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Abstract

The performance of nine different nonparametric regression estimates is empirically
compared on ten different real data sets. The number of data points in the real data
sets varies between 7900 and 18000, where each real data set contains between 5 and 20
variables. The nonparametric regression estimates include kernel, partitioning, nearest
neighbor, additive spline, neural network, penalized smoothing splines, local linear kernel,
regression trees and random forests estimates. The main result is a table containing the
empirical L2 risks of all nine nonparametric regression estimates on the evaluation part
of the different data sets. The neural networks and random forests are the two estimates
performing best. The data sets are publicly available, so that any new regression estimate
can be easily compared with all nine estimates considered in this paper by just applying
it to the publicly available data and by computing its empirical L2 risks on the evaluation
part of the data sets.

AMS classification: Primary 62G08, secondary 62P99.
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1 Introduction

The evaluation of the finite sample size performance of a new nonparametric regression
estimate is always difficult. Not only does it involve implementation and application to
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simulated or real data of the newly proposed estimate, but it also requires that the same
is done correctly for other standard estimates. Furthermore in case of simulated data
it is never obvious how it should be generated in order to be similar to data occurring
in applications. Using real data for nonparametric regression estimates is usually not
an alternative since most real data sets with a reasonably large sample size (which is
necessary for any application of multivariate nonparametric estimates) are not publicly
available: Datasets of real data can be obtained for example from the Statistical Software
Information - University of Massachusetts Amherst (2004) or DASL (1996). Here most
of the times the ratio of sample size to number of covariates is not sufficiant for nonpara-
metric regression estimates (e.g., 418/20, 203/16, 102/12 etc.). More appropriate data
sets in this respect can be found at the UCI Machine Learning Repository (Frank and
Asuncion (2010)). Unfortunately most of them are for classification purposes.
The purpose of this article is to present ten newly generated and publicly available

data sets with sample size varying between 7900 and 18000. Each data set consists of a
dependent variable which has to be predicted using between 4 and 19 covariates. All data
sets are based on real data collected by the Hessian Statistical Office and the Federal
Statistical Office of Germany which has been anonymized by the Research Data Center
of the Hessian Statistical Office. So all data sets are real data sets occurring in practice
but modified slightly such that they can be published and used without any restrictions.
The data sets are used to empirically compare nine different nonparametric regression

estimates. For this purpose each estimation algorithm is implemented in MATLAB R©.
We consider standard local averaging estimates such as kernel, partitioning and nearest
neighbor estimates, local linear kernel estimates, smoothing splines, least squares esti-
mates using neural networks and additive B-splines, regression trees and random forests.
Each time the smoothing parameter of the regression estimate is determined by cross-
validation involving splitting of the sample. Each of ten data sets is divided into a learning
and testing set containing two thirds of the data points and an evaluation set containing
the remaining data points. The estimates are applied to the learning and testing data
and the empirical L2 risks are computed on the evaluation sets. The performance of the
estimates is judged by the resulting empirical L2 risks on the evaluation sets.

The ten data sets are described in detail in Section 2, the nonparametric regression
estimates are described in Section 3 and the main result consisting of a table of all
occurring empirical L2 risks on the evaluation sets is presented and discussed in Section
4.

