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Abstract
In this paper a nonparametric latent variable model is estimated without specifying the
underlying distributions. The main idea is to estimate in a first step a common factor
analysis model under the assumption that each manifest variable is influenced by at most
one of the latent variables. In a second step nonparametric regression is used to analyze
the relation between the latent variables. Theoretical results concerning consistency of
the estimates are presented.
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1 Introduction

Latent variable models provide statistical tool for explaining and analyzing underlying
structure of multivariate data by using the idea that observable phenomena are influenced
by underlying factors which cannot be observed or measured directly. They have appli-
cations in various areas including psychology, social sciences, education or economics,
where theoretical concepts such as intelligence, desirability or welfare cannot be mea-
sured directly but instead observable indicators (or manifest variables) are given.
One possibility to fit latent variable models to data is to assume that the underly-

ing distribution is Gaussian, and therefore it is uniquely determined by its covariance
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structure. Then the maximum likelihood principle together with structural assumptions
on the underlying latent variable model can be used to fit the latent variable model to
observed data.
In contrast in this paper we try to avoid any assumption on the class of the underlying

distributions. Given multivariate random variables X and Y , we approximate them by
linear combinations of suitable latent variables Z1 and Z2 and then use nonparametric
regression to study the relation between Z1 and Z2. In this way the whole procedure
splits into two separate problems: In a first step we fit a common factor analysis model
to X and Y . And then we apply suitable nonparametric regression techniques to analyze
the relation between the latent variables in this model.
The main trick in estimation of the common factor analysis model is to estimate the

values of (Z1, Z2) in such a way that the corresponding empirical distribution asymp-
totically satisfies the conditions that characterize the distribution of (Z1, Z2) uniquely.
This primarily requires independence of (Z1, Z2) of the random errors occurring in the
manifest variables, and we ensure this by minimizing some kind of distance between the
empirical cumulative distribution function of all these random variables and the product
of the marginal cumulative distribution functions.
Our main theoretical result is that the empirical distribution of the estimated values

of (Z1, Z2) converges weakly with probability one to the distribution of (Z1, Z2). We use
this result to define the least squares estimates of the regression function of (Z1, Z2). We
show that our regression estimate is strongly consistent whenever the regression function
is Lipschitz-continuous and bounded.

1.1 Discussion of related results

Surveys on latent variables and its applications can be found, e.g., in Bollen (2002) and
Skrondal and Rabe-Hesketh (2007).
One way to determine latent variable models is the use of principal component analysis

(c.f., e. g., Hastie, Tibshirani and Friedman (2009), ch. 14.5). There the manifest vari-
ables are approximated by the best linear approximation of a given rank. The obvious
drawback is that in this case the sum of the latent variable and its random error is ap-
proximated. The classical factor analysis model takes into account these random errors.
If we assume that all random variables are Gaussian, then the model can be fitted by
maximum likelihood (c.f., e. g., Hastie, Tibshirani and Friedman (2009), ch. 14.7). In
the independent component analysis (described e.g. in Montanari and Viroli (2010)) the
latent variables are assumed to be independent, which resolves any identifiability problem
in the above approaches. However, this assumption is often not realistic in the applica-
tions and cannot be used in context of regression estimation. Identifiability conditions
for latent parameters in hidden Markov models and random graph mixture models have
been discussed in Kruskal (1976, 1977) and Allman, Matias and Rhodes (2009). Indepen-
dent factor analysis model which is often used for dimensionality reduction assumes that
random variables are generated by a linear model containing latent independent compo-
nents and perturbed by an additive gaussian noise. The density of observed variables
has been estimated by a kernel estimate by Amato et al. (2010). A linear latent vari-
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able model where observed variables depend linearly on unobservable latent variables has
been analyzed by Anderson (1989). Under normality assumptions the covariance struc-
ture of the model is estimated by maximum likelihood and its asymptotic normality is
established. For ordered categorical data the latent variable model has been investigated
by Breslaw and McIntosh (1998) and by Gebregziabher and DeSantis (2010) for missing
categorical data. It has been applied to finance by Bai and Ng (2006). A generalized lin-
ear latent variable model (GLLVM) has been estimated using Laplace approximation by
Bianconcini and Cagnone (2012). Similar model with semi-nonparametric specification
of distribution of latent variables has been analyzed by Irincheeva, Cantoni and Genton
(2012). Bartolucci (2006) considered latent Markov model and estimated its parameters
using EM algorithm and applied it to detecting patterns of criminal activity, see Bar-
tolucci, Pennoni and Francis (2007). A mixture of latent variables model was applied to
clustering, classification and discriminant analysis, see Browne and McNicholas (2012).
Parsimonious Gaussian mixture models (PGMMs) are recently introduced model-based
clustering techniques generalizing mixtures of factor analyzers model and are based on
a latent Gaussian mixture model. McNicholas (2010) used PGMM and Bayesian infor-
mation criteria to perform model-based classification. A general latent variable model
incorporating spatial correlation and shifted dependencies has been analyzed by Chris-
tensen and Amemiya (2002). Colombo et al. (2012) applied latent variables to learning
of high dimensional acyclic graphs. In longitudinal data analysis one often encounters
non-Gaussian data. Hall et al. (2008) used latent Gaussian process model for predic-
tion by means of functional principal component analysis (PCA). PCA approach has
also been used to estimate latent variable models by Lynn and McCuloch (2000). In a
model, where the number of manifest variables is the same for all latent variables, and
where this number and the number of observations of each of them increase, Bai and Ng
(2002) estimate the number of latent variables using an asymptotic principal component
analysis.
The previous works on regression estimation in the context of latent variables were con-

fined to parametric models, often formulated with so-called structural equations models,
for surveys see, e.g., Marsh, Wen and Hau (2004) or Schumacker and Marcoulides (1998).
In Paul et al. (2008) a high-dimensional linear regression problem is considered, where a
low dimensional latent variable model determines the response variable. Principal com-
ponent analysis is used to estimate the underlying latent variables, and it is assumed
that all variables have Gaussian distribution. A generalization of Gaussian latent vari-
able models to the case that the manifest variables are indirect observations of normal
underlying variables can be done via generalized linear latent variable models, cf., e.g.,
Conne, Ronchetti and Victoria-Feser (2010).
Our results generalize previously known results in so far that we do not need to impose

any parametric structure on the regression function considered and that we do not restrict
the class of error distributions occurring in the model. Our estimation of the common
factor model is related to errors-in-variables models. In fact our estimation principle is
based on generalization of the uniqueness result for such models presented in Li (2002).
Nonparametric regression estimation has been studied in the literature for a long time.

The most popular estimates for random design regression include kernel regression es-
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timate (cf., e.g., Nadaraya (1964, 1970), Watson (1964), Devroye and Wagner (1980),
Stone (1977) or Devroye and Krzyżak (1989)), partitioning regression estimate (cf., e.g.,
Györfi (1981) or Beirlant and Györfi (1998)), nearest neighbor regression estimate (cf.,
e.g., Devroye (1982), Devroye, Györfi, Krzyżak and Lugosi (1994), Mack (1981) or Zhao
(1987)), least squares estimates (cf., e.g., Lugosi and Zeger (1995)) or smoothing spline
estimates (cf., e.g., Kohler and Krzyżak (2001)). The main theoretical results are sum-
marized in the monograph by Györfi et al. (2002). To the best of authors’ knowledge,
the application of nonparametric regression in the context of latent variables is new.

1.2 Notation

Throughout this paper we use the following notation: the sets of integers, rational num-
bers and real numbers are denoted by N, Q and R, respectively. For k ∈ N and subsets
B1, . . . , Bk of Rd we write

k∏
i=1

Bi = {(x1, . . . , xk) : xi ∈ Bi (i = 1, . . . , k)}

for the Cartesian product of the sets. 1B is the indicator of the set B. If X is Rd-valued
random variable then

ϕX(u) = E{ei·uTX}

is its characteristic function. For f : D → R we write

x = arg min
z∈D

f(z)

in case that
x ∈ D and f(x) = min

z∈D
f(z).

