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Abstract

A Monte Carlo method for estimation of the optimal design of a nonlinear parametric

regression problem is presented. The basic idea is to produce via Monte Carlo values of

the error of a parametric regression estimate for randomly chosen designs and randomly

chosen parameters and to use nonparametric regression to estimate from this data the

design for which the maximal expected error with respect to all possible parameter values

is minimal. A theoretical result concerning consistency of this estimate of the optimal

design is presented, and the method is used to �nd an optimal design for an experimental

fatigue test.

AMS classi�cation: Primary 62K05; secondary 62P30.

Key words and phrases: Optimal design, Monte Carlo, nonparametric regression, consis-

tency.

1 Introduction

Fatigue behaviour of materials can be described, e.g., by curves relating strain amplitudes

and number of cycles till failure to each other. In corresponding experiments, for a given
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strain amplitude the number of cycles till failure is observed which is rather time consuming

since usually strain amplitudes are used in such a region that the corresponding number of

cycles achieves values up to 107. For an e�cient estimation of such curves it is necessary

to choose the used strain amplitudes (usually between 7 and 15 for one material) carefully.

Mathematically, this can be considered as a problem of determing the optimal design

of a �xed design regression problem. A parametric model in this context is given by the

Manson-Co�n-Basquin relation (cf., e.g., Manson (1965))

ε =
σ′f
E
· (2Nf )b + ε′f · (2Nf )c, (1)

which describes the dependency of the strain amplitude ε on the number Nf of cycles till

failure. Here σ′f , b, ε′f and c are cyclic material properties which characterize the fatigue

behaviour of the material and E is a usually known parameter of the material. Since b and

c are less than zero, the monotone function (1) has a well-de�ned inverse function, and it

is this nonlinear model for the inverse function which describes the experiment where N is

observed for given ε.

The purpose of this article is to develop a methodology which can determine values

to be used in a sequence of experiments for the strain amplitudes such that by using

the observed numbers till failure the above model can be estimated e�ciently. Since this

model is nonlinear and is given only implicitly, it seems to be di�cult to determine these

quantities theoretically. Instead we propose a simulation approach, which we �t into a

more general framework introduced next.

We assume that we are interested in estimation of a function rp, where p ∈ P is some

unknown parameter from a given set of parameters P. To do this, we have to choose for

�xed N ∈ N a design

z = (z(1), . . . , z(N)) ∈ DN

consisting of points z(i) from some given set D of possible design points. For this design

we generate a data set

DN (z; p) ,

which we use to calculate an estimate

r̂N (·,DN (z; p))
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of rp. Its error is denoted by

Err (r̂N (·,DN (z; p)) , rp)

with expected value

E {Err (r̂N (·,DN (z; p)) , rp)} , (2)

where the expectation is computed with respect to the data set DN (z; p).

Our aim is to choose the design z = (z(1), . . . , z(N)) ∈ DN such that the maximal

expected error

max
p∈P

E {Err (r̂N (·,DN (z; p)) , rp)}

is as small as possible, i.e., we want to �nd a design z = (z(1), . . . , z(N)) ∈ DN such that

max
p∈P

E {Err (r̂N (·,DN (z; p)) , rp)} ≈ inf
u∈DN

max
p∈P

E {Err (r̂N (·,DN (u; p)) , rp)} .

To do this, we use a simulation approach. Here we assume that we know how to

construct the data set for given design points and given parameter. The basic idea is to

determine data points for a random design regression problem (where the independent

variable consists of a randomly chosen design from DN and a randomly chosen parameter

from P) in such a way that the corresponding regression function is the expected error in

(2). Then we estimate this function by applying a nonparametric regression estimate to

this data, and choose our estimated design such that for this design the maximal value of

the estimate with respect to the parameter is as small as possible.

Our main result is that under some regularity conditions our estimated design is con-

sistent in the sense that for this design the expected error indeed converges to the minimal

possible value provided the sample size of the data used in estimation of this design con-

verges to in�nity. Furthermore we illustrate our methodology by applying it in the context

of an experimental fatigue test.

1.1 Discussion of related results

Various criteria of classical theory of optimal experimental design can be found in Kiefer

(1961), Atkinson (1982) and Pukelsheim (1993), where several methods and tools in an-

alytical computation of optimal designs for a given linear model are introduced. In case
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of nonlinearity basically three ways to deal with this can be pointed out. Atkinson (1982)

proposes a linearisation by expanding the model in a Taylor's series about a preliminary

estimate of the parameter p0 and additionally seeks a D-optimum design. As described

by Imhof (2001) in case of a nonlinear model most tools of experimental design cannot be

applied since the information matrix depends on unknown parameters. The two strategies

to deal with this according to Imhof (2001) is to use a Bayesian or a minimax approach.

The latter is based on the idea of choosing the best design for the worst parameter value

p, cf., e.g., in Silvey (1980), where the uncertainty of p is treated by seeking the best

design for the worst possible parameter value. For the same reason Imhof (2001) uses a

standardized maximin D-optimal design in context of a exponential growth model �rst

described in Dette (1997). Since the problem considered in this article is given implicit

by the nonlinear inverse function of the underlying model we propose a minimax strategy

in context of a simulation approach via Monte Carlo experiments. In this context Müller

and Parmigiani (1996) pursue the idea of implementing stochastic optimization by curve

�tting of Monte Carlo samples in connection with Bayesian design problems. The target is

to �nd an optimal design by maximation of an expected utility function whose evaluation

requires integration. Instead of this it reveals a curve �tting problem of a Monte Carlo

sample.