2 Ten data sets

Our data sets come from different application areas. The applications are health insur-
ance, agriculture, birth weight, value added tax, building of houses, housing benefit, old
age beneficiaries, car accidents, income and university exams. In the next ten subsections
we describe each data set in detail.
2.1 Health insurance costs (health). This data set consists of 9413 data points of
dimension 5. The dependent variable is the amount of money in Euro that health insur-
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ance spent in a year for the medical treatment of a member. The member is described by
the covariates age (in years), sex (which is coded as 0 and 1), western part of Germany
or not (0/1) and the number of non-stationary treatments in the year.
2.2 Agriculture data (agric.). This data set consists of 9022 data points of dimension
9. The dependent variable is the income of a farm in a year. The farm is described
by the number of cows (in animal units, nonnegative real number), number of pigs (in
animal units, nonnegative real number), number of horses, sheep and fowl (in animal
units, nonnegative real number), agriculture area used for producing winter wheat and
oat (nonnegative real number), agriculture area used for producing barley (nonnegative
real number), agriculture area used for producing other plants (nonnegative real num-
ber), fallow ground area (nonnegative real number) and the area used for agriculture
(nonnegative real number).
2.3 Birth weight data (birth). This data set consists of 14645 data points of dimension
7. The dependent variable is the birth weight of the baby. The baby is described by its
sex (0/1), whether the mother gave simultaneously birth to several children or not (0/1),
whether it is the first child of the mother (0/1), age of the mother (in years), age of the
father (in years), duration of the marriage (in months, 0 if the parents are not married).
2.4 Value added tax data (tax). This data set consists of 8100 data points of
dimension 7. The dependent variable is the value added tax which had to be paid in a
year by a company. The independent variables correspond to how much was produced
in the year before (nonnegative real number), how much value added tax had to be paid
in advance in the year before (nonnegative real number), how much value added tax has
to be paid in advance in the current year (nonnegative real number), how much goods
where produced where the tax rate was 19% (nonnegative real number), volume of sales
where tax has to be paid (nonnegative real number) and tax reduction on value added
tax in the current year (nonnegative real number).
2.5 Building project data (build). This data set consists of 11276 data points of
dimension 10. The dependent variable is the estimated cost of the building project (in
1000 Euro). The independent variables are whether the building project is organized
by the public (0/1), a private person (0/1) or neither (0/1), whether it is a building for
living or not (0/1), number of floors (natural number), effective area after finishing the
building project (nonnegative real number), effective area before starting the building
project (nonnegative real number), living area after finishing the building project (non-
negative real number) and living area before starting the building project (nonnegative
real number).
2.6 Housing benefit data (liv.). This data set consists of 12395 data points of dimen-
sion 7. The dependent variable is the amount of housing benefit for a person per month
in Euro (nonnegative real number). Independent variables indicate whether the person
has an own income (0/1), the living area (nonnegative real number), the rent (nonneg-
ative real number), the number of family members in the household (natural number),
sex (0/1), additional money from the public for being a single parent (nonnegative real
number) and the monthly income of the household (nonnegative real number).
2.7 Old age beneficiaries data (ret.). This data set consists of 18345 data points of
dimension 10. The dependent variable is the monthly pension of a person. The person is
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described by age (natural number), sex (0/1), marriage status (0/1), the level of career:
simple (0/1), average (0/1), advanced (0/1) or very advanced (0/1), whether the pension
has started because the beneficiary has reached the age of 65 (0/1), whether the pension
is a retirement pay (0/1) and percentage of the retirement pay (in percent).
2.8 Car accident data (acc.). This data set consists of 11739 data points of dimension
8, each one corresponding to a car accident. The dependent variable is the amount of
damage estimated by the police (in Euro, nonnegative real number). The car accident is
described by the level of alcohol in the blood (per mile), the age of the driver (natural
number), the sex of the driver (0/1), the number of years the driver has had a driving
license (in years, natural number), the engine power in kilowatts (nonnegative number),
the empty weight of the car (in kg) and number of years the car has been registered (in
years, natural number).
2.9 Income data (inc.). This data set consists of 7947 data points of dimension 14,
each one describing a person. The dependent variable is the monthly net income of the
person. The person is described by age in years (natural number), sex (0/1), marriage
status (married or not) (0/1) and working status (working or not) (0/1), number of years
since the last graduation (natural number) and the level of the highest graduation of the
person coded by 8 {0, 1}-valued covariates.
2.10 University exam data (exam). This data set consists of 9388 data points of
dimension 20, each one describing one exam of a student at a university. The dependent
variable is the mark in the exam (with values 1, 2, . . . , 5). The student is described by
sex (0/1), age in years (natural number), whether he/she has the German citizenship
or not (0/1), whether he/she studies full time (0/1) or part time (0/1) or whether both
are unknown (0/1), for how many months he has studied in a foreign country (natural
number), whether he/she has completed professional education (0/1), whether he/she
has made an internship in connection with his/her current studies (0/1), number of
terms he/she studied the subject related to the exam (natural number) and 9 additional
{0, 1}-valued covariates describing the subject of the study.

