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Abstract

In this article we study fixed design regression estimation based on real and artificial data,
where the artificial data comes from previously undertaken similar experiments. A least
squares estimate is introduced which gives different weights to the real and the artificial
data. It is investigated under which condition the rate of convergence of this estimate is
better than the rate of convergence of an ordinary least squares estimate applied to the
real data only. The results are illustrated using simulated and real data.
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1 Introduction

In this article we study the fixed design regression estimation problem, where we are given
data

(x1, Y1), · · · , (xn, Yn) (1)

satisfying x1, . . . , xn ∈ [0, 1] and

Yi = m(xi) + εi, i = 1, . . . , n

for so-called regression function m : [0, 1] → IR and some independent random variables
ε1, . . . , εn with mean zero. The goal is to estimate m from the data (1).

There are two different approaches here: parametric regression where it is assumed
that the structure of m is known and depends only on finitely many parameters, and the
data (1) is used to construct estimates of these parameters, and nonparametric regression
where there is no assumption on the structure of the regression function.
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The principle of the least squares is a popular principle to construct regression esti-
mates. One chooses for an estimate of the regression function a function which minimizes
the so-called empirical L2 risk over some given set Fn of functions f : IRd → IR, and
defines the estimate by

mn(·) = arg min
f∈Fn

1

n

n∑
i=1

|f(xi)− Yi|2. (2)

For notational simplicity we assume here and in the sequel that the minimum exists. De-
pending on the structure of Fn this leads either to parametric or nonparametric regression
estimation.

1.1 Fixed design regression using real and artificial data

Often one has the problem that the set Dn = {(x1, Y1),...,(xn, Yn)} contains only a few
data points. One remedy is to generate Nn artificial data points and to add them to the
existing data. The artificial data might come, e.g., from previously undertaken similar
experiments (for details see Section 3 below). Then we have a new dataset

DN = {(x1, Y1), . . . , (xn, Yn), (xn+1, Ŷn+1), . . . , (xN , ŶN )}

of size N := n + Nn. In the sequel we assume that the artificial data points have the
property that

1

Nn

Nn∑
j=1

|Ŷn+j −m(xn+j)|2 is “small”. (3)

We define least squares regression estimates by minimizing a weighted combination of two
empirical squared risks:

m̄n(·) = arg min
f∈Fn

 n∑
i=1

wi · |f(xi)− Yi|2 +

Nn∑
j=1

wn+j · |f(xn+j)− Ŷn+j |2
 , (4)

where

wi =
1

n
· w(n) (i ∈ {1, . . . , n}) and wn+j =

1

Nn
· (1− w(n)) (j ∈ {1, . . . , Nn}) (5)

for some w(n) ∈ [0, 1]. Note that for this choice of wi the sum of all weights is one.
Remark 1. For w(n) = 1 we use only real data points for our estimate, and for w(n) = 0
the estimate is based exclusively on artificial data. For w(n) = n

N = n
n+Nn

we weigh all
data points equally, i.e., in this case the estimate is given by

m̄n(·) = arg min
f∈Fn

1

N

 n∑
i=1

|f(xi)− Yi|2 +

Nn∑
j=1

|f(xn+j)− Ŷn+j |2
 .

In this article we derive upper bounds on the L2 error of the estimate (4). As it turns
out, in view of the optimal rate of convergence it is not necessary to use simultaneously
real and artificial data for the estimate: depending for which data the corresponding error
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of the regression estimate is smaller, it suffices to use only one kind of data in the estimate.
However, we show with the help of simulated data that for a finite sample size this is not
always the case. Here the estimate using simultaneously real and artificial data sometimes
outperforms the estimate based only on one type of data. Finally, we apply the proposed
estimate to fatigue analysis.

1.2 Discussion of related results

The fixed design regression estimation has been studied for a long time, for survey see,
e.g., Gasser and Müller (1979) or Eubank (1999).

Our theoretical result is based on the empirical process theory as presented, e.g., in the
monograph by van de Geer (2000). In particular we use in our proofs techniques introduced
in Kohler (2006) in context of regression estimation with additional measurement errors
in the dependent variable.

In application to fatigue analysis we use nonparametric regression with random design
in order to generate the artificial data. The most popular estimates for random design
regression include kernel regression estimate (cf., e.g., Nadaraya (1964, 1970), Watson
(1964), Devroye and Wagner (1980), Stone (1977) or Devroye and Krzyżak (1989)), parti-
tioning regression estimate (cf., e.g., Györfi (1981) or Beirlant and Györfi (1998)), nearest
neighbor regression estimate (cf., e.g., Devroye (1982), Devroye, Györfi, Krzyżak and Lu-
gosi (1994), Mack (1981) or Zhao (1987)), least squares estimates (cf., e.g., Lugosi and
Zeger (1995)) or smoothing spline estimates (cf., e.g., Kohler and Krzyżak (2001)). The
main theoretical results are summarized in the monograph by Györfi et al. (2002).

