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Abstract

Let X, X1, X2, . . . be independent and identically distributed Rd-valued random variables
and let m : Rd → R be a measurable function such that a density f of Y = m(X) exists.
Given a sample of the distribution of (X, Y ) and additional independent observations of
X we are interested in estimating f . We apply a regression estimate to the sample of
(X, Y ) and use this estimate to generate additional arti�cial observations of Y . Using
these arti�cial observations together with the real observations of Y we construct a
density estimate of f by using a convex combination of two kernel density estimates.
It is shown that if the bandwidths satisfy the usual conditions and if in addition the
supremum norm error of the regression estimate converges almost surely faster towards
zero than the bandwidth of the kernel density estimate applied to the arti�cial data, then
the convex combination of the two density estimates is L1�consistent. The performance
of the estimate for �nite sample size is illustrated by simulated data, and the usefulness
of the procedure is demonstrated by applying it to a density estimation problem in a
simulation model.

AMS classi�cation: Primary 62G07; secondary 62G20.

Key words and phrases: Density estimation, L1�error, nonparametric regression, consis-
tency.

1 Introduction

Let X, X1, X2, . . . be independent and identically distributed Rd-valued random variables
and let m : Rd → R be an unknown measurable function such that a density f of
Y = m(X) exists. The distribution of X is unknown�its measure will be denoted by µ.
The density f of Y = m(X) must be estimated, and estimates will be compared on the
basis of total variation distance.
∗Running title: Density estimation using real and arti�cial data
†Corresponding author. Tel: +49-6151-16-6846
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This problem is substantially di�erent from that of the estimation of the regression
function m, as will be apparent from the discussion below. Note also that X does not
have to have a density. In R2, consider X = (U,U), where U is uniform on [0, 1], and
set Y = m(X) = U . Then Y is uniformly distributed, yet X does not have a density.
In R1, a more intricate example involving the Cantor set shows that X has in general
not a density. Let the ternary expansion of X ∈ (0, 1) be 0.b1b2 . . ., where b1, b2, . . .
are i.i.d. and uniformly drawn from {0, 2}. Then X does not possess a density. De�ne
the mapping m by the binary expansion of m(X), given by 0.(b1/2)(b2/2) . . .. Since
the bits in this expansion are i.i.d. and uniform on {0, 1}, Y = m(X) is uniformly
distributed on [0, 1]. However, if Y has a density, then X is non-atomic, i.e., continuous:
its distribution function is continuous. We do not wish to assume anything about the
underlying distribution of X.
We distinguish between three data models:

• (i) In the classical model, we have one data size constant, n, and we observe the
i.i.d. sequence

X1, . . . , Xn,

(drawn from the distribution of X), and

Yi = m(Xi), 1 ≤ i ≤ n.

• (ii) In the �nite information model, we have two data size constants, n and N , and
we observe the i.i.d. sequence

X1, . . . , Xn, Xn+1, . . . , Xn+N

(drawn from the distribution of X), and

Yi = m(Xi), 1 ≤ i ≤ n.

This model is of interest in many applications, where the source of the Xi's is cheap
and readily available, but the measurements Yi are expensive or rare. Especially
internet data �t this set-up.

• (iii) In the full information model, which corresponds to N = ∞, we assume that
µ, the distribution of X, is known, and that we have access to

X1, . . . , Xn,

(drawn from the distribution of X), and

Yi = m(Xi), 1 ≤ i ≤ n.

This model is of theoretical interest, as it delineates how far one can push the
boundary in the �nite information model.
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The present paper takes a �rst look at the problem at hand, namely the estimation of
the density f of Y for the �nite information model (ii). It is of particular interest to learn
how the presence of additional X-data (case (ii) with N > 0) can aid with the estimation.
We present a new estimator, and are broadly concerned with its consistency under the
widest possible conditions, never assuming anything about the underlying distribution
of X. We also point out avenues of future research on this set of problems.
The safest way to approach this matter is by ignoring the Xi's altogether. In this case

f can be estimated by applying, e.g., a standard kernel density estimate (Parzen (1962),
Rosenblatt (1956)) de�ned by

fn(y) =
1
hn

·
n∑

i=1

K

(
y − Yi

hn

)
with some kernel function K : R → R which is a density (e.g., the naive kernel K(u) =
1/2 · 1[−1,1]) and some bandwidth hn > 0, which is a parameter of the estimate. For this
estimate it is known that

hn → 0 (n →∞) and n · hn →∞ (n →∞)

imply that the estimate is L1�consistent for all densities (cf., Mnatsakanov and Khmal-
adze (1981) and Devroye (1983)):∫

|fn(x)− f(x)| dx → 0 almost surely

as n →∞. By Sche�é's Lemma (see, e.g., Devroye and Györ� (1985)) this implies that
the estimated distribution converges to the true distribution in total variation distance
and hence the above L1�consistent density estimate allows simultaneous estimation of all
probabilities. For general results in density estimation we refer to the books of Devroye
and Györ� (1985), Devroye (1987) and Devroye and Lugosi (2000).
Improvements in the performance can be achieved in model (i) if additional information

about m is available. This will not be our focus. In model (ii), without assuming anything
about m or X, there is indeed help in the form of additional Xi's. We achieve this by
estimating m by mn based on the data

