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Abstract

LetX, X1, X2, . . . be independent and identically distributed Rd-valued random variables
and let m : Rd → R be a measurable function such that a density f of Y = m(X)
exists. The problem of estimating f based on a sample of the distribution of (X,Y )
and on additional independent observations of X is considered. Two kernel density
estimates are compared: the standard kernel density estimate based on the y-values of
the sample of (X,Y ), and a kernel density estimate based on arti�cially generated y-
values corresponding to the additional observations of X. It is shown that under suitable
smoothness assumptions on f and m the rate of convergence of the L1 error of the latter
estimate is better than that of the standard kernel density estimate. Furthermore, a
density estimate de�ned as convex combination of these two estimates is considered and
a data-driven choice of its parameters (bandwidths and weight of the convex combination)
is proposed and analyzed.

AMS classi�cation: Primary 62G07; secondary 62G20.

Key words and phrases: Density estimation, L1�error, nonparametric regression, rate of
convergence, adaptation.

1 Introduction

LetX, X1, X2, . . . be independent and identically distributed Rd-valued random variables
and let m : Rd → R be a measurable function such that a density f of Y = m(X) exists.
In the sequel we study the problem of estimating f from the data

(X1, Y1), . . . , (Xn, Yn), Xn+1, . . . , Xn+N

∗Running title: Density estimation based on real and arti�cial data
†Corresponding author: Tel. +1 514 848 2424, ext. 3007, Fax. +1 514 848 2830
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for some n,N ∈ N.
This problem is motivated by experiments carried out in the Collaborative Research

Centre 805 which is interested in the measurement of uncertainty in load-bearing systems
like bearing structures of aeroplanes. The simplest example of a load-bearing system in
mechanical engineering is a tripod (Figure 1). In the experiments a static force is applied
on the tripod. On the bottom side of the legs force sensors are mounted to measure
the legs' axial force. If the holes where the legs are plugged in have exactly the same
diameter, a third of the general load should be measured in each leg. Unfortunately, such
an accurate drilling is not possible in the manufacturing process. Since there is always
a small deviation, the force is distributed nonuniformly in the three legs. The random
vector X = (X(1), X(2), X(3)) represents the diameters of the three holes. The function
m : R3 → R describes the physical model of the tripod and Y = m(X) is the resulting
load. Here, the measurement of X is very cheap, so there are many observations of the
diameters available. Based on the physical model of the tripod we are able to compute
the reliability Yi = m(Xi) for the observed diameters Xi, but due to the fact that this is
an expensive and time consuming process we do this only n times and observe additional
N values of the random diameter X.

Figure 1: Tripod

The task then is to improve the estimate of the distribution of the reliability by using
the additional observations of X. The distribution of the reliability is described by its
density, which we assume to exist, and by controlling the L1 error of an estimate of this
density we can bound via the Lemma of Sche�é (cf., e.g., Devroye and Györ� (1985)) the
total variation error of the corresponding estimate of the distribution. So we are facing
the problem of estimating the density of Y = m(X) given a sample of Y and additional
independent observations of X.
The easiest method to do this is to ignore the additional observations of X completely

and to simply estimate f by the well-known kernel density estimate fn (cf., Parzen (1962)
and Rosenblatt (1956)) applied to the sample of Y de�ned by

fn(y) =
1

n · hn
·
n∑
i=1

K

(
y − Yi
hn

)
=

1

n · hn
·
n∑
i=1

K

(
y −m(Xi)

hn

)
.
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Here hn > 0 is the so-called bandwidth and the kernel K : R → R, e. g., naive kernel
K(u) = 1/2 · 1[−1,1](u), is a density. This estimate is L1 consistent for all densities under
the following conditions on the bandwidth

hn → 0, n · hn →∞ (n→∞),

see Devroye (1983). Further results on density estimation can be found in several books.
Devroye and Györ� (1985) present L1 theory, Devroye (1987) gives a course on density
estimation discussing among others the rates of convergence and superkernels, Devroye
and Lugosi (2001) introduce combinatorial tools for density estimation, Eggermont and
LaRiccia (2001) discuss maximum likelihood approach, a general approach to density
estimation is presented in Scott (1992) and Wand and Jones (1995) and L2 theory is
presented in Tsybakov (2008).
In Devroye, Felber and Kohler (2013) it was proposed to consider arti�cially generated

