

2

L2(µt)







+3 · E







∥

∥

∥

∥

∥

∥

∑N
k=0 ǫkK

(

t−tk
hN

)

∑N
l=0 K

(

t−tl
hN

)

∥

∥

∥

∥

∥

∥

2

L2(µt)







+3 · E







∥

∥

∥

∥

∥

∥

∑N
k=0(m(tk, ·) − m(t, ·))K

(

t−tk
hN

)

∑N
l=0 K

(

t−tl
hN

)

∥

∥

∥

∥

∥

∥

2

L2(µt)







def
= 3 · T1,N + 3 · T2,N + 3 · T3,N .

By pointwise application of Jensen’s inequality and by the triangle inequality we get

T1,N = E







∥

∥

∥

∥

∥

∥

∥





∑N
k=0(Ȳk − Yk)K

(

t−tk
hN

)

∑N
l=0 K

(

t−tl
hN

)





2
∥

∥

∥

∥

∥

∥

∥

L1(µt)







≤ E







∥

∥

∥

∥

∥

∥

∑N
k=0(Ȳk − Yk)

2K
(

t−tk
hN

)

∑N
l=0 K

(

t−tl
hN

)

∥

∥

∥

∥

∥

∥

L1(µt)







≤
∑N

k=0 E(‖(Ȳk − Yk)
2‖L1(µt)) · K

(

t−tk
hN

)

∑N
l=0 K

(

t−tl
hN

)

≤ max
k:|tk−t|≤a2·hN

E(‖Ȳk − Yk‖2
L2(µt)

.
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An application of Fubini’s theorem, and use of E(ǫl · ǫk) = 0 for l 6= k, and application of

the triangle inequality yields

T2,N =

∥

∥

∥

∥

∥

∥

∥

E















∑N
k=0 ǫkK

(

t−tk
hN

)

∑N
l=0 K

(

t−tl
hN

)





2










∥

∥

∥

∥

∥

∥

∥

L1(µt)

=

∥

∥

∥

∥

∥

∥

∥

∑N
k=0 K2

(

t−tk
hN

)

E{ǫ2
k}

(

∑N
l=0 K

(

t−tl
hN

))2

∥

∥

∥

∥

∥

∥

∥

L1(µt)

≤ 1
(

∑N
l=0 K

(

t−tl
hN

))2

N
∑

k=0

K2

(

t − tk
hN

)

‖E{ǫ2
k}‖L1(µt)

K≤c2·I[−a2,a2]

≤ c2 ·
∑N

k=0 K
(

t−tk
hN

)

(

∑N
l=0 K

(

t−tl
hN

))2 · max
k:|tk−t|≤hN

‖E{ǫ2
k}‖L1(µt)

K≥c1I[−a1,a1]

≤ c2

c1 · a1
· 1

N · hN
max

k:|tk−t|≤hN

‖E{ǫ2
k}‖L1(µt)

where the last inequality follows from equidistant distribution of tl in [0, 1] and the as-

sumption N · hN > 1/a1. Finally, by pointwise application of Jensen’s inequality and by

the triangle inequality we get

T3,N ≤ 1
∑N

l=0 K
(

t−tl
hN

)

N
∑

k=0

K

(

t − tk
hN

)

‖(m(tk, ·) − m(t, ·))2‖L1(µt)

K≤c2I[−a2,a2]

≤ max
k:|tk−t|≤a2·hN

‖m(tk, ·) − m(t, ·)‖2
L2(µt)

.

The proof is complete. �

In our next auxiliary lemma we prove a uniform consistency result for multivariate

smoothing spline regression estimates.

Lemma 2 Let L : [0,∞) → R+ be a monotonically decreasing function satisfying

L(h) → 0 (h → 0).

For constants c4, c5 let D be the class of all random variables (X,Y ) satisfying

(A1 ′) X R
d-valued, Y R-valued,
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(A2 ′) X ∈ [0, 1]d a.s.