1.3 Outline

The estimate of the common factor analysis model is described in Section 2. In Section
3 we use techniques of nonparametric regression to analyze the relationship between the
latent variables. The proofs are given in Section 4.

2 Estimation of a common factor analysis model

In the sequel X and Y are RdX - and RdY -valued observable random variables (manifest
variables). In order to analyze the relation betweenX and Y we assume that they depend
linearly on some hidden and unobservable variables Z1 and Z2, where Z1 and Z2 are dZ1-
and dZ2-dimensional random vectors, resp. Here we assume dZ1 < dX and dZ2 < dY .
More precisely we assume that X and Y satisfy the following common factor analysis
models

X = A · Z1 + ε (1)
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and
Y = B · Z2 + δ, (2)

where A and B are dX × dZ1 and dY × dZ2-dimensional matrices, resp., and ε and δ
are dX - and dY -dimensional random vectors where all components are independent and
have mean zero, furthermore we assume that (Z1, Z2), ε and δ are independent. Given a
sample

Dn = {(X1, Y1), . . . , (Xn, Yn)}

of independent and identically distributed copies of (X,Y ), we want to estimate A, B
and the corresponding values of the latent variables Z1,i and Z2,i corresponding to Xi

and Yi (i = 1, . . . , n). In the next section we will apply nonparametric regression to the
estimated sample

{(ẑ1,1, ẑ2,1), . . . , (ẑ1,n, ẑ2,n)}

of (Z1, Z2) in order to analyze the relation between Z1 and Z2.

X1,1

X1,2
...

X1,l1
...

XdZ1
,1

XdZ1
,2

...
XdZ1

,ldZ1

Y1,1
Y1,2
...

Y1,k1
...

YdZ2
,1

Y dZ2 , 2
...

YdZ2
,kdZ2



=



1 · Z1,1

a1,2 · Z1,1
...

a1,l1 · Z1,1
...

1 · ZdZ1
,1

adZ1
,2 · ZdZ1

,1

...
adZ1

,ldZ1
· ZdZ1

,1

1 · Z1,2

b1,2 · Z1,2
...

b1,k1 · Z1,2
...

1 · ZdZ2
,2

bdZ2
,2 · ZdZ2

,2

...
bdZ2

,kdZ2
· ZdZ2

,2



+



ε1,1
ε2,1
...

εl1,1
...

ε1,dZ1

ε2,dZ1
...

εldZ1
,dZ1

δ1,1
δ2,1
...

δk1,1
...

δ1,dZ2

δ2,dZ2
...

δkdZ2
,dZ2



(3)

In this section we describe how to estimate the common factor analysis model described
by (1) and (2). Here we assume that some a priori information on the structure of the
matrices is given. More precisely, we assume a simple structure in terms of a single cause
of variation (i.e., a single latent variable) for each manifest variables. In other words,
each of the components of the manifest variables is influenced by at most one of the
components of the latent variables, so that each row of A and B contains at most one
nonzero entry. By rescaling the columns of the matrices and the latent variables we can
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assume furthermore that one of the entries in each column is one (which enables us to
show that the model is uniquely defined, cf. Lemma 1 below). If this is true we can
rewrite our model by (3), where we assume that l1, . . . , ldZ1

, k1, . . . , kdZ2
≥ 3.

In order to simplify the notation we assume throughout this paper dZ1 = dZ2 = 1, and
consequently we can rewrite the model (1) and (2) in the form:

X(1)

X(2)

...
X(d)

Y (1)

Y (2)

...
Y (l)


=



1 · Z1

a2 · Z1
...

ad · Z1

1 · Z2

b2 · Z2
...

bl · Z2


+



ε1
ε2
...
εd
δ1
δ2
...
δl


(4)

where we assume that the coefficients are all nonzero, that d, l ≥ 3, and that Z1, Z2, ε1,
. . . εd, δ1, . . . , δl are real random variables with the property that (Z1, Z2), ε1, . . . εd, δ1,
. . . , δl are independent and that satisfy E{εj} = E{δk} = 0.
Our first result shows that under the additional assumption that the characteristic

function of
(X,Y ) = (X(1), . . . , X(d), Y (1), . . . , Y (l))

does not vanish at any point the distribution of (X,Y ) determines uniquely the (joint)
distribution of all other random variables occurring in the above model.

Lemma 1. Assume that in the model (4) the random variables X(1), . . . , X(d), Y (1), . . . , Y (l)

are in L2, that Z1, Z2, ε1, . . . , εd, δ1, . . . , δl are in L1, that (Z1, Z2), ε1, . . . , εd, δ1,
. . . , δl are independent, that

E{ε1} = E{ε2} = . . . = E{εd} = E{δ1} = E{δ2} = . . . = E{δl} = 0,

that E{Z2
k} > 0 (k ∈ {1, 2}) and that a2, . . . , ad, b2, . . . , bl ∈ R and d, l ≥ 3 and a2 6=

0, a3 6= 0, b2 6= 0 and b3 6= 0. Assume furthermore, that the characteristic function of
(X,Y ) does not vanish at any point.
If Z̃1, Z̃2, ε̃1, . . . , ε̃d, δ̃1, . . . , δ̃l are in L1, ã2, . . . , ãd, b̃2, . . . , b̃l are in R and Z̃1,

. . . , b̃l satisfy 

X(1)

X(2)

...
X(d)

Y (1)

Y (2)

...
Y (l)


=



1 · Z̃1

ã2 · Z̃1
...

ãd · Z̃1

1 · Z̃2

b̃2 · Z̃2
...

b̃l · Z̃2


+



ε̃1
ε̃2
...
ε̃d
δ̃1
δ̃2
...
δ̃l


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where the equality above holds in distribution,

E{ε̃1} = E{ε̃2} = . . . = E{ε̃d} = E{δ̃1} = E{δ̃2} = . . . = E{δ̃l} = 0

and (Z̃1, Z̃2), ε̃1, . . . , ε̃d, δ̃1, . . . , δ̃l are independent, then ãj = aj (j = 1, . . . , d), b̃k = bk
(k = 1, . . . , l), P(Z̃1,Z̃2)

= P(Z1,Z2), Pε̃1 = Pε1, . . . , Pε̃d = Pεd and Pδ̃1
= Pδ1 , . . . ,

Pδ̃l
= Pδl .

Hence under the above assumptions a2, . . . , ad, b2, . . . , bl, and the distributions of (Z1, Z2),
ε1, . . . , εd, δ1, . . . , δl are uniquely determined by the distribution of (X,Y ).

Remark 1. In case d = 2 and l = 2 the model (4) is not unique. For instance if Z, ε1
and ε2 are independent normally distributed with mean zero then the distribution of(

X1

X2

)
=

(
Z + ε1
a · Z + ε2

)
does not uniquely determine the distribution of Z, ε1, ε2. For instance take a = 1, Z ∼
N(0, 1), ε1 ∼ N(0, 1), ε2 ∼ N(0, 4) or a = 4, Z ∼ N(0, 1/4), ε1 ∼ N(0, 7/4), ε2 ∼ N(0, 1).
By computing covariance matrices it is easy to see that in both cases the distributions
of (X1, X2) are the same.
Remark 2. A generalization of the proof of Lemma 1 shows that if we assume the model
(3) in case dz1 > 1 or dz2 > 1, then our independence assumption together with the as-
sumption that the characteristic function does not vanish imply that the distribution of
(X,Y ) uniquely determines the joint distribution of all other variables occurring in the
model and all coefficients ai,l and bj,k.

