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Abstract
The problem of estimating a density in a simulation model is considered, where given
a value of an Rd-valued random input parameter X the value of a real-valued random
variable Y = m(X) is computed. Here m : Rd → R is a function which measures the
quality m(X) of a technical system with input X. It is assumed that both X and Y have
densities. Given a sample of (X,Y ) the task is to estimate the density of Y . We estimate
in a first step m and the density of X, and by using these estimates we compute in a
second step an estimate of the density of Y . Results concerning L1-consistency and rate
of convergence of the estimates are proven and the estimates are illustrated by applying
them to simulated and real data.

AMS classification: Primary 62G07; secondary 62G20.
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1 Introduction

We consider a simulation model of a technical system, which computes for an Rd-valued
random variable X the quality Y = m(X) of a corresponding technical system. The
simulation model is described by the (measurable) function m : Rd → R. We assume
that we can observe a sample of the input parameter X and the corresponding values of
Y , and we are interested in the distribution of the (random) quality Y = m(X). This
distribution is described by its density g, which we assume to exist. By controlling the
L1-error of an estimate of this density we can bound via the Lemma of Scheffé (cf., e.g.,
Devroye and Györfi (1985)) the total variation error of the corresponding estimate of
the distribution. So given a sample X1, . . . , Xn of X, we compute Y1 = m(X1), . . . ,
Yn = m(Xn) and our aim is to use the data

Dn = {(X1, Y1), . . . , (Xn, Yn)}

∗Running title: Density estimation in a simulation model
†Corresponding author: Tel. +49-6151-16-6846, Fax. +49-6151-16-6822
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to construct an estimate gn(·) = gn(·,Dn) : R→ R of g such that its L1-error∫
|gn(y)− g(y)| dy

is “small”.
The easiest way of doing this is to ignore the x-values of the data completely and to

estimate the density g of Y using only Y1, . . . , Yn. Here we can use, e.g., the famous
kernel density estimate (Rosenblatt (1956), Parzen (1962)) defined by

ĝn(y) =
1

n · hn
·

n∑
i=1

K

(
y − Yi
hn

)
(1)

with some kernel function K : R→ R, which is a density (e.g., the naive kernel K(u) =
1/2 · 1[−1,1]), and some bandwidth hn > 0, which is a smoothing parameter of the
estimate.
However, the interesting question is whether we can get better estimates (e.g., estimates

with better performance for simulated data or with a better rate of convergence of the
L1-error under appropriate smoothness assumptions on g) by using the values of X, too.
In case that additional independent observations of X are available a positive answer to
this question was given in Devroye, Felber and Kohler (2013) and Kohler and Krzyżak
(2012). The estimates there can be applied in our current situation, too, provided we
ignore a part of the values of Y , i.e., we choose 1 < nl < n (e.g., nl ≈ n/2), define an
estimate mnl

of m depending only on the first nl data points Dnl
and estimate g by

ḡn(y) =
1

(n− nl) · ĥn
·

n∑
i=nl+1

K

(
y −mnl

(Xi)

ĥn

)
.

The estimate mnl
of m can be chosen as a suitable regression estimate of m in a regres-

sion problem without noise in the dependent variable. For instance, we can use kernel
regression estimates (cf., e.g., Nadaraya (1964, 1970), Watson (1964), Devroye and Wag-
ner (1980), Stone (1977, 1982) or Devroye and Krzyżak (1989)), partitioning regression
estimates (cf., e.g., Györfi (1981) or Beirlant and Györfi (1998)), nearest neighbor regres-
sion estimates (cf., e.g., Devroye (1982) or Devroye et al. (1994)), least squares estimates
(cf., e.g., Lugosi and Zeger (1995) or Kohler (2000)) or smoothing spline estimates (cf.,
e.g., Wahba (1990) or Kohler and Krzyżak (2001)). Due to the fact that the dependent
variable is observable without noise, here suitable interpolation estimates can achieve
even better rates, especially if the distribution of X satisfies regularity assumptions, cf.
Kohler and Krzyżak (2013).
In this paper we use a slightly different approach in the sense that we assume that