data
Ŷ1 = mn(Xn+1), . . . , ŶN = mn(Xn+N ),

where mn(·) = mn(·, (X1, Y1), . . . , (Xn, Yn)) is a suitable regression estimate of m. For
instance we can use kernel regression estimate (cf., e.g., Nadaraya (1964, 1970), Wat-
son (1964), Devroye and Wagner (1980), Stone (1977, 1982) or Devroye and Krzy»ak
(1989)), partitioning regression estimate (cf., e.g., Györ� (1981) or Beirlant and Györ�
(1998)), nearest neighbor regression estimate (cf., e.g., Devroye (1982) or Devroye, Györ�,
Krzy»ak and Lugosi (1994)), least squares estimates (cf., e.g., Lugosi and Zeger (1995)
or Kohler (2000)) or smoothing spline estimates (cf., e.g., Wahba (1990) or Kohler and
Krzy»ak (2001)). They de�ned a kernel density estimate based on these arti�cial data
by

gN (y) =
1

N · hN
·
N∑
i=1

K

(
y −mn(Xn+i)

hN

)
(with some (possible di�erent) bandwidth hN > 0) and used a convex combination

f̂n(y)

= w · fn(y) + (1− w) · gN (y)

= w · 1

n · hn
·
n∑
i=1

K

(
y −m(Xi)

hn

)
+ (1− w) · 1

N · hN
·
N∑
i=1

K

(
y −mn(Xn+i)

hN

)
.

Devroye, Felber and Kohler (2013) showed that this estimate is under suitable conditions
onm,mn, hn and hN universally L1 consistent, i.e., the L1 error of the estimate converges
to zero (almost surely and in L1) for all densities f . Furthermore it was shown by using
simulated data that the use of the arti�cial data indeed improves the estimate of f .
In this paper we analyze the rate of convergence of the estimate gN and identify

situations where it is better than the rate of convergence of the standard kernel density
estimate fn. Furthermore we propose and analyze a data-driven method for choosing
the parameters of f̂n (i.e., the weight of the convex combination and the two di�erent
bandwidths).
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The outline of the paper is as follows: In Section 2 we present our results concerning the
rate of convergence of gN , in Section 3 we introduce a data-driven method for choosing the
parameters and present a theoretical adaptation result, the �nite sample size performance
is illustrated in Section 4 and Section 5 contains the proofs.

2 The density estimate based on arti�cial data

In this section the estimate

gN (y) =
1

N · hN
·
N∑
i=1

K

(
y −mn(Xn+i)

hN

)
is analyzed, where mn(·) = mn(·; (X1, Y1), . . . , (Xn, Yn)) : Rd → R is a suitable estimate
of m based on the sample of (X,Y ). In the sequel we assume that K is the naive kernel,
i.e., K : R→ R is de�ned by

K(u) =
1

2
· 1[−1,1](u).

In the next theorem we analyze the rate of convergence of the L1 error of gN for Hölder
continuous f .

Theorem 1 Assume that

(i) f has compact support, i.e., there exists a compact set B ⊆ R such that f(x) = 0
for all x /∈ B,

(ii) f is Hölder continuous with exponent r ∈ (0, 1] and Hölder constant C, i.e.,

|f(x)− f(z)| ≤ C · |x− z|r for all x, z ∈ R,

and let the estimate gN of f be de�ned as above. Then there exist constants c1, c2 > 0
such that

E

∫
|gN (y)− f(y)| dy ≤ c1√

N · hN
+ c2 · hrN + 2 · E {min{|mn(X)−m(X)|, 2 · hN}}

hN
.

The right hand-side above can be bounded from above by

c1√
N · hN

+ c2 · hrN + 2 · E {|mn(X)−m(X)|}
hN

.

Minimizing c2 · hrN + E{|mn(X)−m(X)|}
hN

with respect to hN yields

hN ≈ (E {|mn(X)−m(X)|})1/(r+1))

so for N su�ciently large (such that the �rst term on the right-hand side of the above
bound is negligible) and we get

E

∫
|gN (y)− f(y)| dy = O

(
(E {|mn(X)−m(X)|})

r
r+1

)
.
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If we compare this with the optimal minimax rate of convergence

n−r/(2r+1)

(cf., e.g., Devroye and Györ� (1985) and Devroye (1987)) for the L1 error of an estimate
of a (r, C)-Hölder smooth density we see that the rate of convergence of gN is better if

E {|mn(X)−m(X)|} ≤ n−
r+1
2r+1 .

