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Abstract
In this paper we study the problem of estimating the density of the error distribution
in a random design regression model, where the error is assumed to be independent of
the design variable. Our main result is that the L1 error of the kernel density estimate
applied to residuals of a consistent regression estimate converges with probability one to
zero regardedless of the form of the true density. We demonstrate that this result is in
general no longer true if the error distribution and the design variable are dependent.
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1 Introduction

In this paper we study the problem of estimating the density of the error distribution in
a random design regression model. More precisely, we assume that we have given data

Dn = {(X1, Y1) , . . . , (Xn, Yn)} ,

where
Yi = m (Xi) + εi

for some m : Rd → R, Rd-valued random (design) variables X1, . . . , Xn and real-valued
random variables ε1, . . . , εn with zero expectation. We assume that (X1, ε1) , (X2, ε2) , . . .
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are independent and identically distributed and that X1, ε1 are independent. We let X
be a random variable distributed as X1 and ε be a random variable with density f with
respect to Lebesgue measure. It is assumed that all εi’s are distributed as ε. We use PX

for the probability law of a random variable X. We consider the problem of estimating
f from the data Dn.
Estimating the density of the error distribution in nonparametric regression models has

been dealt with by several researchers. Ahmad (1992) showed that under a Lipschitz-
condition of the kernel function, the Parzen-Rosenblatt density estimator (Parzen (1962),
Rosenblatt (1956)) converges in probability at every continuity point to the real density
of the residuals. In case of a continuous error density, the same estimator is pointwise
and uniformly consistent (Cheng (2004)), and, in addition, the histogram error density
estimator is uniformly and in L1 consistent (Cheng (2002)). Efromovich (2005) inves-
tigated in a homeoscedastic regression model estimates which are as good as estimates
using an oracle that knows the underlying regression errors. In the heteroscedastic non-
parametric regression model, where the Yi’s have different variances, Efromovich (2006)
generalized his optimal estimation for a twice differentiable error density with finite sup-
port. Estimators of the residual distribution function include that of Akritas and Van
Keilegom (2001), who extended the results of Durbin (1973) and Loynes (1980) to a
weak convergence result for a distribution function estimator in a nonparametric het-
eroscedastic regression model. The empirical distribution function of residuals was used
as an estimator in an heteroscedastic model with multivariate covariates by Neumeyer
and Van Keilgom (2010). For general results in density estimation we refer to the books
of Devroye and Györfi (1985), Devroye (1987) and Devroye and Lugosi (2000).
In this paper the main aim is to derive L1-consistent estimates of f . This is important,

because Scheffé’s Lemma implies that the L1 error of a density estimate equals twice the
total variation distance (see, e.g., Devroye and Györfi (1985)) and hence an L1-consistent
density estimate allows simultaneous estimation of all probabilities. In order to estimate
the density of the error distribution, we split the data in two parts, use the first part to
compute a regression estimate, compute its residuals on the second part and use them
as data for a standard kernel density estimate. We show that the resulting density
estimate is strongly consistent in L1 for all densities f provided we use in the first step a
consistent regression estimate. Furthermore, we show that this result does no longer hold
in case that the design variable and the errors in the regression model are dependent.
The estimates are defined in Section 2, the main results are presented in Section 3, and
Section 4 contains the proofs.

2 Definition of the estimates

We start by splitting the sample in two parts: a first part of size n′ and the second part
containing the n′′ = n − n′ remaining data points. We assume that we have given a
regression estimate

mn′ (·) = mn′ (·,Dn′) : Rd → R
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satisfying ∫
|mn′(x)−m(x)|PX(dx)→ 0 a.s.

(for n → ∞), which we apply to the first part of the data. We use mn′ to compute the
residuals on the second part of the data, i.e., we set

ε̂j = Yn′+j −mn′
(
Xn′+j

)
(j = 1, . . . , n′′)

and we use them to compute the Parzen-Rosenblatt kernel density estimate

fn (x) =
1

n′′hn′′

n′′∑
j=1

K

(
x− ε̂j
hn′′

)
.