1.3 Outline

The main result is formulated in Section 2 and illustrated by applying the estimates to
the simulated and real data in Section 3. Section 4 contains the proofs and an auxiliary
result is proven in the Appendix.

2 Main result

We next describe the model. Set N := n + Nn and let x1, . . . , xN ∈ [0, 1]. Furthermore,
set

Yi = m(xi) +Wi (i = 1, . . . , n) (6)

for some m : [0, 1] → IR and some random variables W1, . . . , Wn which are independent
and have mean zero. We assume that the Wi’s are sub-Gaussian in the sense that

max
i=1,...,n

K2E{eW 2
i /K

2 − 1} ≤ σ20 (7)

for some K,σ0 > 0. Our goal is to estimate m from the data

(x1, Y1), . . . , (xn, Yn), (xn+1, Ŷn+1), . . . , (xN , ŶN ),

where we assume that

1

Nn

Nn∑
j=1

|Ŷn+j −m(xn+j)|2 (8)
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is “small”. Let Fn be a set of functions f : IRd → IR. Consider the least squares estimate

m̄n(·) = arg min
f∈Fn

 n∑
i=1

wi · |f(xi)− Yi|2 +

Nn∑
j=1

wn+j · |f(xn+j)− Ŷn+j |2


with weights wi defined as in Section 1.
We say that an = OP(bn) if lim supn→∞P(an > c · bn) = 0 for some finite constant c.

Our main result is the following theorem, which bounds the L2-error of m̄n∫ 1

0
|m̄n(x)−m(x)|2dx.

Theorem 1. Let Fn be a set of functions which are Lipschitz-continuous with Lipschitz-
constant bounded by log(n) and which are also bounded in absolute value by log(n) and
assume that m is Lipschitz-continuous. There exists a constant c1 > 0 which depends only
on σ0 and K such that for any δn > 0 with

δn → 0 (n→∞) and n · δn →∞ (n→∞)

and

√
n · δ ≥ c1

∫ √δ
δ/(29σ0)

(
logN2

(
u, {f − g : f ∈ Fn,

1

n

n∑
i=1

|f(xi)− g(xi)|2 ≤ δ}, xn1

))1/2

du (9)

for all δ ≥ δn and all g ∈ Fn we have∫ 1

0
|m̄n(x)−m(x)|2dx

= OP

log (n)2 ·

(
w(n)

n
+

(
1− w(n)

)
Nn

)
+

1− w(n)

Nn
·
Nn∑
j=1

|Ŷn+j −m(xn+j)|2

+w(n) · δn + min
f∈Fn

n+Nn∑
i=1

wi · |f(xi)−m(xi)|2
)
.

Remark 2. a) We can interpret the above result as follows: our bound on the L2 error
depends on the sample size, the division between the real and artificial data, the quality
of the artificial data, the complexity of the function space Fn (measured by δn and (9)),
and the approximation error of the function space Fn.
b) The upper bound in the last two lines in the above theorem is the sum of three terms
which we can interpret as follows: the first summand bounds the difference between L2

error and the empirical L2 error and will be negligible with respect to the remaining
terms. The second summand is (1 − w(n)) times the average error of the artificial data.
The remaining two summands are standard bounds on the empirical L2 error of the least
squares estimate based on the real data. As we will see below (see Corollary 2) they
converge to zero at the same rate as the error of a least squares estimate applied to
dn/w(n)e real data points.
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c) In order to achieve the optimal rate of convergence, the choice of w(n) is obvious: if
the average squared error of the artificial data converges faster (or slower) to 0, than the
L2 error of the least squares estimate applied to the real data, we should set w(n) = 0 (or
w(n) = 1), respectively.

To illustrate the usefulness of our main result we show what happens if we apply it to
the linear least squares estimates.

Corollary 1. Let Fn be a set of functions which are Lipschitz-continuous with Lipschitz-
constant bounded by log(n) and which are also bounded in absolute value by log(n), assume
that Fn is a subset of a linear vector space of dimension Dn and assume that m is Lipschitz-
continuous. Then∫ 1

0
|m̄n(x)−m(x)|2dx

= OP

log (n)2 ·

(
w(n)

n
+

(
1− w(n)

)
Nn

)
+

1− w(n)

Nn
·
Nn∑
j=1

|Ŷn+j −m(xn+j)|2

+w(n) · Dn

n
+ min
f∈Fn

n+Nn∑
i=1

wi · |f(xi)−m(xi)|2
)
.