Nonparametric regression estimation has been studied over many years. Two main

approaches were developed: random design approach and �xed design approach. The

most popular estimates for random design approach include kernel regression estimate (cf.,

e.g., Nadaraya (1964, 1970), Watson (1964), Devroye and Wagner (1980), Stone (1977) or

Devroye and Krzy»ak (1989)), partitioning regression estimate (cf., e.g., Györ� (1981)

or Beirlant and Györ� (1998)), nearest neighbor regression estimate (cf., e.g., Devroye

(1982), Devroye, Györ�, Krzy»ak and Lugosi (1994), Mack (1981) or Zhao (1987)), least

squares estimates (cf., e.g., Lugosi and Zeger (1995)) or smoothing spline estimates (cf.,

e.g., Kohler and Krzy»ak (2001)). The main theoretical results are summarized in the

monograph Györ� et al. (2002). For a survey of �xed design regression estimates we refer

to the monograph Eubank (1999).

The proof of the consistency of our methodology is based on a consistency result in

supremum norm for our nonparametric regression estimate. Various such results can be
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found, e.g., in Devroye (1978a), Devroye (1978b) and Härdle and Luckhaus (1984). In our

theoretical result we use techniques from Kohler, Krzy»ak and Walk (2011) in order to

be able to weaken the conditions on the design distribution slightly more than in Devroye

(1978a). Here the trick is that we increase the bandwidth of the kernel estimate if there are

not enough data points in a ball around the point where we want to evaluate the estimate.

As a consequence, we do not have to worry about the form of the parameter space we

sample from, e.g., it is allowed that this space contains some sharp edges etc.

1.2 Notation

Throughout this paper we use the following notations: ‖x‖ denotes the Euclidean norm

of x ∈ Rd, µ denotes the distribution of X, supp(µ) denotes the support of µ, m(x) =

E{Y |X = x} is the regression function of (X, Y ) and 1B is the indicator of the set B. For

f : D → R we write

x = arg min
z∈D

f(z)

in case that

x ∈ D and f(x) = min
z∈D

f(z).

1.3 Outline

This paper is organized as follows. The precise de�nition of the estimate is given in Section

2 and the main result is formulated in Section 3. Section 4 contains an application of our

methodology to an experimental fatigue test. The proofs are given in Section 5.

2 De�nition of the estimate of the optimal design

In the sequel we assume that we have given the number N ∈ N of design points, a compact

set D ⊆ Rdz from which we have to choose the design points, and a compact set P ⊆ Rdp of

possible parameters, where for each p ∈ P a function rp is given, which has to be estimated.

For a given design z ∈ DN and a given parameter p ∈ P we asume that we can compute

a data set DN (z; p), an estimate

r̂N (·,DN (z; p))
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of rp and its error

Err (r̂N (·,DN (z; p)), rp) ≥ 0.

Throughout this we make the following assumption:

(A1) The nonnegative function

(z, p) 7→ Err (r̂N (·,DN (z; p)), rp)

de�ned on DN × P ⊆ Rdz ·N × Rdp is measurable with respect to the Borel sigma-

algebra.

In order to �nd the optimal design, for which the maximal (in view of the parameter)

expected error is minimal, we choose in a �rst step n ∈ N and random design points

Z1, . . . , Zn ∈ DN and random parameters P1, . . . , Pn ∈ P. Here we assume that

(A2) Z1, . . . , Zn are uniformly distributed on DN ,

(A3) P1, . . . , Pn are uniformly distributed on P,

(A4) Z1, P1, . . . , Zn, Pn are independent,

(A5) Z1, P1, . . . , Zn, Pn are independent from the data DN (z; p) for all z ∈ DN and p ∈ P.

In a second step we construct for each Xi = (Zi, Pi) data sets

DN (Xi) = DN (Zi;Pi),

where for values zi = Zi(ω) and pi = Pi(ω) of Zi and Pi the data set DN (Zi;Pi) is given

by DN (z; p). Then we use this data set to compute r̂N (·,DN (Xi)) and denote its error by

Yi = Err (r̂N (·,DN (Xi)), rPi) = Err (r̂N (·,DN ((Zi;Pi))), rPi) .

In a third step we use nonparametric regression to estimate for x = (z, p) ∈ DN × P

m(x) := m(z, p) := E {Err (r̂N (·,DN ((z; p))), rp)} . (3)

Because of (A1) and (A5), which imply

E
{
Err (r̂N (·,DN ((Z1;P1))), rP1)

∣∣(Z1, P1) = (z, p)
}
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= E {Err (r̂N (·,DN ((z; p))), rp)} ,

the above term can be written as conditional expectation via

m(x) = m(z, p) = E {Y1|(Z1, P1) = (z, p)} = E {Y1|X1 = x} .

To estimate m, we use the data

(X1, Y1), . . . , (Xn, Yn)

to compute the so-called Nadaraya-Watson kernel regression estimate (cf., e.g., Nadaraya

(1964) and Watson (1964))

mn(x) =

∑n
i=1 Yi ·K

(
x−Xi

ĥx

)
∑n

j=1 K
(

x−Xj

ĥx

) .