Here hn′′ > 0 is the bandwidth, and K : R→ R+ is the kernel function, which we assume
to be a density [in general, only integrability to one is needed, but we will be happy with
the subclass of densities].

3 Main results

Our first result deals with the consistency of fn.

Theorem 1. Let X1, X2, . . . be i.i.d. Rd-valued random variables distributed as X, and
let ε1, ε2, . . . be i.i.d. real-valued random variables with E {ε1} = 0, and having common
density f , and assume that both sequences are also independent of each other. Define

Yi = m (Xi) + εi (i ∈ N)

for some function m : Rd → R, and let the estimate fn be defined as in Section 2. Assume
that K is a density with compact support satisfying∫

R
K2 (u) du <∞, (1)

such that
hn → 0 (n→∞) and n · hn →∞ (n→∞) (2)

and that the regression estimate mn satisfies∫
Rd

|mn(x)−m(x)|PX1 (dx)→ 0 a.s. (3)

Finally, assume that both n′ →∞ and n′′ →∞ as n→∞. Then∫
R
|fn(x)− f(x)| dx→ 0 a.s.
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Remark 1. The L1 error of the above density estimate tends to zero regardedless of the
form of the density of ε1, provided the regression estimate is L1 (PX1)-consistent. By
Cauchy-Schwarz, (3) is implied by∫

Rd

|mn(x)−m(x)|2PX1(dx)→ 0 a.s., (4)

and if we assume E
{
Y 2
1

}
<∞ there are many different estimates which are universally

consistent in the sense that (4) holds for all distributions, cf., e.g., Devroye et al. (1994),
Györfi and Walk (1996, 1997), Kohler and Krzyżak (2001), Lugosi and Zeger (1995),
Nobel (1996), Walk (2002), or Györfi et al. (2002) and the literature cited therein. So
under this additional assumption our estimate of the density of the error distribution in
our regression model is strongly consistent in L1 for all densities.

In Theorem 1, the generic pair (X, ε) is independent. Without this independence condi-
tion, one has to be much more careful. Noting that Theorem 1 was formulated in terms
of a very general L1-consistent regression estimate (3), the lack of independence will force
one to at least make a specific choice of regression function estimate. This is captured in
Theorem 2.

Theorem 2. Let d = 1. Assume that |n′−n′′| ≤ 1, n = n′+n′′. There exists a regression
function m and a distribution of (X, ε) with E {ε|X} = 0, such that ε has a density f
(with respect to the Lebesgue-measure) , and such that for any sequence of bandwiths hn
satisfying (2) there exists regression estimates mn satisfying (3) with the property that
the corresponding density estimate fn from Section 2 in case of the naive kernel (i.e., the
kernel K(x) = (1/2)I[−1,1](x)):

lim sup
n→∞

∫
R
|fn(x)− f(x)| dx ≥ 1.

Remark 2. Theorem 1 showed that when the pair (X, ε) is independent, the den-
sity estimate of Section 2 is strongly L1-consistent whenever the regression estimate is
strongly L1(PX1)-consistent. By Theorem 2 this is no longer true in all generality if we
omit the independence assumption. The counterexample in Theorem 2 has two special
properties—first of all, conditional on X, ε is a shifted Bernoulli random variable without
a density, but its marginal distribution has a density. Secondly, and more importantly,
the example uses a special regression estimate that one would not encounter in statistical
practice. It is still an open problem whether there exists any regression estimate such
that the corresponding density estimate from Section 2 is strongly L1-consistent for all
distributions of (X,Y ) where ε = Y −E{Y |X} has a density f and where E|Y | <∞.
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4 Proofs