Dn = {(X1, Y1), . . . , (Xn, Yn)},

which allows us to generate arti�cial (approximate) observations of Y = m(X) via Ŷi =
mn(Xn+i) (i = 1, . . . , N). In a second step we apply separately kernel density estimates
to the data sets Y1, . . . , Yn and Ŷ1, . . . , ŶN and use a convex combination of the resulting
two density estimates as an estimate of f . The L1�error of this estimate depends in
particular on the interplay between the error of the estimate mn and the bandwidth of
the second kernel density estimate. In our main result we give su�cient conditions for the
L1�consistency of our estimate, and under suitable smoothness conditions on m we are
able to show that our density estimate is indeed L1�consistent. Furthermore we indicate
under which condiditons our estimate should achieve a better rate of convergence than the
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simple estimate mentioned above, and these observations are con�rmed in our simulation
part. As an application we consider a density estimation method in a simulation method.
Estimation of m from the data Dn can be done via regression estimation, a �eld studied

already over many years. The most popular estimates include kernel regression estimate
(cf., e.g., Nadaraya (1964, 1970), Watson (1964), Devroye and Wagner (1980), Stone
(1977, 1982) or Devroye and Krzy»ak (1989)), partitioning regression estimate (cf., e.g.,
Györ� (1981) or Beirlant and Györ� (1998)), nearest neighbor regression estimate (cf.,
e.g., Devroye (1982) or Devroye, Györ�, Krzy»ak and Lugosi (1994)), least squares esti-
mates (cf., e.g., Lugosi and Zeger (1995) or Kohler (2000)) or smoothing spline estimates
(cf., e.g., Whaba (1990) or Kohler and Krzy»ak (2001)). For a detailed introduction to
nonparametric regression we refer to Györ� et al. (2002).
Our analysis depends critically on the connection between the error of the regression

estimate and the error of the density estimate. A similar phenomenon occurs in density
estimation of the density of residuals of a regression model (cf., e.g., Ahmad (1992),
Cheng (2004), Efromovich (2005, 2006) or Devroye et al. (2012)), and in our proof we
apply techniques related to the ones in Devroye et al. (2012).
Our data set can be considered as one data set (X1, Y1), . . . , (Xn, Yn) with labels

and one unlabelled data set Xn+1, Xn+2, . . . and our procedure can be considered as
semi-supervised learning for density estimation, which is usually studied in the context
of pattern recognition (cf., e.g., Castelli and Cover (1996), Chapelle et.al. (2006) and the
wide-ranging literature cited therein.)
The outline of the paper is as follows: We start in Section 2 with a discrete analog

of the problem, where we illustrate the potential usefulness of the arti�cial data. Then
we present in Section 3 a general consistency result for a newly proposed estimate in
the general �nite information model, indicate in Section 4 how in a special situation
the used regression estimate might be improved drastically, investigate in Section 5 the
performance of the estimate from Section 3 for �nite sample size by simulated data and
illustrate the usefulness of the procedure by applying it to a density estimation problem
in a simulation model, and give an outlook in Section 6. The proof of our main result is
given in the Appendix.

2 The discrete analog

In the discrete version of this problem, X is a random variable on the positive integers
with

pi = P{X = i}.

There is an unknown function m on the positive integers. The objective is to estimate
the distribution of the atomic random variable m(X). Since m itself takes only countably
many values, the canonical version of the problem is such that m itself takes values in
the positive integers. We de�ne

qj = P{m(X) = j},

and are interested in estimating qj from data such that the total variation error is small.
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We distinguish between three data models:

• (i) In the primitive version, we have one data size constant, n, and we observe the
i.i.d. sequence

X1, . . . , Xn,

(drawn from the distribution of X), and

Yi = m(Xi), 1 ≤ i ≤ n.

• (ii) In the �nite information version, we have two data size constants, n and N ,
and we observe the i.i.d. sequence

X1, . . . , Xn, Xn+1, . . . , Xn+N

(drawn from the distribution of X), and

Yi = m(Xi), 1 ≤ i ≤ n.

• (iii) In the full information version, which corresponds to N = ∞, we assume that
{pi : i ≥ 1} is given and that we have access to

X1, . . . , Xn,

(drawn from the distribution of X), and

Yi = m(Xi), 1 ≤ i ≤ n.

We would like to investigate how the additional data Xn+1, . . . , Xn+N can help in the
estimation. Since models (i) and (iii) correspond to N = 0 and N = ∞, respectively, it
should be clear that we should �rst try to compare (i) and (iii). In case (i), it is di�cult
to improve on the empirical estimate,

qn,j =
1
n

n∑
i=1

I[m(Xi)=j], j ≥ 1.

Note that nqn,j is binomial (n, qj), and hence qn,j is an unbiased estimate of qj . The
expected total variation error is easily bounded�we give it explicitly for later reference:∑

j

E{|qj − qn,j |} = 2
∑

j

E{(qj − qn,j)+}

≤ 2
∑

j

min
(

qj ,
√
Var{qn,j}

)

= 2
∑

j

min
(

qj ,
√

qj(1− qj)/n

)
.

5



If
∑

j

√
q
j

< ∞, then the upper bound is O(1/
√

n). In all but the trivial case that qj = 1
for some j, the expected total variation error∑

j

E{|qj − qn,j |}

tends to 0 at the rate 1/
√

n or slower, because if qk ∈ (0, 1) for some k ∈ N then

E{|qk − qn,k|}
1/
√

n
→ 0 (n →∞)

implies that √
n · (qn,k − qk)√
qk · (1− qk)

→ 0 in L1

which is a contradiction to the central limit theorem.
In case (iii), the situation is remarkably di�erent. Let A = {X1, . . . , Xn} with dupli-

cates removed. If i ∈ A, m(i) is known. If i 6∈ A, m is unknown and cannot possibly be
guessed. Since

qj = P{m(X) = j} =
∑

i

piI[m(i)=j],

we set
qn,j =

∑
i∈A

piI[m(i)=j].