3 Nine nonparametric regression estimates

3.1 General procedure

Given an i.i.d. sample (x1, y1), . . . , (xn, yn) from a distribution (X,Y ), where X is a
Rd-valued random variable and Y is a R-valued random variable, our goal is to estimate
the regression function m : Rd → R defined by m(x) = E{Y |X = x}. It is well known
that this function minimizes the so-called L2 risk

E{|m(X)− Y |2} = min
f :Rd→R

E{|f(X)− Y |2}

(cf., e.g., Sections 1.1 in Györfi et al. (2002)). We compare our estimates by estimating
and comparing their L2-risk. We accomplish this by first splitting our sample into three
parts: a learning sample of size nl ≈ n/3, a testing sample of size nt ≈ n/3 and an
evaluation sample of size nv = n − nl − nt ≈ n/3. We then use the learning and the
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testing sample to generate estimates mnl,p∗ of m (for details see below) and estimate the
L2 risk of the estimates by the empirical L2 risk on the evaluation data, i.e., by

1

nev

n∑
i=nl+nt+1

|mnl,p∗(xi)− yi|
2.

Each estimate described below will depend on some parameter p (possibly a vector)
which we choose from some finite set P of parameters via splitting of the sample. To do
this, we use for each parameter the learning data to define estimates mnl,p (as described
below), and choose in a second step that parameter value for which the empirical L2 risk
is minimal on the testing data, i.e., we produce an estimate mnl,p∗ , where

p∗ = argmin
p∈P

1

nt

nl+nt∑
i=nl+1

|mnl,p(xi)− yi|
2.

In order to simplify the computation we preprocess the data. This step will be described
in the next subsection. In the subsequent subsections we describe how the individual
estimates are defined. For all estimates the smoothing parameters are estimated via the
above method of splitting of the sample, in the sequel we only specify the parameter set
P.

3.2 Preprocessing

For some of the parameters of the estimates it is not clear which finite subset of the
whole parameter space should be chosen in order to compute p∗. The main problem
here is that this depends on the range of the independent variables. To overcome this
problem we renormalize all datasets such that every independent variable in the union
of learning and testing samples takes values in the interval [0, 1]. As for all datasets
the covariates are nonnegative this can be simply achieved by dividing each independent
variable by the maximal observation in the union of the learning and the testing sample.
The corresponding independent variables of the evaluation set are divided by the same
values.

3.3 Local averaging estimates (kern., part., nn)

The simplest way to define a regression estimate is to use local averaging where the
estimate is defined by

mn(x) =

n∑
i=1

Wn,i(x) · yi.

Here the weight Wn,i(x) depends only on the x-value of the sample and on x and is
chosen such that it is large if xi is in some sense close to x and small otherwise.
For the kernel estimate (kern.) we choose a kernel function K : Rd → R and a

bandwidth h > 0 and set

Wn,i(x) =
K((x− xi)/h)∑n
j=1K((x− xj)/h)

.
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Hence

mn(x) =
n∑
i=1

K((x− xi)/h) · yi∑n
j=1K((x− xj)/h)

(cf., e.g., Nadaraya (1964), Watson (1964)). We chooseK(u) = exp(−‖u‖2 /2) (Gaussian
kernel) and h from the set P = {1/2l : l = 0, 1, 2, . . . , 10}.

