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Abstract

Given an independent and identically distributed sample of the distribution of an

R×R-valued random vector (X,Y ), where the corresponding regression function m(x) =

E{Y |X = x} is piecewise continuous, the problem of estimation of the maximal jump

point of the regression function is considered. Estimates are constructed which converge

almost surely to the maximal jump point whenever the support of the independent variable

X is a compact interval and the dependent variable Y satisfies some weak integrability

condition.
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1 Introduction

Let (X,Y ), (X1, Y1), (X2, Y2) . . . be independent and identically distributed random vari-

ables with values in R× R. Assume E|Y | <∞, let m(x) = E{Y |X = x} be the so-called
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regression function, and let µ = PX be the distribution of the design variable X. Assume

that m is uniformly continuous except for finitely many jump points, i.e., assume that

there exist N ∈ N, z1, . . . , zN ∈ R and L : R+ → R+ such that L(h)→ 0 (h→ 0) and for

all x, y ∈ R, x < y with the property that [x, y] does not contain any of the z1, . . . , zN we

have

|m(x)−m(y)| ≤ L(|x− y|).

In this paper we consider the problem of estimating the location and the size of the

maximal jump of m. More precisely, let

m+(x) = lim
h→0,h>0

m(x+ h) and m−(x) = lim
h→0,h>0

m(x− h)

be the right-hand and left-hand limits of m. Then

∆(z) = |m+(z)−m−(z)|

is the size of the jump of m at z. Let [a, b] be the support of X, which we assume to be a

compact interval, and denote by z∗ the location of the jump with the maximal size within

(a, b), i.e.,

∆ := ∆(z∗) = sup
z∈(a,b)

∆(z). (1)

Given the data

Dn = {(X1, Y1), . . . , (Xn, Yn)}

we want to construct estimates

∆̂n = ∆̂n(Dn) and ẑn = ẑn(Dn)

such that

∆̂n → ∆ a.s.

and

ẑn → z∗ a.s.

as n→∞.

Of course, the last convergence will be only possible in case that z∗ is unique.

The most popular estimates for nonparametric regression include kernel regression esti-

mate (cf., e.g., Watson (1964), Stone (1977) or Devroye and Krzyżak (1989)), partitioning
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regression estimate (cf., e.g., Beirlant and Györfi (1998)), nearest neighbor regression esti-

mate (cf., e.g., Devroye, Györfi, Krzyżak and Lugosi (1994), or Zhao (1987)), local polyno-

mial kernel estimates (cf., e.g., Stone (1982)), least squares estimates (cf., e.g., Lugosi and

Zeger (1995)) or smoothing spline estimates (cf., e.g., Kohler and Krzyżak (2001)). The

main theoretical results are summarized in the monograph by Györfi et al. (2002). Mod-

ifications of several of these estimates have already been applied to jump point regression

in a random design setting in various papers. E.g., rate of convergence results have been

derived in Gijbels, Hall and Kneip (1999) and Ma and Yang (2011), a data-driven choice of

the bandwidth of kernel based jump point estimators has been investigated in Gijbels and

Goderniaux (2004a), and jump points of the derivative of a regression function have been

estimated in Gijbels and Goderniaux (2004b). But most papers for jump point regression

derive results in the fixed design regression setting, see, e.g., Desmet and Gijbels (2011),

Gijbels, Lambert and Qiu (2007), Jose and Ismail (2001) or Wu and Chu (1993) and the

literature cited therein. Related techniques are also applied in change point estimation in

connection with time series, see, e.g., Carlstein (1988), Hariz, Wylie and Zhang (2007),

Lee (2011) or Rafaj lowicz, Pawlak and Steland (2010).