Clearly, 0 ≤ qn,j ≤ qj , and we do not have the unbiasedness we enjoyed in case (i).
However, the expected total variation error has a simple and universal expression that is
the same (!!!) for all choices of m. First note that the total variation error is

∑
j

(qj − qn,j) =
∑

j

(∑
i

piI[m(i)=j] −
∑
i∈A

piI[m(i)=j]

)
=
∑

i

pi −
∑
i∈A

pi

=
∑
i6∈A

pi.

Thus, the expected total variation error is∑
i

piP{i 6∈ A} =
∑

i

pi(1− pi)n.

This error tends to zero with n in all cases, and the rate of decrease depends upon the
tail of {pi}. However, it is much better than for (i). To wit, consider X with compact
support. Then the expected total variation error tends to 0 at an exponential rate in n.
It is of interest to see how the �nite information model interpolates between these two

behaviors.
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3 The general �nite information model

In the sequel we consider the general �nite information model, where we introduce a new
density estimate and study its consistency.
In the de�nition of our generic estimate, we �rst apply a suitably de�ned regression

estimate mn to the data
Dn = {(X1, Y1), . . . , (Xn, Yn)}

in order to estimate m : Rd → R. Then we use the estimate mn of m in order to de�ne
an arti�cial sample of Y . To do this, we choose the size N of this sample and de�ne
arti�cial data via

Ŷ1 = mn(Xn+1), . . . , ŶN = mn(Xn+N ).

Next we apply standard kernel density estimates separately to the data Y1, . . . , Yn and
Ŷ1, . . . , ŶN . Let K be the so-called naive kernel de�ned by

K(u) =
1
2
· 1[−1,1](u) (u ∈ R),

let hn > 0 and ĥN > 0 and de�ne

fn(y) =
1

n · hn
·

n∑
i=1

K

(
y − Yi

hn

)
and

f̂N (y) =
1

N · ĥN

·
N∑

i=1

K

(
y − Ŷi

ĥN

)
.

Finally we use a convex combination of these two estimates as estimate of f , i.e., we
choose a weight

wn = wn (Dn, Xn+1, . . . , Xn+N ) ∈ [0, 1]

and estimate f by
gn = wn · fn + (1− wn) · f̂N .

The precise choice of weight function is left open, as is the choice of regression function
estimate mn. The �rst business at hand is to determine the consistency of the generic
estimate. Since we do not impose restrictions on wn, the choice wn = 0 and wn = 1 imply
that both fn and f̂N must be consistent. The latter can only happen if N → ∞. Also,
the performance of mn is critical. For example, if one lets mn be the nearest neighbor
regression function estimate (mn(x) = m(Xi) if Xi is the nearest neighbor of x), then
is the atomic nature of such mn a problem for the consistency of f̂N? The consistency
theorem we present in the next section takes a higher view, and gives a natural technical
condition that links mn to ĥN .
Our main result is the following theorem.
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Theorem 1 Let X, X1, X2, . . . be independent and identically distributed Rd-valued
random variables and let m : Rd → R be a measurable function such that a density f of
Y = m(X) exists. Set Yi = m(Xi) (i ∈ N). Let K be the naive kernel and for n ∈ N
let N ∈ N, hn > 0 and ĥN > 0. Given (X1, Y1), . . . , (Xn, Yn), Xn+1, Xn+2, . . . , and a
regression estimate mn let gn be the estimate of f as de�ned in Section 2. Assume that
N = N(n) →∞ as n →∞, and that

max(hn, ĥn) → 0 (n →∞), n ·min(hn, ĥn) →∞ (n →∞). (1)

Assume furthermore the following on mn: for every ε > 0, n ∈ N, there exists a (random)
set An,ε = An,ε(Dn) ⊆ R such that

lim
n→∞

P{µ{Ac
n,ε} > ε} = 0 (2)

and
‖mn −m‖∞,An,ε

ĥN

=
supx∈An,ε

|mn(x)−m(x)|
ĥN

= o(1) in probability. (3)

Then, regardless of how wn is chosen,∫
R
|gn(y)− f(y)| dy → 0 in probability.

[In particular,
∫

R

∣∣∣f̂N (y)− f(y)
∣∣∣ dy = o(1) in probability as well.] If, in addition,

lim sup
n→∞

µ{Ac
n,ε} ≤ ε almost surely (4)

and
‖mn −m‖∞,An,ε

ĥN

=
supx∈An,ε

|mn(x)−m(x)|
ĥN

= o(1) almost surely (5)

then ∫
R
|gn(y)− f(y)| dy → 0 almost surely.

Proof. The proof is given in the Appendix.
Conditions (3) and (5) can be derived from rate of convergence results for nonpara-

metric regression estimates. A less cumbersone, but weaker, consistency result is the
following

Corollary 1 Let X, X1, X2, . . . be independent and identically distributed Rd-valued
random variables and let m : Rd → R be a measurable function such that a density f
of Y = m(X) exists. Let K be the naive kernel and for n ∈ N let N ∈ N, hn > 0 and
ĥN > 0. Set Yi = m(Xi) (i ∈ N). Given (X1, Y1), . . . , (Xn, Yn), Xn+1, Xn+2, . . . , and
a regression estimate mn let gn be the estimate of f as de�ned in Section 2. Assume that
(1) holds.
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(i) If, in addition,

E
∫
|mn(x)−m(x)|2µ(dx) = E

(
|mn(X)−m(X)|2

)
= o

(
ĥ2

N

)
, (6)

then, regardless of the choice of wn,∫
R
|gn(y)− f(y)| dy → 0 in probability.