For the partitioning estimate (part.) we choose a partition {An,j : j = 1, . . . ,K}
of Rd and set

Wn,i(x) =
1{Xi∈An(x)}∑n
j=1 1{Xj∈An(x)}

,

where An(x) denotes the cell An,j of the partition containing x. Consequently

mn(x) =
n∑
i=1

1{Xi∈An(x)} · yi∑n
j=1 1{Xj∈An(x)}

(cf., e.g., Györfi (1981)). We choose equidistant partitions, where for each component of
x a compact interval is chosen and subdivided into K equidistant subintervals and the
cross-product of all intervals of all components is used, and one remaining set is added
to the partition which contains all remaining points in Rd. Here for each component
the compact interval is chosen as [q0.01, q0.99], where qα is the empirical α-quantile of the
observations in the learning and testing set. This choice of the compact interval ensures
that we have observations in the remaining set of the partition described above. The
number K is chosen from the set P = {2l : l = 0, 1, 2, . . . , 10}.

For the nearest neighbor estimates (nn) we use for each x a permutation

(x(1)(x), y(1)(x)), . . . , (x(n)(x), y(n)(x))

of the data set (x1, y1), . . . , (xn, yn) such that the distance of xi(x) to x is increasing,
i.e.,

|x− x(1)(x)| ≤ |x− x(2)(x)| ≤ · · · ≤ |x− x(n)(x)|.

(Here |x| denotes the Euclidean norm of x ∈ Rd.) Tie breaking is done by indices, i.e.,
in case of |x− xi| = |x− xj | we choose the data point with the smaller index first. The
nearest neighbor estimate depending on a parameter k ∈ {1, . . . , n} is defined by

mn(x) =
1

k

k∑
i=1

y(i)(x)

(cf., e.g., Stone (1977) or Devroye et al. (1994)). The parameter k is chosen from the set
P = {2l : l = 0, 1, 2, . . . , 11}.

3.4 Least squares estimates (neur., add.)

For the least squares estimate the L2 risk of a function f is estimated by its empirical
L2 risk

1

n

n∑
i=1

|f(xi)− yi|2
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and the latter one is minimized over some space of functions F .
For additive spline estimates (add.) the function space is restricted to consist of

additive functions of the form

f(x(1), . . . , x(d)) = f1(x
(1)) + · · ·+ fd(x

(d)).

For fi we consider univariate B-splines B(M,α) with equidistant knot sequences. Here M
is the degree of the B-spline and α is the distance between two consecutive knots. We
consider knot sequences on the interval [0, 1]. Then F is defined as the linear span of all
functions of the above form and the least squares estimate is defined by

mn = argmin
f∈F

1

n

n∑
i=1

|f(xi)− yi|2

(cf., Stone (1985)). The parameter (M,α) of the estimate is chosen from the set

P = {(M,α) : M ∈ {0, 1, 2, 3}, α ∈ {1/2l : l = 0, 1, 2, . . . , 10}}.

For neural network estimates (neur.) we set

σ(u) =
1

1 + exp(−u)

(logistic squasher) and define the function space F for the least squares estimate depend-
ing on a parameter K ∈ N as the set of all functions of the form

f(x) = c0 +

K∑
k=1

ck · σ

 d∑
j=1

aj,k · x(j) + bk


for aj,k, bk, ck ∈ R (cf., e.g., Chapter 11 in Hastie, Tibshirani and Friedman (2009)).
The corresponding least squares estimate cannot be computed exactly since in general
the corresponding nonlinear minimization cannot be solved. Instead a gradient descent
algorithm (so-called backpropagation) is used to compute the estimate approximately.
For this we use the Neural Network Toolbox in MATLAB R©. Finally we choose the
parameter K of the estimate from the set P = {2l : l = 0, 1, 2, . . . , 7}.

3.5 Penalized smoothing splines (spli.)

For penalized least squares estimates we also consider the empirical L2 risk but we add
a term which penalizes the roughness of the function, i.e.,

mn = argmin
f∈F

(
1

n

n∑
i=1

|f(xi)− yi|2 + λ · J2
k (f)

)
,

where

J2
k (f) =

∑
α1,...,αd∈N, α1+···+αd=k

k!