Here K : RN ·dz+dp → R is a so-called kernel function (e.g., K(u) = 1S1(0), where Sr(z)

denotes the (closed) ball of radius r around z in a Euclidean space) and ĥx is the bandwidth

of the kernel. We de�ne the latter one depending on x and the data in such a way that the

ball around x with the radius given as the bandwidth contains at least a special number

of data points. More precisely, we choose r, hn > 0 and set

ĥx = min
{

h ≥ hn : µn(Sr·h) ≥ log n

n1/4

}
,

where

µn(A) =
1
n

n∑
i=1

1A(Xi)

is the empirical measure of A ⊆ RN ·dz+dp corresponding to X1, . . . , Xn.

With the notation introduced above we can reformulate the aim of our procedure in

the following way: Our goal is to �nd a design (ẑ1, . . . , ẑN ) ∈ DN such that

max
p∈P

m ((ẑ1, . . . , ẑN ) , p) ≈ inf
(z1,...,zN )∈DN

max
p∈P

m ((z1, . . . , zN ) , p) .

In the fourth and last step we de�ne our estimate of the optimal design by(
ẑ(1), . . . , ẑ(N)

)
= arg min

(û(1),...,û(N))∈DN
max
p∈P

mn

(((
û(1), . . . , û(N)

)
, p
))

. (4)
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3 Main result

Our main result is the following theorem.

Theorem 1. Assume that D ⊆ Rdz and P ⊆ Rdp are compact sets, that the data is gener-

ated as in Section 2 and that the estimate is de�ned as in Section 2. Assume furthermore

that (A1), . . . , (A5) hold, that m de�ned by (3) is continuous, and that for some L > 0

we have with probability one

0 ≤ Err(r̂N (·,DN (z; p)), rp) ≤ L (5)

for all z ∈ DN and p ∈ P. Let K̃ : R+ → R+ be a monotonically decreasing and left

continuous function satisfying for some R > 0

K̃ (+0) > 0 and K̃(t) = 0 for t > R,

and de�ne the kernel K : Rd → R+ by

K (u) = K̃ (‖u‖) (u ∈ Rd).

Let r > 0 be such that K̃(r) > 0 and let the bandwidth ĥx be de�ned as in Section 2 for

some hn > 0, n ∈ N satisfying

hn → 0 (n →∞).

Then with probability one

max
p∈P

m ((ẑ1, . . . , ẑN ) , p) → inf
(z1,...,zN )∈DN

max
p∈P

m ((z1, . . . , zN ) , p)

as n tends to in�nity.

Remark 1. In the above de�nition of the estimate we assume for notational simplicity

that the minimum and the maximum in (4) exist. In case that they do not exist, it su�ces

to choose values which have distance less than δn > 0 from the corresponding in�mum and

supremum, resp., where δn → 0 (n →∞). It follows from the proof of Theorem 1 that in

this case the assertion of Theorem 1 is still valid.

Remark 2. It follows from the proof of Theorem 1 and the consistency result in Devroye

(1978a) that in case that for every ball in Rdz ·N ×Rdp with center in DN ×P the volume

8



of this ball intersected with DN × P divided by the volume of the ball is greater than or

equal to some constant c > 0, the above consistency result is still valid if we choose hn

instead of ĥx as bandwidth of our kernel regression estimate, provided hn satis�es

n · hd
n

log n
→∞ (n →∞).

4 Application to experimental fatigue tests

In this section we will apply the method described in Section 2 in the context of fatigue

analysis, where the fatigue behaviour under cyclic loading is studied. Table 1 contains

observed data from a strain controlled fatigue test, where a constant strain amplitude ε is

adjusted and the corresponding stress amplitude σ and the corresponding number Nf of

cycles till failure are observed. The aim of such an experiment is to estimate the so-called

ε 0.003 0.0035 0.004 0.004 0.0045 0.005 0.005

Nf 28572 8077 7878 2919 2950 1865 4015

σ 402.9 437.2 426.1 434.3 456.6 475.3 447.1

Table 1: Observed values in experimental fatigue tests.

strain life curve and the so-called stress strain curve describing the relation between the

total strain amplitude ε and the number Nf of cycles till failure and between the total

strain amplitude ε and the stress amplitude σ, respectively.

Based on Morrows proposal (cf., e.g., Manson (1965)) a parametric model for the strain

life curve is given by

ε =
σ′f
E
· (2Nf )b + ε′f · (2Nf )c. (6)

Here parameters of the strain life curve are given by the fatigue strength coe�cient σ′f ,

the fatigue strength exponent b, the fatigue ductility coe�cient ε′f and the fatigue ductility

exponent c. E denotes the modulus of elasticity which can be assumed to be known from

a previously performed static tensile material test.
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A parametric model for the stress strain curve is given by the so-called Ramberg-Osgood

relation (cf., e.g., Ramberg and Osgood (1943))

ε =
σ

E
+ (

σ

K ′ )
1
n′ , (7)

where K ′ and n′ are further cyclic material parameters. Here both relations can be inter-

preted as the sum of an elastic and a plastic strain part, more precisely

εel + εpl = rp(Nf ) :=
σ′f
E
· (2Nf )b + ε′f · (2Nf )c

and

εel + εpl := fss
(K′,n′)(σ) =

σ

E
+ (

σ

K ′ )
1
n′ .