(ii) If, in addition, ∫
|mn(x)−m(x)|2µ(dx)

ĥ2
N

→ 0 almost surely, (7)

then, regardless of the choice of wn,∫
R
|gn(y)− f(y)| dy → 0 almost surely.

Proof. In order to prove (i), choose an ∈ R+ such that

E
∫
|mn(x)−m(x)|2µ(dx)

a2
n

= o(1) and
an

ĥN

= o(1). (8)

In order to show (ii), choose an = an(Dn) ∈ R+ such that∫
|mn(x)−m(x)|2µ(dx)

a2
n

= o(1) almost surely and
an

ĥN

= o(1) almost surely. (9)

In both cases set
An,ε =

{
x ∈ Rd : |mn(x)−m(x)| ≤ an

}
.

Then
‖mn −m‖∞,An,ε

ĥN

≤ an

ĥN

→ 0 almost surely

by (8) or (9), respectively. Furthermore, by Markov's inequality we have

µ(Ac
n,ε) ≤

∫
|mn(x)−m(x)|2µ(dx)

a2
n

,

so (2) and (4) are implied by (8) and (9), resp. Application of Theorem 1 yields the
assertion. �

Remark 1. Assume that m is a linear function and that mn is a linear regression
estimate. In this case we expect

lim sup
n→∞

E
∫
|mn(x)−m(x)|2µ(dx)

1/n
< ∞.
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If we require that limn→∞
√

n · hN = ∞ , then the assumption (6) is satis�ed and the
estimate gn (and thus f̂N ) is weakly L1�consistent. If N is very large and f is Lipschitz
continuous, the L1�error of f̂N is dominated by the bias which is of order hN , and this
can be arbitrarily close to 1/

√
n. This is in contrast to the rate of convergence of fn for

Lipschitz continuous f , which is of order n−1/(2·1+1) = n−1/3 (Devroye and Györ� (1985)).

Remark 2. Assume that m is (p, C)-smooth, which means in case p ∈ N that all
partial derivatives of order p− 1 of m exist and are Lipschitz continuous with Lipschitz
constant C. Furthermore assume that X and Y are both bounded almost surely. Then
standard least squares estimates mn satisfy

lim sup
n→∞

E
∫
|mn(x)−m(x)|2µ(dx)

n−2p/(2p+d)
< ∞

(cf., Kohler (2000) or Corollary 19.1 in Györ� et al. (2002)). The assumption (6) is
satis�ed if we have limn→∞ np/(2p+d) · hN = ∞. In that case, the estimate f̂N is weakly
L1-consistent. When N is very large, the L1-error of f̂N is again dominated by the bias,
and arguing as in Remark 1 we see that we can expect that for Lipschitz continuous f ,
the rate of convergence of f̂N is better than the one for f if

p

2p + d
>

1
3
, which is equivalent to p > d.

Remark 3. The techniques introduced in the proofs of Theorem 1 and Corollary 1 can
be applied in the context of estimation of the density of the residuals in a nonparametric
regression model. Here we assume that Y −m(X) has a density f , and we try to estimate
f using the data (X1, Y1), . . . , X2n, Y2n). To do this, we compute �rst a regression
estimate mn(x) = mn(x,Dn) and use then

f̂n(x) =
1

n · hn
·

n∑
i=1

K

(
x− (Yn+i −mn(Xn+i))

hn

)
as estimate of f . Assume hn → 0 (n →∞), n · hn →∞ (n →∞) and

E
∫
|mn(x)−m(x)|2µ(dx)

ĥ2
n

→ 0 (n →∞). (10)

We argue as in the proof of Theorem 1, where we use

E{f̂n(x)|Dn} =
∫

1
hn

·K
(

x− (y −mn(z))
hn

)
ν(dz, dy)

(where ν is the joint probability measure of (X, Y )) and replace mn(Xn+i) by Yn+i −
mn(Xn+i)). Then we obtain weak consistency:∫

R
|f̂n(y)− f(y)| dy → 0 in probability.
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It follows from Stone (1977) that there exist weakly universally consistent regression
estimates, so for each distribution of (X, Y ) we can �nd a sequence of bandwidths hn

(depending on this distribution) such that (10) holds. Observe that this result does not
require that X and Y −m(X) are independent.
It is an open problem, whether the same result also holds for a �xed sequence of

bandwidths {hn}n and a �xed sequence of regression estimates.