Since (r + 1)/(2r + 1) ≥ 1/2 this requires a convergence rate better than the usual
rate of convergence n−p/(2p+d) which we get for the expected L1 error of nonparametric
regression estimates (cf., e.g., Stone (1982)). However, in our setting we observe Yi
without error, and it is possible to get better rates of convergence in this case.
In the sequel we estimate functions which are (p, C)-smooth in the following sense:

De�nition 1 Let p = k + β for some k ∈ N0 and 0 < β ≤ 1, and let C > 0. A function

m : Rd → R is called (p, C)-smooth, if for every α = (α1, . . . , αd) ∈ Nd0 with
∑d

j=1 αj = k

the partial derivative ∂km
∂x
α1
1 ...∂x

αd
d

exists and satis�es

∣∣∣∣ ∂km

∂xα1
1 . . . ∂xαdd

(x)− ∂km

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖β
for all x, z ∈ Rd, where N0 is the set of non-negative integers.

We estimate m by a piecewise constant nearest neighbor regression estimate de�ned
as follows (see Kohler and Krzy»ak (2013)). For x ∈ Rd let X(1,n)(x), . . . , X(n,n)(x) be
a permutation of X1, . . . , Xn such that

‖x−X(1,n)(x)‖ ≤ · · · ≤ ‖x−X(n,n)(x)‖.

In case of ties, i.e., in case Xi = Xj for some 1 ≤ i < j ≤ n, we use tie breaking by
indices, i.e., we choose the data point with the smaller index �rst. Then we de�ne the
1-nearest neighbor estimate by

mn(x) = mn(x, (X1,m(X1)), . . . , (Xn,m(Xn))) = m(X(1,n)). (1)

For this estimate the following error bound was shown in Kohler and Krzy»ak (2013):

Theorem 2 Assume supp(X) ⊆ [0, 1]d, 0 < p ≤ 1, C > 0 and let m : Rd → R be an

arbitrary (p, C)-smooth function. Let mn be de�ned by (1). Then

E

∫
|mn(x)−m(x)|PX(dx) ≤

{
c1 · n−p/d if p < d,

c2 · logn
n if p = d = 1

(2)

for some constants c1, c2 ∈ R+.
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Proof. See Theorem 1 in Kohler and Krzy»ak (2013) �
Using results of Liitiäinen, Corona and Lendasse, A. (2010) (see Theorem 3.2 therein) one
can show that log n factor can be dropped in the second line of (2) if the ties occur only
with probability zero. Furthermore it was shown in Theorem 3 in Kohler and Krzy»ak
(2013) that the above rates of convergence are optimal in a minimax setting.
From Theorems 1 and 2 we get

Corollary 1 Let d = 1, assume that m is Lipschitz continuous and that the assumptions

of Theorem 1 hold. Set hN = (log(n)/n)1/(r+1) and let the estimates mn and gN be

de�ned as above. Then N ≥ (n/ log(n))(2r+1)/(r+1) implies

E

∫
|gN (y)− f(y)| dy ≤ c3 ·

(
log(n)

n

) r
r+1

for some c3 > 0. Hence under the above assumptions the rate of of convergence of the

expected L1 error of gN converges faster to zero than the minimax rate of convergence

n−r/(2r+1) for estimation of (r, C)-Hölder smooth densities.

Proof. The assertion follows directly from Theorems 1 and 2. �
The rates for the 1-nearest neighbor estimate are always less than 1/n. Following the

ideas presented in Kohler and Krzy»ak (2013) we next show that in case d = 1 we can
de�ne a nearest neighbor polynomial interpolation estimate which achieves under regu-
larity assumption on the design distribution for smooth functions the rates that are even
better than 1/n. This way we can under appropriate smoothness conditions onm achieve
even better rates than in Theorem 2. The corresponding result is an improvement of the
results in Section 4 in Devroye et al. (2012), where a slightly weaker rate of convergence
was proven for a more complicated estimate. The estimate will depend on a parame-
ter k ∈ N. Given x and the data (X1, Y1) . . . , (Xn, Yn), we �rst choose the k nearest
neighbors X(1,n)(x), . . . , X(k,n)(x) of x among X1, . . . , Xn, then we choose a polynomial
p̂x of degree k − 1 interpolating (X(1,n)(x),m(X(1,n)(x))), . . . , (X(k,n)(x),m(X(k,n)(x)))
(such a polynomial always exists and is unique when X(1,n)(x), . . . , X(k,n)(x) are pairwise
disjoint), and de�ne our k-nearest neighbor polynomial interpolating estimate by

mn,k(x) = p̂x(x). (3)

