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Abstract
In this paper we study the problem of estimation of a distribution from data that con-
tain small measurement errors. The only assumption on these errors is that the average
absolute measurement error converges to zero for sample size tending to infinity with
probability one. In particular we do not assume that the measurement errors are inde-
pendent with expectation zero. Throughout the paper we assume that the distribution,
which has to be estimated, has a density with respect to the Lebesgue-Borel measure.
We show that the empirical measure based on the data with measurement error leads to

an uniform consistent estimate of the distribution function. Furthermore, we show that
in general no estimate is consistent in the total variation sense for all distributions under
the above assumptions. However, in case that the average measurement error converges
to zero faster than a properly chosen sequence of bandwidths,the total variation error of
the distribution estimate corresponding to a kernel density estimate converges to zero for
all distributions. In case of a general additive error model we show that this result even
holds if only the average measurement error converges to zero. The results are applied in
the context of estimation of the density of residuals in a random design regression model
where the residual error is not independent from the predictor.

AMS classification: Primary 62G05; secondary 62G20.
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1 Introduction

Let X be a real-valued random variable with distribution µ. One of the main problems
in statistics is to estimate µ from a sample X1, . . . , Xn of X. The well-known theorem

∗Running title: Distribution estimation with small measurement errors
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of Glivenko-Cantelli implies that in case X, X1, X2, . . . are independent and identically
distributed we have

sup
x∈R
|µn((−∞, x])− µ((−∞, x])| → 0 a.s., (1)

where

µn(A) =
1

n

n∑
i=1

1A(Xi)

denotes the empirical distribution of X1, . . . , Xn (cf., e.g., Theorem 12.4 in Devroye,
Györfi and Lugosi (1996)). So with this estimate we get consistent estimates of the
probabilities of all intervals. However, if we are interested in estimation of general sets,
we can consider the total variation error

sup
B∈B
|µ̂n(B)− µ(B)| (2)

and try to construct estimates µ̂n such that this total variation error converges to zero
almost surely. Unfortunately, as was shown in Devroye and Györfi (1990), no estimate
exists with the property

sup
B∈B
|µ̂n(B)− µ(B)| → 0 a.s. (3)

for all distributions. But if we assume that a density f of X exists, i.e., if µ is given

µ(B) =

∫
B
f(x) dx (B ∈ B),

then we can construct estimates which satisfy (3) for all distributions via properly defined
density estimates. More precisely, let fn(·) = fn(·, X1, . . . , Xn) be an estimate of f by a
density fn satisfying ∫

|fn(x)− f(x)| dx→ 0 a.s. (4)

for all densities f . E.g., the kernel density estimate (cf., e.g., Rosenblatt (1956), Parzen
(1962))

fn(x) =
1

n · hn

n∑
i=1

K

(
x−Xi

hn

)
,

which depends on a density K : R → R (so-called kernel) and a bandwidth hn > 0, has
this property if hn satisfies

hn → 0 (n→∞) and n · hn →∞ (n→∞) (5)

(cf., e.g., Mnatsakanov and Khmaladze (1981) and Devroye (1983); general results in
density estimation can be also found in the books of Devroye and Györfi (1985), Devroye
(1987) and Devroye and Lugosi (2000)). In this case Scheffé’s Lemma (cf., e.g., Devroye
and Györfi (1985)) implies that the estimate

µ̂n(B) =

∫
B
fn(x) dx (B ∈ B)
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satisfies (3) for all distributions µ which have a density.
In this paper we assume that instead of the sample X1, . . . , Xn of X we have available

only data X̄1,n, . . . , X̄n,n such that the average absolute error between Xi and X̄i,n

converges to zero almost surely, i.e., we assume that

1

n

n∑
i=1

|Xi − X̄i,n| → 0 a.s. (6)