(A3 ′) E{|Y |8} ≤ c4,

(A4 ′) supx∈[0,1]d |m(x)| ≤ c5,

(A5 ′) For all x, z ∈ R
d: |m(x) − m(z)| ≤ L(‖x − z‖2).

For N ∈ N let βN , λmin(N), λmax(N) ∈ R+ and let nmin(N), nmax(N) ∈ N, such that

λmin(N) ≤ λmax(N) and nmin(N) ≤ nmax(N). For (X,Y ) ∈ D let (X1, Y1), (X2, Y2), . . .

be i.i.d. copies of (X,Y ), which are independent of (X,Y ), and let λ̂ = λ̂(N) and

n̂ = n̂(N) be random variables with values in

[λmin(N), λmax(N)] and {nmin(N), nmin(N) + 1, . . . , nmax(N)}, resp.

Define a smoothing spline estimate mn̂,λ̂ by

m̃n̂,λ̂(·) = arg min
f∈W k(Rd)

[

1

n̂

n̂
∑

i=1

|Yi − f(Xi)|2 + λ̂ · J2
k (f)

]

where

J2
k (f) =

∑

α1,...,αd∈N, α1+...+αd=k

k!

α1! · . . . · αd!

∫

Rd

∣

∣

∣

∣

∂kf

∂xα1
1 . . . ∂xαd

d

(x)

∣

∣

∣

∣

2

dx,

and by

mn̂,λ̂(x) = TβN
m̃n̂,λ̂(x)

where

TβN
z := max{min{z, βN},−βN} (z ∈ R).

Assume that (9)–(13) hold. Then

sup
(X,Y )∈D

E

∫

|mn̂,λ̂(x) − m(x)|2PX(dx) → 0 (N → ∞).

Proof. The proof is an extension of the proof of Theorem 1 in Kohler and Krzyżak (2001).

Let ǫ > 0 be arbitrary. In the first step of the proof we construct for (X,Y ) ∈ D a

deterministic approximation gǫ of m(x) = E{Y |X = x} such that

∫

|m(x) − gǫ(x)|2PX(dx) < ǫ and J2
k (gǫ) ≤ c6 · c2

5

14



where c6 ∈ R+ does not depend on the distribution of (X,Y ). To do this, let B be the

(univariate) B-spline of order M = k + 1 with support supp(B) = [0,M + 1] and knots

0, 1, . . . ,M + 1 (cf., e.g., de Boor (1978)). Then B is k-times continuously differentiable,

and its kth derivative is bounded in absolute value by some constant. Choose K ∈ N such

that

L(
√

d · (M + 1)/K) <
√

ǫ

and define gǫ by

gǫ(x
(1), . . . , x(d))

=
∑

j1,...,jd∈{−M,...,K−1}
m

(

j1

K
, . . . ,

jd

K

)

· B
(

K · (x(1) − j1

K
)

)

· . . . · B
(

K · (x(d) − jd

K
)

)

.

Using the fact that the basis functions from a B-spline basis sum up to one (cf., e.g., de

Boor (1978)) we get for any x = (x(1), . . . , x(d)) ∈ [0, 1]d

|m(x) − gǫ(x)| ≤ sup
z:maxi=1,...,d |x(i)−z(i)|≤(M+1)/K

|m(x) − m(z)| ≤ L(
√

d · (M + 1)/K) <
√

ǫ,

hence
∫

|m(x) − gǫ(x)|2PX(dx) < ǫ.

Furthermore, using that the derivatives of the B-splines are bounded and have compact

support and that at each point only (M + 1)d of the products of the B-splines occuring in

the definition of gǫ are unequal to zero we get for some constant c7 > 0 depending on M ,

k and d:

J2
k (gǫ)

≤ c7 · c2
5 · max

α1,...,αd∈N,

α1+...+αd=k

max
x∈Rd

∣

∣

∣

∣

∂k

∂xα1
1 . . . ∂xαd

d

B

(

K · (x(1) − j1

K
)

)

· . . . · B
(

K · (x(d) − jd

K
)

)∣

∣

∣

∣

2

≤ c8 · c2
5 · K2k.