a density f of X exists, too. By the Lebesgue density theorem (cf, e.g., Devroye and
Györfi (1985), Chapter 2, Theorem 1) we know that

g(y) ≈
∫
K
(y−z

h

)
· g(z) dz

h
=

1

h
·E
{
K

(
y − Y
h

)}
=

1

h
·
∫
K

(
y −m(x)

h

)
· f(x) dx
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for h small. We estimate the latter term by plugging in an estimate mn of m (based on
Dn) and an estimate fn of the density f of X (based on the values of X in Dn) and use

gn(y) =
1

hn
·
∫
K

(
y −mn(x)

hn

)
· fn(x) dx. (2)

Our main result states that this estimate is L1-consistent in case that the bandwidth
hn tends to zero slower than the L1-error of the estimate mn of m and in case that the
estimate fn of f is L1-consistent. Furthermore, we analyze the rate of convergence of
our newly proposed estimate and identify situations where it is better than the rate of
convergence of the estimate (1) which ignores the values of X completely. Finally, we
illustrate our estimate by applying it to simulated and real data.

The outline of this paper is as follows: In Section 2 we give the precise definition of
our estimate and present the main results concerning consistency and rate of conver-
gence. Application of the estimate to simulated and real data is contained in Section 3.
The proofs are given in Section 4.

2 Main results

In this section the estimate

gn(y) =
1

hn
·
∫
K

(
y −mn(x)

hn

)
· fn(x) dx

is analyzed, where hn > 0 is the bandwidth and the kernel function K is a symmetric
and bounded density which is monotonically decreasing on R+ (e.g., the naive kernel
K(u) = 1

2 · 1[−1,1](u)), mn(·) = mn(·; (X1, Y1), . . . , (Xn, Yn)) : Rd → R is a suitable
estimate of m based on the sample Dn of (X,Y ) and

fn(x) =
1

n · ĥdn
·

n∑
i=1

L

(
x−Xi

ĥn

)
is the standard kernel density estimate of the density f of X based on the x-values X1,
. . . , Xn of the sample Dn with kernel L : Rd → R+ and bandwidth ĥn > 0.
In our first theorem we present sufficient conditions for consistency of gn.

Theorem 1 Let (X,Y ), (X1, Y1), . . . be independent and identically distributed Rd ×
R-valued random variables. Assume that densities (with respect to the Lebesgue-Borel-
measure) f and g of X and Y exist. Let the kernel function K be a symmetric and
bounded density which is monotonically decreasing on R+, let the kernel function L :
Rd → R+ be a a density, let mn be an estimate of m based on Dn and let the estimate
gn of g be defined as above. Assume that

ĥn → 0 (n→∞), n · ĥdn →∞ (n→∞), (3)
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hn → 0 (n→∞) (4)

and
E{|mn(X)−m(X)|}

hn
→ 0 (n→∞). (5)

Then gn is weakly consistent, i.e.,

E

∫
|gn(y)− g(y)| dy → 0 (n→∞). (6)

If (3), (4) and, in addition,∫
|mn(x)−m(x)|PX(dx)

hn
→ 0 a.s.

hold, then gn is strongly consistent, i.e.,∫
|gn(y)− g(y)| dy → 0 a.s. (7)

Remark 1. Condition (5) requires that the expected L1-error of the estimate mn con-
verges to zero faster than the bandwidth hn of gn. Under appropriate smoothness assump-
tion on m, rate of convergence results for appropriate estimates mn have been derived in
Kohler and Krzyżak (2013). E.g., let mn be the 1-nearest-neighbor estimate defined by
mn(x) = Y(1)(x) where (X(1)(x), Y(1)(x)), . . . , (X(n)(x), Y(n)(x)) is a permutation of Dn

satisfying
‖X(1)(x)− x‖ ≤ · · · ≤ ‖X(n)(x)− x‖.