Williams, Lee and Rilly (2002) propose to �nd the cyclic parameter p = (σ′f , ε′f , b, c) by

two separate linear regressions, where data consisting of triples (ε,Nf , σ) are used. This

very common standard estimation method makes use of the condition of compatibility,

which means that the elastic part and respectively the plastic part of the strain life curve

equals the elastic part and respectively the plastic part of the stress strain curve. Now the

idea is to determine for given data (ε1, Nf 1, σ1), · · · , (εn, Nf n, σn) the elastic and plastic

part of the strain amplitudes using relation (7)

εeli =
σi

E
and εpli = εi − εeli (i = 1, · · · , n)

and additionally to �nd the cyclic parameter p by separately �tting two linear functions

based on the data (εel1, Nf 1), · · · , (εeln, Nf n) and (εpl1, Nf 1), · · · , (εpln, Nf n), respectively.

For example in case of the elastic part a classical linear least squares estimate is �tted to

the data via

(σ′f
∗
, b∗) = arg min

σ′
f ,b∈(0,∞)×(−∞,0)

1
n

n∑
i=1

∣∣∣∣∣log(2Nf i)−
1
b
· (log(εeli)− log(

σ′f
E

))

∣∣∣∣∣
2

.

In case of the plastic part one proceeds similarly, but here just data which satisfy εpl >

1 · 10−6 are used in the regression.

Application of this estimation method to the data of Table 1 yields the estimate

pref = [788.305, 0.118,−0.0631,−0.4427]

for the cyclic parameters of the above parametric model. Here the modulus of elasticity E =

210000 (MPa) was already known by previously performed static loading measurements.
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Figure 1 shows the observed data and the corresponding strain life curve and respectively

stress strain curve as a result of the regression method described above. Since such a

Figure 1: Observed data points and estimated strain life and stress strain

curve.

(a) strain life curve

(b) stress strain curve
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series of experiments is rather time consuming and expensive, it is advisable to choose the

experimental design, here the strain amplitudes ε, very carefully. So the question is if we

can choose a better design than the reference design

zref = (0.003, 0.0035, 0.004, 0.004, 0.0045, 0.005, 0.005) (8)

used in the experiment described above.

Next we use our methodology from Section 2 in order to choose a design consisting

of N = 7 points from the set D = [0.002, 0.006] which should lead to a rather small

expected error if we generate data corresponding to this design and use the estimation

method described above. To apply our methodology from Section 2, we need a model

for the generation of the (random) values of Nf and σ. The basic idea is to assume that

the above parametric relations hold and to add normally distributed random errors to

functional values r−1
P (ε) and σcomp = E · εel, i.e., for a given strain amplitude ε we choose

Nf = Nf (ε) = r−1
P (ε) + δNf

and

σ = σ(ε) = σcomp + δσ,

where δNf
and δσ are independent truncated normally distributed random variables with

expectation 0 and standard deviation sdN = 3674.60 and sdσ = 11.56, respectively. Here

the property of compatibility is used to determine the value of the stress amplitude corre-

sponding to rP . The parameters sdN and sdσ are chosen using data from the real experi-

ment for a steel presented in Figure 1. Since the variable Nf describes the number of cycles

till failure for an adjusted strain amplitude ε just Nf ≥ 1 are useful. Similarly it behaves

with the variable σ since for this variable only positive values make sense. For this reason

we use in both cases truncated normally distributed random variables in such a way that

only random errors satisfying |δNf
| < r−1

p (z)− 1 and respectively |δσ| < σcomp − 9.7 · 10−7

will be permitted.

Another problem coming up concerns the value of the parameter P which is not ex-

plicitly given. We help ourselves by a construction of a neighborhood of the reference

parameter pref = [788.305, 0.118,−0.0631,−0.4427]. We construct P according to another

set Pdata = {(p1, E1), · · · , (p228, E228)}, an excerpt of "`Materials Database For Cyclic
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Loading"' (cf., Boller, Seeger and Vormwald (2008)). More precisely we consider the 0.1-

neighborhood of pref , with c = (|p(1)
ref |, |p

(2)
ref |, |p

(3)
ref |, |p

(4)
ref |) · 0.1 and randomly choose Pi

from the cuboid [pref − c, pref + c]. We accept this chosen value as Pi if there exists a

pi ∈ [Pi− c, Pi + c] from the database, and set the modulus of elasticity to Ei = El, where

pl = arg min {‖Pi − pl‖1, l = 1, · · · , 228} .

Finally we need to estimate the expected error of our estimate of the cyclic parameters

for a given design Zi and a given value Pi of the parameters. We do this by generating

100 independent synthetic data sets corresponding to this parameter value, each data set

DN (Zi, Pi) is used to compute the estimate r̂N (·, DN (Zi, Pi)), and in addition approxi-

mately L1-distances

Err(r̂N (·, DN (Zi;Pi)), rPi) =
1
l

l∑
j=1

∣∣r̂N (N̄f,j , DN (Zi;Pi))− rPi(N̄f,j)
∣∣

are computed with N̄f,j = (100 + (j − 1) · 100) and l = 10000 . We de�ne the dependent

variable Yi as the median of these errors:

Yi = Median
(
Err(r̂N (·, DN (Zi;Pi)), rPi)

100
1

)
. (9)

In a last step, we apply a nonparametric regression estimate to the generated data set.

