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Abstract

In many applications of regression based Monte Carlo methods for pricing American op-

tions in discrete time parameters of the underlying financial model have to be estimated

from observed data. In this paper suitably defined nonparametric regression based Monte

Carlo methods are applied to paths of financial models where the parameters converge

towards true values of the parameters. For various Black-Scholes, Garch and Levy models

it is shown that in this case the price estimated from the approximate model converge to

the true price.
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1 Introduction

In this paper we study the problem of numerical evaluation of an American option in

discrete time (also called Bermudan option). The holder of such an option has the right to

buy or sell the underlying asset for a given strike price at one of the time points 0, 1, . . . , T ,
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where T is the so-called majurity of the option. It is well-known that in complete and

arbitrage free markets the price V0 of such an option is given by a solution of the optimal

stopping problem

V0 = sup
τ∈T (0,...,T )

E {fτ (Xτ )} (1)

(cf., e.g., Karatzas and Shreve (1998)). Here ft is the discounted payoff function, the

underlying stochastic process is given by X0, X1, . . . , XT , and T (0, . . . , T ) is the class of

all {0, . . . , T}-valued stopping times, i.e. τ ∈ T (0, . . . , T ) is a measurable function of

X0, . . . , XT satisfying

{τ = α} ∈ F(X0, . . . , Xα) for all α ∈ {0, . . . , T}.

Throughout this paper we assume X0 = x0 a.s. for some x0 ∈ IRd, i.e., we start at

time zero with some fixed value. Furthermore we assume that X0, X1, . . . , XT is a

IRd–valued Markov process recording all necessary information about financial variables

including prices of the underlying assets as well as additional risk factors driving stochastic

volatility or stochastic interest rates. Neither the Markov property nor the form of the

payoff as a function of the state Xt are very restrictive and can often be achieved by

including supplementary variables.

One way to compute (1) is to determine an optimal stopping rule τ∗ ∈ T (0, . . . , T )

satisfying

V0 = E {fτ∗ (Xτ∗)} . (2)

Let

qt(x) = sup
τ∈T (t+1,...,T )

E {fτ (Xτ )|Xt = x} (3)

be the so-called continuation value describing the value of the option at time t given

Xt = x in case of holding the option rather than excersising it. It follows from the general

theory of optimal stopping (cf., e.g., Chow, Robbins and Siegmund (1971) or Shiryayev

(1978)) that an optimal stopping rule can be defined by

τ∗ = inf{s ≥ 0 : qs(Xs) ≤ fs(Xs)} (4)
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(cf., e.g., Section 8.1 in Glasserman (2004) or Theorem 1 in Kohler (2010)).

The Markov property implies the dynamic programming equations

qT (x) = 0,

qt(x) = E {max {ft+1 (Xt+1) , qt+1 (Xt+1)}|Xt = x} (t = 0, 1, . . . , T − 1) (5)

(cf., e.g., Section 8.1 in Glasserman (2004) or Theorem 2 in Kohler (2010)). In general

these conditional expectations cannot be computed in applications. The basic idea of

regression-based Monte Carlo methods for pricing American options is to apply recursively

regression estimates to artificially created samples of

(Xt,max {ft+1 (Xt+1) , q̂n,t+1 (Xt+1)}) (6)

to construct estimates q̂n,t of qt. This kind of recursive estimation scheme was firstly pro-

posed by Carrier (1996) for the estimation of so-called value functions. In Tsitsiklis and

Van Roy (1999) and Longstaff and Schwartz (2001) it was used in connection with para-

metric regression to construct estimates of continuation values. Various nonparametric

regression estimates have been applied for the estimation of continuation values in Egloff

(2005), Egloff, Kohler and Todorovic (2007), Kohler (2008), Belomestny (2011), Kohler

and Krzyżak (2009) and Kohler, Krzyżak and Todorovic (2010). There results concerning

consistency and rate of convergence of the resulting estimates of the price of the option

have been derived.

From the theoretical point of view there is still one important problem. In applica-

tions the distribution of the stock values is unknown. Usually in practice one considers a

stochastic model for the stock values (e.g., a Black-Scholes-model), estimates the model

parameters (in this case the volatility of the underlying asset) and generates sample paths

with this estimated distribution. Here it is assumed that the real model is known, but the

real model parameters are unknown. So instead of (6) artificially generated samples of

(
X̄t, Ȳt

)
=
(
X̄t,max

{
ft+1

(
X̄t+1

)
, q̂n,t+1

(
X̄t+1

)})
are given, where it is assumed that the distribution of X̄t is close to the distribution of Xt

in the sense that it is generated with the same model but slightly different values of the

parameters.
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In the sequel we investigate how the estimated price of the option behaves in case

that the parameters of a given model converge to the true parameter values. Our main

result will be that for suitably defined least squares estimates of the continuation values

the estimated prices in case of a Black-Scholes model, of a GARCH-model or of a Levy

model converges to the true price in this situation.

The outline of this article is as follows: The definition of the nonparametric regression

based Monte Carlo methods which we analyze is given in Section 2. The main result

concerning consistency of the estimate in case of an application with estimated parameters

of a Black-Scholes, of a GARCH and of a Levy model is described in Section 3. In Section

4 the results are illustrated by simulated data. The proofs are given in Section 5.

2 Definition of the estimates

In the sequel we consider a IRd-valued stochastic process

(Xt)t=0,...,T

containing the log prices of the underlyings and at least all informations needed to compute

the payoff for arbitrary t. We denote the payoff function with respect to (Xt)t=0,...,T at

time t by ft and the corresponding continuation value by qt.

The consideration of log prices instead of ordinary prices simplifies the integrability

condition of the sample paths, which we will need in our theoretical results.

Instead of (Xt)t=0,...,T we have only given artificially generated samples of an estimate

of (Xt)t=0,...,T denoted by (
X̄

(n)
t,i

)
t=0,...,T

, i ∈ IN.

We will use these sample paths to estimate the continuation values qt (t = 0, . . . , T ).

We start with

q̂n,T = 0. (7)

Given the estimate q̂n,t+1 of qt+1 for some t ∈ {0, 1, . . . , T−1}, we estimate the conditional

expectation in (5) by applying the principle of least squares to the data{(
X̄

(n)
t,i ,max{ft+1(X̄

(n)
t+1,i), q̂n,t+1(X̄

(n)
t+1,i)}

)
: i = 1, . . . , n

}
.
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To do this, we choose a set Fn of functions f : IRd → IR and define

q̂n,t(·) = arg min
g∈Fn

1

n

n∑
i=1

∣∣∣g (X̄(n)
t,i

)
−max{ft+1(X̄

(n)
t+1,i), q̂n,t+1(X̄

(n)
t+1,i)}

∣∣∣2 ,
where x0 = arg minx∈D h(x) means x0 ∈ D and h(x0) = minx∈D h(x) for a function

h : D → IR. Here we assume for simplicity, that the minimum exists, but we do not

require its uniqueness.