Then Theorem 1 and Remark 2 in Kohler and Krzyżak (2013) imply that in case supp(X)
bounded and m Hölder continuous with exponent p ≤ 1 condition (5) is satisfied if

np · hdn →∞ (n→∞).

Next, we study the rate of convergence of our estimate. Here it is well-known (cf., e.g.,
Devroye and Györfi (1985)) that smoothness assumptions on g are necessary to derive
nontrivial results.
For p ∈ (0, 1] and C > 0 we call a function h : Rd → R (p, C)-smooth if

|h(x)− h(z)| ≤ C · ‖x− z‖p for all x, z ∈ Rd,

i.e., if h is Hölder-continuous with exponent p and Hölder-constant C.

Theorem 2 Let (X,Y ), (X1, Y1), . . . be independent and identically distributed Rd ×
R-valued random variables. Assume that densities (with respect to the Lebesgue-Borel-
measure) f and g of X and Y exist. Let the kernel function K be a symmetric and
bounded density with bounded support which is monotonically decreasing on R+, let L :
Rd → R+ be a kernel function which is a density, let mn be an estimate of m based on
Dn and let the estimate gn of g be defined as above.
If g is (r, C)-smooth with bounded support, then

E

∫
|gn(y)− g(y)| dy ≤ E

∫
|fn(x)− f(x)| dx+ 2 ·K(0) · E {|mn(X)−m(X)|}

hn
+ c · hrn.
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From Theorem 2 we get rate of convergence results for gn provided we make assumptions
on the smoothness of m and f and choose appropriate estimates mn and fn.

Corollary 1 Assume that the assumptions of Theorem 2 hold. Let p, r, s ∈ (0, 1],
C1, C2, C3 > 0 and assume that f is (p, C1)-smooth with bounded support, g is (r, C2)-
smooth with bounded support and m is (s, C3)-smooth. Let c1, c2 > 0, let fn be the kernel
density estimate with a density with compact support as kernel and with bandwidth

ĥn = c1 · n−1/(2p+d),

let mn be the 1-nearest-neighbor estimate and define the estimate gn as above with band-
width

hn = c2 · n−s/(d·(r+1)).

Then
E

∫
|gn(y)− g(y)| dy = O

(
n
−min

{
p

2p+d
, r·s
d·(1+r)

})
.

Proof. By Theorem 1 and Remark 1 in Kohler and Krzyżak (2013) we have

E {|mn(X)−m(X)|} ≤ n−
s
d ,

furthermore

E

∫
|fn(x)− f(x)| dx ≤

∫
E{|fn(x)−Efn(x)|} dx+

∫
|Efn(x)− f(x)| dx

≤ c3 ·
1

n · hdn
+ c4 · hpn (8)

(cf., e.g., proof of Theorem 9.5 in Devroye and Lugosi (2001) and proof of Theorem 2
below), which implies

E

∫
|fn(x)− f(x)| dx ≤ c5 · n−p/(2p+d).

Application of Theorem 2 yields the assertion. �

Remark 2. If g is Hölder continuous with exponent r and g has compact support
then the estimate (1) with bandwidth hn = c6 · n−1/(2r+1) satisfies

E

∫
|ĝn(y)− g(y)| dy ≤ c7 · n−r/(2r+1)

(cf., e.g., proof of (8)). Comparing this with the above results we see that the estimate
gn achieves a better rate of convergence e.g. if

d = 1, p > r and s >
r + 1

2r + 1
.
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Remark 3. Any application of the estimate to simulated or real data requires a data
dependent choice of the smoothing parameters (here, bandwidths hn and ĥn and smooth-
ing parameter of mn) of the estimate. For choosing the parameter of fn we can use the
combinatorial method described in Devroye and Lugosi (2001), and the parameter of mn

can be chosen by cross-validation (cf., e.g., Chapter 8 in Györfi et al. (2002)). For the
choice of the bandwidth hn in the definition of gn we can use an adaptation of the com-
binatorial method of Devroye and Lugosi (2001) similar to the one described in Kohler
and Krzyżak (2012).