Here we do not assume anything on the measurement errors X̄i,n −Xi (i = 1, . . . , n). In
general, those errors do not need to be random and in case that they are random they
do not need to be independent or identically distributed and they do not need to have
expectation zero, so estimates for convolution problems (see, e.g., Meister (2009) and the
literature cited therein) are not applicable in the context of this paper. Note also that
our set-up is triangular.
Since we do not assume anything on the nature of the measurement errors besides that

they are asymptotically negligible in the sense that (6) holds, it seems to be a natural
idea to ignore them completely and to try to use the same estimates as in the case that
an independent and identically distributed sample is given. In this paper we investigate
whether the above mentioned distribution estimates are in this situation still consistent.
As main results we show first that the corresponding empirical distribution satsifies (1)
for all distributions µ which have a density with respect to the Lebesgue-Borel measure.
Secondly, we show that the kernel density estimate

fn(x) =
1

n · hn

n∑
i=1

K

(
x− X̄i,n

hn

)
satisfies (4) whenever (5) and

1

n · hn

n∑
i=1

|Xi − X̄i,n| → 0 a.s.

hold. But, if we just assume (6) then our third result implies that there does not exist
any estimate satisfying (4) for all distributions and all data with measurement errors
satisfying (6). Thus, (6) is in general not strong enough a condition to guarantee total
variation convergence. There is a large literature on the recovery of densities from noisy
data if the noise is fixed. If the noise distribution is fixed and known, and if the noise
is independent, then by deconvolution, it is possible to consistently estimate the density.
However, if the noise distribution is fixed and unknown, and if the noise is independent,
then it is clearly impossible to recover the density. The situation for independent but
variable unknown noise is a bit better. Our fourth result shows that (6) is all that is
needed for the above kernel density estimate to satisfy (4).
Finally, we apply our results in the context of estimation of the density of residuals in

a random design regression model where we do not assume that the predictor and the
residual error are independent.
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The outline of the paper is as follows: The main results are formulated in Section 2
and proven in Section 4. In Section 3 we describe the application of our main results to
the problem of estimation of the density of residual errors in a regression model.

2 Main results

The empirical distribution function is possibly the simplest way to estimate a distribution
function. Even if there is no sample X1, . . . , Xn of X available, we obtain a Glivenko-
Cantelli result with adequate assumptions on the available data X̄1,n, . . . , X̄n,n in case
that the distribution of X1 has a density with respect to the Lebesgue-Borel measure.

Theorem 1. Let X1, X2 . . . be independent and identically distributed real valued random
variables with density f (with respect to the Lebesgue-Borel-measure) and let
X̄1,n, . . . , X̄n,n be random variables which satisfy

1

n

n∑
i=1

|Xi − X̄i,n| → 0 a.s. (n→∞). (7)

Then the empirical distribution function

µ̂n(A) =
1

n

n∑
i=1

1A(X̄i,n)

of X̄1,n, . . . , X̄n,n satisfies

sup
x∈R
|µ̂n((−∞, x])− µ((−∞, x])| → 0 a.s. (n→∞).

The total variation error of the above estimate does not converge to zero, since by
definition of µ̂n we have µ̂n({X̄1,n, . . . , X̄n,n}) = 1, and since µ({X̄1,n, . . . , X̄n,n}) = 0
in case that µ has a density with respect to the Lebesgue-Borel measure. However, our
next theorem shows that if we choose a proper sequence (hn)n of bandwidths satisfying

1

n · hn

n∑
i=1

|Xi − X̄i,n| → 0 a.s. (n→∞),

then we can construct a density estimate which is universally consistent in the L1-sense
and hence for which by Scheffé’s Lemma the total variation error of the corresponding
distribution estimate converges to zero regardless of the density f . To do this, we ignore
the measurement errors again completely for estimation and define a standard kernel
density estimate applied to the data with measurement errors via

fn(x) =
1

n · hn

n∑
i=1

K

(
x− X̄i,n

hn

)
.
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Theorem 2. Let K be any density on R+, let hn > 0 and let fn be defined as above.
Assume that

hn → 0 and n · hn →∞ (n→∞). (8)

Then
1

n · hn

n∑
i=1

|Xi − X̄i,n| → 0 in L1 or a.s., resp. (9)

implies ∫
|fn(x)− f(x)| dx→ 0 in L1 or a.s., resp.