In the second step of the proof we split the L2 error as follows:

E

∫

|mn̂,λ̂(x) − m(x)|2PX(dx) = E{|mn̂,λ̂(X) − Y |2} − E{|m(X) − Y |2}

= E{|mn̂,λ̂(X) − Y |2} − (1 + ǫ)E{|mn̂,λ̂(X) − YβN
|2}

+(1 + ǫ)E

(

E{|mn̂,λ̂(X) − YβN
|2|Dn} −

1

n

n
∑

i=1

|mn̂,λ̂(Xi) − Yi,βN
|2
)

15



+(1 + ǫ)E

(

1

n

n
∑

i=1

|mn̂,λ̂(Xi) − Yi,βN
|2 − (1 + ǫ) · 1

n

n
∑

i=1

|m̃n̂,λ̂(Xi) − Yi|2
)

+(1 + ǫ)2E

(

1

n

n
∑

i=1

|m̃n̂,λ̂(Xi) − Yi|2 −
1

n

n
∑

i=1

|gǫ(Xi) − Yi|2
)

+(1 + ǫ)2
(

E{|gǫ(X) − Y |2} − E{|m(X) − Y |2}
)

+((1 + ǫ)2 − 1)E{|m(X) − Y |2}

def
=

6
∑

j=1

Tj,N ,

where YβN
= TβN

Y and Yi,βN
= TβN

Yi.

It suffices to show

lim sup
N→∞

sup
(X,Y )∈D

Tj,N ≤ c9 · ǫ (15)

(j ∈ {1, 2, . . . , 6}) for some constant c9 ∈ R+ not depending on ǫ.

In the third step of the proof we show (15) for j = 1. Because of

(a + b)2 ≤ (1 + ǫ)a2 + (1 +
1

ǫ
)b2 (a, b > 0),

assumption (A3 ′) and condition (10) we have

T1,N ≤ (1 +
1

ǫ
) ·E{|YβN

− Y |2} ≤ (1 +
1

ǫ
) · E{|YβN

− Y |8}
β6

N

≤ (1 +
1

ǫ
) · c4

β6
N

→ 0

(N → ∞).

In the fourth step of the proof we show (15) for j = 2. Let An be the event that

1

n̂

n̂
∑

i=1

|Yi|2 ≤ 2 + c4.

Using EY 2 ≤ 1 +E{|Y |8} ≤ 1 + c4, the union bound and the inequality of Markov we get

P(Ac
n) = P

{

1

n̂

n̂
∑

i=1

|Yi|2 > 2 + c4

}

≤ P

{

1

n̂

n̂
∑

i=1

|Yi|2 − EY 2 > 1

}

≤ (nmax(N) − nmin(N)) · max
n∈{nmin(N),...,nmax(N)}

P

{

1

n

n
∑

i=1

|Yi|2 − EY 2 > 1

}

≤ (nmax(N) − nmin(N)) · max
n∈{nmin(N),...,nmax(N)}

E

{

∣

∣

1
n

∑n
i=1(|Yi|2 − EY 2)

∣

∣

4
}

14

16



≤ (nmax(N) − nmin(N)) ·

max
n∈{nmin(N),...,nmax(N)}

nE
{

(|Y |2 −EY 2)4
}

+ n2
(

E
{

(|Y |2 − EY 2)2
})2

n4
.

Using

E
{

(|Y |2 − EY 2)4
}

≤ E{|Y |8} + 6 ·E{|Y |4} · (E{|Y |2})2 + (E{|Y |2})4

≤ c4 + 6 · (1 + c4) · (1 + c4) + c4 ≤ 8 · (1 + c4)
2

and
(

E
{

(|Y |2 − EY 2)2
})2 ≤ (E{|Y |4})2 ≤ c4

we get

P(Ac
n) ≤ (nmax(N) − nmin(N)) · max

n∈{nmin(N),...,nmax(N)}

n · 8 · (1 + c4)
2 + n2 · c4

n4

≤ (nmax(N) − nmin(N)) · 9 · (1 + c4)
2

nmin(N)2
.