To compute the least squares estimate above, we have to specify suitable function sets

Fn. In the sequel we will use sets of polynomial spline functions.

Choose M ∈ IN0, Kn ∈ IN, A,B ∈ IR with A < B and set uk = A+ k · (B−A)/Kn for

k ∈ ZZ. Let Bj,M,Kn , j = 1, ...,Kn + M be the B–spline with support [uj , uj+M+1] with

respect to the knot sequence (uk)k∈ZZ (see, e.g., de Boor (1978), Chapter IX or Györfi et

al. (2002), Section 14.1). The spline spaces which we will use for our estimates in case

d = 1 will be defined as subspaces of

SKn,M ([A,B]) =

 ∑
j∈ZZ:supp(Bj,M,Kn )∩[A,B]6=∅

aj ·Bj,M,Kn : j ∈ ZZ, aj ∈ IR

 .

Restricted on [A,B] the space SKn,M ([A,B]) consists of all functions f that are (M − 1)-

times continuously differentiable on [A,B] and that are on each interval [uj , uj+1) equal

to a polynomial of degree M (or less). For our function space we restrict the coefficients

in SKn,M ([A,B]) such that the functions are bounded and Lipschitz continuous. More

precisely, we set

SKn,M,βn,γn([A,B]) =

{∑
j∈ZZ

ajBj,M,Kn : |aj | ≤ βn, |aj − aj−1| ≤ γn/Kn,

aj = 0 if supp(Bj,M,Kn) ∩ [A,B] = ∅ (j ∈ ZZ)

}
(8)

for some βn, γn > 0. By standard results on B-splines and its derivatives (cf., e.g.,

Lemmas 14.4 and 14.6 in Györfi et al. (2002)) it can be shown that each function in

SKn,M,βn,γn([A,B]) is bounded in absolute value by βn and Lipschitz continuous with

Lipschitz constant γn, which we will need later in the proofs.

In case of higher dimensions we will use tensor product B-splines. Let ei be the i-

th unit vector (i = 1, . . . , d). For a multi-index k = (k1, . . . , kd) ∈ ZZd, we define the
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multivariate B-spline Bk : Rd → IR of degree M = (M1, . . . ,Md) ∈ INd by

Bk,M,Kn(x(1), . . . , x(d)) =
d∏
i=1

Bki,Mi,Ki,n

(
x(i)
)

(x(1), . . . , x(d) ∈ IR),

where Kn = (K1,n, . . . ,Kd,n) ∈ INd.

Accordingly we define

SKn,M,βn,γn(
d

×
i=1

[Ai, Bi])

=

{ ∑
j∈ZZd

ajBj,M,Kn : |aj | ≤ βn, |aj − aj−ei | ≤
γn√
dKn,i

(i = 1, . . . , d)

aj = 0 if supp(Bj,M,Kn) ∩
d

×
i=1

[Ai, Bi] = ∅ (j ∈ ZZd)

}
. (9)

The definition of the B-splines implies that SKn,M,βn,γn([×d
i=1[Ai, Bi]) is a subset of a

linear vector space of dimension
∏d
i=1(Ki +Mi + 1). Furthermore it follows as above that

the functions in SKn,M,βn,γn(×d
i=1[Ai, Bi]) are bounded in absolute value by βn and are

Lipschitz continuous with Lipschitz constant γn.

Given the above estimates of the continuation values, we can estimate the price of the

option by

V̂0,n = max{f0(x0), q̂n,0(x0)}.

Since∣∣∣V̂0,n − V0∣∣∣ = |max{f0(x0), q̂n,0(x0)} −max{f0(x0), q0(x0)}| ≤ |q̂n,0(x0)− q0(x0)|

=

(∫
|q̂n,0(u)− q0(u)|2PX0(du)

)1/2

(10)

(where the last equality follows from X0 = x0 a.s.) the error of this estimate tends to zero

whenever the so-called L2 error of our estimate of q0 tends to zero.

Alternatively, we can estimate the price of the option by so-called lower estimates

defined by Monte Carlo estimates of the expected payoff of a plug-in version of the stopping

rule (4), cf., e.g., Subsection 8.6.1 in Glasserman (2004). It follows from proposition 1.3

in Belomestny (2011) that in this case the error of our estimated price of the option tends

also to zero if the L2 errors of the above estimates of the continuation values tend to zero.
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3 Main results

In this section we consider three different models for the stock values and present for each

model a consistency result of our estimation procedure applied to paths of versions of the

model where the parameter values converge to the true values.

3.1 A Black-Scholes model

In this subsection the stock values are modelled via Black-Scholes theory, and the log-prices

are given by Xk,t = logZk,t, where

Zk,t = zk,0 · er·t · e
∑d

j=1(σk,j ·Wj(t)− 1
2
σ2
k,jt) (k = 1, . . . , d). (11)

Here r > 0 is the riskless interest rate, σk = (σk,1, . . . , σk,d)
T is the volatility of the k-th

stock, zk,0 is the initial stock price of the k-th stock, and {Wj(t) : t ∈ IR+} (j = 1, . . . , d)

are independent Wiener processes. Since Wj(1), Wj(2)−Wj(1), . . . , Wj(T )−Wj(T − 1)

are independent standard normally distributed random variables, we can define Zk,t (k =

1, . . . ,m, t = 0, . . . , T ) also by

Zk,0 = zk,0 (k = 1, . . . , d)

and by

Zk,t+1 = Zk,t · er · e
∑d

j=1(σk,j ·εt+1,j− 1
2
σ2
k,j) (k = 1, . . . , d, t = 0, . . . , T − 1)

where (εt,j)t∈{1,...,T},j∈{1,...,d} are independent standard normally distributed random vari-

ables.

In the sequel we assume that instead of sample paths from

(Xt)t=0,...,T = ((X1,t, . . . , Xd,t))t=0,...,T

we observe (
X̄

(n)
t,i

)
t=0,...,T

(i = 1, . . . , n)

where

X̄
(n)
t,i = (X̄

(n)
1,t,i, . . . , X̄

(n)
d,t,i)

T = (log Z̄
(n)
1,t,i, . . . , log Z̄

(n)
d,t,i)

T
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is given by

Z̄
(n)
k,0,i = zk,0 (k = 1, . . . , d)

and by

Z̄
(n)
k,t+1,i = Z̄

(n)
k,t,i · e

r · e
∑d

j=1(σ̂
(n)
k,j ·εt+1,j,i− 1

2
(σ̂

(n)
k,j )

2) (k = 1, . . . , d, t = 0, . . . , T − 1)

for some independent standard normally distributed random variables εt+1,j,i.