In this paper we consider a standard kernel estimate of ∆(z), and the aim is to derive

consistency results for this estimate under much more general conditions than usually

considered in the literature, in particular we avoid any assumptions stipulating that the

distribution of the design has a density with respect to the Lebesgue-Borel measure. If

we want to avoid this assumption, we could use techniques from Devroye (1978a, 1978b)

and try to construct estimates of m+ and m− which are consistent in the supremum norm

whenever the distribution of X has the property that the probability of an interval is

always greater than or equal to a constant times the length of the interval. However, in

this paper we want to avoid even such an assumption. The key trick which allows us to

derive consistency results for the estimates under even weaker conditions is that we use

a data-dependent modification of the bandwidth of the kernel estimates: we start with

some fixed value depending on the sample size and increase it until the intervals to the left

and to the right of the point considered contain enough data points. We show consistency

of our method under rather weak conditions: we assume that the regression function is

uniformly continuous except for finitely many jump points, that the support of X is a
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compact interval and that Y satisfies some rather weak integrability condition. We prove

that our estimates are strongly consistent in a sense that the estimates of the maximal

jump size and of the jump point converge almost surely to the true values provided the

sample size goes to infinity.

1.1 Notation

Throughout this paper we use the following notations: µ denotes the distribution of X

and m(x) = E{Y |X = x} is the regression function of (X,Y ).

Let D ⊆ Rd and let f : Rd → R be a real-valued function defined on Rd. We write

x = arg maxz∈D f(z) if maxz∈D f(z) exists and if x satisfies

x ∈ D and f(x) = max
z∈D

f(z).

For A ⊆ R let IA be the indicator function of A, i.e.,

IA(x) :=

 1 if x ∈ A,

0 if x /∈ A,

for x ∈ R. Furthermore we define

log+ z :=

 log(z) if z ≥ 1,

0 if z < 1,

for z ∈ R+.

1.2 Outline

The definition of the estimates are given in Section 2, the main result is formulated in

Section 3 and proven in Section 4.

2 Definition of the estimate

Set K+ = I(0,1] and K− = I[−1,0) and define kernel type estimates of m+ and m− as

follows: First choose hn > 0, which is a parameter of the estimate. In our estimate we

increase hn in a data-dependent way such that the intervals to the left and to the right
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contain enough data points. To do this, we let µn be the empirical distribution of X1, . . . ,

Xn, i.e.,

µn(A) =
1

n

n∑
i=1

IA(Xi) (A ⊆ R),

and we set

hn(x) = inf {h ≥ hn : µn([x− h, x)) ≥ 1/ log(n) and µn((x, x+ h]) ≥ 1/ log(n)} ,

where inf ∅ =∞. In case hn(x) <∞ we define

m+
n (x) =

∑n
i=1K+

(
x−Xi
hn(x)

)
· Yi∑n

i=1K+

(
x−Xi
hn(x)

)
and

m−n (x) =

∑n
i=1K−

(
x−Xi
hn(x)

)
· Yi∑n

i=1K−

(
x−Xi
hn(x)

) .

Using m+
n and m−n , we define an estimate of ∆(x) by

∆n(x) = |m+
n (x)−m−n (x)|

and estimate ∆ by

∆̂n = max
x∈R :hn(x)<∞

∆n(x)

and z∗ by

ẑn = arg max
x∈R :hn(x)<∞

∆n(x).

3 Main result

Let the estimates ∆̂n and ẑn be defined as in the previous section. Then the following

result is valid:

Theorem 1 Let (X,Y ), (X1, Y1), . . . be independent and identically distributed random

variables with values in R× R. Assume that the support of X is a compact interval,

E
(
|Y | log+ |Y |

)
<∞, (2)

and that the regression function is uniformly continuous except for finitely many jump

points, i.e., assume that there exist N ∈ N, z1, . . . , zN ∈ R and L : R+ → R+ such that
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L(h)→ 0 (h→ 0) and for all x, y ∈ R, x < y with the property that [x, y] does not contain

any of the z1, . . . , zN we have

|m(x)−m(y)| ≤ L(|x− y|).