Proof. The result follows immediately from Theorem 1 and the bound on the covering
number of linear vector spaces given in Corollary 2.6 in van de Geer (2000), which implies
that condition (9) is in the case of linear vector spaces satisfied for δn ≥ c2Dn

n (cf., Example
9.3.1 in van de Geer (2000) or proof of Lemma 19.1 in Györfi et al. (2002)). �
For particular choices of sets Fn we derive bounds on the approximation error under
appropriate smoothness assumptions on m

min
f∈Fn

n+Nn∑
i=1

wi · |f(xi)−m(xi)|2 ≤ min
f∈Fn

sup
x∈[0,1]

|f(x)−m(x)|2,

which together with Corollary 1 yield bounds on the rate of convergence of the estimate.
Here we describe the smoothness of m as follows:

Definition 1. Let C > 0 and p = k + β for some k ∈ IN0 and 0 < β ≤ 1. A function
m : [0, 1]→ IR is called (p, C)–smooth if its k–th derivative m(k) exists and satisfies

|m(k)(x)−m(k)(z)| ≤ C|x− z|β (10)

for all x, z ∈ [0, 1].

If we choose Fn as set of piecewise polynomials, we get:

Corollary 2. Let L,C > 0 and p = k + β for some k ∈ IN and β ∈ (0, 1]. Assume
|m(x)| ≤ L for some L > 0 and m (p, C)-smooth. Define Fn as the set of all piecewise
polynomials of degree M ≥ k with respect to an equidistant partition of [0, 1] into

Kn =

⌈( n

w(n)

)1/(2p+1)
⌉
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equidistant intervals, where the coefficients of the piecewise polynomials are bounded in ab-
solute value by (log n)/(M+1)2, and where each piecewise polynomial is on [0, 1] Lipschitz-
continuous with Lipschitz constant bounded by log(n). Let m̄n be defined as in Section 1
for some w(n) > 0. Then∫ 1

0
|m̄n(x)−m(x)|2dx

= OP

log (n)2 ·

(
w(n)

n
+

(
1− w(n)

)
Nn

)
+

1− w(n)

Nn
·
Nn∑
j=1

|Ŷn+j −m(xn+j)|2

+

(
w(n)

n

)2p/(2p+1)
 .

Proof. The proof follows from Corollary 1 and Lemma 11.1 in Györfi et al. (2002) (cf.,
proof of Corollary 19.1 in Györfi et al. (2002)). �
Remark 3. a) In Corollary 2 we estimate a smooth regression function. In this case
smooth estimates are often used, which can be achieved in the situation above by choosing
Fn as an appropriate spline space. It follows from the proof that in this case we can use,
e.g., the spline space from Fromkorth and Kohler (2011) and the assertion of Corollary 2
still holds.
b) Any application of the above estimate to real data requires a data-driven choice of the
parameters (w(n), Nn,Kn,M) of the estimate. This can be done by, for instance, applying
cross-validation to the real data.

3 Application to simulated and real data

In this section we illustrate the finite sample size performance of our newly proposed
estimate by applying it to simulated and real data.

We start with the simulation using artificial data. Here we consider three different
regression functions mi : [0, 1]→ IR, i = 1, 2, 3 defined by

m1(x) = sin(5x), m2(x) = e5x − (5x)3 and m3(x) =
1

5x+ 1
+ sin(5x),

cf. Figures 1.
We define our real data by

Yi = m(xi) +Wi, i = 1, . . . , n,

where xi = i/n and W1, . . . ,Wn are independent standard normal random variables. The
artificial data will be generated by

Yn+j = m(xn+j) + δ, j = 1, . . . , Nn,

where xn+j = j/Nn and δ > 0 is some fixed constant which takes different values in the
simulations. In all our experiments we choose n = 1000 and Nn = 1000. The weights
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Figure 1: m1(x) = sin(5x), m2(x) = e5x − (5x)3 and m3(x) = 1
5x+1 + sin(5x)

of the least squares estimate are defined as in Section 1, and we consider three cases,
namely w(n) = 1 (we use only real data), w(n) = 0 (we use only artificial data) and
w(n) = n/(n + Nn) (we give all data points the same weight). For the function space we
use polynomial splines of degree 2, where the number of equidistant knots is chosen from
the set {1, . . . , 10} by splitting of the sample (applied to the whole set of real and artificial
data). For the the first regression function we do simulations for δ ∈ {0.04, 0.1, 0.2}. For
the second regression function we choose δ ∈ {0.08, 0.15, 0.25} and for the last regression
function we consider δ ∈ {0.04, 0.1, 0.2}. For each value of δ we generate independently 100
data sets, apply to each data set the three estimates corresponding to the above mentioned
three values of w(n) and compute the square roots of the corresponding L2 errors of the
estimates. The results are presented in the boxplots in Figures 2, 3 and 4.
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Figure 2: m1(x)