4 The linear interpoland

In this section, we look at a very speci�c choice of mn, the linear interpoland, when d = 1,
and in addition, m : R → R is twice continuously di�erentiable and the distribution
function F of X satis�es for some a < b: F (a) = 0, F (b) = 1 and on (a, b), F is twice
continuously di�erentiable with �rst derivative bounded away from zero and with second
derivative uniformly bounded on (a, b). [Equivalently, µ has a continuously di�erentiable
density on [a, b] that is bounded away from 0 on that interval.] These assumptions imply
that F−1 exists, has on (0, 1) a uniformly bounded second derivative and that m ◦ F−1

is twice continuously di�erentiable with uniformly bounded second derivative on (0, 1).
This is an exploratory example that illustrates how one can handsomely beat the rates
suggested in the remarks of the previous section when N is large.
Two observations are crucial: �rst of all, the total variation error is invariant under

componentwise monotone transformations of X, if we wish to estimate the density of X.
Secondly, if g is known, as in model (iii), then the probability integral transform can be
used and X can be replaced by G(X), where G is the (known) distribution function of
X. In particular, for d = 1, we may in all cases assume, without loss of generality, that
X is uniformly distributed on [0, 1]. This is called the canonical version of the problem.
The canonical version above corresponds to the case N = ∞, where we assume

that F (i.e., µ) is explicitly known. In the sequel we take a slightly more realistic
stance and assume instead that N > n4. Let FN be the empirical distribution func-
tion for Xn+1, . . . , Xn+N , and let Qnm be the linear interpoland of (FN (Xi),m(Xi))
(i = 1, . . . , n) (where the �rst and the last linear part are extended to −∞ and ∞,
respectively), let X(1), . . . , X(n) be the order statistics of X1, . . . , Xn, and set

mn(x) =


(Qnm) (FN (x)) , if X(1) ≤ x ≤ X(n),

m(X(1)), if x < X(1),

m(X(n)), if x > X(n).

Then

E
∫
|mn(x)−m(x)|2 µ(dx) = O

(
1
n3

)
. (11)

Consequently, if we demand that limn→∞ n3/2 · hN = ∞ (so that assumption (6) is
satis�ed), the estimate f̂N is weakly L1�consistent. Arguing as above we see that we can
expect in case of Lipschitz smooth densities rates of convergence better than n−r for any
r < 3/2.
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Proof of (11). Let Q̄nm be the linear interpoland of (F (Xi),m(Xi)) (i = 1, . . . , n).
For x ∈ (a, b) set

ηn(x) =


F (X(1)), if F (x) ≤ F (X(1)),
F (X(k))− F (X(k−1)), if F (X(k−1)) < F (x) ≤ F (X(k)),
1− F (X(n)), if F (x) ≥ F (X(n)).

Let x ∈ (a, b) be arbitrary. First we assume x ∈ [X(1), X(n)]. In this case we have

|mn(x)−m(x)| ≤
∣∣(Qnm) (FN (x))−

(
Q̄nm

)
(FN (x))

∣∣
+
∣∣(Q̄nm

)
(FN (x))−

(
Q̄nm

)
(F (x))

∣∣
+
∣∣(Q̄nm

)
(F (x))−

(
m ◦ F−1

)
(F (x))

∣∣
=: T1,n + T2,n + T3,n.

Since

m(X(k))−m(X(k−1))
F (X(k))− F (X(k−1))

=
m ◦ F−1(F (X(k)))−m ◦ F−1(F (X(k−1)))

F (X(k))− F (X(k−1))
= (m ◦ F−1)′(ξ)

for some ξ ∈ (F (X(k−1)), F (X(k))), Q̄nm is Lipschitz continuous with Lipschitz constant

bounded by supz∈(0,1)

∣∣∣(m ◦ F−1
)′ (z)

∣∣∣, from which we conclude

T2,n ≤ sup
z∈(0,1)

∣∣∣(m ◦ F−1
)′ (z)

∣∣∣ · sup
u∈R

|FN (u)− F (u)| .

By construction of Qnm and of Q̄nm, for any y ∈ [FN (X(1)), FN (X(n))] there exists ȳ ∈ R
satisfying

(Qnm)(y) = (Q̄nm)(ȳ) and |y − ȳ| ≤ sup
u∈R

|FN (u)− F (u)| .

(In case y = FN (X(k)) + α · (FN (X(k+1)) − FN (X(k))) for some k ∈ {1, . . . , n − 1} and
some α ∈ [0, 1] we set ȳ = F (X(k)) + α · (F (X(k+1))− F (X(k))).) Consequently, setting
y = FN (x) we get by using again the Lipschitz property of Q̄nm:

T1,n = |(Q̄nm)(ȳ)− (Q̄nm)(y)| ≤ sup
z∈(0,1)

∣∣∣(m ◦ F−1
)′ (z)

∣∣∣ · sup
u∈R

|FN (u)− F (u)| .

Finally, to bound T3,n we observe that
(
m ◦ F−1

)
(u) is equal to the value of the �rst

term of the Taylor series of m ◦ F−1 around u and evaluated at u, and that this Taylor
series polynomial p satis�es

Q̄np = p.

Hence, setting u = F (x), it su�ces to bound∣∣(Q̄nm
)
(u)−

(
Q̄np

)
(u)
∣∣ .

12



Since both expressions are linear interpolands of functions at points with x-values F (Xi)
(i = 1, . . . , n), their maximum distance for u ∈

[
F (X(1)), F (X(n))

]
is bounded by the

distance between m ◦ F−1 and its Taylor series approximant evaluated at the x-points
closest to u, which has distance ηn(x) from x.
Summarizing the above results we get for x ∈ [X(1), X(n)]

|mn(x)−m(x)| ≤ 2 · sup
z∈(0,1)

∣∣∣(m ◦ F−1
)′ (z)

∣∣∣ · sup
u∈R

|FN (u)− F (u)|

+
1
2

sup
z∈(0,1)

∣∣∣(m ◦ F−1
)′′ (z)

∣∣∣ · ηn(x)2.