Let ∆ and z∗ be defined as in Section 1 (cf., (1), where [a, b] = supp(X)) and define the

estimates ∆̂n and ẑn as in the previous section. Assume that hn > 0 satisfies

hn → 0 (n→∞). (3)

Then the following assertions hold:

a)

∆̂n → ∆ a.s. (4)

as n→∞.

b) If, in addition, z∗ is uniquely defined, then

ẑn → z∗ a.s. (5)

as n→∞.

Remark. It follows from the proof of Theorem 1 that in case that z∗ is not uniquely

defined but the other assumptions in Theorem 1 hold we have

min
i=1,...,N : ∆(zi)=∆

|ẑn − zi| → 0 a.s.

4 Proofs

Lemma 1 Assume that (3) holds and define

m+
hn

(x) =
E
{
K+

(
x−X
hn(x)

)
· Y |Dn

}
E
{
K+

(
x−X
hn(x)

)
|Dn

} and m−hn(x) =
E
{
K−

(
x−X
hn(x)

)
· Y |Dn

}
E
{
K−

(
x−X
hn(x)

)
|Dn

} .

Then

sup
x∈R :hn(x)<∞

∣∣m+
n (x)−m+

hn
(x)
∣∣→ 0 a.s. (6)

and

sup
x∈R :hn(x)<∞

∣∣m−n (x)−m−hn(x)
∣∣→ 0 a.s. (7)

as n→∞.
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Proof. The proof is a more or less straightforward modification of results from Kohler,

Krzyżak and Walk (2011) and Hertel and Kohler (2013). For the sake of completeness we

nevertheless present in the sequel a complete version of the proof of (6). (7) can be proven

in the same way.

Let s ∈ (0, 1
2) be arbitrary. Using well-known results from VC-theory (cf., e.g., Theo-

rem 12.5 and Theorem 13.7 in Devroye, Györfi and Lugosi (1996)) we get

P

{
sup

x∈R,h>0
|µn((x, x+ h])−PX((x, x+ h])| > ε

}
≤ 8 · n2 · e−

n·ε2
32 .

Furthermore we can conclude from Theorem 9.1 in Györfi et al. (2002) and Theorem 13.7

in Devroye, Györfi and Lugosi (1996)

P

{
sup

x∈R,h>0

∣∣∣∣∣ 1n
n∑

i=1

Yi · 1{|Yi|≤ns} ·K+

(
x−Xi

h

)
−E{Y · 1{|Y |≤ns} ·K+

(
x−X
h

)
}

∣∣∣∣∣ > ε

}

≤ 8 · n2 · e−
n·ε2

128·n2s .

Application of the Borel-Cantelli lemma yields

supx∈R,h>0 |µn((x, x+ h])−PX((x, x+ h])|
log n/

√
n

→ 0 a.s., (8)

and

supx∈R,h>0

∣∣∣ 1
n

∑n
i=1 Yi · 1{|Yi|≤ns} ·K+

(
x−Xi

h

)
−E{Y · 1{|Y |≤ns} ·K+

(
x−X
h

)
}
∣∣∣

log n/n
1
2
−s

→ 0 a.s.

(9)

as n→∞.

By definition of hn(x) we have in case hn(x) <∞

1

n

n∑
i=1

K+

(
x−Xi

hn(x)

)
= µn((x, x+ hn(x)]) ≥ 1

log(n)
, (10)

which implies∣∣∣∣∣∣
∑n

i=1 Yi ·K+

(
x−Xi
hn(x)

)
∑n

i=1K+

(
x−Xi
hn(x)

) −
E
{
Y ·K+

(
x−X
hn(x)

)}
E
{
K+

(
x−X
hn(x)

)}
∣∣∣∣∣∣

=

∣∣∣∣∣
1
n

∑n
i=1 Yi · 1{|Yi|>ns} ·K+

(
x−Xi
hn(x)

)
1
n

∑n
i=1K+

(
x−Xi
hn(x)

) +

∑n
i=1 Yi · 1{|Yi|≤ns} ·K+

(
x−Xi
hn(x)

)
∑n

i=1K+

(
x−Xi
hn(x)