For all three regression functions we see that for δ much larger (or much smaller) than
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Figure 3: m2(x)

the median error of the estimate based only on the real data, the estimate using the real
data only (or the estimate using the artificial data only, respectively) is the best. This
confirms our theoretical results of Section 2. However, when δ is approximately equal to
the median error of the estimate using the real data only, the estimate giving equal weights
to all data points performs better than the other two estimates. This shows that in the
case of finite sample size it is sometimes beneficial to combine real and artificial data in
the same estimate.

We now apply our methodology to estimation of fatigue behavior of steel under cyclic
loading. Our data is obtained in a series of seven experiments where for seven values of
the total strain amplitude ε the corresponding number of cycles Nf till failure and the
corresponding stress amplitude σ are determined. The observed values are given in Table
1.

ε 0.003 0.0035 0.004 0.004 0.0045 0.005 0.005

Nf 28572 8077 7878 2919 2950 1865 4015

σ 402.9 437.2 426.1 434.3 456.6 475.3 447.1

Table 1: Observed values in experimental fatigue tests.

Our least squares estimate is based on the Manson-Coffin-Basquin relation (cf., e.g.,
Manson (1965))

ε =
σ′f
E
· (2Nf )b + ε′f · (2Nf )c, (11)
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Figure 4: m3(x)

and the Ramberg-Osgood equation (cf., e.g., Ramberg and Osgood (1943))

ε = εe + εp =
σ

E
+
( σ
K ′

) 1
n′
. (12)

Here σ′f ,ε′f , b, c, K ′f , n′ and E are parameters describing the tested material. E denotes the
modulus of elasticity which is known from a previously performed static tensile material
test.

We fit this nonlinear model for the inverse relations between ε and N and between ε
and σ to the data by minimizing the least squares criterion with gradient descent based on
the computation of the gradient using the implicit function theorem. Figure 5 shows the
real data points together with the estimate of the relations between the strain amplitudes
and the number of cycles till failure. As estimates for the parameters for the relation
between the strain amplitudes and the number of cycles till failure we get σ′f = 651.178,
ε′f = 0.0406, b = −0.0431 and c = −0.3331.

Since the above experiments are extremely time consuming we augment our measured
data by artificially generated data. To do this we use experiments for related materials
(where the relation to our steel is measured by using so called static material parameters
like yield limit for 0.2% residual elongation, temperature, modulus of elasticity and sensi-
tivity of static stress strain curve), determine from the relation (11) and (12) for chosen
values of the strain amplitude the corresponding values of Nf and σ, and use nonpara-
metric regression to estimate the corresponding values for our material on the basis of
static parameters of our steel. In this way we generate Nn = 100 additional data points
containing values of number of cycles Nf till failure and stress amplitude σ. We choose
the weight of our combined least squares estimate using cross-validation applied to our
seven real data points from the set {0, 0.01, . . . , 1}.

Figure 6 shows the real data points, the artificial data points and the estimate of
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the relation between the strain amplitudes and number of cycles till failure based on the
combination of both data points. Here our data driven choice of the weight yields w = 0.94.
As estimates for the parameters for the relation between the strain amplitudes and the
number of cycles till failure we get this time σ′f = 680.0259, ε′f = 0.0279, b = −0.054 and
c = −0.2866.

The two estimates are compared in Figure 7.

4 Proofs

4.1 A deterministic lemma

In this subsection we formulate a deterministic lemma which we will need in the next
section in order to bound the empirical L2 error of our least squares estimate.

Lemma 1. Let t > 0, N := n+Nn, w1, . . . , wN ∈ IR+, x1, . . . , xN ∈ IRd, y1, . . . , yn ∈ IR
and ŷn+1, . . . , ŷN ∈ IR. Let m be a function m : IRd → IR and let F be a set of functions
f : IRd → IR. Set

m̄n(·) = arg min
f∈F

 n∑
i=1

wi · |f(xi)− yi|2 +

Nn∑
j=1

wn+j · |f(xn+j)− ŷn+j |2


and

m∗n(·) = arg min
f∈F

n+Nn∑
i=1

wi · |f(xi)−m(xi)|2

and assume that both minima exist. Then

n+Nn∑
i=1

wi · |m̄n(xi)−m(xi)|2

> t+ 512

Nn∑
j=1

wn+j · |m(xn+j)− ŷn+j |2 + 18 min
f∈F

n+Nn∑
i=1

wi · |f(xi)−m(xi)|2

implies

t

2
<

n+Nn∑
i=1

wi · |m̄n(xi)−m∗n(xi)|2 ≤ 16

n∑
i=1

wi · (m̄n(xi)−m∗n(xi)) · (yi −m(xi)).