On An we have

λ̂ · J2
k (m̃n̂,λ̂) ≤ 1

n̂

n̂
∑

i=1

|Yi − m̃n̂,λ̂(Xi)|2 + λ̂ · J2
k (m̃n̂,λ̂)

≤ 1

n̂

n̂
∑

i=1

|Yi − 0|2 + λ̂ · J2
k (0)

≤ 2 + c4,

hence

J2
k (m̃n̂,λ̂) ≤ 2 + c4

λmin(N)
,

which implies

mn̂,λ̂ ∈ FN =

{

TβN
f : f ∈ W k(Rd) and J2

k (f) ≤ 2 + c4

λmin(N)

}

.

Let GN =
{

g : R
d × R → R : g(x, y) = |f(x) − TβN

y|2 for some f ∈ FN

}

. Using

E{|mn̂,λ̂(X) − Yβn
|2|Dn} −

1

n̂

n̂
∑

i=1

|mn̂,λ̂(Xi) − Yi,βn
|2

≤
(

E{|mn̂,λ̂(X) − Yβn
|2|Dn} −

1

n̂

n̂
∑

i=1

|mn̂,λ̂(Xi) − Yi,βn
|2
)

· IAn + 4β2
n · IAc

n

17



we get

1

1 + ǫ
T2,N ≤ E

{

sup
g∈GN

∣

∣

∣

∣

∣

E{g(X,Y )} − 1

n̂

n̂
∑

i=1

g(Xi, Yi)

∣

∣

∣

∣

∣

}

+ 4β2
n ·P{Ac

n}

≤ E

{

sup
g∈GN

∣

∣

∣

∣

∣

E{g(X,Y )} − 1

n̂

n̂
∑

i=1

g(Xi, Yi)

∣

∣

∣

∣

∣

}

+4β2
n · (nmax(N) − nmin(N)) · 9 · (1 + c4)

2

nmin(N)2
.

By using Theorem 9.1 and Lemma 20.6 in Györfi et al. (2002) we get as in Kohler and

Krzyżak (2001) for δ > 0 and t ≥ δ > 0 arbitrary

P

{

sup
g∈GN

∣

∣

∣

∣

∣

E{g(X,Y )} − 1

n̂

n̂
∑

i=1

g(Xi, Yi)

∣

∣

∣

∣

∣

> t

}

≤ nmax(N) · max
n≥nmin(N)

P

{

sup
g∈GN

∣

∣

∣

∣

∣

E{g(X,Y )} − 1

n

n
∑

i=1

g(Xi, Yi)

∣

∣

∣

∣

∣

> t

}

≤ nmax(N) · 8
(

c10βN · nmax(N)
t

32βn

)c11
“q

2+c4
λmin(N)

· 32βN
t

”
d
k +c12

exp

(

−nmin(N) · t2
128(4β2

N )2

)

≤
(

c13 · nmax(N)2 · β2
N

t

)c14

„

βN√
λmin(N)·t

« d
k

exp

(

−c15 ·
nmin(N) · t2

β4
N

)

≤ exp

(

−c15

2
· nmin(N) · t2

β4
N

)

for N sufficiently large, since

(

βN√
λmin(N)·t

)
d
k

· log
(

β2
N · nmax(N)2/t

)

nmin(N) · t2/β4
N

≤ β
4+ d

k

N · log
(

β2
N · nmax(N)2/δ

)

δ2+d/k · nmin(N) · λmin(N)d/(2k)
→ 0 (N → ∞)

by (12).