)
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−
E
{
Y · 1{|Y |≤ns} ·K+

(
x−X
hn(x)

)}
E
{
K+

(
x−X
hn(x)

)} −
E
{
Y · 1{|Y |>ns} ·K+

(
x−X
hn(x)

)}
E
{
K+

(
x−X
hn(x)

)} ∣∣∣∣∣
≤

1
n

∑n
i=1 |Yi| · 1{|Yi|>ns}

1/ log(n)
+

E{|Y | · 1{|Y |>ns}}
PX((x, x+ hn(x)])

+

∣∣∣∣∣∣
∑n

i=1 Yi · 1{|Yi|≤ns} ·K+

(
x−Xi
hn(x)

)
∑n

i=1K+

(
x−Xi
hn(x)

) −
E{Y · 1{|Y |≤ns}K+

(
x−X
hn(x)

)
}

E
{
K+

(
x−X
hn(x)

)}
∣∣∣∣∣∣

=: T1,n + T2,n + T3,n.

Hence it suffices to show

sup
x∈R:hn(x)<∞

Ti,n → 0 a.s. (11)

as n→∞ for i ∈ {1, 2, 3}.

For i = 1 we have for any L > 1 and n sufficiently large

1
n

∑n
i=1 |Yi| · 1{|Yi|>ns}

1/ log(n)
≤

1
n

∑n
i=1 |Yi| ·

log |Yi|
log(ns) · 1{|Yi|>ns}

1/ log(n)

=
1

s
· 1

n

n∑
i=1

|Yi| · log |Yi| · 1{|Yi|>ns}

≤ 1

s
· 1

n

n∑
i=1

|Yi| · log |Yi| · 1{|Yi|>L}

→ 1

s
·E
{
|Y | · log |Y | · 1{|Y |>L}

}
a.s.

as n→∞ by (2) and by the strong law of large numbers. And because of (2) we get

E
{
|Y | · log |Y | · 1{|Y |>L}

}
→ 0

for L→∞, from which (11) follows for i = 1.

For i = 2 we observe

sup
x∈R:hn(x)<∞

E{|Y | · 1{|Y |>ns}}
PX((x, x+ hn(x)])

≤ sup
x∈R:hn(x)<∞

E{|Y | · log(|Y |)
log(ns) · 1{|Y |>ns}}

µn((x, x+ hn(x)])− (µn((x, x+ hn(x)])−PX((x, x+ hn(x)])

≤ 1

s
·

E{|Y | · log(|Y |) · 1{|Y |>ns}}

log(n) ·
(

1/ log(n)− supx∈R:hn(x)<∞ |µn((x, x+ hn(x)])−PX((x, x+ hn(x)])|
)

=
1

s
·

E{|Y | · log(|Y |) · 1{|Y |>ns}}
1− log(n) · supx∈R:hn(x)<∞ |µn((x, x+ hn(x)])−PX((x, x+ hn(x)])|

.
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Because of (2) we have

E{|Y | · log(|Y |) · 1{|Y |>ns}} → 0 (n→∞),

and together with (8) this implies (11) for i = 2.

In order to show (11) for i = 3 we observe that because of (10) we have for any x ∈ R

satisfying hn(x) <∞∣∣∣∣∣∣
∑n

i=1 Yi · 1{|Yi|≤ns} ·K+

(
x−Xi
hn(x)

)
∑n

i=1K+

(
x−Xi
hn(x)

) −
E{Y · 1{|Y |≤ns}K+

(
x−X
hn(x)

)
}

E
{
K+

(
x−X
hn(x)

)}
∣∣∣∣∣∣

=

∣∣∣∣∣E
{
K+

(
x−X
hn(x)

)}
·
(

1
n

∑n
i=1 Yi · 1{|Yi|≤ns} ·K+

(
x−Xi
hn(x)

)
−E{Y · 1{|Y |≤ns} ·K+

(
x−X
hn(x)

)
}
)

1
n

∑n
i=1K+

(
x−Xi
hn(x)