Here we use the so-called Nadaraya-Watson kernel regression estimate (cf., e.g., Nadaraya

(1964) and Watson (1964)), where the parameter of the bandwidth h of the estimate is

chosen by splitting of the sample (cf., e.g., Chapter 7 in Györ� et al. (2002)).

Finally, we estimate the optimal design by the design ẑ ∈ DN for which the maximal

value mn(ẑ, p) corresponding to the parameter p is minimal.

We constructed a Monte-Carlo set consisting of 100000 values and compute the corre-

sponding regression estimate described as above. Then this estimate was evaluated on a

grid. Here 8 �xed and equidistant chosen values in D where combined in increasing order,

where repetitions in ε-values were admitted, resulting in 3433 considered designs. The

grid corresponding to the cyclic parameters consists of 4096 points by covering the cuboid

[pref − c, pref + c] with an equidistant grid. To get the estimate of the optimal design we

used a Nadaraya-Watson kernel regression estimate with a Gaussian kernel and bandwidth

h = 0.0002199.
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ẑ(1) ẑ(2) ẑ(3) ẑ(4) ẑ(5) ẑ(6) ẑ(7)

0.002038 0.002038 0.002038 0.004841 0.005962 0.005962 0.005962

Table 2. Estimated optimal design.

Table 2 describes our estimation of the optimal design. Here one design point is chosen

at 0.004841, where the other 6 points are symmetrically located at the edge of the design

interval. This design is better than our reference design (8) with respect to our minimax

criteria, since we have:

max
p∈PGrid

Median
(
Err(r̂N (·, DN (ẑ; p)), rp)1000

1

)
= 6.4369 · 10−5

≤ max
p∈PGrid

Median
(
Err(r̂N (·, DN (zref ; p)), rp)1000

1

)
= 3.0754 · 10−4.

So we can conlude that our method yields an estimated design which is four times better

than the considered reference design.

In order to validate the statistical signi�cance of this result, ten of these values were

computed by separately started simulations. Here in all ten cases our estimated design

is with respect to our minimax criteria better than the reference design, since the errors

of the estimated design and the errors of the reference design are located in the following

range, respectively:

max
p∈PGrid

Median
(
Err(r̂N (·, DN (ẑ; p)), rp)1000

1

)
∈
[
6.2781070 · 10−5, 6.7610200 · 10−5

]
and

max
p∈PGrid

Median
(
Err(r̂N (·, DN (zref ; p)), rp)1000

1

)
∈ [0.000307092, 0.000330605] .

5 Proofs

5.1 Auxiliary results

In this subsection we prove two auxiliary results, which we will use later to prove Theorem

1. Our �rst auxiliary result concerns uniform convergence of the kernel regression estimate.
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Lemma 1. Let (X, Y ) , (X1, Y1) , · · · be independent and identically distributed random

variables with values in Rd × R and denote the distribution of X by µ. Assume that

E
(
|Y |2

)
< ∞, (10)

and assume that the regression function m : Rd → R de�ned by m(x) = E{Y |X = x} is

continuous. Let K̃ : R+ → R+ be a monotonically decreasing and left continuous function

satisfying for some R > 0

K̃ (+0) > 0 and K̃(t) = 0 for t > R.

De�ne the kernel function K : Rd → R+ by

K (u) = K̃ (‖u‖) (u ∈ Rd).

Let r > 0 be such that K̃(r) > 0, let hn > 0 (n ∈ N) and assume

hn → 0 (n →∞) (11)

and let mn be the kernel estimate de�ned by

mn(x) =

∑n
i=1 Yi ·K

(
x−Xi

ĥx

)
∑n

j=1 K
(

x−Xj

ĥx

)
and

ĥx = min
{

h ≥ hn : µn(Sr·h) ≥ log n

n1/4

}
.

Then for an arbitrary compact subset A of Rd the following assertion holds:

sup
x∈supp(µ)∩A

|mn (x)−m (x)| → 0 a.s. (12)

Proof of Lemma 1. Let s ∈ (0, 1) be arbitrary and r > 0. Using results from VC-theory

(cf., e.g., Theorem 12.5, Corollary 13.2 in Devroye, Györ� and Lugosi (1996), Theorem 9.2

in Györ� et al. (2002), Theorem 9.1 in Györ� et al. (2002) and the proof of Lemma 3.2 in

Kohler, Krzy»ak and Walk (2003)) together with the Borel-Cantelli lemma it is possible

to show
supx∈Rd |µn (Sr·hn(x))− µ (Sr·hn(x))|

log n/
√

n
→ 0 a.s., (13)

15



supx∈Rd

∣∣∣ 1n ∑n
i=1 K

(
x−Xi

hn

)
−E

{
K
(

x−X
hn

)}∣∣∣
log n/

√
n

→ 0 a.s. (14)

and

supx∈Rd

∣∣∣ 1n ∑n
i=1 Yi · 1{|Yi|≤n

1
4 }
·K

(
x−Xi

hn

)
−E

{
Y · 1

{|Y |≤n
1
4 }

K
(

x−X
hn

)}∣∣∣
log n/n

1
4

→ 0 a.s.

(15)

(cf., equations (11), (12) and (13) in Kohler, Krzy»ak and Walk (2011)).