4.1 Proof of Theorem 1

First we show ∫
R
|fn(x)− f(x)| dx−E

{∫
R
|fn(x)− f(x)| dx

∣∣∣ Dn′}→ 0 (5)

almost surely (applied conditioned on Dn′).
Define

g(ε̂1, . . . , ε̂n′′) :=

∫
R

∣∣∣∣∣∣ 1

n′′ · hn′′

n′′∑
j=1

K

(
x− ε̂j
hn′′

)
− f(x)

∣∣∣∣∣∣ dx.
Scheffé’s Lemma implies∣∣g(ε̂1, . . . , ε̂n′′)− g(ε̂1, . . . , ε̂i−1, ε̂′i, ε̂i+1, ε̂n′′)

∣∣
≤
∫
R

∣∣∣∣ 1

hn′′
K

(
x− ε̂i
hn′′

)
− 1

hn′′
K

(
x− ε̂′i
hn′′

)∣∣∣∣ dx
= 2 ·

∫
R

(
1

hn′′
K

(
x− ε̂i
hn′′

)
− 1

hn′′
K

(
x− ε̂′i
hn′′

))
+

dx

≤ 2.

From McDiarmid’s inequality (McDiarmid (1989); see also Devroye (1991) and Theorem
A.2. in Györfi et. al. (2002)), we see that

∞∑
n=1

P

[∣∣∣∣∫
R
|fn(x)− f(x)| dx−E

{∫
R
|fn(x)− f(x)| dx

∣∣∣ Dn′}∣∣∣∣ ≥ ε∣∣∣Dn′]

≤
∞∑
n=1

exp

(
−n′′ε2

2

)
<∞.

We obtain (5) by an application of the lemma of Borel and Cantelli.
Next we show

E

{∫
R
|fn(x)− f(x)| dx

∣∣∣ Dn′}→ 0.

Scheffé’s Lemma implies that∫
R
|fn(x)− f(x)| dx = 2·

∫
R
(f(x)− fn(x))+ dx ≤ 2·

∫
B
|f(x)− fn(x)| dx+2·

∫
Bc

f(x) dx.

Hence it suffices to show

E

{∫
B
|fn(x)− f(x)| dx

∣∣∣ Dn′}→ 0 (n→∞)

5



for any compact set B ⊆ R. Let B be an arbitrary compact set in R. Set

f∗n(x) =
1

n′′ · hn′′

n′′∑
j=1

E

{
K

(
x− ε̂j
hn′′

) ∣∣∣ Dn′} .
Then

E

{∫
B
|fn(x)− f(x)| dx

∣∣∣ Dn′}
≤ E

{∫
B
|fn(x)− f∗n(x)| dx

∣∣∣ Dn′}+E

{∫
B
|f∗n(x)− f(x)| dx

∣∣∣ Dn′} .
In the first step of the proof we show

E

{∫
B
|fn(x)− f∗n(x)| dx

∣∣∣ Dn′}→ 0 (n→∞).

By Cauchy-Schwarz and the inequality of Jensen we have

E

{∫
B
|fn(x)− f∗n(x)| dx

∣∣∣ Dn′}
≤ E

{√∫
B
1 dx ·

√∫
B
|fn(x)− f∗n(x)|

2 dx

∣∣∣∣∣ Dn′
}

≤

√∫
B
1 dx ·

√
E

{∫
B
|fn(x)− f∗n(x)|

2 dx
∣∣∣ Dn′}.