Lemma 1 follows immediately from a straightforward generalization of Lemma 1 in
Kohler (2006). For the sake of completeness we present a complete proof in the Appendix.
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4.2 Results for fixed design regression

In this subsection we bound the empirical L2 error of m̄n

n+Nn∑
i=1

wi · |m̄n(xi)−m(xi)|2

by the sum of the approximation error

min
f∈Fn

(
n+Nn∑
i=1

wi · |f(xi)−m(xi)|2
)
,

a term which depends on the complexity of Fn measured by covering numbers and the
error of the artificial data described by (8).

Lemma 2. Let m̄n be the estimate defined by (4) and (5). There exist constants c3, c4 > 0
which depend only on σ0 and K such that for any δn > 0 with

δn → 0 (n→∞) and n · δn →∞ (n→∞)

and

√
n · δ ≥ c3

∫ √δ
δ/(29σ0)

(
logN2

(
u, {f − g : f ∈ Fn,

1

n

n∑
i=1

|f(xi)− g(xi)|2 ≤ δ}, xn1

))1/2

du(13)

for all δ ≥ δn and all g ∈ Fn we have

P

{
n+Nn∑
i=1

wi · |m̄n(xi)−m(xi)|2

> c4

( Nn∑
j=1

wn+j · |Ŷn+j −m(xn+j)|2 + w(n) · δn + min
f∈Fn

n+Nn∑
i=1

wi · |f(xi)−m(xi)|2
)}

→ 0 (n→∞).

Proof. Set

m∗n(·) = arg min
f∈Fn

(
n+Nn∑
i=1

wi · |f(xi)−m(xi)|2
)

By Lemma 1,

P

{ n+Nn∑
i=1

wi · |m̄n(xi)−m(xi)|2 > w(n) · δn + 512

Nn∑
j=1

wn+j · |m(xn+j)− Ŷn+j |2

+18 min
f∈Fn

n+Nn∑
i=1

wi · |f(xi)−m(xi)|2
}

≤ P

{
w(n) · δn

2
<

n+Nn∑
i=1

wi · |m̄n(xi)−m∗n(xi)|2 ≤ 16
n∑
i=1

wi · (m̄n(xi)−m∗n(xi)) ·Wi

}
≤ P1 + P2,
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where

P1 = P

{
1

n

n∑
i=1

W 2
i > 2σ20

}
and

P2 = P

{
1

n

n∑
i=1

W 2
i ≤ 2σ20, w

(n) · δn
2
<

n+Nn∑
i=1

wi · |m̄n(xi)−m∗n(xi)|2 ≤

16
n∑
i=1

wi · (m̄n(xi)−m∗n(xi)) ·Wi

}
.

Application of Chernoff’s exponential bounding technique (cf., Chernoff (1952)) together
with (7) yield

P1 = P

{
1

n

n∑
i=1

W 2
i /K

2 > 2σ20/K
2

}

≤ P

{
exp

(
n∑
i=1

W 2
i /K

2

)
> exp

(
2n · σ20/K2

)}

≤ exp
(
−2n · σ20/K2

)
·E

{
exp

(
n∑
i=1

W 2
i /K

2

)}
≤ exp

(
−2n · σ20/K2

)
·
(
1 + σ20/K

2
)n

≤ exp
(
−2n · σ20/K2

)
· exp

(
n · σ20/K2

)
= exp

(
(−n) · σ20/K2

)
→ 0 (n→∞).

From the definition of wi we conclude

P2 ≤ P

{
1

n

n∑
i=1

W 2
i ≤ 2σ20, w

(n) · δn
2
< 16

n∑
i=1

wi · (m̄n(xi)−m∗n(xi)) ·Wi,

n∑
i=1

wi · |m̄n(xi)−m∗n(xi)|2 ≤ 16

n∑
i=1

wi · (m̄n(xi)−m∗n(xi)) ·Wi

}

≤ P

{
1

n

n∑
i=1

W 2
i ≤ 2σ20,

δn
2
< 16 · 1

n

n∑
i=1

(m̄n(xi)−m∗n(xi)) ·Wi,

1

n

n∑
i=1

|m̄n(xi)−m∗n(xi)|2 ≤ 16 · 1

n

n∑
i=1

(m̄n(xi)−m∗n(xi)) ·Wi

}
. (14)