For x < X(1) we get (by using the Lipschitz property of m ◦ F (−1))

|mn(x)−m(x)| = |(m◦F−1)(F (X(1)))−(m◦F−1)(F (x))| ≤ sup
z∈(0,1)

∣∣∣(m ◦ F−1
)′ (z)

∣∣∣·F (X(1))

and for x > X(n) we have

|mn(x)−m(x)| ≤ sup
z∈(0,1)

∣∣∣(m ◦ F−1
)′ (z)

∣∣∣ · (1− F (X(n))).

This implies

E
∫
|mn(x)−m(x)|2 µ(dx)

≤ const ·E
(

sup
u∈R

|FN (u)− F (u)|2
)

+ const ·E
(
ηn(X)4

)
+const ·E

(
F (X(1))

3
)

+ const ·E
(
(1− F (X(n)))

3
)
.

Using

E
(
Zk
)

=
∫ ∞

0
k · tk−1 ·P{Z > t} dt

for a non-negative real random variable X we can conclude from Problem 9.5 in Györ�
et al. (2002) that

E
(

sup
u∈R

|FN (u)− F (u)|2
)

≤ 1
n3

+
∫ ∞

1/n3

P
{

sup
u∈R

|FN (u)− F (u)| >
√

t

}
dt

≤ 1
n3

+
∫ 1

1/n3

8 · (N + 1) · exp
(
−N · t

128

)
dt

= O

(
1
n3

)
.

Furthermore using the fact that F (X1) is uniformly distributed on [0, 1] we get

E
(
ηn(X)4

)

13



=
∫ ∞

0
4 · t3 ·P [ηn(X) > t] dt

≤ 4 ·
∫ 1

0
t3 ·P

[
∀i ∈ {1, . . . , n} : F (Xi) /∈

[
F (X)− t

2
, F (X)

]
, F (X) >

t

2

]
dt

+ 4 ·
∫ 1

0
t3 ·P

[
∀i ∈ {1, . . . , n} : F (Xi) /∈

[
F (X), F (X) +

t

2

]
, F (X) < 1− t

2

]
dt

= 4 ·
∫ 1

0
t3 · 2 ·

(
1− t

2

)n

dt

≤ 8 ·
∫ 1

0
t3 · exp

(
−n t

2

)
dt

≤ 384
n3

∫ 1

0
exp

(
−n t

2

)
dt = O

(
1
n4

)
,

where the last inequality follows by partial integration.
Finally we observe

E
(
(1− F (X(n)))

3
)

= E
(
F (X(1))

3
)

=
∫ 1

0
3 · t2 ·P [∀i ∈ {1, . . . , n} : F (Xi) > t] dt

≤
∫ 1

0
3 · t2 · e−n·t dt =

6
n3

= O

(
1
n3

)
.

�
Remark 4. For d > 1, we may assume that X has a copula distribution (i.e., a distri-
bution with uniform marginals). In this case it is not necessary to assume that X has a
density g.

5 Application to simulated data

In this section we illustrate the �nite sample size performance of our estimates by applying
them to simulated data.
In our �rst example we set X = (X(1), X(2)) for independent standard normally dis-

tributed random variables X(1) and X(2) and choose Y = m(X) for

m(x1, x2) = 2 · x1 + x2 + 2.

In this case Y is normally distributed with expectation 2 and variance 22 + 12 = 5. We
estimate the density of Y by the estimate introduced in Section 2, where we use a fully
data-driven smoothing spline estimate to estimate the linear function m. For this purpose
we use the routine Tps() from the library �elds in the statistics package R. For the weights
we use three di�erent values: wn = 1 (in which case we use only the real data), wn = 0
(in which case the estimate is based only on the arti�cial data) and wn = n/(n + N) (in
which case we use real and arti�cial data and all data points have the same weight). We
set n = 200 and N = 800 and choose the bandwidths by minimizing the L1�errors of the
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estimate via comparing the estimated density with the true density (so we assume that
we have available an oracle which chooses the optimal bandwidth, so that we can ignore
e�ects occuring because of inproper choice of the bandwidths). Figure 1 shows the three
estimates and the true density in a typical simulation. Since the result of our simulation
depends on the randomly occuring data points, we repeat the simulation 100 times with
independent realizations of the occuring random variables and report in Figure 2 boxplots
of the occuring L1�errors (where we approximate the integrals by Riemann sums in order
to compute the L1�errors approximately). Comparing the boxplots in Figure 2 we see
that the median of the L1�errors in case of the estimate which uses only arti�cial data
(0.1097) is nearly twice as big as the median of the L1�errors of the estimate which uses
only arti�cial data (0.0648). If we assign the same weight to every data point it is even
more smaller (0.0612).
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Figure 1: Density estimates in the �rst model
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Figure 2: Boxplots in the �rst model

In our second example we set X = (X(1), X(2)) for independent standard normally
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distributed random variables X(1) and X(2) and choose Y = m(X) for

m(x1, x2) = x2
1 + x2

2.