Since

sup
x∈supp(µ)∩A

|mn(x)−m(x)| ≤ sup
x∈supp(µ)∩A

∣∣∣∣∣∣mn(x)−
E{Y ·K

(
x−X
ĥx

)
}

E
{

K
(

x−X
ĥx

)}
∣∣∣∣∣∣

+ sup
x∈supp(µ)∩A

∣∣∣∣∣∣
E{Y ·K

(
x−X
ĥx

)
}

E
{

K
(

x−X
ĥx

)} −m(x)

∣∣∣∣∣∣
:= T1,n + T2,n

it su�ces to show

Ti,n → 0 a.s. (i ∈ {1, 2}) (16)

for all distributions of (X, Y ) such that the regression function is continuous and such

that E(|Y |2) < ∞. In the �rst step of the proof we show (16) for i = 1. Because of

µn(Sr·ĥx
(x)) ≥ log(n)/n1/4 and because of c1 · 1Sr(x) ≤ K(x) ≤ c2 (where c1 = K̃(r) and

c2 = K̃(0)) we have

E{K
(

x−X

ĥx

)
} ≥ E{c1 · 1Sr·ĥx

(x)(X)} = c1 · µ
(
Sr·ĥx

)
(17)

and
1
n

n∑
i=1

K

(
x−Xi

ĥx

)
≥ c1 ·

1
n

n∑
i=1

1Sr·ĥx
(x)(Xi) ≥ c1 ·

log(n)
n1/4

.

It follows∣∣∣∣∣∣
1
n

∑n
i=1 Yi ·K

(
x−Xi

ĥx

)
1
n

∑n
i=1 K

(
x−Xi

ĥx

) −
E{Y ·K

(
x−X
ĥx

)
}

E
{

K
(

x−X
ĥx

)}
∣∣∣∣∣∣

=

∣∣∣∣∣
1
n

∑n
i=1 Yi · 1{|Yi|>n1/4} ·K

(
x−Xi

ĥx

)
1
n

∑n
i=1 K

(
x−Xi

ĥx

) +

∑n
i=1 Yi · 1{|Yi|≤n1/4} ·K

(
x−Xi

ĥx

)
∑n

i=1 K
(

x−Xi

ĥx

)
16



−
E{Y · 1{|Y |≤n1/4} ·K

(
x−X
ĥx

)
}

E
{

K
(

x−X
ĥx

)} −
E{Y · 1{|Y |>n1/4} ·K

(
x−X
ĥx

)
}

E
{

K
(

x−X
ĥx

)} ∣∣∣∣∣
≤ c2 ·

1
n

∑n
i=1 |Yi| · 1{|Yi|>n1/4}

c1 · log(n)

n1/4

+
c2 ·E{|Y | · 1{|Y |>n1/4}}

c1 · µ
(
Sr·ĥx

)
+

∣∣∣∣∣∣
∑n

i=1 Yi · 1{|Yi|≤n1/4} ·K
(

x−Xi

ĥx

)
∑n

i=1 K
(

x−Xi

ĥx

) −
E{Y · 1{|Y |≤n1/4} ·K

(
x−X
ĥx

)
}

E
{

K
(

x−X
ĥx

)}
∣∣∣∣∣∣

=: T3,n + T4,n + T5,n.

Next we show

sup
x∈A∩supp(µ)

Ti,n → 0 a.s. (18)

for i ∈ {3, 4, 5}. For i = 3 we have for any L > 1 and n su�ciently large

1
n

∑n
i=1 |Yi| · 1{|Yi|>n1/4}

log(n)

n1/4

≤
1
n

∑n
i=1 |Yi| · |Yi|

n1/4 · 1{|Yi|>n1/4}
log(n)

n1/4

=
1

log n
· 1
n

n∑
i=1

|Yi|2 · 1{|Yi|>n1/4}

≤ 1
n

n∑
i=1

|Yi|2 · 1{|Yi|>L}

→ E
{
|Y |2 · 1{|Y |>L}

}
a.s.

by the strong law of large number and by (10). And because of (10) we get

E
{
|Y |2 · 1{|Y |>L}

}
→ 0

for L →∞, from which (18) follows for i = 3. For i = 4 we observe for n su�cient large

sup
x∈A∩supp(µ)

E{|Y | · 1{|Y |>n1/4}}

µ
(
Sr·ĥx

(x)
)

≤ sup
x∈A∩supp(µ)

E{|Y | · |Y |
n1/4 · 1{|Y |>n1/4}}

µn(Sr·ĥx
(x))− (µn(Sr·ĥx

(x))− µ
(
Sr·ĥx

(x)
)
)

= sup
x∈A∩supp(µ)

E{|Y |2 · 1{|Y |>n1/4}}

n1/4 ·
(
µn(Sr·ĥx

(x))− (µn(Sr·ĥx
(x))− µ

(
Sr·ĥx

(x)
)
)
)

≤
E{|Y |2 · 1{|Y |>n1/4}}

n1/4 ·
(
log(n)/n1/4 − supx∈Rd |µn(Sr·ĥx

(x))− µ(Sr·ĥx
(x)))|

)
17



=
E{|Y |2 · 1{|Y |>n1/4}}

log(n)− n1/4 · supx∈Rd |µn(Sr·ĥx
(x))− µ(Sr·ĥx

(x)))|
.

