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Abstract
Given a sample of a d-dimensional design variable X and observations of the corre-
sponding values of a measurable function m : Rd → R without additional errors we are
interested in estimating m on whole Rd such that the L1 error (with integration with
respect to the design measure) of the estimate is small. Under the assumption that the
support of X is bounded and thatm is (p, C)-smooth (i.e., roughly speaking, m is p-times
continuously differentiable) we derive the minimax lower and upper bounds on the L1

error.
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1. Introduction

Let X, X1, X2, . . . be independent and identically distributed Rd-valued random vari-
ables, let m : Rd → R be a measurable function and set Y = m(X) and Yi = m(Xi)
(i = 1, 2, . . . ). In the sequel we study the problem of estimating m from the data

{(X1, Y1), . . . , (Xn, Yn)} . (1)

Let
mn(·) = mn(·, {(X1, Y1), . . . , (Xn, Yn)}) : Rd → R

be an estimate ofm based on the data (1). Motivated by a problem in density estimation,
wheremn is used to generate additional data for the density estimate and where the error
of the method crucially depends on the L1 error of mn (cf., Devroye, Felber and Kohler
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(2012) and Kohler and Krzyżak (2012)), we measure in this paper the error of mn by the
L1 error computed with respect to measure of X, i.e., by∫

|mn(x)−m(x)|PX(dx).

Our main goal is to determine minimax lower bounds of the form

inf
mn

sup
(X,Y )∈D

E

∫
|mn(x)−m(x)|PX(dx),

where the infimum is taken with respect to all estimates and D is a suitable class of
distributions of (X,Y ), and to find estimates which achieve these minimax bounds up to
some constant. In particular we are interested in deriving results which do not require
any assumptions on the distribution of the design measure besides boundedness.
Surprisingly it turns out that the minimax rates for uniformly distributed X and for

arbitrary bounded X are different. In the first case we show for univariate X and for
sufficiently smooth m that the rate is better than n−1, which is not possible in the latter
case.
Our estimation problem can be considered as a regression estimation problem without

noise in the dependent variable. The regression estimation with noise in the dependent
variable has been extensively studied in the literature. The most popular estimates in-
clude kernel regression estimate (cf., e.g., Nadaraya (1964, 1970), Watson (1964), Devroye
and Wagner (1980), Stone (1977, 1982), Devroye and Krzyżak (1989) or Kohler, Krzyżak
and Walk (2009)), partitioning regression estimate (cf., e.g., Györfi (1981), Beirlant and
Györfi (1998) or Kohler, Krzyżak and Walk (2006)), nearest neighbor regression estimate
(cf., e.g., Devroye (1982) or Devroye, Györfi, Krzyżak and Lugosi (1994)), least squares
estimates (cf., e.g., Lugosi and Zeger (1995) or Kohler (2000)) and smoothing spline es-
timates (cf., e.g., Wahba (1990) or Kohler and Krzyżak (2001)). Stone (1982) was first
to derive minimax rates of convergence in this context. Our results show how minimax
rates of convergence change when there is no noise in the dependent variable.
The main results are presented in Section 2 and proven in Section 3.

2. Main results

In the sequel we estimate functions which are (p, C)-smooth in the following sense:

Definition 1 Let p = k + β for some k ∈ N0 and 0 < β ≤ 1, and let C > 0. A function
m : Rd → R is called (p, C)-smooth, if for every α = (α1, . . . , αd) ∈ Nd0 with

∑d
j=1 αj = k

the partial derivative ∂km
∂x
α1
1 ...∂x

αd
d

exists and satisfies

∣∣∣∣ ∂km

∂xα1
1 . . . ∂xαdd

(x)− ∂km

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖β
for all x, z ∈ Rd, where N0 is the set of non-negative integers.
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One way to estimate such functions is to use a piecewise constant estimate, where the
value at some point is estimated by the y value corresponding to the closest x-value in
the data set (1). More precisely, for x ∈ Rd let X(1,n)(x), . . . , X(n,n)(x) be a permutation
of X1, . . . , Xn such that

‖x−X(1,n)(x)‖ ≤ · · · ≤ ‖x−X(n,n)(x)‖.