Then Y is chi-squared distributed with two degrees of freedom. We de�ne the estimate as
in the �rst example. Again Figure 3 shows the three estimates and the true density in a
typical simulation, and in Figure 4 we compare boxplots of the L1�errors of the estimate.
From Figure 4 we see that the mean L1�error of the estimate with wn = 0 (0.1426) is
well below the �rst estimate with wn = 1 (0.2208). The median of the estimate which
uses real and arti�cial data is the smallest (0.1321).
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Figure 3: Density estimates in the second model

●

●

real realart art

0.
10

0.
15

0.
20

0.
25

0.
30

L1−error (n=200, N=800, h_n=0.4, h_N=0.3, rep=100)

Figure 4: Boxplots in the second model

In Figures 5 and 6 we repeat the same simulation choosing X as a standard-normally
distributed random variable and m(x) = exp(x). In this case Y = m(X) is log-normally
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distributed. Figure 6 shows the same results as before. The estimate which uses only
real data is again the worst (0.2221). If every data point has the same weight the mean
L1�error (0.1341) is smaller than if we use only arti�cial data (0.1402).
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Figure 5: Density estimates in the third model
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Figure 6: Boxplots in the third model

Finally we illustrate the usefulness of our estimation procedure by applying it to a
density estimation problem in a simulation model. Here we consider the load distribution
in the three legs of a simple tripod. More precisely, a static force is applied on the
symmetric tripod to induce mechanical loading equivalent to the weight of 4,5 kg in its
three legs. On the bottom side of the legs, force sensors are mounted to measure the leg's
axial force. For a safe and stable standing of the tripod, the legs are angled with α = 5◦

from the middle axis of the connecting devise. Engineers expect that if the holes where
the legs are plugged in have a diameter of 15 mm, a third of the general load should
be measured in each leg. Unfortunately, a gouching of exactly 15 mm is not possible
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in the manufactering process. In the simulation we assume that the diameters behave
like a standard normally distributed random variable with expectation 15 and standard
deviation 0.5. Based on the physical model of the tripod we are able to calculate the
resulting load distribution in dependence of the three values of the diameter. Since in
this case the real density is unknown, we repeat the simulation 10.000 times to generate
a high sample of relative loads. For simplicity, we consider only one leg of the tripod.
Application of the routine density in the statistics package R to these 10.000 observed
values leads to the black line in �gure 7. We calculate our estimates as described before
using 200 real and 800 arti�cial data. Again the estimates which use arti�cial data
achieve better results than the estimate with wn = 1. The di�erence between the blue
and the red line is not visible.
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Figure 7: Density estimates in the fourth model

6 An outlook

The consistency result gives us only general guidelines for the joint choice of ĥN and mn.
The rate of convergence of

∫
|gn(y) − f(y)| dy needs to be studied in detail. This can

only be attempted if we specify the data-dependent weight function wn. It is clear that
the individual rates of∫

|fn(y)− f(y)| dy and

∫
|f̂N (y)− f(y)| dy

will form the basis of such a study.
Help can come from f̂N only if it performs well. Our examples outlined a few possible

situations. The discrete analog of the previous section shows even more dramatically the
improvements one can expect if N is very large.
There is also a need to develop a suitable minimax theory for our estimation problem

for appropriate subclasses of distributions of X and regression functions m. In fact, even
for N = 0, there is no known minimax theory when m is restricted in some sense.

18



Even further a�eld, one might consider vector-valued regression functions m.
Finally, our generic estimate itself was kernel-based. It is of interest to explore a

nearest-neighbor or space partitioning version for both mn and the de�nition of f̂N .

7 Appendix: Proof of Theorem 1

We prove only the almost sure version of the Theorem 1. The other part can be derived
in the same way. Since∫

R
|gn(y)− f(y)| dy

≤ wn ·
∫

R
|fn(y)− f(y)| dy + (1− wn) ·

∫
R
|f̂N (y)− f(y)| dy

≤
∫

R
|fn(y)− f(y)| dy +

∫
R
|f̂N (y)− f(y)| dy,

it su�ces to show ∫
R
|fn(y)− f(y)| dy → 0 almost surely (12)

and ∫
R
|f̂N (y)− f(y)| dy → 0 almost surely. (13)

(12) follows from Devroye (1983), so it su�ces to show (13).
As in the proof of Theorem 1 in Devroye et al. (2012) we conclude from McDiarmid's

inequality (cf., McDiarmid (1989)) that (13) is implied by

E
{∫

R
|f̂N (y)− f(y)| dy

∣∣Dn

}
→ 0 almost surely, (14)

which we show in the sequel.
Set (a)+ = max{a, 0} for a ∈ R. By Sche�é's Lemma we know∫

R
|f̂N (y)− f(y)| dy = 2 ·

∫
R
(f(y)− f̂N (y))+ dy

≤ 2 ·
∫

B
(f(y)− f̂N (y))+ dy + 2 ·

∫
Bc

f(y) dy

for any B ⊆ R, hence it su�ces to show that we have for any compact set B ⊆ R

E
{∫

B
(f(y)− f̂N (y))+ dy

∣∣Dn

}
→ 0 almost surely. (15)

Since
(a)+ ≤ |b|+ (a− b)+ for a, b ∈ R, (16)
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this in turn is implied by

E
{∫

B

∣∣∣f̂N (y)−E
{

f̂N (y)|Dn

}∣∣∣ dy
∣∣Dn

}
→ 0 almost surely (17)

and ∫
B

(
f(y)−E

{
f̂N (y)|Dn

})
+

dy → 0 almost surely. (18)

In the �rst step of the proof we show (17). By Cauchy-Schwarz and the inequality of
Jensen we have

E
{∫

B

∣∣∣f̂N (y)−E
{

f̂N (y)
∣∣Dn

}∣∣∣ dy
∣∣Dn

}
≤

√∫
B

1 dy ·E

{√∫
B

∣∣∣f̂N (y)−E
{

f̂N (y)
∣∣Dn

}∣∣∣2 dy

∣∣∣∣Dn

}

≤

√∫
B

1 dy ·

√
E
{∫

B

∣∣∣f̂N (y)−E
{

f̂N (y)
∣∣Dn

}∣∣∣2 dy

∣∣∣∣Dn

}
.