In the sequel we want to estimate the above latent variable model from the independent
and identically distributed observations (X1, Y1), . . . , (Xn, Yn).
The crucial property which allows us to show that the above model is uniquely deter-

mined is independence of the random variables. In the sequel we use this property for
estimation of the model by determining estimates of the values of the latent variables
in such a way that the corresponding empirical distributions satisfy asymptotically this
independence assumption.
We start with definition of the estimate of the above model by estimating the coeffi-

cients aj and bk. Here we use

a2 =
E{X(2) ·X(3)}
E{X(1) ·X(3)}

and aj =
E{X(2) ·X(j)}
E{X(1) ·X(2)}

and

b2 =
E{Y (2) · Y (3)}
E{Y (1) · Y (3)}

and bk =
E{Y (2) · Y (k)}
E{Y (1) · Y (2)}

for j, k > 2 (cf., proof of Lemma 1) and set â1 = b̂1 = 1 and

â2 =
1
n

∑n
i=1X

(2)
i ·X

(3)
i

1
n

∑n
i=1X

(1)
i ·X

(3)
i

and âj =
1
n

∑n
i=1X

(2)
i ·X

(j)
i

1
n

∑n
i=1X

(1)
i ·X

(2)
i
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and

b̂2 =
1
n

∑n
j=1 Y

(2)
j · Y (3)

j

1
n

∑n
j=1 Y

(1)
j · Y (3)

j

and b̂k =
1
n

∑n
j=1 Y

(2)
j · Y (k)

j

1
n

∑n
j=1 Y

(1)
j · Y (2)

j

for j, k > 2.
Next we try to determine estimates (ẑ1,i, ẑ2,i) of (Z1,i, Z2,i) for i = 1, . . . , n. As soon

we have available such estimates, we also have available estimates of the values of εj =
X(j) − aj · Z1 and δk = Y (k) − bk · Z2, namely

ε̂j,i = X
(j)
i − âj · ẑ1,i and δ̂k,i = Y

(k)
i − b̂k · ẑ2,i

(i = 1, . . . , n), so we have available an estimated sample of the joint distribution of

((Z1, Z2), ε1, . . . , εd, δ1, . . . δl).

The basic idea is to consider the empirical distribution µn belonging to this estimated
sample and to determine the estimates of the values of the latent variables in such a
way that this empirical distribution satisfies approximately the independence condition
of Lemma 1 and E{εj} = E{δk} = 0 which ensure uniqueness of the latent variable
model.
More precisely, for values κ1, . . . , κn in Rp let µn,κn1 be the empirical distribution of

κ1, . . . , κn, i.e.,

µn,κn1 (B) =
1

n

n∑
i=1

1B(κi) (B ⊆ Rp).

Let µ̂(ẑ1,ẑ2)
n
1

n be the empirical distribution to

((ẑ1,i, ẑ2,i), ε̂1,i, . . . , ε̂d,i, δ̂1,i, . . . , δ̂l,i)

= ((ẑ1,i, ẑ2,i), X
(1)
i − â1 · ẑ1,i, . . . , X

(d)
i − âd · ẑ1,i, Y

(1)
i − b̂1 · ẑ2,i, . . . , Y (l)

i − b̂l · ẑ2,i)

(i ∈ {1, . . . , n}), i.e.,
µ̂
(ẑ1,ẑ2)n1
n = µn,((ẑ1,ẑ2),ε̂1,...,ε̂d,δ̂1,...,δ̂l)n1

.

The distribution µ of ((Z1, Z2), ε1, . . . , εd, δ1, . . . , δl) satisfies

µ(

1+d+l∏
i=1

Bi) = µ(B1 ×
1+d+l∏
j=2

R) ·
1+d+l∏
i=2

µ(R2 ×
i−1∏
j=2

R×Bi ×
1+d+l∏
j=i+1

R)

for any B1 ∈ B2, B2 ∈ B, . . . , B1+d+l ∈ B because of the independence assumption. It
follows from probability theory that if this relation holds for all intervals of the form
(−∞, x], then µ has independent components. We choose our estimated values such that
this is approximately true for the empirical distribution µ̂(ẑ1,ẑ2)

n
1

n . In order to be able to
compute the estimate, we use here a sigmoidal approximation of the indicator function
of an interval.
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More precisely, we choose a continuous sigmoidal function σ : R→ R, i.e., a continuous
monotone function σ : R→ [0, 1] satisfying

σ(x)→ 0 as x→ −∞ and σ(x)→ 1 as x→∞,

probability weights (pr)r∈N, αr,1, αr,2, βr,j , γr,k ∈ Q such that

Q2+d+l = {(αr,1, αr,2, βr,1, . . . , βr,d, γr,1, . . . , γr,l) : r ∈ N}

and Nn ∈ N satisfying Nn →∞ (n→∞), and define our values of (ẑ1, ẑ2) by minimizing

Tn :=
Nn∑
r=1

∣∣∣∣∣ 1n
n∑
i=1

σ(−n · (ẑ1,i − αr,1)) · σ(−n · (ẑ2,i − αr,2)) ·
d∏
j=1

σ(−n · (ε̂j,i − βr,j))

·
l∏

k=1

σ(−n · (δ̂k,i − γr,k))

− 1

n

n∑
i=1

σ(−n · (ẑ1,i − αr,1)) · σ(−n · (ẑ2,i − αr,2)) ·
d∏
j=1

1

n

n∑
i=1

σ(−n · (ε̂j,i − βr,j))

·
l∏

k=1

1

n

n∑
i=1

σ(−n · (δ̂k,i − γr,k))

∣∣∣∣∣
2

· pr

+

d∑
j=1

(
1

n

n∑
i=1

ε̂j,i

)2

+

l∑
k=1

(
1

n

n∑
i=1

δ̂k,i

)2

subject to the constraints

1

n

n∑
i=1

ẑ21,i ≤ 1 +
1

n

n∑
i=1

(X
(1)
i )2 and

1

n

n∑
i=1

ẑ22,i ≤ 1 +
1

n

n∑
i=1

(Y
(1)
i )2. (5)

Our main result is the following theorem.

Theorem 1. Assume that the assumptions of Lemma 1 are satisfied, and let the estimate
µ̂
(ẑ1,ẑ2)n1
n of the distribution µ of

((Z1, Z2), ε1, . . . , εd, δ1, . . . , δl)

be defined as above. Then with probability one

µ̂
(ẑ1,ẑ2)n1
n → µ weakly,

i.e.,
µ̂
(ẑ1,ẑ2)n1
n (A)→ µ(A) (n→∞)

for all sets A such that the boundary ∂A satisfies µ(∂A) = 0.

9



Remark 3. It is straightforward to extend our estimate to the case of model (3) with
dZ1 > 1 or dZ2 > 1: To do this, one just needs to replace the empirical distribution of

((ẑ1,i, ẑ2,i), ε̂1,i, . . . , ε̂d,i, δ̂1,i, . . . , δ̂l,i)

by the empirical distribution of the vector of all latent variables and all estimated error
terms in model (3) and adjust the definition of Tn.
Remark 4. In our definition of the estimate we minimize Tn subject to constraint (5).
It follows from the proof of Theorem 1 that we can impose even more restrictions in
the above minimization problems, as long as the values of the latent variables satisfy
them with probability one for large n. For instance, in the next section we will assume
E{|Y (1)|4} < ∞. Since Z2 and δ1 are independent, Y (1) = Z2 + δ1 and E{δ1} = 0, this
implies

E
{
|Y (1) −E{Y (1)}|4

}
= E

{
|Z2 −E{Z2}+ δ1|4

}
≥ E

{
|Z2 −E{Z2}|4

}
,

hence

E{Z4
2} ≤ 24 ·E{(Z2 −EZ2)

4}+ 24 · |E{Y (1)}|4

≤ 256 ·E{|Y (1)|4}+ 272 · |E{Y (1)}|4.