Theorem 1. Assume that the discounted payoff function ft with respect to the above

defined log price process (Xt)t=0,...,T is bounded and Lipschitz continuous. Let V0 and

qt be the corresponding price of the option and continuation values. Let M ∈ IN,M =∑d
i=1 eiM,Kn ∈ IN,Kn =

∑d
i=1 eiKn, βn > 0, γn > 0 and An > 0 and let the estimate be

defined as in Section 2 with

Fn = SKn,M,βn,γn([−An, An]d).

Assume that the parameters of the function spaces satisfy

An →∞, βn →∞, γn →∞,
An
Kn
→ 0,

β5n ·AdnKd
n

n
→ 0 (n→∞).

If the parameters of the estimated model converge to the true parameter values in the sense

that

γn · (σ̂(n)k,j − σk,j)→ 0 (n→∞)

for all k, j ∈ {1, . . . , d} then we have for t = 0, . . . , T∫
|q̂n,t(x)− qt(x)|2PXt(dx)→ 0 (n→∞) in probability

and, in addition,

V̂0,n → V0 (n→∞) in probability.

3.2 A GARCH model

Next we present results for a price process, where the volatility is modelled by a GARCH

time series, which was introduced by Bollerslev (1986). We consider this in the form

proposed in Duan (1995), where the GARCH process is modified in such a way that the

discounted price process is a martingale.
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Here the price process {St}t=0,1,... of a stock is modelled by

St = x0 · exp

r · t− 1

2

t∑
j=1

hj +

t∑
j=1

√
hj · εj


where x0 ∈ IR+ is the value of the stock at time zero, r > 0 is the riskless interest rate,

(εj)j∈ZZ are independent standard normally distributed random variables and where the

(random) volatility ht of the process satisfies

ht = 0 for t ≤ 0

and

ht = a0 +

q∑
j=1

aj · ht−j (εt−j − λ)2 +

p∑
j=1

bj · ht−j (t ∈ IN)

for some p, q ∈ IN0 and parameters λ > 0, aj > 0 (j = 0, . . . , p) and bj > 0 (j = 1, . . . , p).

In applications the parameters λ, a0, . . . , aq, b1, . . . , bp are unknown. Therefore it is only

possible to generate Monte Carlo samples where these parameters are estimated. Given

sequences (âi,n)n∈IN (i = 0, . . . , q), (b̂i,n)n∈IN (i = 1, . . . , p), (λ̂n)n∈IN of nonegative real

numbers, where â0,n > 0 for all n ∈ IN, and independent standard normally distributed

random variables εj,i, the samples of the error-behaved logarithmic returns are given by

Z̄
(n)
t,i = log(x0) + r · t− 1

2

t∑
j=1

h̄
(n)
j,i +

t∑
j=1

√
h̄
(n)
j,i · εj,i (12)

h̄
(n)
t,i = â0,n +

q∑
j=1

âj,n · h̄(n)t−j,i

(
εt−j,i − λ̂n

)2
+

p∑
j=1

b̂j,n · h̄(n)t−j,i (13)

(i = 1, . . . , n), where we set again h̄
(n)
t,j = 0 for t ≤ 0.

To ensure that the price process is a Markov process, we have to extend the state

space. So instead of only Z̄
(n)
t,i we consider

X̄
(n)
t,i =

(
Z̄

(n)
t,i , εt,i, . . . , εt+1−q,i, h̄

(n)
t,i , . . . , h̄

(n)
t+1−max{p,q},i

)T
. (14)

Theorem 2. Assume that the payoff-function ft is bounded and Lipschitz continuous.

Let V0 and qt be the price of the option and the continuation values corresponding to the

above defined log price process log(St). Let X̄
(n)
t,i be defined by (14). Let M ∈ IN,M =∑1+q+max{p,q}

i=1 eiM,Kn ∈ IN,Kn =
∑1+q+max{p,q}

i=1 eiKn, βn > 0, γn > 0 and An > 0. Let
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the estimates q̂n,t be defined as in Section 2, where the function space is given by

Fn = SKn,M,βn,γn

(
1+q+max{p,q}

×
i=1

[Ai, Bi]

)
.

Assume

Ai,n → −∞, Bi,n →∞,
γn

Bi,n −Ai,n
→∞, γn

Bi,n −Ai,n
Kn

→ 0,

for i = 1, . . . , 1 + q + max{p, q},

βn →∞

and
β5n
∏1+q+max{p,q}
i=1 Ki,n

n
→ 0 (n→∞).

Then

γn (âi,n − ai)→ 0 (n→∞), γn

(
b̂j,n − bj

)
→ 0 (n→∞)

for all i ∈ {0, . . . , q}, j ∈ {1, . . . , p} and

γ2n(λ− λ̂n)→ 0 (n→∞)

imply ∫
|q̂n,t(x)− qt(x)|2PXt,1(dx)→ 0 in probability

for all t = 0, 1 . . . , T and, in addition,

V̂0,n → V0 in probability.

3.3 A Levy model

Finally we present a result for a Lévy Processes. Here we consider the following Merton

Model (cf. Merton (1976)):

St = x0 · exp

µ · t+ σ ·Wt +

Nt∑
j=1

Yj

 ,

where W = (Wt)t∈IR+ is a Wiener process, N = (Nt)t∈IR+ is a Poisson process with

parameter λ independent from W and Y1, Y2, . . . are independent normally distributed

random variables with mean m and variance δ2 independent from W and N . By defining

µ = r − σ2

2
− λ

(
exp

(
m+

δ2

2

)
− 1

)
(15)
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the price process with respect to the martingale measure in the sense of Merton (1976)

can be written as

St = s0 exp

(
µt+

t∑
s=1

σεs +

Nt∑
i=1

(m+ δξi)

)
, (16)

where εs, ξi with i, s ∈ IN are independent standard normal distributed and Nt is Poisson

distributed with parameter λt. Again we consider the corresponding log price process

Xt = log s0 + µt+
t∑

s=1

σεs +

Nt∑
i=1

(m+ δξi).

As in the Black-Scholes and the GARCH case we we estimate the parameters σ, λ,

m and δ by σ̂n, λ̂n, m̂n and δ̂n, and consider the logarithm of the returns. According to

Merton (1976) we define µ̂n by

µ̂n = r − σ̂2n
2
− λ̂n

(
exp

(
m̂n +

δ̂2n
2

)
− 1

)

and generate data

X̄
(n)
t,i = log(x0) + µ̂nt+

t∑
s=1

σ̂nεs,i +

N
(n)
t,i∑
i=1

(m̂n + δ̂nξi) (t = 0, . . . , T, i = 1, . . . , n), (17)

where εi,j , ξi,j are independent standard normal distributed and N
(i,n)
t is a Poisson dis-

tributed random variable with parameter λ̂nt independent from εi,j , ξi,j for all i, j ∈ IN.