As shown in Devroye et al. (2012) (cf., proof of Theorem 2 in Devroye et al. (2012)),
Theorem 1 is no longer valid if we replace (9) by

1

n

n∑
i=1

|Xi − X̄i,n| → 0 a.s. (10)

But if (10) holds we can always find hn = hn(X1, X̄1,n, . . . Xn, X̄n,n) such that (8) and (9)
hold, and consequently the resulting estimator fn is strongly universally L1-consistent.
However, this estimator depends on the non-observable X1, . . . , Xn. Surprisingly, as
our next theorem shows, it is in general not possible to construct an estimate which
is consistent for all densities and all samples satisfying (10), even if our sample with
measurement errors does not change each time completely when the sample size changes,
i.e., if we have given data X̄1, . . . , X̄n instead of X̄1,1, . . . , X̄n,n.

Theorem 3. There does not exist a sequence (fn)n of density estimates satisfying∫
|fn(x, X̄1, . . . , X̄n)− f(x)| dx→P 0 (n→∞)

for all densities f and all random variables X̄1, X̄2, . . . satisfying

1

n

n∑
i=1

|X̄i −Xi| → 0 a.s. (11)

for some independent and identically distributed X1, X2, . . . with density f .

Remark 1. Assume that X̄1,n, . . . , X̄n,n changes with every n ∈ N such that

max
i=1,...,n

|Xi − X̄i,n| → 0 a.s. (12)

Then there does not exist a sequence (fn)n of density estimates satisfying∫
|fn(x, X̄1,n, . . . , X̄n,n)− f(x)| dx→P 0 (n→∞)

for all densities f and all random variables X̄1,n, . . . , X̄n,n, which satisfy the condition
(12). This can be proven as Theorem 3 above, if we set X̄i,n = X

(n)
i in the proof of
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Theorem 3.

In the sequel we show that under a particular noise model where independent noise
is added to the true data such that the average noise is small, we can obtain weak
consistency of our kernel estimate under an even weaker assumption than (11). More
precisely, assume that the given data X̄1,n, . . . , X̄n,n is of the following form

X̄i,n = Xi + Yi,n (i = 1, . . . , n),

where the additive noise Yi,n is independent ofX1, . . . , Xn and where (Xi, Yi,n), 1 ≤ i ≤ n
are independent. Additionally, we presume that Y1,n, . . . , Yn,n have probability measures
on the Borel sets of the real line. We don’t need to make any structural conditions on
these probability measures.
The sequence (Yi,n)i of random variables is called diminishing additive noise when

1

n

n∑
i=1

PYi,n → 0 (n→∞) (13)

weakly. We define the functionKh(x) := (1/h)K(x/h) for x ∈ R. For the kernel estimate

fn(x) =
1

n

n∑
i=1

Khn

(
x− X̄i,n

)
=

1

n

n∑
i=1

Khn (x−Xi − Yi,n)

we obtain the following result.

Theorem 4. Let K be a square integrable function that integrates to one, assume that

hn → 0 and n · hn →∞ (n→∞)

and define fn as above. If the data satisfies the above diminishing noise condition, then

lim
n→∞

E

{∫
|fn(x)− f(x)| dx

}
= 0.

If we drop the adjective “additive”, and assume merely that the pairs (Xi, Yi,n), n ≥
1, i ≤ n are independent [but Yi,n is not independent of Xi] and that the noise is dimin-
ishing, then, as shown previously, the density f cannot be consistently estimated by any
estimator. If we keep the additivity but drop the diminishing noise condition then f can
also not be estimated, although we will not show that in this paper.

3 Estimation of the density of residuals

Let (X,Y ), (X1, Y1), . . . be independent and identically distributed Rd×R-valued random
vectors such that EY 2 <∞. Set m(x) = E{Y |X = x} and assume that a density f of

ε = Y −m(X)
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exists. Here we do not assume that ε and m are independent. Given (X1, Y1), . . . ,
(Xn, Yn) we are interested in an estimation of f .
Estimating the density of the error distribution in nonparametric regression models has

been dealt with by several researchers. Ahmad (1992) showed that under a Lipschitz-
condition of the kernel function, the kernel density estimator converges in probability
at every continuity point to the real density of the residuals. In case of a continuous
error density, the same estimator is pointwise and uniformly consistent (Cheng (2004)),
and, in addition, the histogram error density estimator is uniformly and in L1 consistent
(Cheng (2002)). Efromovich (2005) investigated in a homeoscedastic regression model
estimates which are as good as estimates using an oracle that knows the underlying
regression errors. In the heteroscedastic nonparametric regression model, where the Yi’s
have different variances, Efromovich (2006) generalized his optimal estimation for a twice
differentiable error density with finite support. Estimators of the residual distribution
function include that of Akritas and Van Keilegom (2001), who extended the results
of Durbin (1973) and Loynes (1980) to a weak convergence result for a distribution
function estimator in a nonparametric heteroscedastic regression model. The empirical
distribution function of residuals was used as an estimator in an heteroscedastic model
with multivariate covariates by Neumeyer and Van Keilgom (2010).
The L1 error of estimates of the density of residual errors was considered in the papers