Consequently, if we impose in this case the additional constraint

1

n

n∑
i=1

ẑ42,i ≤ 1 + 256 · 1

n

n∑
i=1

(Y
(1)
i )4 + 272 ·

(
1

n

n∑
i=1

Y
(1)
i

)4

(6)

in the above minimization problem, then the assertion of Theorem 1 still holds.

3 Estimation of the regression function corresponding to
latent variables

In this section we estimate the regression function corresponding to the latent variables
Z1 and Z2 in model (4), i.e., we estimate

m : R→ R, m(x) = E{Z2|Z1 = x},

from the data
Dn = {(X1, Y1), . . . , (Xn, Yn)} .

The basic idea is to use the data as in Section 2 to construct the sample

(ẑ1,1, ẑ1,2), . . . , (ẑn,1, ẑn,2)

of (Z1, Z2) and to apply a regression estimate to this data.
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By Theorem 1 we know that in case that we assume that all occurring random variables
are bounded

1

n

n∑
i=1

|ẑi,2−f(ẑi,1)|2−E|Z2−f(Z1)|2 =

∫
|z2−f(z1)|2dµ̂(ẑ1,ẑ2)n −

∫
|z2−f(z1)|2dµ→ 0 a.s.

for all bounded and continuous functions f : R→ R. We will see in the proof of Theorem
2 below that in case that we impose the additional constraint (6) in the definition of
our estimate, then this result also holds for unbounded random variables provided that
E{|Y (1)|4} <∞.
Since

E{|Z2 −m(Z1)|2} = min
f :R→R

E{|Z2 − f(Z1)|2}

(cf., e.g., Section 1.1 in Györfi et al. (2002)) this motivates to estimate the regression
function m by the well-known least squares estimate

mn(·) = arg min
f∈Fn

1

n

n∑
i=1

|ẑi,2 − f(ẑi,1)|2, (7)

where Fn is a suitable defined set of functions consisting of continuous and bounded
functions f : R → R depending on the sample size n. For notational simplicity we
assume here and in the sequel that the minimum above exists. Our main result is the
following theorem.

Theorem 2. Assume that in the model (4) the random variables Z1, Z2, ε1, . . . , εd, δ1,
. . . , δl are in L1, that (Z1, Z2), ε1, . . . , εd, δ1, . . . , δl are independent, that

E{ε1} = E{ε2} = . . . = E{εd} = E{δ1} = E{δ2} = . . . = E{δl} = 0,

that E{Z2
k} > 0 (k ∈ {1, 2}) and that a2, . . . , ad, b2, . . . , bl ∈ R and d, l ≥ 3 and a2 6=

0, a3 6= 0, b2 6= 0 and b3 6= 0. Assume furthermore, that the characteristic function of
(X,Y ) does not vanish at any point, that X(1), . . . , X(d), Y (1), . . . , Y (l) are in L2 and
that E{|Y (1)|4} <∞.
Let Fn be sets of functions f : Rd → R which are bounded by some constant L > 0 and

assume that
∪∞n=1Fn is a equicontinuous set of functions. (8)

Let the least squares estimate mn be defined as above, where we impose the condition (6)
as additional constraint in the minimization problem. Then

inf
f∈Fn

∫
|f(x)−m(x)|2PZ1(dx)→ 0 (n→∞) (9)

implies ∫
|mn(x)−m(x)|2PZ1(dx)→ 0 a.s.
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In the sequel we choose Fn as suitably defined space of polynomial splines and show
that in the case of bounded and Lipschitz continuous regression functions the correspond-
ing least squares estimate (7) is strongly consistent.
Let M ∈ N be arbitrary. For j ∈ Z and K ∈ N let BK

j,M : R → R be the B–spline
with degree M , knot sequence {i/K : i ∈ Z} and support [j/K, (j + M + 1)/K] (cf.,
e.g., de Boor (1978), Schumaker (1981) or Chapter 14 in Györfi et al. (2002)). One
well-known property of B–splines is that they are nonnegative and sum up to one (see
de Boor (1978), pp. 109, 110). Furthermore,{

K−1∑
i=−M

ai ·BK
i,M : ai ∈ R

}

is on [0, 1] equal to the set of all piecewise polynomials of degreeM with respect to a par-
tition of [0, 1] consisting of K equidistant intervals, which are (M−1)–times continuously
differentiable on [0, 1]. For Kn ∈ N, c1 > 0 and c2 > 0 set

Fn =


Kn−1∑
j=−M

aj ·BKn
j,M : |aj − aj−1| ≤

c1
Kn

and |aj | ≤ c2 (j ∈ Z)

 (10)

and define the estimate mn by (7). Then the following result holds:

Corollary 1. Assume that the assumptions of Theorem 1 are valid, and, in addition, that
m(x) = E{Z2|Z1 = x} is Lipschitz continuous and bounded in absolute value. Assume
furthermore that Z1 ∈ [0, 1] a.s. and that we enforce in the definition of the estimate in
Section 2 ẑi,1 ∈ [0, 1] (i = 1, . . . , n). Let the least squares estimate mn be defined as in
Theorem 2 for some Kn > 0 satisfying

Kn →∞ (n→∞).

Then for c1 and c2 sufficiently large we have∫
|mn(x)−m(x)|2PZ1(dx)→ 0 a.s.

Proof. The functions in Fn are Lipschitz continuous with Lipschitz constant c1 (cf.,
e.g., Lemma 14.6 in Györfi et al. (2002)), hence ∪∞n=1Fn is equicontinuous. Furthermore,
they are all bounded in absolute value by L (cf., e.g., Lemma 14.2 and Lemma 14.4 in
Györfi et al. (2002)). Since

inf
f∈Fn

∫
|f(x)−m(x)|2PZ1(dx) ≤ inf

f∈Fn

sup
x∈[0,1]

|f(x)−m(x)|2 → 0 (n→∞)

(which follows because of m Lipschitz continuous and c1 and c2 sufficiently large from
Kn →∞ (n→∞), cf., e.g., Györfi et al. (2002), p. 271) the result follows from Theorem
2. �
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Remark 5. Any application of the above estimate requires a data-dependent choice of
all parameters of the functions space, in particular of the bounds on the coefficients and
the differences of the coefficients. One way of doing this is to use splitting of the sample.
It is an open problem whether in this case the above consistency result still holds, or (in
case that it is not valid) there exist another method for a data-dependent choice of the
parameters leading to consistent estimates.

4 Proofs

4.1 Proof of Lemma 1.

The proof is an extension of the proof of Lemma 2.1 in Li (2002).
Set a1 = b1 = 1 = ã1 = b̃1. For j, k = 1, . . . , d, j 6= k, we have

E{X(j) ·X(k)} = E {(aj · Z1 + εj) · (ak · Z1 + εk)} = aj · ak ·E{Z2
1}

(where the last equality follows from the independence assumption and E{εk} = 0 (k ∈
{1, . . . , d})), and similarly

E{X(j) ·X(k)} = ãj · ãk ·E{Z̃2
1}.