Note that above definition of µn ensures the martingale property of the discounted price

process.

Theorem 3. Assume that the payoff-function ft is bounded and Lipschitz continuous. Let

V0 and qt be the price of the option and the continuation values corresponding to the above

defined log price process Xt. Let X̄
(n)
t,i be defined by (17). Let M ∈ IN,Kn ∈ IN, βn >

0, γn > 0 and An > 0. Let the estimates q̂n,t be defined as in Section 2, where the function

space SKn,M,βn,γn([−An, An]) is defined by (8). Assume that

An →∞, βn →∞, γn →∞,
An
Kn
→ 0,

β5n ·AdnKd
n

n
→ 0 (n→∞).

Then

γn · (σ̂n − σ)→ 0, γn · (mn −m)→ 0, γn · (δ̂n − δ)→ 0

11



and

γ2n · (λ̂n − λ)→ 0 (n→∞)

imply ∫
|q̂n,t(x)− qt(x)|2PXt,1(dx)→ 0 in probability

for all t ∈ {0, . . . , T} and, in addition,

V̂0,n → V0 in probability.

4 Application to simulated data

To demonstrate the finite sample performance of our estimate we first apply it in case of a

Duan-GARCH model. With respect to the martingale measure of Duan (cf. Duan (1995))

the logarithm of the price process has the form

log(St) = log(s0) + rt− 1

2

t∑
s=

hs +

t∑
s=1

√
hsεs,

with

ht = a0 + a1|ht−1|(εt−1 − λ)2 + b1ht,1.

with independent standard normal distributed random variables ε0, . . . , εt. As parameters

of the real price process we take

a0 = 0.0000166, a1 = 0.144, b1 = 0.776 and λ = 0.7138.

These values are taken from an example in Duan (1995). To ensure the markov property

of the considered process we take

Xt =


log(St)

exp(εt)

ht

 .

The riskless rate is assumed to be known as

r = 0.05/T ≈ 0.001389.
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As start vector of this process we choose

X0 =


log(100)

1

1


In applications the parameters a0, a1, b1 and λ are unknown and have to be estimated

from historical data. To demonstrate the influence of such an estimate, we consider dif-

ferent error levels for each parameter.

We price a Bermudan capped-straddle option with exercise prices 70, 100 and 130.

The payoff function is shown in Figure 1. As maturity we choose T = 36, so exercising is

0 50 100 150 200

0
5

10
15

20
25

30

S1

f

Figure 1: Payoff function of a Capped-Straddle with strike prices 70, 100 und 130

possible at the timepoints t = 0, 1, . . . , 36.

As parameters of the spline space we take A = (0, 0, 0)T , B = (200, 2, 120)T ,M =

(1, 1, 1)T . The parameter K1 ∈ {4, 10} is choosen by splitting of the sample, K2 and K3

are set to 2. To estimate the continuation values we use nl = 1000 paths as learning data

and nt = 1000 testing data. The so computed estimates for continuation values are taken

as plug-in estimates to evaluate on na = 10000 newly generated paths. The arithemic
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mean of these na paths is the estimate of one option price. This procedure is repeated

50 times for each parameter constellation. So we get for every chosen parameter set 50

option prices.

Figures 2, 3, 4 and 5 show the simulation results in form of boxplots. Each of these

simulations consider different parameter levels for one of the parameter while all other

parameters are set to the value of the real price process defined above.
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Figure 2: Simulated option prices in case of a Duan GARCH model with (a) a0 =

0.0001494, (b) a0 = 0.0001577, (c) a0 = 0.00016434, (d) a0 = 0.000166, (e) a0 =

0.00016766, (f) a0 = 0.0001743, (g) a0 = 0.0001826

The next simulation series considers the pricing of a Bermudan bear spread option

with strikes 60 and 140. The corresponding payoff function is illustrated as Figure 6. The

maturity is set to T = 36, the riskless rate is r = 0.05/T .

This time we use a Merton modell for simulating the asset prices. We start with the

log price process (16). Here we assume, that the real parameters are σ = 0.02/
√
T ,m =

0.2, δ = 0.5, λ = 0.2. The parameter µ is computed by (15).

The parameters of the spline space are Kn ∈ {4, 10}, A = 0, B = 250,Mn ∈ {1, 3}.

The number of learning data for choosing the spline space parameters is nl = 1000. The

corresponding testing data is nt = 1000. The so computed estimates for continuation

14
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Figure 3: Simulated option prices in case of a Duan GARCH model with (a) a1 = 0.1296,

(b) a1 = 0.1368, (c) a1 = 0.14256, (d) a1 = 0.144, (e) a1 = 0.14544, (f) a1 = 0.1512, (g)

a1 = 0.1584

values are taken as plug-in estimates to evaluate on na = 10000 new generated paths. The

arithemic mean of these na paths is the estimate of one option price. This procedure is

repeated 50 times for each parameter constellation. So we get for every chosen parameter

set 50 option prices. Startvalue of the price process is 100.

Figure 7 shows the results, if we choose m as

0.18, 0.19, 0.198, 0.2, 0.202, 0.21, 0.22

and keep all other parameters fixed.

Figure 8 shows the results, if we choose δ as

0.45, 0.475, 0.495, 0.5, 0.505, 0.525, 0.55

and keep all other parameters fixed.

Figure 9 shows the results, if we choose λ as

0.18, 0.19, 0.198, 0.2, 0.202, 0.21, 0.22

and keep all other parameters fixed.
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Figure 4: Simulated option prices in case of a Duan GARCH model with (a) b1 = 0.69840,

(b) b1 = 0.7372, (c) b1 = 0.76824, (d) b1 = 0.776, (e) b1 = 0.78376, (f) b1 = 0.8148, (g)

b1 = 0.85360

We do not consider an error in the remaining parameters, due to the similarity in case

of the Black-Scholes model.
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Figure 5: Simulated option prices in case of a Duan GARCH model with (a) λ = 0.642420,

(b) λ = 0.678110, (c) λ = 0.706662, (d) λ = 0.713800, (e) λ = 0.720938, (f) λ = 0.749490,

(g) λ = 0.785180
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Figure 6: Payoff function of a bear spread with strikes 60 and 140
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Figure 7: Simulated option prices in case of a Bermudan bear spread option considering

a Merton model with (a) m = 0.18, (b) m = 0.19, (c) m = 0.198, (d) m = 0.2, (e)

m = 0.202, (f) m = 0.21, (g) m = 0.22
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Figure 8: Simulated option prices in case of a Bermudan bear spread option considering a

Merton model with (a) δ = 0.45, (b) δ = 0.475, (c) δ = 0.495, (d) δ = 0.5, (e) δ = 0.505,

(f) δ = 0.525, (g) δ = 0.55
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Figure 9: Simulated option prices in case of a Bermudan bear spread option considering a

Merton model with (a) λ = 0.18, (b) λ = 0.19, (c) λ = 0.198, (d) λ = 0.2, (e) λ = 0.202,

(f) λ = 0.21, (g) λ = 0.22
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5 Proofs

5.1 An auxiliary lemma

In the proofs we will need the following lemma.