)
·E
{
K+

(
x−X
hn(x)

)}
+
E{Y · 1{|Y |≤ns} ·K+

(
x−X
hn(x)

)
} ·
(
E
{
K+

(
x−X
hn(x)

)}
− 1

n

∑n
i=1K+

(
x−Xi
hn(x)

))
1
n

∑n
i=1K+

(
x−Xi
hn(x)

)
·E
{
K+

(
x−X
hn(x)

)} ∣∣∣∣∣
≤

∣∣∣ 1
n

∑n
i=1 Yi · 1{|Yi|≤ns} ·K+

(
x−Xi
hn(x)

)
−E{Y · 1{|Y |≤ns} ·K+

(
x−X
hn(x)

)
}
∣∣∣

µn((x, x+ hn(x)])

+
E{|Y | · 1{|Y |≤ns} ·K+

(
x−X
hn(x)

)
}

PX((x, x+ hn(x)])
·

∣∣∣E{K+

(
x−X
hn(x)

)}
− 1

n

∑n
i=1K+

(
x−Xi
hn(x)

)∣∣∣
1/ log(n)

≤

∣∣∣ 1
n

∑n
i=1 Yi · 1{|Yi|≤ns} ·K+

(
x−Xi
hn(x)

)
−E{Y · 1{|Y |≤ns} ·K+

(
x−X
hn(x)

)
}
∣∣∣

1/ log(n)

+
log(n)3/

√
n ·E{|Y | · 1{|Y |≤ns}}

log(n) · (1/ log(n)− (µn((x, x+ hn(x)])−PX((x, x+ hn(x)])

· |PX((x, x+ hn(x)])− µn((x, x+ hn(x)])|
log(n)/

√
n

.

Because of

log(n)3/
√
n ·E{|Y | · 1{|Y |≤ns}} ≤ log(n)3/

√
n ·E{|Y |} → 0 (n→∞)

and

lim inf
n→∞

log(n) · (1/ log(n)− sup
x∈R
|µn((x, x+ hn(x)])−PX((x, x+ hn(x)])|) > 0

(which follows from (8)) we conclude from (8) and (9) that (11) also holds for i = 3.

The proof is complete. �
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Lemma 2 Define

∆hn = sup
x∈R :hn(x)<∞

∣∣m+
hn

(x)−m−hn(x)
∣∣ .

Then

∆̂n −∆hn → 0 a.s.

as n→∞.

Proof. Using ∣∣∣∣sup
x∈A

f(x)− sup
x∈A

g(x)

∣∣∣∣ ≤ sup
x∈A
|f(x)− g(x)|

and the second triangle inequality we get∣∣∣∆̂n −∆hn

∣∣∣
≤ sup

x∈R :hn(x)<∞

∣∣∣∣m+
n (x)−m−n (x)

∣∣− ∣∣m+
hn

(x)−m−hn(x)
∣∣∣∣

≤ sup
x∈R :hn(x)<∞

∣∣m+
n (x)−m+

hn
(x)
∣∣+ sup

x∈R :hn(x)<∞

∣∣m−n (x)−m−hn(x)
∣∣ .

Lemma 1 implies the assertion. �

Lemma 3 Assume that the support of X is a compact interval and that (3) holds. Then

sup
x∈R :hn(x)<∞

hn(x)→ 0 a.s.

as n→∞.

Proof. We have

hn(x) = max{h+
n (x), h−n (x)}

where

h+
n (x) = inf {h ≥ hn : µn((x, x+ h]) ≥ 1/ log(n)}

and

h−n (x) = inf {h ≥ hn : µn([x− h, x)) ≥ 1/ log(n)} ,

hence it suffices to show

sup
x∈R :hn(x)<∞

h+
n (x)→ 0 a.s. (12)

and

sup
x∈R :hn(x)<∞

h−n (x)→ 0 a.s. (13)
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as n→∞.