Since a2, a3 and E{Z2
1} are nonzero, ã2, ã3 and E{Z̃2

1} share this property. Hence for
j = 2 we have

a2 =
a2 · a3 ·E{Z2

1}
1 · a3 ·E{Z2

1}
=

E{X(2) ·X(3)}
E{X(1) ·X(3)}

=
ã2 · ã3 ·E{Z̃2

1}
1 · ã3 ·E{Z̃2

1}
= ã2

and for j = 3, . . . , d we get

aj =
a2 · aj ·E{Z2

1}
1 · a2 ·E{Z2

1}
=

E{X(2) ·X(j)}
E{X(1) ·X(2)}

=
ã2 · ãj ·E{Z̃2

1}
1 · ã2 ·E{Z̃2

1}
= ãj

Similarly we get

b2 =
E{Y (2) · Y (3)}
E{Y (1) · Y (3)}

= b̃2, and bk =
E{Y (2) · Y (k)}
E{Y (1) · Y (2)}

= b̃k

for k = 3, . . . , l.
Using (4) and the independence assumption we see that the characteristic function

ϕ(X,Y ) of (X,Y ) is given by

ϕ(X,Y )(u1, . . . , ud, v1, . . . , vl)

= E

exp

i · d∑
j=1

uj ·X(j) + i ·
l∑

k=1

vk · Y (k)


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= E

exp

i · d∑
j=1

uj · (aj · Z1 + εj) + i ·
l∑

k=1

vk · (bk · Z2 + δk)


= E

{
exp

i · ( d∑
j=1

uj · aj · Z1 +
l∑

k=1

vk · bk · Z2)

 · d∏
j=1

exp (i · uj · εj)

·
l∏

k=1

exp (i · vk · δk)

}

= ϕ(Z1,Z2)

 d∑
j=1

uj · aj ,
l∑

k=1

vk · bk

 · d∏
j=1

ϕεj (uj) ·
l∏

k=1

ϕδk(vk).

Since we know that the characteristic function of (X,Y ) does not vanish at any point,
we can conclude that also ϕ(Z1,Z2), ϕεj and ϕδk share this property. Furthermore, using

ϕεj (0) = ϕδk (0) = 1 (j = 2, . . . , d, k = 2, . . . , l)

and
ϕ′ε2 (0) = i ·Eε2 = 0 = ϕ′δ2 (0)

we get

ϕ(X,Y )(u1, 0, . . . , 0, v1, 0, . . . , 0) = ϕ(Z1,Z2)(u1, v1) · ϕε1(u1) · ϕδ1(v1),

∂

∂u2
ϕ(X,Y )(u1, 0, . . . , 0, v1, 0, . . . , 0)

= a2 ·
∂

∂z1
ϕ(Z1,Z2)(u1, v1) · ϕε1(u1) · ϕδ1(v1) + ϕ(Z1,Z2)(u1, v1) · ϕε1(u1) · ϕδ1(v1) · ϕ′ε2 (0)

= a2 ·
∂

∂z1
ϕ(Z1,Z2)(u1, v1) · ϕε1(u1) · ϕδ1(v1)

and

∂

∂v2
ϕ(X,Y )(u1, 0, . . . , 0, v1, 0, . . . , 0) = b2 ·

∂

∂z2
ϕ(Z1,Z2)(u1, v1) · ϕε1(u1) · ϕδ1(v1).

We conclude

ϕ(Z1,Z2)(u, v)

= exp
(
(logϕ(Z1,Z2)(u, v)− logϕ(Z1,Z2)(u, 0))

)
· exp

(
(logϕ(Z1,Z2)(u, 0)− logϕ(Z1,Z2)(0, 0))

)
= exp

(∫ v

0

1

b2
·

∂
∂v2

ϕ(X,Y )(u, 0, . . . , 0, s, 0, . . . , 0)

ϕ(X,Y )(u, 0, . . . , 0, s, 0, . . . , 0)
ds

)

· exp

(∫ u

0

1

a2
·

∂
∂u2

ϕ(X,Y )(t, 0, . . . , 0, 0, 0, . . . , 0)

ϕ(X,Y )(t, 0, . . . , 0, 0, 0, . . . , 0)
dt

)
.
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We have considered the integrals above as parametrization of complex curve integrals of
the function z 7→ 1/z and split them into finitely many integrals such that log z is well
defined for each integral. (Here the number of intervals is finite since the curves in the
integrals above have finite length and a positive distance to the origin.) This results in
additional factor exp(i · s · 2π) = 1 for some s ∈ N. Similarly we get

ϕ(Z̃1,Z̃2)
(u, v)

= exp

(∫ v

0

1

b̃2
·

∂
∂v2

ϕ(X,Y )(u, 0, . . . , 0, s, 0, . . . , 0)

ϕ(X,Y )(u, 0, . . . , 0, s, 0, . . . , 0)
ds

)

· exp

(∫ u

0

1

ã2
·

∂
∂u2

ϕ(X,Y )(t, 0, . . . , 0, 0, 0, . . . , 0)

ϕ(X,Y )(t, 0, . . . , 0, 0, 0, . . . , 0)
dt

)

and from a2 = ã2 and b2 = b̃2 we conclude ϕ(Z1,Z2) = ϕ(Z̃1,Z̃2)
. But from ϕ(Z1,Z2) and

a1, . . . , ad, b1, . . . , bl we can determine ϕεj and ϕδk via

ϕ(X,Y )(0, . . . , 0, uj , 0, . . . 0, 0, . . . , 0) = ϕ(Z1,Z2) (uj · aj , 0) · ϕεj (uj)

and

ϕ(X,Y )(0, . . . , 0, 0, . . . , 0, vk, 0, . . . 0) = ϕ(Z1,Z2) (0, vk · bk) · ϕδk(vk).

Using the same relation for ϕ(Z̃1,Z̃2)
, ϕε̃j and ϕδ̃k we see that

ϕεj = ϕε̃j and ϕδk = ϕδ̃k ,

which implies the assertion. �

4.2 Proof of Theorem 1.

Throughout the proof we will use the abbreviation∫
f((u1, u2), v1, . . . , vd, w1, . . . , wl) dµ̂

(ẑ1,ẑ2)n1
n

=

∫
f((u1, u2), v1, . . . , vd, w1, . . . , wl) µ̂

(ẑ1,ẑ2)n1
n (d((u1, u2), v1, . . . , vd, w1, . . . , wl)),

so, e.g.,∫
σ(−n·(u1−αr,1))·σ(−n·(u2−αr,2))dµ̂

(ẑ1,ẑ2)n1
n =

1

n

n∑
i=1

σ(−n·(ẑ1,i−αr,1))·σ(−n·(ẑi,2−αr,2))

and ∫
vj dµ̂

(ẑ1,ẑ2)n1
n =

1

n

n∑
i=1

ε̂j,i.

The proof is divided into nine steps.
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In the first step of the proof we show that (µ̂
(ẑ1,ẑ2)n1
n )n∈N is tight with probability one,

i.e., with probability one we find for each ε > 0 a compact set K ⊆ R2 × Rd+l such that

µ̂
(ẑ1,ẑ2)n1
n (Kc) ≤ ε for all n ∈ N.

By the strong law of large numbers we know that with probability one

1

n

n∑
i=1

(X
(j)
i )2 → E{(X(j))2} <∞ and

1

n

n∑
i=1

(Y
(k)
i )2 → E{(Y (k))2} <∞, (11)

so by definition of the estimate we may assume w.l.o.g.

1

n

n∑
i=1

(X
(j)
i )2 ≤ c, 1

n

n∑
i=1

(Y
(k)
i )2 ≤ c, 1

n

n∑
i=1

ẑ2i,1 ≤ c and
1

n

n∑
i=1

ẑ2i,2 ≤ c (12)

for all n ∈ N for some c > 0 with probability one. Furthermore because of

âj → aj (n→∞) and b̂k → bk (n→∞) (13)

with probability one we may assume in addition that

|âj | ≤ c and |b̂k| ≤ c

with probability one. By Markov inequality we get

µ̂
(ẑ1,ẑ2)n1
n

(
([−M,M ]2+d+l)c

)
≤ µ̂(ẑ1,ẑ2)

n
1

n {|u1| > M}+ µ̂
(ẑ1,ẑ2)n1
n {|u2| > M}+

d∑
j=1

µ̂
(ẑ1,ẑ2)n1
n {|vj | > M}

+

l∑
k=1

µ̂
(ẑ1,ẑ2)n1
n {|wk| > M}

≤
∫
|u1|2dµ̂

(ẑ1,ẑ2)n1
n

M2
+

∫
|u2|2dµ̂

(ẑ1,ẑ2)n1
n

M2
+

d∑
j=1

∫
|vj |2dµ̂

(ẑ1,ẑ2)n1
n

M2
+

d∑
k=1

∫
|wk|2dµ̂

(ẑ1,ẑ2)n1
n

M2

=
1
n

∑n
i=1 ẑ

2
1,i

M2
+

1
n

∑n
i=1 ẑ

2
2,i

M2
+

d∑
j=1

1
n

∑n
i=1(X

(j)
i − âj · ẑ1,i)2

M2

+

l∑
k=1

1
n

∑n
i=1(Y

(k)
i − b̂k · ẑ2,i)2

M2

≤ c

M2
+

c

M2
+ d · 2c+ 2c3

M2
+ l · 2c+ 2c3

M2
≤ ε

for M sufficiently large.
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In the second step of the proof we show