Because of (10) we have

E{|Y |2 · 1{|Y |>n1/4}} → 0 (n →∞),

and together with (13) this implies (18) for i = 4. In order to show (18) for i = 5 we

observe for n su�ciently large∣∣∣∣∣∣
∑n

i=1 Yi · 1{|Yi|≤n1/4} ·K
(

x−Xi

ĥx

)
∑n

i=1 K
(

x−Xi

ĥx

) −
E{Y · 1{|Y |≤n1/4} ·K

(
x−X
ĥx

)
}

E
{

K
(

x−X
ĥx

)}
∣∣∣∣∣∣

=

∣∣∣∣∣E
{

K
(

x−X
ĥx

)}(
1
n

∑n
i=1 Yi · 1{|Yi|≤n1/4} ·K

(
x−Xi

ĥx

)
−E{Y · 1{|Y |≤n1/4} ·K

(
x−X
ĥx

)
}
)

1
n

∑n
i=1 K

(
x−Xi

ĥx

)
·E
{

K
(

x−X
ĥx

)}
+

E
{

Y · 1{|Y |≤n1/4} ·K
(

x−X
ĥx

)}(
E
{

K
(

x−X
ĥx

)}
− 1

n

∑n
i=1 K

(
x−Xi

ĥx

))
1
n

∑n
i=1 K

(
x−Xi

ĥx

)
·E
{

K
(

x−X
ĥx

)} ∣∣∣∣∣
≤

∣∣∣ 1n ∑n
i=1 Yi · 1{|Yi|≤n1/4} ·K

(
x−Xi

ĥx

)
−E{Y · 1{|Y |≤n1/4} ·K

(
x−X
ĥx

)
}
∣∣∣

c1 · µn(Sr·ĥx
(x))

+
E{|Y | · 1{|Y |≤n1/4} ·K

(
x−X
ĥx

)
}

E
{

K
(

x−X
ĥx

)} ·
|E
{

K
(

x−X
ĥx

)}
− 1

n

∑n
i=1 K

(
x−Xi

ĥx

)
|

1
n

∑n
i=1 K

(
x−Xi

ĥx

)
≤

∣∣∣ 1n ∑n
i=1 Yi · 1{|Yi|≤n1/4} ·K

(
x−Xi

ĥx

)
−E{Y · 1{|Y |≤n1/4} ·K

(
x−X
ĥx

)
}
∣∣∣

c1 · log(n)

n1/4

+
E{|Y | · 1{|Y |≤n1/4} ·K

(
x−X
ĥx

)
}

c1 · µ
(
Sr·ĥx

(x)
) ·

∣∣∣E{K
(

x−X
ĥx

)}
− 1

n

∑n
i=1 K

(
x−Xi

ĥx

)∣∣∣
c1 · µn

(
Sr·ĥx

(x)
)

≤

∣∣∣ 1n ∑n
i=1 Yi · 1{|Yi|≤n1/4} ·K

(
x−Xi

ĥx

)
−E{Y · 1{|Y |≤n1/4} ·K

(
x−X
ĥx

)
}
∣∣∣

c1 · log(n)

n1/4

+
c2

log(n)

n1/4 ·E{|Y | · 1{|Y |≤n1/4}}

c1
log(n)

n1/4 ·
(

n1/4

log(n) −
(
µn

(
Sr·ĥx

(x)
)
− µ

(
Sr·ĥx

(x)
))) ·

∣∣∣E{K
(

x−X
ĥx

)}
− 1

n

∑n
i=1 K

(
x−Xi

ĥx

)∣∣∣
c1

log(n)

n1/4

.

Because of

log(n)
n1/4

·E{|Y | · 1{|Y |≤n1/4}} ≤
log(n)
n1/4

·E{|Y |} → 0 (n →∞)
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and

lim inf
n→∞

log(n)
n1/4

·

(
n1/4

log(n)
− sup

x∈Rd

∣∣∣µn(Sr·ĥx
(x))− µ(Sr·ĥx

(x))
∣∣∣) > 0,

which follows from (13), we conclude from (14) and (15) that (18) also holds for i = 5.

This completes the proof of (16) for i = 1.

In the second step of the proof we show (16) for i = 2. For x ∈ supp(µ) we know that

P{X ∈ Sε(x)} > 0 for all ε > 0. By (17) we get

E
{

K

(
x−X

ĥx

)}
≥ c1 ·P{X ∈ Sε(x)} > 0 for x ∈ supp(µ),

hence

sup
x∈supp(µ)∩A

∣∣∣∣∣∣
E
{

Y ·K
(

x−X
ĥx

)}
E
{

K
(

x−X
ĥx

)} −m (x)

∣∣∣∣∣∣ = sup
x∈supp(µ)∩A

∣∣∣∣∣∣
E
{

K
(

x−X
ĥx

)
(Y −m (x))

}
E
{

K
(

x−X
ĥx

)}
∣∣∣∣∣∣

= sup
x∈supp(µ)∩A

∣∣∣∣∣∣
E
{
E
{

K
(

x−X
ĥx

)
(Y −m (x)) |X

}}
E
{

K
(

x−X
ĥx

)}
∣∣∣∣∣∣

= sup
x∈supp(µ)∩A

∣∣∣∣∣∣
E
{

K
(

x−X
ĥx

)
(m (X)−m (x))

}
E
{

K
(

x−X
ĥx

)}
∣∣∣∣∣∣

≤ sup
x∈supp(µ)∩A

sup
z∈Rd:‖x−z‖≤R·ĥx

|m (x)−m (z)|

The last inequality follows from the fact that K (u) = 0 for ‖u‖ > R for some R > 0.