In case of ties, i.e., in case Xi = Xj for some 1 ≤ i < j ≤ n, we use tie breaking by
indices, i.e., we choose the data point with the smaller index first. Then we define the
1-nearest neighbor estimate by

mn(x) = mn(x, (X1,m(X1)), . . . , (Xn,m(Xn))) = m(X(1,n)). (2)

For this estimate we can show the following error bound:

Theorem 1 Assume supp(X) ⊆ [0, 1]d, 0 < p ≤ 1, C > 0 and let m : Rd → R be an
arbitrary (p, C)-smooth function. Let mn be defined by (2). Then

E

∫
|mn(x)−m(x)|PX(dx) ≤

{
c1 · n−p/d if p < d,

c2 · logn
n if p = d = 1

for some constants c1, c2 ∈ R+.

The rates for the 1-nearest neighbor estimate are always less than 1/n. We show next that
in case d = 1 we can define a nearest neighbor polynomial interpolation estimate which
achieves under regularity assumption on the design distribution for smooth functions the
rates that are even better than 1/n. The estimate will depend on a parameter k ∈ N.
Given x and the data (1), we first choose the k nearest neighbors X(1,n)(x), . . . , X(k,n)(x)
of x among X1, . . . , Xn, then we choose a polynomial p̂x of degree k − 1 interpolating
(X(1,n)(x),m(X(1,n)(x))), . . . , (X(k,n)(x),m(X(k,n)(x))) (such a polynomial always exists
and is unique when X(1,n)(x), . . . , X(k,n)(x) are pairwise disjoint), and define our k-
nearest neighbor polynomial interpolating estimate by

mn,k(x) = p̂x(x). (3)

For this estimate the following error bound holds:

Theorem 2 Let p ∈ N and C > 0, d = 1 and assume that m : R → R is (p, C)-smooth
and that the distribution of X satisfies supp(PX) ⊆ [0, 1],

P{X = x} = 0 for all x ∈ [0, 1] (4)

and
PX(Sr(x)) ≥ c3 · r (5)

for all x ∈ [0, 1] and all r ∈ (0, 1] for some constant c3 > 0, where Sr(x) is the closed
ball with radius r centered at x. Then for the p-nearest neighbor polynomial interpolating
estimate mn,p defined by (3) the following bound holds:

E

∫
|mn,p(x)−m(x)|PX(dx) ≤ c4 · n−p

for some c4 ∈ R+, where R+ is the set of positive real numbers.
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In the remaining part of the paper we investigate whether the rates of convergence
presented in Theorems 1 and 2 can be improved. To do this, we present lower bounds
on the expected L1 error of any estimate.
Our first lower bound concerns estimation in case of uniformly distributed design

variable. Let D(p,C)
0 be the class of all distributions of (X,Y ) where X is uniformly

distributed on [0, 1]d and Y = m(X) for some (p, C)-smooth function m : Rd → [−1, 1].
Then the following lower bound on the maximal expected L1 error within the class D(p,C)

0

holds.

Theorem 3 Let p = k + β for some k ∈ N0 and 0 < β ≤ 1, and let C > 0. Then there
exists a constant c5 > 0 such that we have for any n ≥ 2

inf
mn

sup
(X,Y )∈D(p,C)

0

E

∫
|mn(x)−m(x)|PX(dx) ≥ c5 · n−p/d.

Theorem 3 shows that the rate of convergence results presented in Theorem 1 in case
p ≤ 1 and d > p and in Theorem 2 in case d = 1 and p ∈ N cannot be improved by more
than a constant factor. Nevertheless, if we compare the results in these theorems we
see that we get rates of convergence better than 1/n only under the strong assumptions
on the distribution of the design presented in Theorem 2. So it appears that for non-
parametric regression without error in the dependent variable the rates of convergence
for uniformly distributed design are different than the rates of convergence for arbitrary
bounded design, which is not the case for nonparametric regression with error in the
dependent variable, cf., e.g., Kohler (2000) or Kohler, Krzyżak and Walk (2006, 2009).
Our next result demonstrates that this is indeed the case.

Theorem 4 Let d ∈ N be arbitrary. For any n ≥ 2 and any estimate mn there exists
m : Rd → [−1, 1] which is infinitely differentiable and vanishes outside of [−1, 1]d and a
distribution of X which is concentrated on (0, . . . , 0) and (1, . . . , 1) such that

E

∫
|mn(x)−m(x)|PX(dx) ≥ 1

2 · n
.

3. Proofs

3.1. Proof of Theorem 1

Since m is (p, C)-smooth and p ≤ 1 we have

|mn(X)−m(X)| = |m(X(1,n)(X))−m(X)| ≤ C · ‖X(1,n)(X)−X‖p,

hence

E

∫
|mn(x)−m(x)|PX(dx) ≤ C ·E

{
‖X(1,n)(X)−X‖p

}
.
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An easy modification of the proof of Lemma 6.4 in Györfi et al. (2002) shows

E
{
‖X(1,n)(X)−X‖p

}
≤

{
c6 · n−p/d if p < d,

c7 · logn
n if p = d = 1,

.