α1! · · · · · αd!

∫
Rd

∣∣∣∣ ∂kf

∂xα1
1 . . . ∂xαd

d

(x)

∣∣∣∣2 dx
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(cf, e.g., Wahba (1990)). For the penalized smoothing spline we consider for 2k > d the
class of functions called the Sobolev class

F =W k(Rd)

=

{
f :

∂kf

∂xα1
1 . . . ∂xαd

d

∈ L2(Rd) for all α1, . . . , αd ∈ N with α1 + · · ·+ αd = k

}
.

It can be shown that in this casemn can be found by solving a system of linear equations,
for more details see for example Chapter 20.4 of Györfi et al. (2002). For our computation
we fix k = dd/2e and choose λ from the set P = {2l : l = −20,−19, . . . , 19, 20}.

3.6 Local linear kernel regression estimate (loc.)

The kernel estimate fits locally a constant to the data (cf., e.g., Problem 2.2 in Györfi et
al. (2002)). Local linear kernel estimates extend this by fitting locally a linear function
to the data and by using the function value at point x as an estimate of m(x), i.e.,

(c∗0, . . . , c
∗
d) = arg min

(c0,...cd)∈Rd+1

1

n

n∑
i=1

K((x− xi)/h) · (yi − (c0 + c1 · x(1)i + · · ·+ cd · x
(d)
i ))2

and
mn(x) = c∗0 + c∗1 · x(1) + · · ·+ c∗d · x(d)

(cf., e.g., Stone (1982)). Again we choose K(u) = exp(−‖u‖2 /2) and h from the set
P = {1/2l : l = 0, 1, 2, . . . , 10}.

3.7 Regression trees (tree)

In principle the regression trees are the least squares estimates where a piecewise constant
function is fitted to the data. They are especially suited for the high-dimensional data.
The underlying partition is generated recursively, where in each step one component of x
is chosen and one of the sets there is subdivided at some split point into two parts. The
component and the split point are chosen in some greedy way favoring the choice that
leads to the highest decrease of the empirical L2 risk of the estimate (cf., e.g., Breiman
et al. (1984)). Splitting is only performed if a minimum number of observations per leaf
min_leaf can be established. This is done until the restriction implied by min_leaf
terminates the algorithm, leading to the sequence of partitions with increasing cardinality
and corresponding piecewise constant estimates. One of these estimates is chosen as the
final estimate by using a pruning step: The overall performance of a partition π leading
to a piecewise constant estimate mn,π is described by

1

n

n∑
i=1

|mn,π(xi)− yi|2 + c · |π|

where |π| denotes the number of cells in π and c > 0 is a parameter of the estimate.
Different values of c lead to at most n different partitions, so de facto the parameter is a
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number between 1 and n. Moreover we choose min_leaf ∈ {2l : l = 0, 1, 2, . . . , 7}. For
the implementation of the estimate we use the function classregtree from the Statistics
Toolbox in MATLAB R©.

3.8 Random forests (forest)

Random forests, proposed by Breiman (2001), estimate the regression function by com-
puting many different regression trees without pruning on subsamples of the data and
by averaging the corresponding predictions of the individual estimates. To compute the
k-th estimate mn,k a subsample of size n is chosen randomly from the original sample
with replacement (so a data point might occur several times in the subsample) and a
regression tree is computed on that subsample without pruning. Here instead of taking
into account all variables for splitting, at each node only a small number F of input
variables is chosen at random. The random forest estimate is defined as the average
prediction of all trees, i.e.,

mn(x) =
1

K

K∑
k=1

mn,k(x).

The parameters which occur are min_leaf as above, K ∈ {2l : l = 0, 1, 2, . . . , 11} and
F ∈ {1, 2, ..., dd/2e}, where d is the number of covariates and dze denotes the smallest
integer greater than or equal to z. For the implementation of the estimate we use the
function treebagger from the Statistics Toolbox in MATLAB R©.