Lemma 1. Let ft, qt, q̄t : Rd → IR be functions (t = 0, . . . , T ). For given Rd-valued

stochastic processes (Xt)t=0,...,T , (X̄t)t=0,...,T and t ∈ {0, . . . , T − 1} define

Yt = max{ft+1(Xt+1), qt+1(Xt+1)} and Ȳt = max{ft+1(X̄t+1), q̄t+1(X̄t+1)}.

Let s ∈ {0, . . . , T−1} and assume that fs+1 is Lipschitz continuous with Lipschitz constant

L. Then ∣∣Ys − Ȳs∣∣2 ≤ 2L2
∥∥Xs+1 − X̄s+1

∥∥2 + 2
∣∣qs+1(Xs+1)− q̄s+1(X̄s+1)

∣∣2 .
Proof. Using (a + b)2 ≤ 2a2 + 2b2 and |max{a, b} −max{a, c}| ≤ |b − c| for a, b, c ∈ IR

we get∣∣Ys − Ȳs∣∣2 ≤ 2
∣∣max{fs+1(Xs+1), qs+1(Xs+1)} −max{fs+1(Xs+1), q̄s+1(X̄s+1)}

∣∣2
+2
∣∣max{fs+1(Xs+1), q̄s+1(X̄s+1)} −max{fs+1(X̄s+1), q̄s+1(X̄s+1)}

∣∣2
≤ 2 |qs+1(Xs+1)− q̄s+1(Xs+1)|2 + 2

∣∣fs+1(Xs+1)− fs+1(X̄s+1)
∣∣2 .

By using the Lipschitz property of fs+1 we get the desired result. �

5.2 A general consistency result

In this subsection we formulate and proof a general consistency result. Here we assume

that instead of independent copies

(Xt,i)t=0,...,T (i = 1, . . . , n)

of the underlying IRd-valued Markov process (Xt)t=0,...,T we have given paths

(X̄
(n)
t,i )t=0,...,T (i = 1, . . . , n)

such that
1

n

n∑
i=1

‖X̄(n)
t,i −Xt,i‖2

is small for all t. We define our estimates q̂n,t and V̂0,n as in Section 2 with a general

function space Fn. Then the following result holds.
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Theorem 4. Let the discounted payoff function ft be bounded in absolute value by some

M > 1 and Lipschitz continuous with Lipschitz constant L > 0. Let Fn be a subspace of a

linear vector space of dimension Dn consisting of functions which are bounded in absolute

value by some βn > 0 and which are Lipschitz continuous with respect to some Lipschitz

constant γn. Assume that

X1,t+1, . . . , Xn,t+1 and X̄
(n)
1,t , . . . , X̄

(n)
n,t are independent given X1,t, . . . , Xn,t (18)

for all t = 0, . . . , T − 1. Then

Dnβ
5
n

n
→ 0, Dnβ

3
n →∞, δn →∞ (n→∞),

inf
f∈Fn

∫
|f(x)− qt(x)|2PXt(dx)→ 0 (n→∞) (19)

for all t = 0, . . . , T − 1 and

γ2n
n

n∑
i=1

∥∥∥X̄(n)
t,i −Xt,i

∥∥∥2 → 0 in probability (n→∞)

for all t = 0, . . . , T imply∫
|q̂n,t(x)− qt(x)|2PXt(dx)→ 0 in probability (n→∞) (20)

for t = 0, . . . , T and, in addition

V̂0,n → V0 in probability. (21)

In the proof we will apply Theorem 1 of Fromkorth and Kohler (2011). In case of

bounded Y , the Sub-Gaussian condition there is trivially fullfilled. Using Lemma 9.3 in

Györfi et al. (2002) we can conclude from the result there the following lemma:

Lemma 2. Let (X,Y ), (X1, Y1), . . . , (Xn, Yn) be independent and identically distributed

Rd × IR valued random vectors with |Y | ≤ β a.s. for some β > 0. For each n let Fn be a

subset of a linear vector space of dimension Dn consisting of functions f : IRd → IR which

are bounded in absolute value by βn and which are Lipschitz continuous with Lipschitz

constant γn. Given an arbitrary data set

D̄n =
{

(X̄1,n, Ȳ1,n), . . . , (X̄n,n, Ȳn,n)
}
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with the property, that Y1, . . . , Yn and X̄1,n, . . . , X̄n,n are independent given X1, . . . , Xn,

define the estimate m̄n by

m̄n(·) = arg min
f∈Fn

1

n

n∑
i=1

∣∣f (X̄i,n

)
− Ȳi,n

∣∣2 .
If

Dnβ
5
n

n
→ 0, Dnβ

3
n →∞ (n→∞)

then it holds for c sufficiently large that we have for any n ∈ IN

P

{∫
|m̄n(x)−m(x)|2 µ(dx) > c · Zn

}
≤ c · exp

(
−c ·Dn · β3n

)
and

P

{
1

n

n∑
i=1

∣∣m̄n(X̄i,n)−m(Xi)
∣∣2 > c · Zn

}
≤ c · exp

(
−c ·Dn · β3n

)
where

Zn =
1

n

n∑
i=1

∣∣Yi − Ȳi,n∣∣2 + γ2n ·
1

n

n∑
i=1

∥∥Xi − X̄i,n

∥∥2 +
Dnβ

5
n

n
+ inf
f∈Fn

∫
|f(x)−m(x)|2µ(dx).

Proof. The result follows directly from Theorem 1 in Fromkorth and Kohler (2011) and

Lemma 9.3 in Györfi et al. (2002). �

Proof of Theorem 4. We prove the theorem by backward induction. We start with

t = T , in which case we have q̂n,T (x) = qT (x) = 0, which implies∫
|q̂n,s(x)− qs(x)|2PXs(dx)→ 0 in probability (22)

and
1

n

n∑
i=1

|q̂n,s(X̄s,i)− qs(X̄(n)
s,i )|2 → 0 in probability (23)

for s = T .

Let t ∈ {0, . . . , T − 1} be arbitrary and assume that (22) and (23) hold for s = t+ 1.