Tn → 0 a.s. (14)

Let T̃n and µ̂(Z1,Z2)n1
n be defined as Tn and µ̂(ẑ1,ẑ2)

n
1

n , resp., with (ẑi,1, ẑi,2) be replaced by
(Z1,i, Z2,i) (i = 1, . . . , n). Because of

E{(X(1))2} = EZ2
1 + Eε21

we have EZ2
1 ≤ E{(X(1))2} <∞, so by the strong law of large numbers we get

1

n

n∑
i=1

Z2
1,i → EZ2

1 ≤ E{(X(1))2} = lim
n→∞

1

n

n∑
i=1

(X
(1)
i )2 a.s.,

hence with probability one for n large enough

1

n

n∑
i=1

Z2
1,i ≤ 1 +

1

n

n∑
i=1

(X
(1)
i )2.

Similarly we see that with probability one we have for n large enough

1

n

n∑
i=1

Z2
2,i ≤ 1 +

1

n

n∑
i=1

(Y
(1)
i )2.

Then by definition of Tn we have with probability one for n large enough

Tn ≤ T̃n,

so it suffices to show
T̃n → 0 a.s.

Since (pr)r∈N are probability weights and since σ is bounded this in turn follows from(∫
vjdµ̂

(Z1,Z2)n1
n

)2

→ 0 a.s. (j = 1, . . . , d), (15)

(∫
wkdµ̂

(Z1,Z2)n1
n

)2

→ 0 a.s. (k = 1, . . . , l) (16)

and ∣∣∣∣∣
∫
σ(−n · (u1 − αr,1)) · σ(−n · (u2 − αr,2)) ·

d∏
j=1

σ(−n · (vj − βr,j))

·
l∏

k=1

σ(−n · (wk − γr,k))dµ̂
(Z1,Z2)n1
n
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−
∫
σ(−n · (u1 − αr,1)) · σ(−n · (u2 − αr,2))dµ̂

(Z1,Z2)n1
n

·
d∏
j=1

∫
σ(−n · (vj − βr,j))dµ̂

(Z1,Z2)n1
n

·
l∏

k=1

∫
σ(−n · (wk − γr,k))dµ̂

(Z1,Z2)n1
n

∣∣∣∣∣
2

→ 0 a.s. (17)

for any r ∈ N.
Let µ̄(ẑ1,ẑ2)

n
1

n and µ̄
(Z1,Z2)n1
n be the empirical measures which we get if we replace in

the definition of µ̂(ẑ1,ẑ2)
n
1

n and µ̂(Z1,Z2)n1
n the estimated coefficients by the true coefficients,

respectively. The proof of step 1 implies that (µ̄
(ẑ1,ẑ2)n1
n )n∈N and (µ̄

(Z1,Z2)n1
n )n∈N are tight

with probability one, too. Since the estimated coefficients converge by the strong law of
large numbers almost surely to the true coefficients, we conclude that we have for any
bounded, uniformly continuous function f∫

f dµ̂
(ẑ1,ẑ2)n1
n −

∫
f dµ̄

(ẑ1,ẑ2)n1
n → 0 a.s. and

∫
f dµ̂

(Z1,Z2)n1
n −

∫
f dµ̄

(Z1,Z2)n1
n → 0 a.s.

(18)
Here we have used that because of the tightness of the measures w.l.o.g. we can integrate
(18) over some compact set, so that all occurring variables are bounded.
Furthermore, since µ̄(Z1,Z2)n1

n is in fact an empirical distribution to independent and
identically distributed data, we know again by the strong law of large numbers that we
have in addition ∫

f dµ̄
(Z1,Z2)n1
n →

∫
f dµ a.s.,

so altogether we know that we have for all bounded, uniformly continuous functions f∫
f dµ̂

(Z1,Z2)n1
n →

∫
f dµ a.s.

Because of our independence assumption, which implies

E

{
σ(−n · (Z1 − αr,1)) · σ(−n · (Z2 − αr,2)) ·

d∏
j=1

σ(−n · (εj − βr,j))

·
l∏

k=1

σ(−n · δk − γr,k))

}

= E {σ(−n · (Z1 − αr,1)) · σ(−n · (Z2 − αr,2))} ·
d∏
j=1

E {σ(−n · (εj − βr,j))}

·
l∏

k=1

E {σ(−n · δk − γr,k))} ,
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from this we conclude (17). Relation (15) follows from Eεj = 0 and the strong law of
large numbers, which implies∫

vj dµ̂
(Z1,Z2)n1
n =

1

n

n∑
i=1

(X
(j)
i − âj · Z1,i)→ E{X(j) − aj · Z1} = Eεj a.s.

Similarly we conclude (16) from Eδk = 0.
In the third step of the proof we set

Sj(x1, . . . , x2+d+l) = aj · x1 + xj+2

for j ∈ {1, . . . , d} and

Sj(x1, . . . , x2+d+l) = bj−d · x2 + xj+2

for j ∈ {d+ 1, . . . , d+ l} and show that we have with probability one(
µ̂
(ẑ1,ẑ2)n1
n

)
(S1,...,Sd+l)

→ P(X(1),...,X(d),Y (1),...,Y (l)) weakly. (19)

To see this, we set

ε̄j,i = X
(j)
i − aj · ẑ1,i and δ̄k,i = Y

(k)
i − bk · ẑ2,i

and observe that our estimates of the random variables satisfy trivially the equations

X
(j)
i = aj · ẑ1,i +X

(j)
i − aj · ẑ1,i = Sj(ẑ1,i, ẑ2,i, ε̄1,i, . . . , ε̄d,i, δ̄1,i, . . . , δ̄l,i)

and

Y
(k)
i = bk · ẑ2,i + Y

(k)
i − bk · ẑ2,i = Sd+k(ẑ1,i, ẑ2,i, ε̂1,i, . . . , ε̄d,i, δ̄1,i, . . . , δ̄l,i),

from which we conclude (
µ̄
(ẑ1,ẑ2)n1
n

)
(S1,...,Sd+l)

= µn,(X,Y )n1
,

where the distribution on the right-hand side is the empirical distribution to (X1, Y1),
. . . , (Xn, Yn). But this distribution converges weakly to P(X,Y ), and together with (18)
and the continuity of S1, . . . , Sd+l this implies (19).
In the fourth step of the proof we show that with probability one there exists a subse-

quence (nr)r of (n)n and a measure µ satisfying

µ̂
(ẑ1,ẑ2)

nr
1

nr → µ weakly (20)

and
µ(S1,...,Sd+l) = P(X,Y ). (21)
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To see this, observe that by the first step of the proof the measures µ̂(ẑ1,ẑ2)
n
1

n are tight,
and hence according to the theorem of Prohorov (cf., e.g., Theorem 6.1 in Billingsley
(1968)) relatively compact, so (20) holds. Since S1, . . . , Sd+l are continuous, this implies(

µ̂
(ẑ1,ẑ2)

nr
1

nr

)
(S1,...,Sd+l)

→ µ(S1,...,Sd+l) weakly,

from which we get (21) by (19) and the uniqueness of the limit distribution in the case
of weak convergence.
In the fifth step of the proof we show by an approximation of indicator functions of

intervals by suitable neural networks that because of (14) the components of µ corre-
sponding to (Z1, Z2), ε1, . . . , εd, δ1, . . . , δl are independent with probability one. Let F
be the distribution function of µ, i.e.,

F ((x1, x2), e1, . . . , ed, d1, . . . , dl)

= µ{u1 ≤ x1, u2 ≤ x2, v1 ≤ e1, . . . , vd ≤ ed, w1 ≤ d1, . . . , wl ≤ dl},

and set
F(Z1,Z2)(x1, x2) = µ{u1 ≤ x1, u2 ≤ x2},

Fεj (ej) = µ{vj ≤ ej}

and
Fδk(dk) = µ{wk ≤ dk}.