To bound the latter probability, we observe first that 1
n

∑n
i=1W

2
i ≤ 2σ20 together with

the Cauchy-Schwarz inequality implies:

16 · 1

n

n∑
i=1

(m̄n(xi)−m∗n(xi)) ·Wi

≤ 16 ·

√√√√ 1

n

n∑
i=1

(m̄n(xi)−m∗n(xi))2 ·

√√√√ 1

n

n∑
i=1

W 2
i

15



≤ 16 ·

√√√√ 1

n

n∑
i=1

(m̄n(xi)−m∗n(xi))2 ·
√

2σ20,

hence inside probability (14) we have

1

n

n∑
i=1

(m̄n(xi)−m∗n(xi))
2 ≤ 512σ20.

Set
S = min{s ∈ IN0 : 2sδn ≥ 512σ20}.

Application of the peeling device (cf., Section 5.3 in van de Geer (2000)) yields

P2 ≤
S∑
s=0

P

{
1

n

n∑
i=1

W 2
i ≤ 2σ20, 2

s−1δn · I{s>0} <
1

n

n∑
i=1

|m̄n(xi)−m∗n(xi)|2 ≤ 2sδn,

max

{
δn
2
,

1

n

n∑
i=1

|m̄n(xi)−m∗n(xi)|2
}
≤ 16

1

n

n∑
i=1

(m̄n(xi)−m∗n(xi)) ·Wi

}

≤
S∑
s=0

P

{
1

n

n∑
i=1

W 2
i ≤ 2σ20,

1

n

n∑
i=1

|m̄n(xi)−m∗n(xi)|2 ≤ 2sδn,

1

n

n∑
i=1

(m̄n(xi)−m∗n(xi)) ·Wi >
2sδn
32

}
.

The probabilities in the above sum can be bounded using Corollary 8.3 in van de Geer
(2000) (use there R =

√
2sδn, δ = 2sδn

32 , σ =
√

2σ0), which yields

P2 ≤
S∑
s=0

c5 exp

(
−n · (2

sδn/32)2

4c5 · 2sδn

)
=

S∑
s=0

c5 exp

(
− n · 2

s · δn
4 · 322 · c5

)
≤ c6 exp

(
−n · δn

c6

)
→ 0

for n→∞. �

4.3 Approximating integrals by averages

In this subsection we state the following auxiliary result which we will use to bound the
difference between L2 error and the empirical L2 error.

Lemma 3. Let f : [0, 1] → IR be Lipschitz-continuous with Lipschitz constant L and let
N ∈ IN. Then ∣∣∣∣∣

∫ 1

0
f(x) dx− 1

N

N∑
i=1

f(i/N)

∣∣∣∣∣ ≤ 1

2
· L · 1

N
.
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Proof. Since f is Lipschitz-continuous we have∣∣∣∣∣
∫ 1

0
f(x) dx− 1

N

N∑
i=1

f(i/N)

∣∣∣∣∣ ≤
N∑
i=1

∣∣∣∣∣
∫ i/N

(i−1)/N
(f(x)− f(i/N)) dx

∣∣∣∣∣
≤

N∑
i=1

∫ i/N

(i−1)/N
|f(x)− f(i/N)| dx

≤ L ·
N∑
i=1

∫ i/N

(i−1)/N

(
i

N
− x
)
dx =

1

2
· L · 1

N
.

�.

4.4 Proof of Theorem 1

Using the definition of wi we get∫ 1

0
|m̄n(x)−m(x)|2dx

=

∫ 1

0
|m̄n(x)−m(x)|2dx−

N∑
i=1

wi · |m̄n(xi)−m(xi)|2 +
N∑
i=1

wi · |m̄n(xi)−m(xi)|2

= w(n) ·

(∫ 1

0
|m̄n(x)−m(x)|2dx− 1

n

n∑
i=1

|m̄n(xi)−m(xi)|2
)

+(1− w(n)) ·

(∫ 1

0
|m̄n(x)−m(x)|2dx− 1

Nn

Nn∑
i=1

|m̄n(xi)−m(xi)|2
)

+
N∑
i=1

wi · |m̄n(xi)−m(xi)|2

=: T1,n + T2,n + T3,n.