For this estimate the following error bound holds:

Theorem 3 Let p ∈ N and C > 0, d = 1 and assume that m : R → R is (p, C)-smooth
and that the distribution of X satis�es supp(PX) ⊆ [0, 1],

P{X = x} = 0 for all x ∈ [0, 1] (4)

and

PX(Sr(x)) ≥ c4 · r (5)
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for all x ∈ [0, 1] and all r ∈ (0, 1] for some constant c4 > 0, where Sr(x) is the closed

ball with radius r centered at x. Then for the p-nearest neighbor polynomial interpolating
estimate mn,p de�ned by (3) the following bound holds:

E

∫
|mn,p(x)−m(x)|PX(dx) ≤ c5 · n−p

for some c5 ∈ R+, where R+ is the set of positive real numbers.

Proof. See Theorem 2 in Kohler and Krzy»ak (2013) �
From Theorems 1 and 3 we can obtain for our density estimate even better rate than

in Theorem 2 in case when m is (p, C)-smooth for p ∈ N, p ≥ 2:

Corollary 2 Let d = 1 and assume that the assumptions of Theorems 1 and 3 hold.

Set hN = (n)−p/(r+1) and let the estimates mn and gN be de�ned as above. Then N ≥
np·(2r+1)/(r+1) implies

E

∫
|gN (y)− f(y)| dy ≤ c6n

−p·r/(r+1)

for some c6 > 0.

Proofs. The assertion follows directly from Theorems 1 and 3. �

3 Data dependent choice of the parameters

In this section we present a data-driven choice of the parameter

θ = (h1, h2, w) ∈ Θ := {(h1, h2, w) : h1, h2 > 0, w ∈ [0, 1]}

of the convex combination

f̂n,θ(y)

= w · 1

n · h1
·
n∑
i=1

K

(
y −m(Xi)

h1

)
+ (1− w) · 1

N · h2
·
N∑
i=1

K

(
y −mn(Xn+i)

h2

)
.

Here the aim is to minimize the L1 error of the estimate. We achieve this goal by
adapting the so-called combinatorial method for choosing the bandwidth of the kernel
density estimate from Devroye and Lugosi (2001) to our situation.
First we choose ln ∈ {1, . . . , n− 1}, e.g., ln = bn/2c. The empirical measure based on

Y1, . . . Yln is denoted by µ̂ln , i.e.,

µ̂ln(A) =
1

ln

ln∑
i=1

1A(Yi) (A ⊆ R).

Then we compute our density estimate without using these data points via

f̂n−ln,θ(y)
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= w · 1

n · h1
·

n∑
i=ln+1

K

(
y −m(Xi)

h1

)
+ (1− w) · 1

N · h2
·
N∑
i=1

K

(
y −mn−ln(Xn+i)

h2

)
,

where the estimate mn−ln of m is based only on the data points (Xln+1, Yln+1), . . . ,
(Xn, Yn), by minimizing

∆θ = sup
A∈A

∣∣∣∣∫
A
f̂n−ln,θ(y) dy − µ̂ln(A)

∣∣∣∣
and where

A =
{{

y ∈ R : f̂n−ln,θ1(y) > f̂n−ln,θ2(y)
}

: θ1, θ2 ∈ Θ
}
.

More precisely, we set
f̂n = f̂n−ln,θ̂n(y)

where θ̂n ∈ Θ satis�es

∆θ̂n
< inf

θ∈Θ
∆θ +

1

n
.

The following result holds:

Theorem 4 Set ln = bn/2c and let f̂n be de�ned as above. Then

E

∫
|f̂n(y)− f(y)| dy

≤ 3 ·min
θ∈Θ

E

∫
|f̂n−ln,θ(y)− f(y)| dy + 8 ·

√
48 · log(n) + 16 · log(N)

n− 2
+

3

n
.