Hence, for any δ > 0 we get for N sufficiently large

E

{

sup
g∈GN

∣

∣

∣

∣

∣

E{g(X,Y )} − 1

n̂

n̂
∑

i=1

g(Xi, Yi)

∣

∣

∣

∣

∣

}

≤ δ +

∫ ∞

δ
P

{

sup
g∈GN

∣

∣

∣

∣

∣

E{g(X,Y )} − 1

n̂

n̂
∑

i=1

g(Xi, Yi)

∣

∣

∣

∣

∣

> t

}

dt

≤ δ +

∫ ∞

δ
exp

(

−c15

2
· nmin(N) · t · δ

β4
N

)

dt

≤ δ +
2β4

N

c15 · δ · nmin(N)
· exp

(

−c15

2
· nmin(N) · δ2

β4
N

)

→ δ (N → ∞)
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since β4
N/nmin(N) → 0 (N → ∞), and with δ → 0 we get (15) for j = 2.

In the fifth step of the proof we show (15) for j = 3. Using

|TβN
z − y| ≤ |z − y| for |y| ≤ βN , z ∈ R

and proceeding otherwise as in the third step of the proof we see that

T3,n

≤ (1 + ǫ)E

(

1

n

n
∑

i=1

|m̃n̂,λ̂(Xi) − Yi,βN
|2 − (1 + ǫ) · 1

n

n
∑

i=1

|m̃n̂,λ̂(Xi) − Yi|2
)

≤ (1 + ǫ) ·
(

1 +
1

ǫ

)

·E{|YβN
− Y |2}

≤ (1 + ǫ) ·
(

1 +
1

ǫ

)

· 1 + c4

β6
N

→ 0 (N → ∞).

In the sixth step of the proof we show (15) for j = 4. By the definition of the estimate

we get

1

(1 + ǫ)2
· T4,n

≤ E

(

1

n

n
∑

i=1

|m̃n̂,λ̂(Xi) − Yi|2 + λ̂ · J2
k (m̃n̂,λ̂) − 1

n

n
∑

i=1

|gǫ(Xi) − Yi|2 − λ̂ · J2
k (gǫ)

)

+λ̂ · J2
k (gǫ)

≤ λmax(N) · J2
k (gǫ) ≤ λmax(N) · c6 · c2

5 → 0 (N → ∞).

In the seventh step of the proof we show (15) for j = 5. Here the assertion follows from

1

(1 + ǫ)2
T5,n =

(

E{|gǫ(X) − Y |2} − E{|m(X) − Y |2}
)

=

∫

|gǫ(x) − m(x)|2PX(dx) < ǫ.

In the eighth (and final) step of the proof we finish the proof by showing (15) for j = 6.

We have

sup
(X,Y )∈D

T6,n ≤ ǫ · (2 + ǫ) · sup
(X,Y )∈D

4 · E{|Y |2} ≤ ǫ · (2 + ǫ) · 4 · (1 + c4).

�

Proof of Theorem 1. Since

∫

‖m̂N (t, x) − m(t, x)‖2
2 µt(dx)
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is the sum of the L2 errors of the d components of m̂n(t, x), and since each of these

components is a penalized least squares estimate applied to a scalar response variable, it

suffices to prove Theorem 1 in case of a scalar response variable, which we will do in the

sequel.

For k ∈ {0, . . . , N} let

D(k)
X =

{

X
(tl)
i , Y

(tl)
i : i ∈ {1, . . . , nl}, l ∈ {0, . . . , k − 1}

}

∪
{

X
(tk)
j : j ∈ {1, . . . , nk}

}

.

Set

Yk = m(tk, ·) + ǫk

where

ǫk = m(tk)
ntk

(·) − E

{

m(tk)
ntk

(·)|D(k)
X

}

,

and

Ȳk = Yk + E

{

m(tk)
ntk

(·)|D(k)
X

}

− m(tk, ·) = m(tk)
ntk

(·)

(k = 0, . . . , N). Then we have for l, k ∈ {0, . . . ,N}, l < k

E{ǫl · ǫk} = E{E{ǫl · ǫk|D(k)
X }} = E{ǫl ·E{ǫk|D(k)

X }} = E{ǫl · 0} = 0.