Devroye, Felber and kohler (2013) and Györfi and Walk (2012, 2013). In the first one it
is assumed that the residual error is independent of the predictor, while the latter papers
make the weaker assumption that a conditional density of Y given X = x exists. In our
setting both kind of assumptions are not satisfied.
In the sequel, we estimate f from (X1, Y1), . . . , (Xn, Yn) by the following procedure:

In a first step we compute a regression estimate

mbn/2c(·) = mbn/2c(·, (X1, Y1), . . . , (Xbn/2c, Ybn/2c)).

using the first half of the data. Then compute

ε̂i = Yi −mn(Xi) (i = bn/2c+ 1, . . . , n)

and estimate f by

fn(x) =
1

(n− bn/2c) · hn

n∑
i=bn/2c+1

K

(
x− ε̂i
hn

)
.

From Theorem 2 we can conclude

Corollary 1. Let K be any density on R+, let hn > 0 and let fn be defined as above.
Assume that

hn → 0 and n · hn →∞ (n→∞) (14)

and
1

hn
·E
∫
|mbn/2c(x)−m(x)|PX(dx)→ 0 (n→∞) (15)
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holds. Then ∫
|fn(x)− f(x)| dx→ 0 a.s.

Proof. A standard application of the inequality of McDiarmid (McDiarmid (1989))
yields ∫

|fn(x)− f(x)| dx−E

∫
|fn(x)− f(x)| dx→ 0 a.s.

(cf., e.g., proof of Theorem 1 in Devroye, Felber and Kohler (2013)), hence it suffices to
show

E

∫
|fn(x)− f(x)| dx→ 0 (n→∞).

Set

ε̄i = Yi −mbn/2c(Xi, (Xn−bn/2c+1, Yn−bn/2c+1), . . . , (Xn, Yn)) (i = 1, . . . , n− bn/2c).

Since our data is independent and identically distributed we know

E

∫
|fn(x)− f(x)| dx = E

∫ ∣∣∣∣∣∣ 1

(n− bn/2c) · hn

n−bn/2c∑
i=1

K

(
x− ε̄i
hn

)
− f(x)

∣∣∣∣∣∣ dx.
With (15) and the observation

|ε̄i − εi| =
∣∣mbn/2c(Xi, (Xn−bn/2c+1, Yn−bn/2c+1), . . . , (Xn, Yn))−m(Xi)

∣∣
we can conclude

1

(n− bn/2c) · hn
E


n−bn/2c∑
i=1

|ε̄i − εi|


=

1

hn

1

n− bn/2c

n−bn/2c∑
i=1

E
∣∣mbn/2c(Xi, (Xn−bn/2c+1, Yn−bn/2c+1), . . . , (Xn, Yn))−m(Xi)

∣∣
=

1

hn
E

∫
|mbn/2c(x)−m(x)|PX(dx)→ 0 (n→∞).

Thus, the assertion follows from Theorem 2. �
It is well-known in the literature, that there exists weakly universally consistent non-

parametric regression estimates, i.e., estimates mn with the property

E

∫
|mn(x)−m(x)|2PX(dx)→ 0 (n→∞)

for all distributions of (X,Y ) satisfying EY 2 <∞. This was first shown in Stone (1977)
in case of nearest neighbor regression estimates, and later also proven for many other
nonparametric regression estimates, cf., e.g., Devroye and Wagner (1980) for correspond-
ing results for kernel estimates, Györfi (1981) for corresponding results for partitioning
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estimates, Lugosi and Zeger (1995) for corresponding results for least squares estimates,
and Kohler and Krzyżak (2001) for corresponding results for penalized squares estimates.
If we use such an estimate, the Cauchy-Schwarz inequality implies that for every dis-

tribution of (X,Y ) with EY 2 <∞ we can find a sequence (hn)n of bandwidths satisfying
hn → 0 (n→∞) and

E
∫
|mn(x)−m(x)|PX(dx)

hn
→ 0 (n→∞).