(12) follows from

lim sup
n→∞

sup
x∈R :hn(x)<∞

h+
n (x) ≤ ε a.s. (14)

for all ε > 0, which we show next. Assume to the contrary that (14) does not hold. Then

we can find ε > 0 and a sequence of random points xnk ∈ R such that hnk(xnk) < ∞

and with probability greater than zero for all k ∈ N we have h+
nk

(xnk) ≥ ε . The first

property implies that xnk is contained in the support supp(X) = [a, b] of X. Since [a, b]

is a compact interval, we know by the theorem of Bolzano-Weierstrass that a (random)

subsequence of (xnk)k converges almost surely to some random point x ∈ [a, b]. W.l.o.g.

we denote this subsequence again by (xnk)k. Because of h+
nk

(xnk) ≥ ε for all k ∈ N with

probability greater than zero we have xnk ≤ b− ε, and consequently we have x ∈ [a, b− ε]

with probability greater than zero. But then the (random) interval (x + ε/4, x + ε/2]

contains a (random) positive mass, which is bounded away from zero (since we can cover

[a, b] by finitely many disjoint intervals of length ε/16, where each interval has positive

mass, and each interval of length ε/4 will contain at least one of these intervals of length

ε/16), which implies (via the Glivenko-Cantelli theorem) that it will with probability one

eventually contain more than n/ log(n) data points and consequently we have that with

probability one h+
nk

(xnk) ≤ ε/2 for k large enough, which is a contradiction to h+
nk

(xnk) ≥ ε

with probability greater than zero. This proves (12), and a straightforward modification

of the above arguments leads to (13). The proof is complete. �

Lemma 4 Assume that (3) holds, that supp(X) = [a, b] is a compact interval and that m

is uniformly continuous except for finitely many jump points. Then

∆hn → ∆ a.s.

as n→∞.

Proof. Because of Lemma 3 we can assume without loss of generality that in case

hn(x) <∞ we have that hn(x) is so small that the interval [x−hn(x), x+hn(x)] contains

at most one of the finitely many jump points of m. Let x ∈ R be such that hn(x) < ∞,

which implies that with probability one x has the property

E

{
K−

(
x−X
hn(x)

)
|Dn

}
> 0 and E

{
K+

(
x−X
hn(x)

)
|Dn

}
> 0.

11



Consequently,

∣∣m+
hn

(x)−m−hn(x)
∣∣

=

∣∣∣∣∣∣
E
{
K+

(
x−X
hn(x)

)
·m(X)|Dn

}
E
{
K+

(
x−X
hn(x)

)
|Dn

} −
E
{
K−

(
x−X
hn(x)

)
·m(X)|Dn

}
E
{
K−

(
x−X
hn(x)

)
|Dn

}
∣∣∣∣∣∣

=

∣∣∣∣∣E
{
K+

(
x−X
hn(x)

)
· (m(X)−m+(x))|Dn

}
E
{
K+

(
x−X
hn(x)

)
|Dn

} +
(
m+(x)−m−(x)

)

−
E
{
K−

(
x−X
hn(x)

)
· (m(X)−m−(x))|Dn

}
E
{
K−

(
x−X
hn(x)

)
|Dn

} ∣∣∣∣∣
≤ 3 · L(hn(x)) + ∆.

By Lemma 3 and L(h)→ 0 (h→ 0) we conclude

lim sup
n→∞

∆hn ≤ ∆ a.s.

Furthermore, for z∗ ∈ (a, b) such that

|m+(z∗)−m−(z∗)| = ∆

we have that both of the intervals [a, z∗) and (z∗, b] contain positive mass, so by the

Glivenko-Cantelli theorem we know that with probability one hn(z∗) < ∞ for n large

enough. By Lemma 2 we can assume w.l.o.g. that hn(z∗) is so small that the only jump

point of m within [z∗ − hn(z∗), z∗ + hnz
∗] is z∗ itself. Consequently,

|m+
hn

(z∗)−m−hn(z∗)|

=
∣∣(m+(z∗)−m−(z∗))− (m+(z∗)−m+

hn
(z∗))− (m−hn(z∗)−m−(z∗))

∣∣
≥ |m+(z∗)−m−(z∗)| − |m+(z∗)−m+

hn
(z∗)| − |m−hn(z∗)−m−(z∗)|

≥ ∆− 2 · L(hn(z∗)).