In case N ≤ nk for some k ∈ N our data-driven method chooses the best estimate up to
an additional error of order (log(n)/n)0.5, so in case of the 1-nearest neighbor estimate of
Theorem 2 we are able to choose the optimal parameter for all Hölder smooth densities.
And in case of the nearest neighbor polynomial interpolation estimate our data-driven
estimate of the parameters yields a density estimate which achieves the best possible rate
for (r, C)-Hölder smooth densities for all r ≤ 1/(2p− 1).
Remark 1. It is an open problem whether it is possible to construct a data-depend
choice of the parameters for which the additional error behaves (especially in the case of
a large N) better than 1/

√
n.

Remark 2. As pointed out by a referee the results in our paper are related to imputation
techniques for missing data, where the missing value of a covariate is replaced by a
prediction based on the other covariates (cf., e.g., Section 9.6 in Hastie, Tibshirani and
Friedman (2001)). However, in contrast to the methods applied in this context our
estimate is applied separately to the predicted missing data and the not missing data
and a convex combination of the resulting two estimates is used.
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4 Application to simulated and real data

In this section we apply our density estimate to simulated and real data using the data-
driven choice of the parameters described in Section 3.

In the next three examples we set the sample size of the observed data n = 200, the
sample size of the arti�cial data N = 800 and ln = n

2 = 100. We use the naive ker-
nel as kernel function K and a fully data-driven smoothing spline estimate to estimate
the function m. For this purpose we use the routine Tps() from the library �elds in
the statistics package R. In our applications below this regression estimate is applied to
data where the y-values are observed without error. In this case it is able to compute
smooth functions interpolating the data without the need to specify the degree p of the
smoothness as in the case of the estimate in Theorem 3.
The parameter θ = (hn, hN , w) is chosen by minimizing ∆θ over a grid of parameters.

The predetermined grid for hn and hN is di�erent for the three examples. For the weight

we assume w ∈
{

0, ln
ln+N , 1

}
. This means, we use only the observed data or only the

additional data or every data point is assigned the same weight. The main trick which
allows us to compute our estimate in an e�cient way is as follows: We approximate
the integral in the de�nition of ∆θ by a Riemann sum and store all values of f̂n−ln,θ at
all points needed for computation of the Riemann sum for every θ at the beginning of
the computation. In this way the run of one repetition requires only between one and
two minutes. Then we compare the proposed estimate with the standard kernel density
estimate of Rosenblatt and Parzen and with three density estimates which use a �xed

weight w ∈
{

0, ln
ln+N , 1

}
and bandwidths chosen by cross-validation.

In our �rst example we set X = (X1, X2) with independent standard normally dis-
tributed random variables X1 and X2 and choose m(x1, x2) = 2 ·x1 +x2 +2. In this case
Y = m(X) is normally distributed with expectation 2 and variance 22 + 12 = 5. Here we
choose hn ∈ {1, 1.25, 1.5, 2} and hN ∈ {0.6, 0.8, 1}. Figure 2 shows both estimates and
the underlying density in a typical simulation. The dashed line is the newly proposed
estimate and the dotted line the one of Rosenblatt and Parzen.
Since the result of our simulation depends on the randomly occuring data points, we re-
peat the whole procedure 100 times with independent realizations of the occuring random
variables and report boxplots of the L1-errors in Figure 3. The mean of the L1-errors of
the proposed estimate (0.0927) is less than the mean L1-error of the Rosenblatt-Parzen
density estimate (0.1105) and the one which uses only the observed data (0.1471). The
L1�error of the estimates which use the arti�cial data are smaller (0.0625 and 0.0607).
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Figure 2: Typical simulation in the �rst model
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Figure 3: Boxplots of the occuring L1-errors in the �rst model

In our second example we set X = (X1, X2) for independent standard normally dis-
tributed random variables X1 and X2 and choose m(x1, x2) = x2

1 + x2
2. Then Y =

m(X) is chi-squared distributed with two degrees of freedom. Here we choose hn ∈
{0.25, 0.5, 0.75, 1} and hN ∈ {0.1, 0.2, 0.3}. Figure 4 shows the estimate fn, the Rosenblatt-
Parzen density estimate and the underlying density in a typical simulation.
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Figure 4: Typical simulation in the second model