In the sequel we show (22) and (23) for s = t. To do this we apply Lemma 2 with

Xi = Xi,t, X̄i,n = X̄
(n)
i,t , Yi = max{ft+1(Xi,t+1), qt+1(Xi,t+1)}

and

Ȳi,n = max{ft+1(X̄
(n)
i,t+1), q̂n,t+1(X̄

(n)
i,t+1}.
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Here (18) implies that Y1, . . . , Yn and X̄1,n, . . . , X̄n,n are independent given X1, . . . , Xn, so

we can conclude

P

{∫
|q̂n,t(x)− qt(x)|2PXt(dx) > c11 · Zn

}
→ 0 (n→∞)

and

P

{
1

n

n∑
i=1

|q̂n,t(X̄t,i)− qt(Xt,i)|2 > c11 · Zn

}
→ 0 (n→∞)

where

Zn =
1

n

n∑
i=1

∣∣∣max{ft+1(Xi,t+1), qt+1(Xi,t+1)} −max{ft+1(X̄
(n)
i,t+1), q̂n,t+1(X̄

(n)
i,t+1)}

∣∣∣2
+γ2n ·

1

n

n∑
i=1

∥∥∥Xi,t − X̄(n)
i,t

∥∥∥2 +
Dn · β5n
n

+ inf
f∈Fn

∫
|f(x)− qt(x)|2PXt(dx).

Lemma 1 implies that for n sufficiently large (i.e., in case γn ≥ L) we have

Zn ≤ 2
1

n

n∑
i=1

|q̂n,t+1(X̄
(n)
i,t+1)− qt+1(Xi,t+1)|2

+3 · γ2n ·
1

n

n∑
i=1

∥∥∥Xi,t+1 − X̄(n)
i,t+1

∥∥∥2 +
Dn · β5n
n

+ inf
f∈Fn

∫
|f(x)− qt(x)|2PXt(dx).

By the induction hypothesis and the assumptions of the theorem, we have

Zn → 0 in probability.

The proof of (20) is complete, and using (10) we also get (21). �

We reformulate Theorem 4 in case of choosing the function space as a spline space.

Corollary 1. Let the discounted payoff function ft be bounded in absolute value by some

β > 1 and Lipschitz continuous with Lipschitz constant L > 0. For n ∈ IN let An, βn, γn >

0, Kn ∈ IN,Kn = (Kn, . . . ,Kn), M ∈ IN2
0 and set

Fn = SKn,M,βn,γn

(
[−An, An]d

)
.

Assume that

X1,t+1, . . . , Xn,t+1 and X̄
(n)
1,t , . . . , X̄

(n)
n,t are independent given X1,t, . . . , Xn,t (24)

for all t = 1, . . . , T − 1. Then

An →∞, βn →∞, γn →∞,
An
Kn
→ 0,

β5n ·AdnKd
n

n
→ 0 (n→∞)
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and
γ2n
n

n∑
i=1

∥∥∥X̄(n)
t,i −Xt,i

∥∥∥2 → 0 in probability

for all t = 0, . . . , T imply∫ ∣∣∣q̂(n)t (x)− qt(x)
∣∣∣2PXt(dx)→ 0 in probability

for t = 0, . . . , T and, in addition

V̂0,n → V0 in probability.

Proof. Corollary 1 follows directly from Theorem 4 if we observe that (19) follows from

qt ∈  L2(PXt (which is implied by the boundaries of the payoff function) and approximation

properties of spline spaces (cf., e.g., proof of Corollary 2 in Fromkorth and Kohler (2011).

�

5.3 Proof of Theorem 1

Set Xt,i = (X1,t,i, . . . , Xd,t,i)
′, where

Xk,t,i = log(zk,0) + r · t+
t∑

s=1

d∑
j=1

(
σk,j · εs,j,i −

1

2
· σ2k,j

)
.

This can be interpreted as an artificial sample of the logarithm of asset values with the

real (but unknown) distribution.

For all t = 0, . . . , T it holds∥∥∥Xt,1 − X̄(n)
t,1

∥∥∥2
=

d∑
k=1

∣∣∣Xk,t,1 − X̄
(n)
k,t,1

∣∣∣2

=

d∑
k=1

∣∣∣∣∣∣ t2 ·
d∑
j=1

(
(σ̂

(n)
k,j )2 − σ2k,j

)
+

t∑
s=1

d∑
j=1

(
(σk,j − σ̂

(n)
k,j ) · εs,j,1

)∣∣∣∣∣∣
2

≤
d∑

k=1

d · (t+ 1) ·

 t2
4
·

d∑
j=1

(
(σ̂

(n)
k,j )2 − σ2k,j

)2
+

t∑
s=1

d∑
j=1

(σk,j − σ̂
(n)
k,j )2 · ε2s,j,1


where we have used the inequality of Jensen. From this we get

E
{
γ2n

∥∥∥Xt,1 − X̄(n)
t,1

∥∥∥}
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≤
d∑

k=1

t · (d+ 1)

 t2
4
·

d∑
j=1

γ2n

(
(σ̂

(n)
k,j )2 − σ2k,j

)2
+

t∑
s=1

d∑
j=1

γ2n(σk,j − σ̂
(n)
k,j )2 ·E(ε2s,j,1)


≤

d∑
k=1

t · (d+ 1)

 t2
4
·

d∑
j=1

γ2n

(
σ̂
(n)
k,j − σk,j

)2
·
(
σ̂
(n)
k,j + σk,j

)2
+ t ·

d∑
j=1

γ2n(σk,j − σ̂
(n)
k,j )2


→ 0 (n→∞),

where the last step follows from the assumptions of the theorem. For arbitrary ε > 0 the

Markov inequality implies now

P

{
γ2n ·

1

n

n∑
i=1

∥∥∥Xt,i − X̄(n)
t,i

∥∥∥2 > ε

}
≤

E

{
γ2n · 1n

∑n
i=1

∥∥∥Xt,i − X̄(n)
t,i

∥∥∥2}
ε

=
E
{
γ2n

∥∥∥Xt,1 − X̄(n)
t,1

∥∥∥}
ε

→ 0 (n→∞),

this means

γ2n ·
1

n

n∑
i=1

∥∥∥Xt,i − X̄(n)
t,i

∥∥∥2 → 0 (n→∞) in probability.

Finally we note, that X1,t+1, . . . , Xn,t+1 depend only on random variables independent

from all random variables used up to time t provided we fix Xt,1, . . . , Xt,n. So the inde-

pendence assumption in Corollary 1 is trivially fulfilled.

Corollary 1 implies the assertion. �

5.4 Proof of Theorem 2

Again we introduce the artificial sample Xt,i of the real distribution, i.e. we set

Xt,i =
(
Zt,i, εt,i, . . . , εt−q+1,i, ht,i, . . . , ht−max{p,q}+1,i

)T
where

Zt,i = log(x0) + rt− 1

2

t∑
j=1

hj,i +
t∑

j=1

√
hj,i · εj,i

ht,i = a0 +

q∑
j=1

aj · ht−j,i (εt−j,i − λ)2 +

p∑
j=1

bj · ht−j,i,

for t > 0 and hs,i = 0 for s ≤ 0.
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As in the proof of Theorem 1 it suffices to show

E

{
γ2n

∥∥∥Xt,1 − X̄(n)
t,1

∥∥∥2}→ 0 (n→∞).