This together with Corollary 1 implies

Corollary 2. Let K be any density on R+, and let fn be defined as above where mn is
one of the above mentioned weakly universally consistent regression estimates. Then for
any distribution of (X,Y ) with EY 2 < ∞ there exists a sequence of bandwidths (hn)n
such that

hn → 0 and n · hn →∞ (n→∞)

holds and the estimate fn corresponding to that sequence of bandwidths satisfies∫
|fn(x)− f(x)| dx→ 0 a.s.

Remark 3. The above estimate depends on the distribution of (X,Y ) and hence is not
applicable in practice. It is an open problem, whether there exists a weakly universally
consistent regression estimate such that we can construct a data-dependent choice of the
bandwidth hn = hn((X1, Y1), . . . , (Xn, Yn)) satisfying (14) and (15) for all distributions
of (X,Y ) with EY 2 <∞.

If we impose regularity conditions on (X,Y ), in particular smoothness assumptions on
X, we can derive rate of convergence results for the expected L2 error of the regression
estimate and choose a fixed sequence of bandwidths satisfying (14) and (15). In this way
we can prove results like

Corollary 3. Let K be any density on R+, and let fn be defined as above where

mn(x) =

∑n
i=1 1[−1,1]

(
x−Xi

h̄n

)
· Yi∑n

j=1 1[−1,1]

(
x−Xj

h̄n

)
and h̄n = n−1/(2+d). Set hn = ln(n) · n−1/(d+2). Then∫

|fn(x)− f(x)| dx→ 0 a.s.

for all distribution of (X,Y ) with the properties that m is Lipschitz continuous, X has
compact support supp(X) and supx∈supp(X) E{Y 2|X = x} <∞.

Proof. Assume that (X,Y ) satisfies the assumption at the end of Corollary 3. By
Theorem 5.2 in Györfi et al. (2002) we have

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c · n−2/(2+d)

for some constant c ∈ R. Corollary 1 implies the assertion. �
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4 Proofs

4.1 Proof of Theorem 1

Let µn be the empirical distribution function of X1, . . . , Xn, i.e., set

µn(A) =
1

n

n∑
i=1

1A(Xi) (A ∈ B).

We split the expression
µ̂n ((−∞, x])− µ ((−∞, x])

in two different ways for ε > 0:

µ̂n ((−∞, x])− µ ((−∞, x]) = µ̂n((−∞, x])− µn((−∞, x+ ε])

+ µn((−∞, x+ ε])− µ((−∞, x+ ε])

+ µ((−∞, x+ ε])− µ((−∞, x])

= A1,n +A2,n +A3,n

and

µ̂n((−∞, x])− µ((−∞, x]) = µ̂n((−∞, x])− µn((−∞, x− ε])
+ µn((−∞, x− ε])− µ((−∞, x− ε])
+ µ((−∞, x− ε])− µ((−∞, x])

= B1,n +B2,n +B3,n.

First we consider

A1,n =
1

n

n∑
i=1

(
1(−∞,x](X̄i,n)− 1(−∞,x+ε](Xi)

)
.

The i-th summand becomes one, if

X̄i,n ≤ x and Xi > x+ ε.

In this case we have |X̄i,n −Xi| > ε. If the i-th summand is not equal to one, it is less
than or equal to zero. Hence

A1,n =
1

n

n∑
i=1

(
1(−∞,x](X̄i,n)− 1(−∞,x+ε](Xi)

)
≤ 1

n

n∑
i=1

1{|Xi−X̄i,n|>ε} ≤
1

ε

1

n

n∑
i=1

|Xi − X̄i,n|.

Analogously, we can conclude

B1,n =
1

n

n∑
i=1

(
1(−∞,x](X̄i,n)− 1(−∞,x−ε](Xi)

)

10



≥− 1

n

n∑
i=1

1{|Xi−X̄i|>ε} ≥ −
1

ε

1

n

n∑
i=1

|Xi − X̄i,n|.