In Figure 5 we compare boxplots of the occuring L1-errors of the estimates. The mean
L1-error of our estimate (0.1701) is much lower than the one of Rosenblatt and Parzen
(0.2403) and again much lower than the one which uses only the observed data (0.2969).
Again, the estimate which uses only the arti�cal data (0.1640) and the one where every
data point is assigned the same weight (0.1543) are the best.
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Figure 5: Boxplots of the occuring L1-errors in the second model

11



In Figure 6 and Figure 7 we repeat the same simulation choosing X as a standard
normally distributed random variable and m(x) = exp(x). In this case Y = m(X) is log-
normally distributed. Here we choose hn ∈ {0.2, 0.3, 0.4, 0.5} and hN ∈ {0.1, 0.2, 0.25, 0.3}.
The mean of the L1-errors of the estimate fn is again much lower (0.1531) than the mean
error of the Rosenblatt-Parzen estimate (0.2171) and the estimate where w = 1 (0.2750).
The mean errors of the estimates where w = 0 (0.1307) and w = ln

ln+N (0.1256) are again
the smallest.
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Figure 6: Typical simulation in the third model
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Figure 7: Boxplot of the occuring L1-errors in the third model

In all three cases our proposed estimate using the data-dependent choice of the param-
eters works better that the one of Rosenblatt-Parzen and the one which sets w = 1 and
chooses the bandwidth by cross-validation. However, the L1�errors of the two estimates
which use the additional data but chose the bandwidth by cross-validation are in all three
examples a little bit lower, so in principle we could always use e.g. the estimate using
only the arti�cial data. However, in case that the arti�cial data contains large errors this
is certainly not a good estimate. We show next that our data-driven method of the pa-
rameters is able to identify such situations. For this purpose, we consider the �rst model
where X = (X1, X2) with independent standard normally distributed random variables
X1 and X2 and m(x1, x2) = 2 · x1 + x2 + 2. Again, we choose hn ∈ {1, 1.25, 1.5, 2} and
hN ∈ {0.6, 0.8, 1}. But instead of the smoothing spline estimate we use mn(x1, x2) = x2

1

as an estimate for the linear function m. Figure 8 shows the boxplots of the occuring
L1�errors.

Here, the estimates which use the additional data are the worst. The data-driven method
chooses in every of the 100 simulation the weight w = 1 as illustrated in the following
tabular:

w = 0 w = 1 w = ln
ln+N

example 1 32 45 23
example 2 42 11 47
example 3 31 14 55
example 4 0 100 0

Finally, we illustrate the usefulness of our estimation procedure by applying it to the
density estimation problem of the Collaborative Research Centre 805. Here we consider
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Figure 8: Boxplot of the occuring L1-errors in the forth model

the load distribution in the three legs of a simple tripod and we assume that the diameters
behave like independent standard normally distributed random variable with expectation
15 and standard deviation 0.5. Based on the physical model of the tripod we are able
to calculate the resulting load distribution in dependence of the three values of the
diameter. For simplicity, we consider only one leg of the tripod. Since in this case the
real density is unknown, we repeat the simulation 10.000 times to generate a high sample
of relative loads. Application of the routine density in the statistics package R to these
10.000 observed values leads to the solid line in Figure 9. We calculate our estimates
as described before assuming that n = 200 measurements are available. Again, the
newly proposed estimate is printed by the dashed line, and the dotted line represents
the estimate of Rosenblatt and Parzen. Similarly as before, the run of the curve of our
estimate lies much closer to the solid line than the one of Rosenblatt and Parzen.

5 Proofs of the main results

5.1 Proof of Theorem 1

By the Lemma of Sche�e we have

E

∫
|gn(y)− f(y)| dy

= 2 ·E
∫
B

(f(y)− gN (y))+ dy

≤ 2 ·E
∫
B
|gN (y)−E{gN (y)|Dn}| dy + 2 ·E

∫
B

(f(y)−E{gN (y)|Dn})+ dy,
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Figure 9: Density estimation in a simulation model

where the last inequality follows from

a+ ≤ |b|+ (a− b)+ for a, b ∈ R.