Since supp(µ)∩A is compact and m is continuous, we know that the term on the right

hand side is less than

sup
x∈supp(µ)∩A

L(ĥx)

for some function L : (0,∞) → R satisfying

L(h) → 0 (h → 0).

So it su�ces to show

lim sup
n→∞

sup
x∈supp(µ)∩A

ĥx = 0 a.s.

This in turn follows from

lim sup
n→∞

sup
x∈supp(µ)∩A

ĥx ≤ h a.s.
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for all h > 0, which we show in the sequel.

Let h > 0 be arbitrary. Since supp(µ) ∩ A is compact, there exists �nitely many balls

with centers in supp(µ)∩A and radius r·h
2 such that supp(µ)∩A is contained in the union

of these balls. Let S r·h
2

(x̄j), x̄j ∈ supp(µ) ∩ A, j = 1, · · · , k̄ be these balls. Since the

centers of these balls are in supp(µ) we know that all balls have a µ�measure greater than

zero, so there exists some constant c > 0 such that µ
(
S r·h

2
(x̄j)

)
> c for j = 1, · · · , k̄. Since

every ball Sr·h(x) with x ∈ supp(µ) ∩ A contains at least one of these balls (e.g., the ball

where x lies within) we get that µ(Sr·h(x)) > c for all x ∈ supp(µ)∩A. From this and (13)

we can conclude that all balls Sr·h(x) with x ∈ supp(µ) ∩ A contain with probability one

for n su�ciently large at least n/ log(n) data points. But this together with (11) implies

sup
x∈supp(µ)∩A

ĥx ≤ h

for n su�ciently large almost surely. The proof is complete. �

Next we use Lemma 1 to show

Lemma 2. Let ((Z,P ) , Y ) , ((Z1, P1) , Y1) , · · · be independent and identically distributed

random variables taking values in
(
DN × P

)
× R+, where D ⊂ Rdz and P ⊂ Rdp are

compact. Let µZ,P be the probability measure of (Z,P ) and assume that supp(µZ,P ) =

DN × P. De�ne the kernel estimate by

mn (z, p) =

∑n
i=1 Yi ·K

(
(z

p)−(Zi
Pi

)
ĥz,p

)
∑n

i=1 K

(
(z

p)−(Zi
Pi

)
ĥz,p

)
with

ĥz,p = min
{

h ≥ hn : µn(Sr·h(z, p)) ≥ log(n)
n1/4

}
, (19)

and set

Ẑn = arg min
z∈DN

max
p∈P

mn (z, p) , (20)

and assume for notational simplicity again that the maximum and minimum above exist.

Furthermore assume that the conditions of Lemma 1 hold. Then

max
p∈P

m
(
Ẑn, p

)
→ min

z∈DN
max
p∈P

m (z, p) a.s. (21)

20



Proof of Lemma 2. Since∣∣∣∣max
p∈P

m
(
Ẑn, p

)
− min

z∈DN
max
p∈P

m (z, p)
∣∣∣∣ ≤ ∣∣∣∣max

p∈P
m
(
Ẑn, p

)
− min

z∈DN
max
p∈P

mn (z, p)
∣∣∣∣

+
∣∣∣∣ min
z∈DN

max
p∈P

mn (z, p)− min
z∈DN

max
p∈P

m (z, p)
∣∣∣∣

= T1,n + T2,n

it su�ces to show

Ti,n → 0 a.s. for i ∈ {1, 2}. (22)

To show (22) for i = 1 we use the de�nition of Ẑn and the relation∣∣∣∣max
j

aj −max
j

bj

∣∣∣∣ ≤ max
j
|aj − bj | .

It follows

T1,n =
∣∣∣∣max

p∈P
m
(
Ẑn, p

)
−max

p∈P
mn

(
Ẑn, p

)∣∣∣∣
≤ max

p∈P

∣∣∣m(Ẑn, p
)
−mn

(
Ẑn, p

)∣∣∣
≤ sup

(z,p)∈DN×P
|m (z, p)−mn (z, p)| → 0 a.s.

by Lemma 1.

To show (22) for i = 2 we use

|min
j

aj −min
j

bj | = |max
j

(−bj)−max
j

(−aj)| ≤ max
j
|aj − bj | ,

and can continue with ∣∣∣∣ min
z∈DN

max
p∈P

mn (z, p)− min
z∈DN

max
p∈P

m (z, p)
∣∣∣∣

≤ max
z∈DN

∣∣∣∣max
p∈P

mn (z, p)−max
p∈P

m (z, p)
∣∣∣∣

≤ sup
(z,p)∈DN×P

|mn(z, p)−m(z, p)| → 0 a.s.,

where the last step follows again from Lemma 1. �

5.2 Proof of Theorem 1

Set

Yi = Err (r̂N (·,Dn(Zi;Pi)), rPi) (i ∈ {1, . . . , n}).
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Then m de�ned by (3) is the regression function to ((Z1, P1), Y1). The assumptions of

Theorem 1 imply the assumption of Lemma 2, in particular (5) implies that Y1 satis�es

the integrability condition of Lemma 2 and (A2) − (A4) imply supp(µZ,P ) = DN × P.

Application of Lemma 2 yields the assertion. �
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