Hence, we get

sup
x∈R

(µ̂n ((−∞, x])− µ ((−∞, x])) = sup
x∈R

(A1,n +A2,n +A3,n)

≤ 1

ε

1

n

n∑
i=1

|Xi − X̄i,n|+ sup
x∈R
|µn((−∞, x+ ε])− µ((−∞, x+ ε])|+ sup

x∈R
µ((x, x+ ε]).

By the Glivenko-Cantelli Lemma and (7) it follows

lim sup
n→∞

sup
x∈R

(µ̂n ((−∞, x])− µ ((−∞, x])) ≤ sup
x∈R

µ((x, x+ ε]).

Similarly, we obtain

sup
x∈R

(µ ((−∞, x])− µ̂n ((−∞, x])) = sup
x∈R

(−B1,n −B2,n −B3,n)

≤ 1

ε

1

n

n∑
i=1

|Xi − X̄i,n|+ sup
x∈R
|µn((−∞, x− ε])− µ((−∞, x− ε])|+ sup

x∈R
µ((x− ε, x]),

from which we conclude

lim sup
n→∞

sup
x∈R

(µ ((−∞, x])− µ̂n ((−∞, x])) ≤ sup
x∈R

µ((x, x+ ε]).

Since µ has a density with respect to the Lebesgue-Borel measure, µ is Lebesgue contin-
uous. For the Lebesgue measure λ we know supx∈R λ((x, x + ε]) ≤ ε. By the Lebesgue
continuity it follows for ε→ 0

sup
x∈R

µ((x, x+ ε])→ 0.

From the above results we conclude

sup
x∈R
|µ ((−∞, x])− µ̂n ((−∞, x])|

≤ sup
x∈R

(µ ((−∞, x])− µ̂n ((−∞, x])) + sup
x∈R

(µ̂n ((−∞, x])− µ ((−∞, x]))→ 0 a.s.

The proof is complete. �

4.2 Proof of Theorem 2

Set

f∗n(x) =
1

n · hn

n∑
i=1

K

(
x−Xi

hn

)
.
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By Devroye and Györfi (1985) we know∫
|f∗n(x)− f(x)| dx→ 0 in L1 and a.s.

Hence it suffices to show ∫
|fn(x)− f∗n(x)| dx→ 0

in expected value or almost surely, respectively. Now, writing Kh(x) = (1/h)K(x/h) and
setting u = (x−Xi)/hn we get∫

|fn(x)− f∗n(x)| dx ≤ 1

n

n∑
i=1

∫
|Khn(x−Xi)−Khn(x− X̄i,n)| dx

=
1

n

n∑
i=1

∫ ∣∣∣∣K(u)−K
(
u− X̄i,n −Xi

hn

)∣∣∣∣ du.
For ε > 0, find δ > 0 so small that

sup
|y|≤δ

∫
|K(u)−K(u− y)| du < ε.

Then, by Markov’s inequality,

1

n

n∑
i=1

∫ ∣∣∣∣K(u)−K
(
u− X̄i,n −Xi

hn

)∣∣∣∣ du
≤ 1

n

n∑
i=1

1{∣∣(X̄i,n−Xi)/hn

∣∣≤δ}ε+
1

n

n∑
i=1

1{∣∣(X̄i,n−Xi)/hn

∣∣>δ} · 2
≤ε+

2

δn

n∑
i=1

∣∣∣∣X̄i,n −Xi

hn

∣∣∣∣ ,
which is almost surely smaller than 2ε for all n large enough by (9) in case that (9) holds
almost surely. Otherwise the expectation of the right-hand side above is smaller than 2ε
for n large enough. This completes the proof. �

4.3 Proof of Theorem 3

Assume to the contrary that there exists a sequence (fn)n of density estimates satisfying∫
|fn(x, X̄1, . . . , X̄n)− f(x)| dx→P 0 (n→∞) (16)

whenever X̄1, X̄2, . . . are such that for some independent and identically distributed X1,
X2, . . . with density f we have

1

n

n∑
i=1

|X̄i −Xi| → 0 a.s.