The proof is complete. �

3.2. Proof of Theorem 2

In the proof we will need the following auxiliary result, which bounds the error of poly-
nomial approximation in case of (p, C)-smooth functions.

Lemma 1 Let p ∈ N0, let C > 0 and let m : R→ R be (p, C)-smooth. Let x1, . . . , xp be
p distinct points in R, and let q be the (uniquely determined) polynomial of degree p− 1
which interpolates (x1,m(x1)), . . . , (xp,m(xp)). Then for any x ∈ R we have

|q(x)−m(x)| ≤ C

p!
·
p∏
j=1

|x− xj |.

Proof. The proof is a modification of the standard error formula for polynomial inter-
polation, cf., e.g., chapter 4 in Cheney and Kincaid (2008).
In case x ∈ {x1, . . . , xp} the assertion trivially holds, so we can assume w.l.o.g. x /∈
{x1, . . . , xp}. Set

w(t) =

p∏
j=1

(t− xj) and c =
m(x)− q(x)

w(x)
,

and define ϕ : R→ R by
ϕ(t) = m(t)− q(t)− c · w(t).

Since m(xi) = q(xi) and w(xi) = 0 for i = 1, . . . , p we know

ϕ(xi) = 0 (i = 1, . . . , p),

furthermore ϕ(x) = 0. So ϕ has p+ 1 roots, and repeated application of the Theorem of
Rolle implies that there exists

ξ1, ξ2 ∈ [min{x, x1, . . . , xp},max{x, x1, . . . , xp}] , ξ1 6= ξ2

such that
ϕ(p−1)(ξ1) = 0 = ϕ(p−1)(ξ2).

Since q is a polynomial of degree p its (p− 1)-th derivative is constant, hence

0 = ϕ(p−1)(ξ1)− ϕ(p−1)(ξ2)

= m(p−1)(ξ1)−m(p−1)(ξ2)− c · (w(p−1)(ξ1)− w(p−1)(ξ2))

= m(p−1)(ξ1)−m(p−1)(ξ2)− c · p! · (ξ1 − ξ2),
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and we get

m(x)− q(x) = w(x) · m
(p−1)(ξ1)−m(p−1)(ξ2)

p! · (ξ1 − ξ2)

=

p∏
j=1

(x− xj) ·
m(p−1)(ξ1)−m(p−1)(ξ2)

p! · (ξ1 − ξ2)
.

Using
|m(p−1)(ξ1)−m(p−1)(ξ2)| ≤ C · |ξ1 − ξ2|

this implies the assertion. �
Proof of Theorem 2. Because of (4) ties occur only with probability zero, and appli-
cation of Lemma 1 yields

E

∫
|mn,p(x)−m(x)|PX(dx) ≤ c8 ·E


p∏
j=1

|X −X(j:n)(X)|


≤ c8 ·E

{
|X −X(p,n)(X)|p

}
Subdividing X1, . . .Xn into p sets of size bn/pc and computing the p first nearest neigh-
bors z1, . . . , zp of X in these sets, we see that by the minimizing property in the definition
of the p-th nearest neighbor we have

|X −X(p,n)(X)|p ≤ max
j=1,...,p

|X − zj |p ≤
p∑
j=1

|X − zj |p

which implies

E
{
|X −X(p,n)(X)|p

}
≤ p ·E

{
|X −X(1,bn/pc)(X)|p

}
.

Arguing as in the proof of Lemma 6.4 in Györfi et al. (2002) we get

E
{
|X −X(1,bn/pc)(X)|p

}
≤
∫ ∞

0
exp (−bn/pc ·PX (Sε1/p(x))) dε,

and by (5) the term on the right-hand side above is in turn bounded by∫ ∞
0

exp
(
−bn/pc · c3 · ε1/p

)
dε = bn/pc−p ·

∫ ∞
0

exp
(
−c3 · z1/p

)
dz ≤ c9 · n−p.

The proof is complete. �

3.3. Proof of Theorem 3

The proof is a modification of the proof of Theorem 3.2 in Györfi et al. (2002), which in
turn is based on a lower bound presented in Stone (1982).
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Set Mn = dn1/de and let {An,j}j=1,...,Md
n
be a partition of [0, 1]d into cubes of side

length 1/Mn. Choose a (p, 2β−1C)-smooth function g : Rd → [−1, 1] satisfying

supp(g) ⊆
[
−1

2
,
1

2

]
and

∫
|g(x)| dx > 0.