Using the theorem of Fubini and the conditional independence of Ŷ1, . . . , ŶN we get

E
{∫

B

∣∣∣f̂N (y)−E
{

f̂N (y)
∣∣Dn

}∣∣∣2 dy
∣∣Dn

}
=
∫

B
E
{∣∣∣f̂N (y)−E

{
f̂N (y)

∣∣Dn

}∣∣∣2 ∣∣Dn

}
dy

≤
∫

B

1

N2 · ĥ2
N

·
N∑

i=1

E
{

K2

(
y −mn(Xn+i)

ĥN

) ∣∣∣∣Dn

}
dy

=
1

N · ĥ2
N

·
∫

B

∫
K2

(
y −mn(z)

ĥN

)
µ(dz) dy

=
1

N · ĥ2
N

·
∫ ∫

B
K2

(
y −mn(z)

ĥN

)
dy µ(dz)

≤ 1

N · ĥN

·
∫ ∫

R
K2 (y) dy µ(dz)

=
1

N · ĥN

·
∫

R
K2 (y) dy → 0 (n →∞),

from which we conclude (17) via (1).
In the second step of the proof we show (18). Let B ⊆ R be an arbitrary compact set,

let ε > 0 be arbitrary and let An,ε be de�ned as in the theorem. Then∫
B

(
f(y)−E

{
f̂N (y)|Dn

})
+

dy

=
∫

B

(
f(y)−

∫
1

ĥN

K

(
y −mn(x)

ĥN

)
µ(dx)

)
+

dy
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≤
∫

B

(
f(y)−

∫
1

ĥN

K

(
y −mn(x)

ĥN

)
· 1An,ε(x) µ(dx)

)
+

dy.

Since K is the naive kernel we have for any x ∈ An,ε in case that ĥN > ‖mn −m‖∞,An,ε

K

(
y −m(x)

ĥN − ‖mn −m‖∞,An,ε

)
=

1
2

⇔ m(x)− ĥN + ‖mn −m‖∞,An,ε ≤ y ≤ m(x) + ĥN − ‖mn −m‖∞,An,ε

⇒ m(x)− ĥN + (mn(x)−m(x)) ≤ y ≤ m(x) + ĥN − (m(x)−mn(x))
⇔ mn(x)− ĥN ≤ y ≤ mn(x) + ĥN

⇔ K

(
y −mn(x)

ĥN

)
=

1
2

which implies

K

(
y −mn(x)

ĥN

)
≥ K

(
y −m(x)

ĥN − ‖mn −m‖∞,An,ε

)
.

Using this and (16) we conclude that we have in case ĥN > ‖mn − m‖∞,An,ε (which
happens for n su�ciently large with probability one by assumption (5))∫

B

(
f(y)−

∫
1

ĥN

K

(
y −mn(x)

ĥN

)
· 1An,ε(x) µ(dx)

)
+

dy

≤
∫

B

(
f(y)−

∫
1

ĥN

K

(
y −m(x)

ĥN − ‖mn −m‖∞,An,ε

)
· 1An,ε(x) µ(dx)

)
+

dy

≤
∫

B

(
f(y)−

∫
1

ĥN

K

(
y −m(x)

ĥN − ‖mn −m‖∞,An,ε

)
µ(dx)

)
+

dy

+
∫

B

∫
1

ĥN

K

(
y −m(x)

ĥN − ‖mn −m‖∞,An,ε

)
· 1Ac

n,ε
(x) µ(dx) dy

≤
∫

B

(
f(y)−

∫
R

1

ĥN

K

(
y − z

ĥN − ‖mn −m‖∞,An,ε

)
· f(z) dz

)
+

dy

+
ĥN − ‖mn −m‖∞,An,ε

ĥN

·
∫

R
K (y) dy

∫
1Ac

n,ε
(x) µ(dx).

By Lebesgue's density theorem (cf., e.g., Theorem 2 or Theorem 3 in Devroye and Györ�
(1985)) and (1) and (5) we know that∫

R

1

ĥN

K

(
y − z

ĥN − ‖mn −m‖∞,An,ε

)
· f(z) dz
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=
ĥN − ‖mn −m‖∞,An,ε

ĥN

·
∫

R

1

ĥN − ‖mn −m‖∞,An,ε

K

(
y − z

ĥN − ‖mn −m‖∞,An,ε

)
· f(z) dz

→ 1 · f(y) = f(y) (n →∞)

for almost all y ∈ R with probability one, which implies (via the dominated convergence
theorem)∫

B

(
f(y)−

∫
R

1

ĥN

K

(
y − z

ĥN − ‖mn −m‖∞,An,ε

)
· f(z) dz

)
+

dy → 0 almost surely.

Furthermore,

ĥN − ‖mn −m‖∞,An,ε

ĥN

·
∫

R
K (y) dy

∫
1Ac

n,ε
(x) µ(dx) ≤ 1 · 1 · µ(Ac

n,ε).

Summarizing the above result we get

lim sup
n→∞

∫
B

(
f(y)−E

{
f̂N (y)|Dn

})
+

dy ≤ ε almost surely,

and with ε → 0 this implies (18). The proof is complete. �
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