12



Let X1, X2, . . . be independent and uniformly on [0, 1] distributed random variables and
let

g(x) =

{
1 if 0 ≤ x ≤ 1,

0 else,

be the density of X1. For k ∈ N, k ≥ 2 set

gk(x) =

{
2 if 2`

2k ≤ x <
2`+1

2k for some ` ∈ {0, . . . , k − 1}
0 else

and

X
(k)
i =

{
Xi if 2`

2k ≤ Xi <
2`+1

2k for some ` ∈ {0, . . . , k − 1}
Xi − 1

2k if 2`+1
2k ≤ Xi <

2`+2
2k for some ` ∈ {0, . . . , k − 1}.

Then X(k)
1 , X(k)

2 , . . . are independent and identically distributed random variables with
density gk. So if we set X̄i = X

(k)
i for all i ≥ N with N ∈ N arbitrary we know by (16)

that ∫
|fn(x, X̄1, . . . , X̄n)− gk(x)| dx→P 0 (n→∞). (17)

Next we define for suitable chosen n0 := 0 < n1 < n2 < . . . our data with measurement
error by

X̄i = X
(k)
i if nk−1 < i ≤ nk (k ∈ N).

Because of |X(k)
i −Xi| ≤ 1/(2k) we have

1

n

n∑
i=1

|X̄i −Xi| → 0 a.s.,

so our theorem is proven as soon as we can show for some ε > 0

lim sup
n→∞

P

[∫
|fn(x, X̄1, . . . , X̄n)− g(x)| dx > ε

]
> 0. (18)

Next we show that we can choose nk such that (18) holds. Let 0 < ε < 1 be fixed and
choose n1 such that

P

[∫
|fn1(x,X

(1)
1 , . . . , X(1)

n1
)− g1(x)| dx > ε

]
<

1

2
,

which is possible because of (16). Given n1, . . . , nk−1, we choose nk > nk−1 such that

P

[∫
|fnk

(x, X̄1, . . . , X̄nk−1
, X

(k)
nk−1+1, . . . , X

(k)
nk

)− gk(x)| dx > ε

]
<

1

2
,

which is possible because of (17). But if we define n1, n2, . . . in such a way, we have

P

[∫
|fnk

(x, X̄1, . . . , X̄nk
)− gk(x)| dx > ε

]
<

1

2

13



and accordingly

P

[∫
|fnk

(x, X̄1, . . . , X̄nk
)− gk(x)| dx ≤ ε

]
≥ 1

2

for all k ∈ N. By triangle inequality we know∫
|gk(x)− g(x)| dx ≤

∫
|fnk

(x)− gk(x)| dx+

∫
|fnk

(x)− g(x)| dx.

Furthermore we have ∫
|gk(x)− g(x)| dx = 1.

From this we can conclude for any k ∈ N

P

[∫
|fnk

(x, X̄1, . . . , X̄nk
)− g(x)| dx > 1− ε

]
≥ P

[∫
|gk(x)− g(x)| dx−

∫
|fnk

(x, X̄1, . . . , X̄nk
)− gk(x)| dx > 1− ε

]
= P

[∫
|fnk

(x, X̄1, . . . , X̄nk
)− gk(x)| dx < ε

]
≥ 1

2
.

The proof is complete. �

4.4 Proof of Theorem 4

We introduce the probability measures νn:

νn =
1

n

n∑
i=1

PYi,n .

The diminishing noise condition implies that a random variable Zn drawn from νn tends
to 0 in distribution and hence also in probability (cf., e.g., Theorem 18.3 in Jacod and
Protter (2000)). We use the notation ∗ for the convolution operation. In general for a
function f and a measure µ, we write

(f ∗ µ)(x) =

∫
f(x− y)dµ(y).

Similarly, for two functions f, g, we have

(f ∗ g)(x) =

∫
f(x− y)g(y) dy.

The first result we require is the following:

lim
n→∞

∫
|f(x)− (f ∗ νn)(x)| dx = 0.

14



For an arbitrary ε > 0, find a uniformly continuous density g, of compact support, such
that ∫

|f(x)− g(x)| dx < ε.