For j ∈ {1, . . . ,Md
n} let an,j be the center of An,j and set

gn,j(x) = M−pn · g (Mn · (x− an,j)) .

We index the class of functions considered by cn = (cn,1, . . . , cn,Md
n
) ∈ {−1, 1}Md

n and
define m(cn) : Rd → [−1, 1] by

m(cn)(x) =

Md
n∑

j=1

cn,j · gn,j(x).

Let mn be an arbitrary estimate of m. As in the proof of Theorem 3.2 in Györfi et al.
(2002) we can see that m(cn) is (p, C)-smooth, which implies

sup
(X,Y )∈D(p,C)

0

E

∫
|mn(x)−m(x)|PX(dx)

≥ sup
X∼U([0,1]d),Y=m(cn)(X) for some cn∈{−1,1}Md

n

E

∫
[0,1]d

|mn(x)−m(cn)(x)|dx.

In order to bound the right-hand side of the inequality above we randomize cn. Let
X1, . . . , Xn be independent random variables uniformly distributed on [0, 1]d. Choose
independent random variables C1, . . . , CMd

n
independent from X1,...,Xn satisfying

P{Ck = −1} = P{Ck = 1} =
1

2
(k = 1, . . . ,Md

n),

which are also independent from X1, . . . , Xn, and set

Cn = (C1, . . . , CMd
n
)

and
Yi = m(Cn)(Xi) (i = 1, . . . , n).

Then

sup
X∼U([0,1]d),Y=m(cn)(X) for some cn∈{−1,1}Md

n

E

∫
[0,1]d

|mn(x)−m(cn)(x)|dx

≥ E

∫
[0,1]d

|mn(x)−m(Cn)(x)|dx

=

Md
n∑

j=1

E

∫
An,j

|mn(x)− Cn,j · gn,j(x)|dx
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≥
Md
n∑

j=1

E

{∫
An,j

|mn(x)− Cn,j · gn,j(x)|dx · I{X1,...,Xn /∈An,j}

}

=

Md
n∑

j=1

E

{
E

{∫
An,j

|mn(x)− Cn,j · gn,j(x)|dx
∣∣Fn,j} · I{X1,...,Xn /∈An,j}

}
,

where Fn,j is the σ-algebra generated by X1, . . . , Xn, C1, . . . , Cj−1, Cj+1, . . . , CMd
n
.

If X1, . . . , Xn are not contained in An,j , then m(Cn)(X1), . . .m(Cn)(Xn) and hence also
mn(x) are independent of Cj , which implies

E

{∫
An,j

|mn(x)− Cn,j · gn,j(x)|dx
∣∣Fn,j}

=
1

2
·
∫
An,j

|mn(x)− gn,j(x)|dx+
1

2
·
∫
An,j

|mn(x) + gn,j(x)|dx

=
1

2
·
∫
An,j

(|gn,j(x)−mn(x)|+ |gn,j(x) +mn(x)|) dx

≥ 1

2
·
∫
An,j

|(gn,j(x)−mn(x)) + (gn,j(x) +mn(x))| dx

=

∫
An,j

|gn,j(x)| dx,

where the latter inequality follows from the triangle inequality. From this we conclude

Md
n∑

j=1

E

{
E

{∫
An,j

|mn(x)− Cn,j · gn,j(x)|dx
∣∣Fn,j} · I{X1,...,Xn /∈An,j}

}

≥
Md
n∑

j=1

∫
An,j

|gn,j(x)| dx ·P{X1, . . . , Xn /∈ An,j}

=

Md
n∑

j=1

M−p−dn ·
∫
|g(x)| dx ·

(
1−

(
1

Mn

)d)n

=

∫
|g(x)| dx ·

(
dn1/de

)−p
·

(
1−

(
1

dn1/de

)d)n
≥
∫
|g(x)| dx ·

(
n1/d + 1

)−p
·
(

1− 1

n

)n
≥
∫
|g(x)| dx · 1

2p
· n−p/d · 1

2
.

The proof is complete. �
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3.4. Proof of Theorem 4

Define f : Rd → [0, 1] by

f(x) =

{
exp

(
− ‖x‖

1−‖x‖

)
if ‖x‖ < 1,

0 else,

and for c ∈ {−1, 1} set
m(c)(x) = c · f(x).