We have to show that

F ((x1, x2), e1, . . . , ed, d1, . . . , dl) = F(Z1,Z2)(x1, x2) ·
d∏
j=1

Fεj (ej) ·
l∏

k=1

Fδk(dk) (22)

for all x1, x2, e1, . . . , ed ,d1, . . . , dl ∈ R.
Since distribution functions are right continuous, it suffices to show (22) for x1, x2,

e1, . . . , ed, d1, . . . , dl in some dense subset of R, which we choose as

D = R \

x ∈ R : µ{u1 = x}+ µ{u2 = x}+
d∑
j=1

µ{vj = x}+
l∑

k=1

µ{wk = x} > 0


(which is dense in R since {. . .} is countable).
Let x1, x2, e1, . . . , ed ,d1, . . . , dl ∈ D. For any x ∈ R and any ε > 0 we can find α ∈ Q

satisfying for sufficiently large n

−n · (z − α) is sufficiently large for z < x− ε

and
−n · (z − α) is sufficiently small for z > x− ε

such that ∣∣1(−∞,x](z)− σ(−n · (z − α))
∣∣ ≤ ε
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for z < x − ε or z > x + ε in case n sufficiently large. Furthermore, for any x1, x2 ∈ R
and any ε > 0 we can find α1, α2 ∈ Q satisfying∣∣1(−∞,x1]×(−∞,x2](z1, z2)− σ(−n · (z1 − α1)) · σ(−n · (z2 − α2))

∣∣ ≤ ε (23)

in case that z1 < x1 − ε or z1 > x1 + ε, and that z2 < x2 − ε or z2 > x2 + ε, for n
sufficiently large. To see this, fix x1, x2 ∈ R and ε > 0. Choose α1, α2 ∈ Q such that∣∣1(−∞,x1](z)− σ(−n · (z − α1))

∣∣ ≤ ε

2

for z < x1 − ε or z > x1 + ε, and such that∣∣1(−∞,x2](z)− σ(−n · (z − α2))
∣∣ ≤ ε

2

for z < x2 − ε or z > x2 + ε. Then it is easy to see that (23) holds if one considers
separately the four cases z1 < x1 − ε and z2 < x2 − ε, z1 > x1 + ε and z2 < x2 − ε,
z1 < x1 − ε and z2 > x2 + ε, and z1 > x1 − ε and z2 > x2 − ε.

Consequently for suitably chosen r we see by expanding the terms below in a telescoping
sum that we have∣∣∣∣∣F ((x1, x2), e1, . . . , ed, d1, . . . , dl)−

∫
σ(−n · (u1 − αr,1)) · σ(−n · (u2 − αr,2)) ·

d∏
j=1

σ(−n · (vj − βr,j))

·
l∏

k=1

σ(−n · (wk − γr,k))dµ

∣∣∣∣∣
≤ (d+ l + 1) · ε+ µ{x1 − ε ≤ z1 ≤ x1 + ε}+ µ{x2 − ε ≤ z2 ≤ x2 + ε}

+
d∑
j=1

µ{ej − ε ≤ vj ≤ ej + ε}+
l∑

k=1

µ{dk − ε ≤ wk ≤ dk + ε}

and ∣∣∣∣∣F(Z1,Z2)(x1, x2) ·
d∏
j=1

Fεj (ej) ·
l∏

k=1

Fδk(dk)−

∫
σ(−n · (u1 − αr,1)) · σ(−n · (u2 − αr,2)) dµ ·

d∏
j=1

∫
σ(−n · (vj − βr,j)) dµ

·
l∏

k=1

∫
σ(−n · (wk − γr,k)) dµ

∣∣∣∣∣
≤ (d+ l + 1) · ε+ µ{x1 − ε ≤ z1 ≤ x1 + ε}+ µ{x2 − ε ≤ z2 ≤ x2 + ε}
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+
d∑
j=1

µ{ej − ε ≤ vj ≤ ej + ε}+
l∑

k=1

µ{dk − ε ≤ wk ≤ dk + ε}.

For x1, x2, e1, . . . , ed ,d1, . . . , dl ∈ D the right-hand side above converges to zero for
ε→ 0, so it suffices to show that we have for any r∫

σ(−n · (u1 − αr,1)) · σ(−n · (u2 − αr,2)) ·
d∏
j=1

σ(−n · (vj − βr,j))

·
l∏

k=1

σ(−n · (wk − γr,k))dµ

=

∫
σ(−n · (u1 − αr,1)) · σ(−n · (u2 − αr,2)) dµ ·

d∏
j=1

∫
σ(−n · (vj − βr,j)) dµ

·
l∏

k=1

∫
σ(−n · (wk − γr,k)) dµ.

But this in turn follows from (20), since∫
σ(−n · (u1 − αr,1)) · σ(−n · (u2 − αr,2)) ·

d∏
j=1

σ(−n · (vj − βr,j))

·
l∏

k=1

σ(−n · (wk − γr,k))dµ

−
∫
σ(−n · (u1 − αr,1)) · σ(−n · (u2 − αr,2)) dµ ·

d∏
j=1

∫
σ(−n · (vj − βr,j)) dµ

·
l∏

k=1

∫
σ(−n · (wk − γr,k)) dµ

= lim
l→∞

(∫
σ(−n · (u1 − αr,1)) · σ(−n · (u2 − αr,2)) ·

d∏
j=1

σ(−n · (vj − βr,j))

·
l∏

k=1

σ(−n · (wk − γr,k))dµ̂
(ẑ1,ẑ2)

nl
1

nl

−
∫
σ(−n · (u1 − αr,1)) · σ(−n · (u2 − αr,2)) dµ̂

(ẑ1,ẑ2)
nl
1

nl

·
d∏
j=1

∫
σ(−n · (vj − βr,j)) dµ̂

(ẑ1,ẑ2)
nl
1

nl ·
l∏

k=1

∫
σ(−n · (wk − γr,k))dµ̂

(ẑ1,ẑ2)
nl
1

nl

)
= 0 a.s.

by (14) and Nn →∞ (n→∞).
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In the sixth step of the proof we show that the components of µ are with probability
one in L1. By Portmanteau theorem (cf. Billingsley (1968)) and µ̂(ẑ1,ẑ2)

nr
1

nr → µ weakly
with probability one we have with probability one∫

|u1| dµ =

∫ ∞
0

µ{|u1| > t} dt

≤
∫ ∞
0

lim inf
r→∞

µ̂
(ẑ1,ẑ2)

nr
1

nr {|u1| > t} dt

≤
∫ ∞
0

lim inf
r→∞

∫
|u1|2dµ̂

(ẑ1,ẑ2)
nr
1

nr

t2
dt <∞,

since by definition of the estimate we have with probability one

lim inf
r→∞

∫
|u1|2dµ̂

(ẑ1,ẑ2)
nr
1

nr = lim inf
r→∞

1

nr

nr∑
i=1

ẑ21,i

≤ lim inf
r→∞

(1 +
1

nr

nr∑
i=1

(X
(1)
i )2) = 1 + E{(X(1)

i )2} <∞.