W.l.o.g. m is Lipschitz-continuous on [0, 1] with Lipschitz constant bounded by log n and
m is bounded in absolute value by log n. Consequently∣∣|m̄n(x)−m(x)|2 − |m̄n(z)−m(z)|2

∣∣
= |m̄n(x)−m(x)− m̄n(z) +m(z)| · |m̄n(x)−m(x) + m̄n(z)−m(z)|
≤ 2 · log n · |x− z| · (2 · ‖m̄n‖∞ + 2 · ‖m‖∞),

hence gn(x) = |m̄n(x) −m(x)|2 is Lipschitz-continuous with Lipschitz constant bounded
by 8 log2 n. By Lemma 3 we conclude

T1,n ≤ 4 · log2(n) · w
(n)

n

and

T2,n ≤ 4 · log2(n) · 1− w(n)

Nn
.

Application of Lemma 2 to T3,n yields the assertion. �.
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[5] Devroye, L. and Krzyżak, A. (1989). An equivalence theorem for L1 convergence of
the kernel regression estimate. Journal of Statistical Planning and Inference, 23, pp.
71–82.

[6] Devroye, L. and Wagner, T. J. (1980). Distribution-free consistency results in non-
parametric discrimination and regression function estimation. Annals of Statistics, 8,
pp. 231–239.

[7] Eubank, R. L. (1999). Nonparametric Regression and Spline Smoothing. 2nd edition,
Marcel Dekker, New York.

[8] Fromkorth, A. and Kohler, M. (2011). Analysis of least squares regression estimates in
case of additional errors in the variables. Journal of Statistical Planning and Inference,
141, pp. 172-188.

[9] Gasser, T. and Müller, M.-H. (1979). Kernel estimation of regression functions. In
Smoothing Techniques for Curve Estimation, Gasser, T. and Rosenblatt, M., Eds., pp.
23-68. Lecture Notes in Mathematics 757, Springer-Verlag, Heidelberg.

[10] Györfi, L. (1981). Recent results on nonparametric regression estimate and multiple
classification. Problems of Control and Information Theory, 10, pp. 43–52.
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Appendix: Proof of Lemma 1

Lemma 1 follows immediately from the following generalization of Lemma 1 in Kohler
(2006).

Lemma 4. Let t > 0, w1, . . . , wn ∈ IR+, x1, . . . , xN ∈ IRd and y1, ȳ1, . . . , yN , ȳN ∈ IR. Let
m be a function m : IRd → IR and let F be a set of functions f : IRd → IR. Set

m̄n = arg min
f∈F

N∑
i=1

wi · |f(xi)− ȳi|2

and

m∗n = arg min
f∈F

N∑
i=1

wi · |f(xi)−m(xi)|2

and assume that both minima exist. Then

N∑
i=1

wi · |m̄n(xi)−m(xi)|2 > t+ 512

N∑
i=1

wi · |yi− ȳi|2 + 18 min
f∈F

N∑
i=1

wi · |f(xi)−m(xi)|2 (15)
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implies

t

2
<

N∑
i=1

wi · |m̄n(xi)−m∗n(xi)|2 ≤ 16
N∑
i=1

wi · (m̄n(xi)−m∗n(xi)) · (yi −m(xi)). (16)

For the sake of completeness we present next a complete proof of Lemma 4.
Proof of Lemma 4. The proof is divided into four steps. In the first step of the proof
we show that (15) implies

N∑
i=1

wi · |m̄n(xi)−m∗n(xi)|2 >
t

2
+ 256

N∑
i=1

wi · |yi− ȳi|2 + 8
N∑
i=1

wi · |m∗n(xi)−m(xi)|2. (17)

Indeed, by definition of m∗n we have

N∑
i=1

wi · |m∗n(xi)−m(xi)|2 = min
f∈F

N∑
i=1

wi · |f(xi)−m(xi)|2,

which together with (15) and

N∑
i=1

wi · |m̄n(xi)−m(xi)|2 ≤ 2
N∑
i=1

wi · |m̄n(xi)−m∗n(xi)|2 + 2
N∑
i=1

wi · |m∗n(xi)−m(xi)|2

implies

2
N∑
i=1

wi · |m̄n(xi)−m∗n(xi)|2 > t+ 512
N∑
i=1

wi · |yi − ȳi|2 + 16
N∑
i=1

wi · |m∗n(xi)−m(xi)|2.