By the definition of the stochastic processes and the inequality of Jensen we get∥∥∥Xt,1 − X̄(n)
t,1

∥∥∥2
=

∣∣∣Zt,1 − Z̄(n)
t,1

∣∣∣+

max{p,q}∑
j=1

∣∣∣ht+1−j,1 − h̄(n)t+1−j,1

∣∣∣2
=

∣∣∣∣∣
t∑

s=1

1

2

(
h̄
(n)
s,1 − hs,1

)
+

t∑
s=1

(√
hs,1 −

√
h̄
(n)
s,1

)
· εs,1

∣∣∣∣∣
2

+

max{p,q}∑
j=1

∣∣∣ht+1−j,1 − h̄(n)t+1−j,1

∣∣∣2
≤ 2t ·

(
t∑

s=1

1

4

(
h̄
(n)
s,1 − hs,1

)2
+

t∑
s=1

(√
hs,1 −

√
h̄
(n)
s,1

)2

· ε2s,1

)

+

max{p,q}∑
j=1

∣∣∣ht+1−j,1 − h̄(n)t+1−j,1

∣∣∣2 .
Because of a0 > 0 and aj , âj,n, bi, b̂i,n nonnegative we know h̄

(n)
s,1 ≥ 0 and hs,1 ≥ a0 for all

s ∈ {0, . . . , t}. Therefore

(√
hs,1 −

√
h̄
(n)
s,1

)2

=

 hs,1 − h̄(n)s,1√
hs,1 +

√
h̄
(n)
s,1

2

≤ 1

a0

(
hs,1 − h̄(n)s,1

)2
.

Using this and the independence of εs,1 from hs,1 and h̄
(n)
s,1 we get

E

{
γ2n ·

∥∥∥Xt,1 − X̄(n)
t,1

∥∥∥2}
≤ 2t ·

(
t∑

s=1

1

4
E

{
γ2n ·

(
h̄
(n)
s,1 − hs,1

)2}
+

t∑
s=1

E

{
γ2n ·

(√
hs,1 −

√
h̄
(n)
s,1

)2
}
·Eε2s,1

)

+

max{p,q}∑
j=1

E

{
γ2n ·

∣∣∣ht+1−j,1 − h̄(n)t+1−j,1

∣∣∣2}

≤
(
t

2
+

2t

a0
+ 1

)
·

t∑
s=1

E

{
γ2n ·

(
h̄
(n)
s,1 − hs,1

)2}
.

So it remains to proof

γ2n ·E
{(

hs,1 − h̄(n)s,1

)2}
→ 0 (n→∞) (25)
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for s ∈ {0, . . . , t}. We will do this by induction over s. By definition we have for s = 0

that

γ2n ·E
{(

hs,1 − h̄(n)s,1

)2}
= 0.

Let s ∈ IN0 and assume (25) holds for s (and all smaller indices). Then we have for

s+ 1, that

γ2n ·E
{∣∣∣hs+1,1 − h̄(n)s+1,1

∣∣∣2}

= γ2n ·E


∣∣∣∣∣∣a0 − â0,n +

q∑
j=1

(
ajhs+1−j,1(εs+1−j,1 − λ)2 − âj,nh̄(n)s+1−j,1(εs+1−j,1 − λ̂n)2

)

+

p∑
j=1

(
bjhs+1−j,1 − b̂j,nh̄(n)s+1−j,1

)∣∣∣∣∣∣
2

≤ (1 + p+ q)

(
γ2n |a0 − â0,n|

2

+

q∑
j=1

γ2nE

{∣∣∣ajhs+1−j,1(εs+1−j,1 − λ)2 − âj,nh̄(n)s+1−j,1(εs+1−j,1 − λ̂n)2
∣∣∣2}

+

p∑
j=1

γ2nE

{∣∣∣bjhs+1−j,1 − b̂j,nh̄(n)s+1−j,1

∣∣∣2}),
where the last inequality follows from the inequality of Jensen.

By the assumptions of the theorem we know

γ2n |a0 − â0,n|
2 → 0 (n→ 0).

Using (a + b + c)2 ≤ 3a2 + 3b2 + 3c2 (a, b, c ∈ IR) and the independence of εs+1−j,1 from

hs+1−j,1 and h̄
(n)
s+1−j,1 we get

E

{∣∣∣ajhs+1−j,1(εs+1−j,1 − λ)2 − âj,nh̄(n)s+1−j,1(εs+1−j,1 − λ̂n)2
∣∣∣2}

≤ 3a2j ·Eh2s+1−j,1 ·E
{

(εs+1−j,1 − λ)2 − (εs+1−j,1 − λ̂n)2
}

+3a2j ·E
{(

hs+1−j,1 − h̄(n)s+1−j,1

)2}
·E
{

(εs+1−j,1 − λ̂n)2
}

+3 · (aj − âj,n)2 ·E
{(

h̄
(n)
s+1−j,1

)2}
·E
{

(εs+1−j,1 − λ̂n)2
}

= 3a2j ·Eh2s+1−j,1 · (λ2 − λ̂2n) + 3a2j ·E
{(

hs+1−j,1 − h̄(n)s+1−j,1

)2}
· (1 + λ̂2n)
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+3 · (aj − âj,n)2 ·E
{(

h̄
(n)
s+1−j,1

)2}
· (1 + λ̂2n),

where the last equality follows from Eεs+1−j,1 = 0 and Eε2s+1−j,1 = 1.

From this, the induction hypothesis, E{h2s,1} <∞ (which follows by induction) and

E

{(
h̄
(n)
s+1−j,1

)2}
≤ 2 ·E

{(
hs+1−j,1 − h̄(n)s+1−j,1

)2}
+ 2 ·E{h2s+1−j,1}

for all s, j and the assumptions of the theorem we see

γ2nE

{∣∣∣ajhs+1−j,1(εs+1−j,1 − λ)2 − âj,nh̄(n)s+1−j,1(εs+1−j,1 − λ̂n)2
∣∣∣2}→ 0 (n→∞).

Similar arguments lead to

γ2nE

{∣∣∣bjhs+1−j,1 − b̂j,nh̄(n)s+1−j,1

∣∣∣2}→ 0 (n→∞),

from which we conclude the assertion. �

5.5 Proof of Theorem 3

The assertion depends only on the joint distribution of the random variables describing

the discrete the price process used in the regression-based Monte Carlo method sampled

at discrete points, so in order to prove the theorem we may assume w.l.o.g. that the

random variables are generated in some special way. We do this in the same way for

random variables describing the logarithms of the returns of the price process using the

true parameter values. In both cases we use that values of a Poisson process sampled

at discrete points can be generated as partial sums to a sequence of independent Poisson

distributed random variables.