4 Empirical comparison of the estimates

In order to represent risks in a reasonable range we present in the sequel relative risks
where we consider the fractions of the empirical L2 risks of our estimates and the empirical
L2 risk of a constant estimate given by the arithmetic mean of the dependent variable
computed using only the training data. As a consequence the relative errors are always
greater than or equal to zero and most of the time also less than one. As baseline we use
a simple linear estimate (lin.), which just computes a linear regression using all covariates
on the training data and uses this to predict the values of the dependent variable on the
evaluation data.
In Table 1 we compare the empirical L2 risk of the constant estimate with the empirical

L2 risk of the (nonparametric) regression estimate performing best. From Table 1 we see
that our data sets are rather mixed: for one data set (tax) the data can be predicted very
well, but for four other (health, birth, acc. and exam) currently none of our estimates
can explain more than 25% of the noise.
In Table 2 we present the relative empirical L2 risks of all 9 nonparametric regression

estimates and the simple linear estimate on the evaluation part of all ten data sets. In
each row the best L2 risk is marked in boldface. All L2 risks not larger than the best
value plus 5% of the improvement with respect to the constant estimate are underlined.
For two estimates in high dimensions where the memory was insufficient to compute
predictions, missing results are denoted by −. The last two lines describe how often the
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Estimate health agric. birth tax build
constant 4.0755 · 105 3.3329 · 109 3.2196 · 105 7.9260 · 1010 3.7671 · 105
best est. 3.1810 · 105 1.2603 · 109 2.7168 · 105 3.2082 · 107 1.2188 · 105

percentage 78.05% 37.81% 84.38% 0.040% 32.35%

Estimate liv. ret. acc. inc. exam
constant 8.8377 · 103 1.0562 · 106 3.9879 · 107 2.5412 · 106 0.7179
best est. 1.6986 · 103 2.3304 · 105 3.2534 · 107 1.8696 · 106 0.6236

percentage 19.22% 22.06% 81.58% 73.57% 86.86%

Table 1. Empirical L2 risk on the evaluation data of the constant estimate and the
best estimate for all ten data sets.

Data lin. part. kern. nn neur. tree forest add. loc. spli.
health 79.41 80.32 83.54 81.43 78.08 80.27 78.61 79.43 78.13 78.05
agric. 37.81 41.39 80.04 39.59 38.63 44.1 38.29 38.23 >160 38.47
birth 84.44 84.6 86.41 86.49 84.71 84.42 84.66 84.55 85.66 84.38
tax 0.084 10.63 49.14 7.792 0.100 21.61 23.04 0.403 0.539 0.040
build 86.62 52.15 56.28 39.59 32.35 40.42 35.00 >160 >160 44.89
liv. 41.89 29.57 52.06 28.04 19.78 25.13 19.22 22.39 39.6 28.27
ret. 27.15 22.78 26.82 23.57 22.06 23.28 22.22 24.51 22.82 22.1
acc. 84.25 81.63 105.8 81.58 83.01 85.24 81.97 84.36 94.49 81.7
inc. 76.04 82.17 92.43 75.91 74.47 78.9 73.57 76.39 103.9 -
exam 91.37 92.92 95.48 90.61 91.3 88.97 86.86 91.52 - -
best 1 0 0 1 2 0 3 0 0 3

b.+5% 3 3 0 3 8 2 9 5 3 6
Table 2. Relative empirical L2 risk on the evaluation data (in percent).

relative L2 risk of an estimate is the best value (first line) and how often it is not larger
than the best value plus 5% of the improvement with respect to the constant estimate.
From Table 2 we see that for one of the data sets (agric.) the linear regression is

currently the best one, and for two more (birth and tax) linear regression performs not
much worse than the best one. However, for all other data sets the best nonparametric
regression estimate clearly outperforms the linear regression. Furthermore it can be seen
in Table 2 that two estimates stand out. They are neural networks and random forests.
For almost all datasets both are able to produce results that are at most 5% away from
the best improvement achieved with respect to the constant estimate.
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