This is equivalent to (17).
In the second step of the proof we show

N∑
i=1

wi · |m̄n(xi)−m∗n(xi)|2

≤ 4

N∑
i=1

wi · |m∗n(xi)−m(xi)|2 + 4

N∑
i=1

wi · (m̄n(xi)−m∗n(xi)) · (ȳi −m(xi)). (18)

We have

N∑
i=1

wi · |m̄n(xi)−m∗n(xi)|2 ≤ 2
N∑
i=1

wi · |m̄n(xi)−m(xi)|2 + 2
N∑
i=1

wi · |m∗n(xi)−m(xi)|2(19)

and

N∑
i=1

wi · |m̄n(xi)− ȳi|2

=
N∑
i=1

wi · |m̄n(xi)−m(xi)|2 +
N∑
i=1

wi · |m(xi)− ȳi|2 + 2
N∑
i=1

wi · (m̄n(xi)−m(xi)) · (m(xi)− ȳi),
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which implies

N∑
i=1

wi · |m̄n(xi)−m∗n(xi)|2

≤ 2

(
N∑
i=1

wi · |m̄n(xi)− ȳi|2 −
N∑
i=1

wi · |m(xi)− ȳi|2 − 2
N∑
i=1

wi · (m̄n(xi)−m(xi)) · (m(xi)− ȳi)

)

+2

N∑
i=1

wi · |m∗n(xi)−m(xi)|2.

By definition of m̄n

N∑
i=1

wi · |m̄n(xi)− ȳi|2 ≤
N∑
i=1

wi · |m∗n(xi)− ȳi|2

=
N∑
i=1

wi · |m∗n(xi)−m(xi)|2 +
N∑
i=1

wi · |m(xi)− ȳi|2

+2

N∑
i=1

wi · (m∗n(xi)−m(xi)) · (m(xi)− ȳi).

This together with the previous inequality and (19) yields (18).
In the third step of the proof we show that (17) implies

N∑
i=1

wi · |m∗n(xi)−m(xi)|2 ≤
N∑
i=1

wi · (m̄n(xi)−m∗n(xi)) · (ȳi −m(xi)). (20)

To do this, we assume that (20) does not hold and show that (17) does not hold. Indeed,
if (20) does not hold then we can conclude from (18)

N∑
i=1

wi · |m̄n(xi)−m∗n(xi)|2 ≤ 8

N∑
i=1

wi · |m∗n(xi)−m(xi)|2,

which implies that (17) does not hold.
In the fourth step of the proof we show that (17) and (20) imply (16). To do this, we

conclude from (18) and (20)

N∑
i=1

wi · |m̄n(xi)−m∗n(xi)|2 ≤ 8

N∑
i=1

wi · (m̄n(xi)−m∗n(xi)) · (ȳi −m(xi)),

which together with (17) yields

t

2
+ 256

N∑
i=1

wi · |yi − ȳi|2 <
N∑
i=1

wi · |m̄n(xi)−m∗n(xi)|2

≤ 8

N∑
i=1

wi · (m̄n(xi)−m∗n(xi)) · (ȳi −m(xi)). (21)
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If

N∑
i=1

wi · (m̄n(xi)−m∗n(xi)) · (ȳi − yi) ≤
N∑
i=1

wi · (m̄n(xi)−m∗n(xi)) · (yi −m(xi)) (22)

holds, then we have

N∑
i=1

wi · (m̄n(xi)−m∗n(xi)) · (ȳi −m(xi))

=
N∑
i=1

wi · (m̄n(xi)−m∗n(xi)) · (ȳi − yi) +
N∑
i=1

wi · (m̄n(xi)−m∗n(xi)) · (yi −m(xi))

≤ 2

N∑
i=1

wi · (m̄n(xi)−m∗n(xi)) · (yi −m(xi))

which together with (21) implies (16). We conclude the proof by showing that we get a
contradiction, if (22) doesn’t hold. So assume, that (22) does not hold. Then (21) together
with the Cauchy-Schwarz inequality implies

N∑
i=1

wi · |m̄n(xi)−m∗n(xi)|2

≤ 8
N∑
i=1

wi · (m̄n(xi)−m∗n(xi)) · (ȳi − yi) + 8
N∑
i=1

wi · (m̄n(xi)−m∗n(xi)) · (yi −m(xi))

≤ 16
N∑
i=1

wi · (m̄n(xi)−m∗n(xi)) · (ȳi − yi)

≤ 16

√√√√ N∑
i=1

wi · (m̄n(xi)−m∗n(xi))2 ·

√√√√ N∑
i=1

wi · (ȳi − yi)2,

which in turn implies√√√√ N∑
i=1

wi · (m̄n(xi)−m∗n(xi))2 ≤ 16

√√√√ N∑
i=1

wi · (ȳi − yi)2.

From this together with (21) it follows

t

2
+ 256

N∑
i=1

wi · |yi − ȳi|2 < 256
N∑
i=1

wi · |yi − ȳi|2,

which is the desired contradiction. �
Proof of Lemma 1. Set N = n+Nn, and for i ∈ {1, . . . , N} choose

ȳi = yi for i ≤ n and ȳi = ŷi for i > n

and
yi = yi for i ≤ n and yi = m(xi) for i > n

in Lemma 4. Then we immediately get the assertion of Lemma 1. �
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