As in the proof of Theorem 1 in Devroye, Felber and Kohler (2013) we can bound the
�rst term using the Cauchy-Schwarz inequality and the inequality of Jensen by arguing

E

{∫
B

∣∣gN (y)−E
{
gN (y)

∣∣Dn}∣∣ dy∣∣Dn}
≤

√∫
B

1 dy ·E

{√∫
B

∣∣gN (y)−E
{
gN (y)

∣∣Dn}∣∣2 dy∣∣∣∣Dn
}

≤

√∫
B

1 dy ·

√
E

{∫
B

∣∣gN (y)−E
{
gN (y)

∣∣Dn}∣∣2 dy∣∣∣∣Dn}.
Next we use the theorem of Fubini and the conditional independence of mn(Xn+1), . . . ,
mn(Xn+N ) and get

E

{∫
B

∣∣gN (y)−E
{
gN (y)

∣∣Dn}∣∣2 dy∣∣Dn}
=

∫
B
E
{∣∣gN (y)−E

{
gN (y)

∣∣Dn}∣∣2 ∣∣Dn} dy
≤
∫
B

1

N2 · h2
N

·
N∑
i=1

E

{
K2

(
y −mn(Xn+i)

hN

) ∣∣∣∣Dn} dy

=
1

N · h2
N

·
∫
B

∫
K2

(
y −mn(z)

hN

)
PX(dz) dy
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=
1

N · h2
N

·
∫ ∫

B
K2

(
y −mn(z)

hN

)
dyPX(dz)

≤ 1

N · hN
·
∫ ∫

R
K2 (y) dyPX(dz)

=
1

N · hN
·
∫
R
K2 (y) dy.

From this we conclude

E

∫
B
|gN (y)−E{gN (y)|Dn}| dy ≤

c1√
N · hN

,

hence it su�ces to show

E

∫
B

(f(y)−E{gN (y)|Dn})+ dy ≤ c8 · hrN +
E {min{|mn(X)−m(X)|}, 2 · hn}

hN
. (6)

By triangle inequality we have

E

∫
B

(f(y)−E{gN (y)|Dn})+ dy

≤
∫
B

∣∣∣∣f(y)−
∫

1

hN
·K

(
y −m(x)

hN

)
PX(dx)

∣∣∣∣ dy
+E

∫
B

∣∣∣∣∫ 1

hN
·K

(
y −m(x)

hN

)
PX(dx)−

∫
1

hN
·K

(
y −mn(x)

hN

)
PX(dx)

∣∣∣∣ dy
:= T1,n + T2,n

Using that f is the density of m(X), that K is the naive kernel and that f is Hölder
continuous we get

T1,n =

∫
B

∣∣∣∣f(y)−
∫

1

hN
·K

(
y − x
hN

)
· f(x) dx

∣∣∣∣ dy
≤

∫
B

∫
1

hN
·K

(
y − x
hN

)
· |f(y)− f(x)| dxdy

≤
∫
B

∫
1

hN
·K

(
y − x
hN

)
· C · hrN dxdy

= C · hrN ·
∫
B

1 dy

≤ c8 · hrN .

Application of the theorem of Fubini yields

T2,n ≤ 1

hN
·E
∫ ∫ ∣∣∣∣K (y −m(x)

hN

)
−K

(
y −mn(x)

hN

)∣∣∣∣ dyPX(dx).

An elementary calculation shows that we have for arbitrary z1, z2 ∈ R∫ ∣∣∣∣K (y − z1

hN

)
−K

(
y − z2

hN

)∣∣∣∣ dy
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=
1

2
·
∫ ∣∣1[z1−hN ,z1+hN ](y)− 1[z2−hN ,z2+hN ](y)

∣∣ dy
≤ min{2 · hN , |z1 − z2|},

which implies

T2,n ≤ 1

hN
·E
∫

min{2 · hN , |mn(x)−m(x)|}PX(dx)

=
1

hN
·Emin{2 · hN , |mn(X)−m(X)|}.

Summarizing the above results we get (6), which in turn implies the assertion. �

5.2 Proof of Theorem 4

Application of Theorem 10.1 in Devroye and Lugosi (2001) yields∫
|f̂n(y)− f(y)| dy ≤ 3 ·min

θ∈Θ

∫
|f̂n−ln,θ(y)− f(y)| dy + 4 ·∆ +

3

n

where

∆ = sup
A∈A

∣∣∣∣∫
A
f(y) dy − µ̂ln(A)

∣∣∣∣ .
By the well-known results from Vapnik-Chervonenkis theory (cf., e.g., Theorem 3.1 in
Devroye and Lugosi (2001)) we get

E∆ ≤ 2 ·

√
log sA(ln)

ln
,

where sA(l) is the l-th shatter coe�cient of A de�ned as the maximal number of subsets
of l points which can be picked out by A, i.e.,

sA(l) = max
y1,...,yl∈R

|{{y1, . . . , yl} ∩A : A ∈ A}| .