Now

E

{∫
B
|fn(x)− f∗n(x)|

2 dx
∣∣∣ Dn′}

=

∫
B
E


∣∣∣∣∣∣ 1

n′′ · hn′′

n′′∑
j=1

(
K

(
x− ε̂j
hn′′

)
−E

{
K

(
x− ε̂j
hn′′

) ∣∣∣ Dn′})
∣∣∣∣∣∣
2 ∣∣∣∣∣ Dn′

 dx

≤ 1

n′′2 · h2n′′

n′′∑
j=1

∫
B
E

{
K2

(
x− ε̂j
hn′′

) ∣∣∣ Dn′} dx
=

1

n′′2 · h2n′′

n′′∑
j=1

∫
B

∫
R
K2

(
x− u−m(Xn′+j) +mn′(Xn′+j)

hn′′

)
f(u) du dx

=
1

n′′2 · hn′′

n′′∑
j=1

∫
R
f(u)

∫
B

1

hn′′
K2

(
x− u−m(Xn′+j) +mn′(Xn′+j)

hn′′

)
dx du

=
1

n′′ · hn′′

∫
R
K2(z) dz → 0 (n→∞).
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In the second step of the proof we show

E

∫
R

∣∣∣∣f∗n(x)−E

{
1

hn′′
K

(
x− ε1
hn′′

)}∣∣∣∣ dx→ 0 (n→∞).

To do this we observe∫
R

∣∣∣∣f∗n(x)−E

{
1

hn′′
K

(
x− ε1
hn′′

)}∣∣∣∣ dx
=

∫
R

∣∣∣ 1
n′′

n′′∑
j=1

∫
R

1

hn′′
K

(
x− u+mn′(Xn′+j)−m(Xn′+j)

hn′′

)
f(u) du

−
∫
R

1

hn′′
K

(
x− u
hn′′

)
f(u) du

∣∣∣ dx
≤
∫
R

1

n′′

n′′∑
j=1

∫
R

1

hn′′
K

(
x− z
hn′′

) ∣∣f (z −m(Xn′+j) +mn′(Xn′+j)
)
− f(z)

∣∣ dz dx
≤ 1

n′′

n′′∑
j=1

∫
R

∫
R

1

hn′′
K

(
x− z
hn′′

)
·
∣∣f(z +mn′(Xn′+j)−m(Xn′+j))

− gf (z +mn′(Xn′+j)−m(Xn′+j))
∣∣dz dx

+
1

n′′

n′′∑
j=1

∫
R

∫
R

1

hn′′
K

(
x− z
hn′′

)
·
∣∣gf (z +mn′(Xn′+j)−m(Xn′+j))− gf (z)

∣∣ dz dx
+

1

n′′

n′′∑
j=1

∫
R

∫
R

1

hn′′
K

(
x− z
hn′′

)
· |gf (z)− f(z)| dz dx

=: T1,n + T2,n + T3,n

with an arbitrary density gf : Rd → R+.

Application of Fubini’s theorem yields

T1,n =
1

n′′

n′′∑
j=1

∫
R

∣∣f(z +mn′(Xn′+j)−m(Xn′+j))− gf (z +mn′(Xn′+j)−m(Xn′+j))
∣∣

·
∫
R

1

hn′′
K

(
x− z
hn′′

)
dx dz

=

∫
R
|f(z)− gf (z)| dz
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and

T3,n =
1

n′′

n′′∑
j=1

∫
R
|gf (z)− f(z)| ·

∫
R

1

hn′′
K

(
x− z
hn′′

)
dx dz

=

∫
R
|f(z)− gf (z)| dz.

Choosing gf as a density which approximates f in L1, both terms can be made arbitrary
small.

Assume that gf is Lipschitz-continous with Lipschitz-constant L > 0 and let C be an
arbitrary compact set in R. By Scheffé’s Lemma,

T2,n =
1

n′′

n′′∑
j=1

∫
R

∣∣gf (z +mn′(Xn′+j)−m(Xn′+j))− gf (z)
∣∣ · ∫

R

1

hn′′
K

(
x− z
hn′′

)
dx dz

=
1

n′′

n′′∑
j=1

2 ·
∫
R

(
gf (z)− gf (z +mn′(Xn′+j)−m(Xn′+j))

)
+
dz

≤ 2 · 1

n′′

n′′∑
j=1

∫
C

∣∣gf (z)− gf (z +mn′(Xn′+j)−m(Xn′+j))
∣∣ dz + 2 ·

∫
Cc

gf (z) dz

≤ 2 · L · 1

n′′

n′′∑
j=1

∣∣mn′(Xn′+j)−m(Xn′+j)
∣∣ ∫

C
1 dz + 2 ·

∫
Cc

gf (z) dz.