By using again Lemma 3 and L(h)→ 0 (h→ 0) we can conclude

lim inf
n→∞

∆hn ≥ ∆ a.s.

The proof is complete. �
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Lemma 5 Assume that the assumptions of Theorem 1 b) hold. Then

ẑn → z∗ a.s.

Proof. It suffices to show

lim sup
n→∞

|ẑn − z∗| ≤ ε a.s. (15)

for all ε > 0. Assume to the contrary that (15) does not hold. Then we can find ε > 0

and a subsequence (ẑnk)k of (ẑn)n such that

|ẑnk − z
∗| ≥ ε

for all k with probability greater than zero. Since hnk(ẑnk) < ∞ by definition of ẑnk we

can conclude from Lemma 3 that we have with probability one

hnk(ẑnk) ≤ ε

for k large enough and that for k large enough [ẑnk − hnk(ẑnk), ẑnk + hnk(ẑnk)] con-

tains at most one of the jump points of m. Hence neither [ẑnk − hnk(ẑnk), ẑnk) nor

(ẑnk , ẑnk + hnk(ẑnk)] can contain z∗. Using this we conclude that with probability one∣∣∣m+
hnk

(ẑnk)−m−hnk (ẑnk)
∣∣∣

=

∣∣∣∣∣∣
E
{
K+

(
ẑnk−X
hn(ẑnk )

)
·m(X)|Dn

}
E
{
K+

(
ẑnk−X
hn(ẑnk )

)
|Dn

} −
E
{
K−

(
ẑnk−X
hn(ẑnk )

)
·m(X)|Dn

}
E
{
K−

(
ẑnk−X
hn(ẑnk )

)
|Dn

}
∣∣∣∣∣∣

=

∣∣∣∣∣E
{
K+

(
ẑnk−X
hn(ẑnk )

)
· (m(X)−m+(ẑnk))|Dn

}
E
{
K+

(
ẑnk−X
hn(ẑnk )

)
|Dn

} +
(
m+(ẑnk)−m−(ẑnk)

)

−
E
{
K−

(
ẑnk−X
hn(ẑnk )

)
· (m(X)−m−(ẑnk))|Dn

}
E
{
K−

(
ẑnk−X
hn(ẑnk )

)
|Dn

} ∣∣∣∣∣
≤ 3 · L(hnk(ẑnk)) + max

i∈{j∈{1,...,N} : zj 6=z∗}
∆(zi)

for k large enough. By Lemma 3 and L(h)→ 0 (h→ 0) we conclude

lim sup
k→∞

∆hnk
(ẑnk) = lim sup

k→∞

∣∣m+
hn

(ẑnk)−m−hn(ẑnk)
∣∣ ≤ max

i∈{j∈{1,...,N} : zj 6=z∗}
∆(zi)

Furthermore, the proof of Lemma 2 implies

∆hn(ẑn)− ∆̂n(ẑn)→ 0 a.s. (n→∞)

13



and by Lemma 2 and Lemma 4 we know

∆̂n(ẑn) = ∆̂n → ∆ a.s.

as n→∞, hence

∆ = lim
k→∞

∆̂nk(ẑnk)

= lim
k→∞

(
∆̂nk(ẑnk)−∆hnk

(ẑnk) + ∆hnk
(ẑnk)

)
= lim sup

k→∞
∆hnk

(ẑnk)

≤ max
i∈{j∈{1,...,N} : zj 6=z∗}

∆(zi) < ∆,

which is the desired contradiction. The proof is complete. �

Proof of Theorem 1. Part a) follows from Lemma 2 and Lemma 4, part b) is proven in

Lemma 5. �
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