In the sequel we will modify the proof of Lemma 11.1 in Devroye and Lugosi (2001) in
order to show

sA(l) ≤
(
1 + (l · (n− ln + 1))2 · (l · (N + 1))2

)4
, (7)

which implies the assertion.
In order to prove (7) we have to count the number of subsets of {y1, . . . , yl} which can

be picked out by sets of the form{
y : w · 1

n · h1
·

n∑
i=ln+1

K

(
y −m(Xi)

h1

)

+(1− w) · 1

N · h2
·
N∑
i=1

K

(
y −mn−ln(Xn+i)

h2

)
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> w̄ · 1

n · h̄1
·

n∑
i=ln+1

K

(
y −m(Xi)

h̄1

)

+(1− w̄) · 1

N · h̄2
·
N∑
i=1

K

(
y −mn−ln(Xn+i)

h̄2

)}

for arbitrary (h1, h2, w), (h̄,, h̄2, w̄) ∈ Θ. This number of sets is upper bounded by the
number of subsets of {y1, . . . , yl} which can be picked out by sets of the form{

y : c9 ·
n∑

i=ln+1

K

(
y −m(Xi)

h1

)
+ c10 ·

N∑
i=1

K

(
y −mn−ln(Xn+i)

h2

)

> c11 ·
n∑

i=ln+1

K

(
y −m(Xi)

h̄1

)
+ c12 ·

N∑
i=1

K

(
y −mn−ln(Xn+i)

h̄2

)}
(8)

for arbitrary c9, c10, c11, c12 ∈ R and h1, h2, h̄1, h̄2 > 0, which we bound in the sequel.
We start by counting the numbers of vectors of the form(

n∑
i=ln+1

K

(
yj −m(Xi)

h1

)
,

N∑
i=1

K

(
yj −mn−ln(Xn+i)

h2

)
,

n∑
i=ln+1

K

(
yj −m(Xi)

h̄1

)
,
N∑
i=1

K

(
yj −mn−ln(Xn+i)

h̄2

))

for arbitrary h1, h2, h̄1, h̄2 > 0, j = 1, . . . , l. Since K is the naive kernel the components
of the above vector take on at most n − ln + 1 and N + 1 di�erent values, respectively.
Consequently the number of di�erent vectors does not exceed (n− ln + 1)2 · (N + 1)2 =
Ln,N . Let

(z1,1, . . . , z1,4), . . . , (zLn,N ,1, . . . , zLn,N ,4)

be all possible vector values of the above vector. If

1
{c9·

∑n
i=ln+1K

(
yj−m(Xi)

h1

)
+c10·

∑N
i=1 K

(
yj−mn−ln (Xn+i)

h2

)
>c11·

∑n
i=ln+1 K

(
yj−m(Xi)

h̄1

)
+c12·

∑N
i=1K

(
yj−mn−ln (Xn+i)

h̄2

)
}

6= 1
{c̄9·

∑n
i=ln+1 K

(
yj−m(Xi)

h1

)
+c̄10·

∑N
i=1 K

(
yj−mn−ln (Xn+i)

h2

)
>c̄11·

∑n
i=ln+1 K

(
yj−m(Xi)

h̄1

)
+c̄12·

∑N
i=1K

(
yj−mn−ln (Xn+i)

h̄2

)
}

for some j = 1 . . . , l then

1{c9·zk,1+c10·zk,2>c11·zk,3+c12·zk,4} 6= 1{c̄9·zk,1+c̄10·zk,2>c̄11·zk,3+c̄12·zk,4}
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for some k = 1 . . . , Ln,N . Consequently the number of subsets of {y1, . . . , yl} which can
be picked out by the sets of the form (8) is bounded by Ln,N -th shatter coe�cient of the
set{
{(z1, z2, z3, z4) ∈ R4 : c9 · z1 + c10 · z2 > c11 · z3 + c12 · z4 : c9, c10, c11, c12 ∈ R

}
.

By Theorem 9.3 and Theorem 9.5 in Györ� et al. (2002) this shatter coe�cient is
bounded by

(1 + Ln,N )4,

which implies the assertion. �
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