Let

εt,i, ξt,i, Nt,i, N̂
(n)
t,i (i, t ∈ IN),

be independent random variables, where εt,i and ξt,i are standard normally distributed, Nt,i

is Poisson distributed with parameter λt and N̂
(n)
t,i is Poisson distributed with parameter

|λ− λ̂n|t.

At first we consider the case λ < λn. Because of the folding property of the Poisson

distribution we can N̄
(n)
t,i write as

N̄
(n)
t,i = Nt,i + N̂

(n)
t,i .
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For the logarithm of the price processes Xt,i and X̄
(n)
t,i this means

Xt,i = log(x0) + µt+

t∑
s=1

σεs,i +

Nt,i∑
j=1

(m+ δξt,j)

and

X̄t,i = log(x0) + µ̂nt+

t∑
s=1

σ̂nεs,i +

Nt,i+N̂
(n)
t,i∑

j=1

(
m̂n + δ̂nξt,j

)
.

As in the proofs of Theorem 1 and Theorem 2 it’s enough to show

E

{
γ2n

∣∣∣Xt,1 − X̄(n)
t,1

∣∣∣2}→ 0 (n→∞).

Jensen’s inequality implies∣∣∣Xt,1 − X̄(n)
t,1

∣∣∣2
=

∣∣∣∣∣(µ− µ̂n)t+ (σ − σ̂n)
t∑

s=1

εs,1 +Nt,1(m− m̂n) + (δ − δ̂n)

Nt,1∑
j=1

ξt,j

−
Nt,1+N̂

(n)
t,1∑

j=Nt,1+1

(
m̂n + δ̂nξt,j

)∣∣∣∣∣
2

≤ 5 ·

(
(µ− µ̂n)2 t2 + (σ − σ̂n)2

(
t∑

s=1

εs,1

)2

+ (Nt,1)
2 (m− m̂n)2

+
(
δ − δ̂n

)2Nt,1∑
j=1

ξt,j

2

+

Nt,1+N̂
(n)
t,1∑

j=Nt,1+1

(
m̂n + δ̂nξt,j

)
2)

and therfore

E

{
γ2n

∣∣∣Xt,1 − X̄(n)
t,1

∣∣∣2}

≤ 5 · γ2n

(
(µ− µ̂n)2 t2 + (σ − σ̂n)2E


(

t∑
s=1

εs,1

)2
+ E

{
(Nt,1)

2
}

(m− m̂n)2

+
(
δ − δ̂n

)2
E


Nt,1∑
j=1

ξt,j

2+ E


N̂ (n)

t,1 m̂n + δ̂n

Nt,1+N̂
(n)
t,1∑

j=Nt,1+1

ξt,j


2

)
.

The random variables ε1,1, . . . , εt,1 are independent and standard normal distributed, so

it holds

E


(

t∑
s=1

εs,1

)2
 = t,

29



and by definition of Nt,1 we have

E
{

(Nt,1)
2
}

= (λt)2 + λt.

Because of the independence of Nt,1, ξt,1, ξt,2, . . . and the identical distribution of

ξt,1, ξt,2, . . . this implies

E


Nt,1∑
j=1

ξt,j

2 = E {Nt,1}Var {ξt,1}+ E
{

(Nt,1)
2
}

(Eξt,1)
2 = λt

and so (
δ − δ̂n

)2
E


Nt,1∑
j=1

ξt,j

2 =
(
δ − δ̂n

)2
λt.

From the independence of Nt,1, N̂
(n)
t,1 , ξt,1, ξt,2, . . . and because of E (ξt,j) = 0 for all i, j one

gets

E


N̂ (n)

t,1 m̂n + δ̂n

Nt,1+N̂
(n)
t,1∑

j=Nt,1+1

ξt,j


2
 = E

{(
N̂

(n)
t,1 m̂n

)2}
+ E


δ̂n Nt,1+N̂

(n)
t,1∑

j=Nt,1+1

ξt,j


2


=
(
|λ− λ̂n|t+ |λ− λ̂n|2t2

)
· m̂2

n + |λ− λ̂n| · δ̂2n · t.

To conclued this means in case of λ < λn, that

E

{
γ2n

∣∣∣Xt,1 − X̄(n)
t,1

∣∣∣2}
≤ 5 · γ2n

(
(µ− µ̂n)2 t2 + (σ − σ̂n)2 t+ (λ2t2 + λt) · (m− m̂n)2

+
(
δ − δ̂n

)2
λt+

(
|λ− λ̂n|t+ |λ− λ̂n|2t2

)
· m̂2

n + |λ− λ̂n|t · δ̂2n

)
.

Similar argumentation implies for λ ≥ λn, that

Nt,i = N̄
(n)
t,i + N̂

(n)
t,i .

So we get in this case

E

{
γ2n

∣∣∣Xt,1 − X̄(n)
t,1

∣∣∣2}
≤ 5 · γ2n

(
(µ− µ̂n)2 t2 + (σ − σ̂n)2 t+ (λ̂2nt

2 + λ̂nt) · (m− m̂n)2
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+
(
δ − δ̂n

)2
λ̂nt+ |λ− λ̂n|t · δ̂2n +

(
|λ− λ̂n|t+ |λ− λ̂n|2t2

)
·m2

)
.

Alltogether this means

E

{
γ2n

∥∥∥Xt,1 − X̄(n)
t,1

∥∥∥2}
≤ 5 · γ2n

(
(µ− µ̂n)2 t2 + (σ − σ̂n)2 t+ max

{
λ̂2nt

2 + λ̂nt, λ
2t2 + λt

}
· (m− m̂n)2

+
(
δ − δ̂n

)2
max

{
λt, λ̂nt

}
+ |λ− λ̂n|t · δ̂2n

+
(
|λ− λ̂n|t+ |λ− λ̂n|2t2

)
·max

{
m̂2
n,m

2
})

≤ 5 · γ2n

(
(µ− µ̂n)2 t2 + (σ − σ̂n)2 t+

(
λ̂2nt

2 + λ̂nt+ λ2t2 + λt
)
· (m− m̂n)2

+
(
δ − δ̂n

)2 (
λt+ λ̂nt

)
+ |λ− λ̂n|t · δ̂2n

+
(
|λ− λ̂n|t+ |λ− λ̂n|2t2

)
·
(
m̂2
n +m2

))
By the assumptions of the theorem this expression converges to zero for n→∞. Here

we have used that by the mean-value-theorem we have∣∣∣∣∣exp

(
m̂n +

δ̂2n
2

)
− exp

(
m+

δ2

2

)∣∣∣∣∣ ≤
∣∣∣∣∣m̂n +

δ̂n
2
−m− δ2

2

∣∣∣∣∣ exp

(
|m̂n|+

δ̂2n
2

+m+
δ2

2

)
The result follows as in theorem 2. �
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