Then, omitting (x) and dx in the integrals,

∫
|f − f ∗ νn| ≤

∫
|f − g|+

∫
|g − g ∗ νn|+

∫
|(f − g) ∗ νn|

≤
∫
|f − g|+

∫
|g − g ∗ νn|+

∫
|f − g| ∗ νn

= 2

∫
|f − g|+

∫
|g − g ∗ νn|. (19)

Next we consider the second integral on the right hand side of (19): First, since Zn → 0
in probability, we can find an ↓ 0 such that P{|Zn| ≥ an} → 0. Thus, if the uniform
modulus of continuity of g is ω, and g vanishes off [−b, b],

∫
|g − g ∗ νn| =

∫
|g(x)−

∫
g(x− z) dνn(z)| dx

≤
∫ ∫

|g(x)− g(x− z)| dνn(z) dx

≤
∫ b+an

−b−an
ω(an) dx+

∫ ∫
|z|≥an

(g(x) + g(x− z)) dνn(z) dx

≤ (2b+ 2an)ω(an) + 2

∫
|z|≥an

dνn(z)

= (2b+ 2an)ω(an) + 2P{|Zn| ≥ an}
→ 0 (n→∞).

Hence,

lim sup
n→∞

∫
|f(x)− (f ∗ νn)(x)| dx ≤ 2

∫
|f(x)− g(x)| dx < 2 ε.

Next, we have trivially,∫
|(Khn ∗ f ∗ νn)(x)− (f ∗ νn)(x)| dx ≤

∫
|(Khn ∗ f)(x)− f(x)| dx→ 0 (n→∞)

when hn → 0 (n → ∞). This is a standard result from real analysis [e.g., Theorem 1,
Chapter 2 in Devroye and Györfi (1985)]. By the triangle inequality, we thus have

lim
n→∞

∫
|(Khn ∗ f ∗ νn)(x)− f(x)| dx = 0.

15



Finally, we are ready for the main argument. Split the L1 error traditionally in bias
and variation components:∫

|fn(x)− f(x)| dx ≤
∫
|fn(x)−Efn(x)| dx+

∫
|Efn(x)− f(x)| dx.

The last term tends to zero because

E{Khn (x−Xi − Yi,n)} = (Khn ∗ f ∗PYi,n)(x),

and thus,

E{fn(x)} =
1

n

n∑
i=1

(Khn ∗ f ∗PYi,n)(x) = (Khn ∗ f ∗ νn)(x).

Theorem 4 follows if we can show that

lim
n→∞

∫
E{|fn(x)−Efn(x)|} dx = 0.

For given ε > 0, find a > 0 such that∫
|x|≥a

f(x) dx < ε.

Note that ∫
|x|≥a

Efn(x) dx =

∫
|x|≥a

(Khn ∗ f ∗ νn)(x) dx

≤
∫
|x|≥a

f(x) dx+

∫
|(Khn ∗ f ∗ νn)(x)− f(x)| dx

< 2ε+

∫
|(Khn ∗ f ∗ νn)(x)− f(x)| dx.

Thus,

lim sup
n→∞

∫
|x|≥a

E{|fn(x)−Efn(x)|} dx ≤ 2 lim sup
n→∞

∫
|x|≥a

Efn(x) dx < 4ε.

We conclude the assertion by showing that

lim sup
n→∞

∫
|x|≤a

E{|fn(x)−Efn(x)|} dx = 0.

By Jensen’s inequality and independence, we have

E{|fn(x)−Efn(x)|}2 ≤ E
{

(fn(x)−Efn(x))2
}

16



=
1

n2

n∑
i=1

V {Khn(x−Xi − Yi,n)}

≤ 1

n2

n∑
i=1

E
{
Khn(x−Xi − Yi,n)2

}
=

1

n2hn

n∑
i=1

(K2
hn ∗ f ∗PYi,n)(x)

=
1

nhn
(K2

hn ∗ f ∗ νn)(x).

Hence, ∫
|x|≤a

E{|fn(x)−Efn(x)|} dx ≤
∫
|x|≤a

√
E2{|fn(x)−Efn(x)|} dx

≤
∫
|x|≤a

√
1

nhn
(K2

hn
∗ f ∗ νn)(x) dx

≤
√

2a

nhn
×
√∫

|x|≤a
(K2

hn
∗ f ∗ νn)(x) dx

≤

√
2a
∫
K2

nhn
.

This tends to zero if nhn →∞. The proof is complete. �
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