Clearly, m(c) is bounded in absolute value by one, infinitely many times differentiable
and vanishes outside [−1, 1]d for c ∈ {−1, 1}. Furthermore, let 0̄ = (0, ..., 0), 1̄ = (1, ..., 1)
and choose X such that

P{X = 0̄} =
1

n
and P{X = 1̄} = 1− 1

n

and let X, X1, . . . , Xn be independent and identically distributed. It suffices to show

max
c∈{−1,1}

E

∫
|mn(x, (X1,m

(c)(X1)), . . . , (Xn,m
(c)(Xn)))−m(c)(x)|PX(dx) ≥ 1

2 · n
.

But this follows from

max
c∈{−1,1}

E

∫
|mn(x, (X1,m

(c)(X1)), . . . , (Xn,m
(c)(Xn)))−m(c)(x)|PX(dx)

≥ max
c∈{−1,1}

E

{
|mn(0̄, (X1,m

(c)(X1)), . . . , (Xn,m
(c)(Xn)))−m(c)(0̄)| · 1

n

}
≥ 1

2
·E
{
|mn(0̄, (X1,m

(1)(X1)), . . . , (Xn,m
(1)(Xn)))− 1| · 1

n

}
+

1

2
·E
{
|mn(0̄, (X1,m

(−1)(X1)), . . . , (Xn,m
(−1)(Xn))) + 1| · 1

n

}
=

1

2 · n
·E

{
|1−mn(0̄, (X1,m

(1)(X1)), . . . , (Xn,m
(1)(Xn)))|

+|1 +mn(0̄, (X1,m
(−1)(X1)), . . . , (Xn,m

(−1)(Xn)))|

}

≥ 1

2 · n
·E

{(
|1−mn(0̄, (X1,m

(1)(X1)), . . . , (Xn,m
(1)(Xn)))|

+|1 +mn(0̄, (X1,m
(−1)(X1)), . . . , (Xn,m

(−1)(Xn)))|
)
· I{X1,...,Xn 6=0̄}

}

=
1

2 · n
·E

{(
|1−mn(0̄, (X1, 0), . . . , (Xn, 0))|
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+|1 +mn(0̄, (X1, 0), . . . , (Xn, 0))|
)
· I{X1,...,Xn 6=0̄}

}

≥ 1

2 · n
·E

{∣∣∣(1−mn(0̄, (X1, 0), . . . , (Xn, 0))

+(1 +mn(0̄, (X1, 0), . . . , (Xn, 0))
∣∣∣ · I{X1,...,Xn 6=0̄}

}

=
1

n
·P{X1, . . . , Xn 6= 0̄} =

1

n
·
(

1− 1

n

)n
≥ 1

2 · n
.

�
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Supplementary Material

A. A bound on the moment of the nearest neighbor distance

Lemma 2 Under the assumptions of Theorem 1 we have

E
{
‖X(1,n)(X)−X‖p

}
≤

{
c6 · n−p/d if p < d,

c7 · logn
n if p = d = 1.

Proof.: Since supp(X) ⊆ [0, 1]d implies ‖X(1,n)(X)−X‖ ≤
√
d a.s., we have

E
{
‖X(1,n)(X)−X‖p

}
=

∫ √d
0

P
{
‖X(1,n)(X)−X‖p > ε

}
dε.

Let ε > 0 be arbitrary. Then

P
{
‖X(1,n)(X)−X‖p > ε

}
=

∫
P
{
‖X(1,n)(x)− x‖p > ε

}
PX(dx)

=

∫
P
{
‖X(1,n)(x)− x‖ > ε1/p

}
PX(dx)

=

∫
P {X1, . . . , Xn /∈ Sε1/p(x)} PX(dx)

=

∫
(1−PX (Sε1/p(x)))nPX(dx)

≤
∫

exp (−n ·PX (Sε1/p(x)))PX(dx)

≤ max
x∈R+

x · exp(−x) ·
∫

1

n ·PX (Sε1/p(x))
PX(dx)

≤ c10

n · εd/p
,

where the last inequality follows from Inequality (5.1) in Györfi et al. (2002). Using this
we get

E
{
‖X(1,n)(X)−X‖p

}
≤

∫ √d
0

min
{

1,
c10

n · εd/p
}
dε

≤ n−p/d +
c10

n
·
∫ √d
n−p/d

ε−d/p dε.

Since
1

n

∫ √d
n−p/d

ε−d/p dε ≤

{
c11 · n−p/d if p < d,

c12 · logn
n if p = d = 1,

this implies the assertion. �
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