Furthermore ∫
|vj | dµ ≤

∫ ∞
0

lim inf
r→∞

∫
|vj |2dµ̂

(ẑ1,ẑ2)
nr
1

nr

t2
dt <∞ a.s.,

since we have with probability one

lim inf
r→∞

∫
|vj |2dµ̂

(ẑ1,ẑ2)
nr
1

nr = lim inf
r→∞

1

nr

nr∑
i=1

(
X

(j)
i − âj · ẑ1,i

)2
≤ lim inf

r→∞

(
2 · 1

nr

nr∑
i=1

(
X

(j)
i

)2
+ 2 · â2j ·

1

nr

nr∑
i=1

ẑ21,i

)
= 2 ·E{(X(1)

i )2}+ 2 · a2j · (1 + E{(X(1)
i )2}) <∞.

Similar arguments for the other components yield the desired result.
In the seventh step of the proof we show that we have with probability one∫

vj dµ =

∫
wk dµ = 0 for j ∈ {1, . . . , d} and k ∈ {1, . . . , l}. (24)

To do this, we observe that because of (14) we have with probability one∫
vj dµ̂

(ẑ1,ẑ2)n1
n → 0 (n→∞) and

∫
wk dµ̂

(ẑ1,ẑ2)n1
n → 0 (n→∞)

for j ∈ {1, . . . , d} and k ∈ {1, . . . , l}. Using the arguments of the sixth step of the proof
we see that we have ∫

|xj | · 1{|xj |>L}dµ(xj)→ 0 (L→∞)
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and ∫
|xj | · 1{|xj |>L}dµ̂

(ẑ1,ẑ2)
nr
1

nr (xj)

≤ 1

L
·
∫
|xj |2dµ̂

(ẑ1,ẑ2)
nr
1

nr (xj)→ 0 (L→∞).

Consequently we may replace

(x1, . . . , x2+d+l) 7→ xj

by a bounded and continuous function in the integrals below, hence µ̂(ẑ1,ẑ2)
nr
1

nr → µ weakly
implies ∫

xj dµ(xj) = lim
r→∞

∫
xj dµ̂

(ẑ1,ẑ2)
nr
1

nr (xj) = 0.

In the eighth step of the proof we show that we have with probability one

µ = P((Z1,Z2),ε(1),...,ε(d),δ(1),...,δ(l))
. (25)

This follows directly of the uniqueness of the distribution of

((Z1, Z2), ε
(1), . . . , ε(d), δ(1), . . . , δ(l))

shown in Lemma 1 and the properties of the distribution µ proven in the previous four
steps.
In the ninth and final step of the proof we show the assertion of the theorem.
Let f be an arbitrary bounded and continuous function. We have to show that with

probability one for all such functions∫
f dµ̂n →

∫
f dP((Z1,Z2),ε(1),...,ε(d),δ(1),...,δ(l))

(n→∞).

To show this, it suffices to show that with probability one for any subsequence (nr)r of
(n)n and all such functions there exists a subsubsequence (nrk)k with the property∫

f dµ̂nrk
→
∫
f dP((Z1,Z2),ε(1),...,ε(d),δ(1),...,δ(l))

(k →∞). (26)

Let (nr)r be an arbitrary subsequence of (n)n. According to steps 1 till 8 above applied
to (nr)r instead of (n)n there exists a subsequence (nrk)k of (nr)r with the property

µ̂nrk
→ P((Z1,Z2),ε(1),...,ε(d),δ(1),...,δ(l))

weakly.

Here the weak convergence holds whenever (11), (12) and (13) hold. But this implies
(26), and the proof is complete. �
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4.3 Proof of Theorem 2.

Choose fn ∈ Fn such that∫
|fn(z)−m(z)|2PZ1(dz)→ 0 (n→∞).

Then

0 ≤
∫
|mn(z)−m(z)|2PZ1(dz)

=

∫
|mn(z1)− z2|2dµ−

∫
|m(z1)− z2|2dµ

=

∫
|mn(z1)− z2|2dµ−

∫
|fn(z1)− z2|2dµ+

∫
|fn(z)−m(z)|2PZ1(dz),

hence it suffices to show

lim sup
n→∞

∫
|mn(z1)− z2|2dµ−

∫
|fn(z1)− z2|2dµ ≤ 0 a.s.

Since by definition of mn∫
|mn(z1)− z2|2dµ−

∫
|fn(z1)− z2|2dµ

≤
∫
|mn(z1)− z2|2dµ−

1

n

n∑
i=1

|mn(ẑi,1)− ẑi,2|2

+
1

n

n∑
i=1

|fn(ẑi,1)− ẑi,2|2 −
∫
|fn(z1)− z2|2dµ

this in turn follows from∫
|mn(z1)− z2|2dµ−

1

n

n∑
i=1

|mn(ẑi,1)− ẑi,2|2 → 0 a.s. (27)

and
1

n

n∑
i=1

|fn(ẑi,1)− ẑi,2|2 −
∫
|fn(z1)− z2|2dµ→ 0 a.s. (28)

For β > 0 and z ∈ R set Tβz = max{min{z, β},−β}. We have∫
|z2|2 · 1{|z2|>β}dµ→ 0 (β →∞)

by dominated convergence and

lim sup
n→∞

1

n

n∑
i=1

|ẑi,2|2 · 1{|ẑi,2|>β}

25



≤ lim sup
n→∞

1

β2
· 1

n

n∑
i=1

|ẑi,2|4

≤ 1

β2
· lim sup

n→∞

1 + 256 · 1

n

n∑
i=1

(Y
(1)
i )4 + 272 ·

(
1

n

n∑
i=1

Y
(1)
i

)4


→ 0 (β →∞)

a.s. by (6) and the strong law of large numbers. Hence in order to prove (27) it suffices
to show ∫

|mn(z1)− Tβz2|2dµ−
1

n

n∑
i=1

|mn(ẑi,1)− Tβ ẑi,2|2 → 0 a.s.

for all β > 0.
Let β > 0 be arbitrary. It suffices to show: With probability one any subsequence

(nk)k from (n)n contains a subsubsequence nkr such that∫
|mnkr

(z1)− Tβz2|2dµ−
1

nkr

nkr∑
i=1

|mnkr
(ẑi,1)− Tβ ẑi,2|2 → 0 (r →∞).

In the sequel we condition on the event that

µ̂
(ẑ1,ẑ2)n1
n → µ weakly, (29)

which has probability one because of Theorem 1. Let (nk)k be an arbitrary subsequence
of (n)n. By the Theorem of Arzela-Ascoli (cf., Dunford and Schwartz (1958)) the se-
quence mnk

of equicontinuous functions contains a (random) subsequence mnkr
which

converges in supremum norm to some (random) function m̄. Since the functions mnkr

are continuous and bounded, m̄ has this property, too. By (29) we know∫
|m̄(z1)− Tβz2|2dµ−

1

nkr

nkr∑
i=1

|m̄(ẑi,1)− Tβ ẑi,2|2 → 0 (r →∞).

Using ∣∣∣∣∫ |mnkr
(z1)− Tβz2|2dµ−

∫
|m̄(z1)− Tβz2|2dµ

∣∣∣∣
=

∣∣∣∣∫ (mnkr
(z1)− m̄(z1)) · (mnkr

(z1) + m̄(z1)− 2 · Tβz2)dµ
∣∣∣∣

≤ (2L+ 2β) · ‖mnkr
− m̄‖∞

and ∣∣∣∣∣ 1

nkr

nkr∑
i=1

|mnkr
(ẑi,1)− Tβ ẑi,2|2 −

1

nkr

nkr∑
i=1

|m̄(ẑi,1)− Tβ ẑi,2|2
∣∣∣∣∣

≤ (2L+ 2β) · ‖mnkr
− m̄‖∞

we see that this implies (27). In the same way we can also prove (28), which completes
the proof. �
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