Application of Lemma 1 yields

E

∫

|m̂N (t, x) − m(t, x)|2 µt(dx)

≤ 3 · max
k:|t−tk|≤a2·hN

E{‖Ȳk − Yk‖2
L2(µt)

} + 3 · c2

c1 · a1
· max

k:|t−tk|≤a2·hN

‖E{ǫ2
k}‖L1(µt) ·

1

N · hN

+3 · c2

c1 · a1
· max

k:|t−tk|≤a2·hN

‖m(tk, ·) − m(t, ·)‖2
L2(µt)

≤ 3 · max{1, c2

c1 · a1
· 1

N · hN
} · max

k:|t−tk|≤a2·hN

E

∫

∣

∣

∣
m(tk)

ntk
(x) − m(tk, x)

∣

∣

∣

2
µt(dx)

+3 · c2

c1 · a1
· max

k:|t−tk|≤a2·hN

‖m(tk, ·) − m(t, ·)‖2
L2(µt)

,

where the last inequality follows from

E

∫

∣

∣

∣
m(tk)

ntk
(x) − m(tk, x)

∣

∣

∣

2
µt(dx)

=

∫

E

{

∣

∣

∣m(tk)
ntk

(x) − m(tk, x)
∣

∣

∣

2
}

µt(dx)

=

∫ (

E

{

∣

∣

∣m(tk)
ntk

(x) − E

{

m(tk)
ntk

(x)|D(k)
X

}∣

∣

∣

2
}

+ E

{

∣

∣

∣E

{

m(tk)
ntk

(x)|D(k)
X

}

− m(tk, x)
∣

∣

∣

2
})

µt(dx)

= ‖E{ǫ2
k}‖L1(µt) + ‖E{|Ȳk − Yk|2}‖L1(µt).
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It suffices to show

max
k:|t−tk|≤a2·hN

E

∫

∣

∣

∣
m(tk)

ntk
(x) − m(tk, x)

∣

∣

∣

2
µt(dx) → 0 (N → ∞) (16)

and

max
k:|t−tk|≤a2·hN

‖m(tk, ·) − m(t, ·)‖2
L2(µt)

→ 0 (N → ∞). (17)

(17) follows from the (uniform) continuity of m on the compact set [0, 1] × [0, 1]d and

condition (14).

If ν1, ν2 are measures on R
d and f is a function on R

d bounded in absolute value by

4 · β2
N , then

∣

∣

∣

∣

∫

Rd

f(x) ν1(dx) −
∫

Rd

f(x) ν2(dx)

∣

∣

∣

∣

≤ 4 · β2
N · sup

A∈Bd

|ν1(A) − ν2(A)|.

Hence because of (A5) it suffices to show

max
k:|t−tk|≤a2·hN

E

∫

∣

∣

∣
m(tk)

ntk
(x) − m(tk, x)

∣

∣

∣

2
µtk(dx) (N → ∞), (18)

which we do in the sequel by using Lemma 2.

Let D be the class of all distributions of (Xs, Ys) for some

s ∈ {l/N : l ∈ {0, . . . ,N},N ∈ N}.

For s = l/N set n̂(N) = n̂ = ntl = nl/N and λ̂ = λ̂(N) = λtl = λl/N . By the assumptions

of Theorem 1 (in particular by the uniform continuity of m on [0, 1] × [0, 1]d) it is easy to

see that the assumptions of Lemma 2 are satisfied, from which we can conclude

max
k:|t−tk|≤a2·hN

E

∫

∣

∣

∣
m(tk)

ntk
(x) − m(tk, x)

∣

∣

∣

2
µtk(dx)

≤ sup
(X,Y )∈D

E

∫

|mn̂,λ̂(x) − m(x)|2PX(dx) → 0 (N → ∞).

The proof is complete. �
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