So

lim sup
n→∞

E
{
T2,n

∣∣ Dn′} ≤ 2L ·
∫
C
1 dz · lim

n→∞

∫
Rd

|mn′(x)−m(x)|PX1(dx) + 2

∫
Cc

gf (z) dz

and with C ↑ R we get
E
{
T2,n

∣∣ Dn′}→ 0 a.s.

From Devroye and Györfi (1985), Chapter 3, Theorem 1 we know∫
R

∣∣∣∣ 1

hn′′
E

{
K

(
x− ε1
hn′′

)}
− f(x)

∣∣∣∣ dx→ 0 a.s.

and the assertion is proved. �

4.2 Proof of Theorem 2

Without loss of generality, we assume that n is even, so that n′ = n′′ = n/2. Let
i ∈ {1, . . . , n} and j ∈ {1, . . . , n′′} . Let Xi be i.i.d. and uniformly distributed on [0, 1],
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and define

Yi =

{
Xi with probability 1

2

−Xi with probabilty 1
2 .

Then Yi is uniformly distributed on [−1, 1] , E
{
Yi
∣∣ Xi

}
= 0 and εi = Yi−E

{
Yi
∣∣ Xi

}
=

Yi. Define
mn′(x) = x− x′

with x′ = b x√
hn′
c ·
√
hn′ = b x√

hn′′
c ·
√
hn′′ . Since

|mn′(x)| ≤
√
hn′ → 0 (n→∞)

assumption (3) is valid. Estimating the residuals as described in Section 2 we get

ε̂j = Yn′+j −mn′(Xn′+j) =

{
X ′n′+j with probability 1

2

−2Xn′+j +X ′n′+j with probability 1
2 ,

where X ′n′+j = b
Xn′+j√
hn′′
c ·
√
hn′′ . Observe that −2Xn′+j +X ′n′+j ≤ 0. Define

An :=
∞⋃
k=0

[
k
√
hn − hn, k

√
hn + hn

]
.

Note that these intervals are disjoint if hn < 1
4 . So there exists a natural number N ∈ N

such that for every n′′ > N , we have∫
[0,1]∩Ac

n′′

f(x)dx =

`n′′−1∑
k=0

∫ (k+1)
√
hn′′−hn′′

k
√
hn′′+hn′′

1

2
dx

=
1

2
`n′′
(√

hn′′ − 2hn′′
)

with `n′′ := max
{
k ∈ N : k

√
hn′′ ≤ 1

}
= b 1√

hn′′
c.

If x ∈ Acn′′ ∩ [0, 1]d then
∣∣x− k√hn′′∣∣ > hn′′ for every k ∈ N and consequently

|x − ε̂j | > hn′′ for all j ∈ N. Using the naive kernel in the definition of fn, we have
for every n′′ > N ,∫

[0,1]∩Ac
n′′

fn(x) dx =

∫
[0,1]∩Ac

n′′

1

2n′′hn′′

n′′∑
j=1

1{|x−ε̂j |≤hn′′}(x)dx = 0.

By Scheffé’s Lemma, we see that for every n′′ > N ,∫
|fn(x)− f(x)| dx = 2 · sup

B∈B

∣∣∣∣∫
B
f(x)dx−

∫
B
fn(x)dx

∣∣∣∣
≥ 2 ·

∫
[0,1]∩Ac

n′′

f(x)dx− 2 ·
∫
[0,1]∩Ac

n′′

fn(x)dx

= `n′′
√
hn′′ − `n′′

√
hn′′
√
hn′′

→ 1 (n→∞)

and the proof is complete.
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