3 Application to simulated and real data

In this section we illustrate the finite sample size performance of our density estimate by
applying it to simulated and real data.

In our first example we set X = (X1, X2) with independent standard normally dis-
tributed random variables X1 and X2 and choose m(x1, x2) = 2 · x1 + x2 + 2. In this
case Y = m(X) is normally distributed with expectation 2 and variance 22 + 12 = 5.
We estimate the density of Y by the estimate introduced in Section 2 using a fully data-
driven smoothing spline estimate to estimate the linear function m. For this purpose we
use the routine Tps() from the library fields in the statistics package R. For the estimate
fn we use the standard kernel density estimate of Rosenblatt and Parzen with Gaussian
kernel L and bandwidth ĥn chosen by cross-validation. For the kernel function K we
use the naive kernel. The bandwidth hn of gn is chosen by minimizing the L1-errors of
the estimate via comparing the estimated density with the underlying density. So we
assume that we have available an oracle which chooses the optimal bandwidth, such that
we can ignore effects occuring due to inproper choice of bandwidths. We set the sample
size n = 200 and compare the estimate with the standard kernel density estimate of
Rosenblatt and Parzen. Figure 1 shows both estimates and the underlying density.
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Figure 1: Typical simulation in the first model
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Since the result of our simulation depends on the randomly occuring data points, we re-
peat the whole procedure 100 times with independent realizations of the occuring random
variables and report boxplots of the L1-errors in Figure 2. The mean of the L1-errors of
the proposed estimate (0.0651) is less than the mean L1-error of the Rosenblatt-Parzen
density estimate (0.0723).
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Figure 2: Boxplots of the occuring L1-errors in the first model

In our second example we set X = (X1, X2) for independent standard normally dis-
tributed random variables X1 and X2 and choose m(x1, x2) = x21 +x22. Then Y = m(X)
is chi-squared distributed with two degrees of freedom. We define the estimate as in the
first example and choose again n = 200. Figure 3 shows the estimate gn, the Rosenblatt-
Parzen density estimate and the underlying density in a typical simulation.
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Figure 3: Typical simulation in the second model
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In Figure 4 we compare boxplots of the occuring L1-errors of the two estimates. The
mean L1-error of our estimate (0.1200) is much lower than the one of Rosenblatt and
Parzen (0.2042).
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Figure 4: Boxplots of the occuring L1-errors in the second model

In Figure 5 and Figure 6 we repeat the same simulation with n = 200 choosing X
as a standard normally distributed random variable and m(x) = exp(x). In this case
Y = m(X) is log-normally distributed. The mean of the L1-errors of the estimate gn
is again much lower (0.0706) than the mean error of the Rosenblatt-Parzen estimate
(0.1019).
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Figure 5: Typical simulation in the third model
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Figure 6: Boxplot of the occuring L1-errors in the third model

Finally, we illustrate the usefulness of our estimation procedure by applying it to a den-
sity estimation problem in a simulation model. Here we consider the load distribution
in the three legs of a simple tripod. More precisely, a static force is applied on the sym-
metric tripod to induce mechanical loading equivalent to the weight of 4,5 kg in its three
legs. On the bottom side of the legs, force sensors are mounted to measure the leg’s
axial force. For a safe and stable standing of the tripod, the legs are angled with α = 5◦

from the middle axis of the connecting devise. Engineers expect that if the holes where
the legs are plugged in have a diameter of 15 mm, a third of the general load should
be measured in each leg. Unfortunately, a gouching of exactly 15 mm is not possible
in the manufactering process. In the simulation we assume that the diameters behave
like independent standard normally distributed random variable with expectation 15 and
standard deviation 0.5.
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Figure 7: Density estimation in a simulation model
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Based on the physical model of the tripod we are able to calculate the resulting load
distribution in dependence of the three values of the diameter. For simplicity, we consider
only one leg of the tripod. Since in this case the real density is unknown, we repeat the
simulation 10.000 times to generate a high sample of relative loads. Application of the
routine density in the statistics package R to these 10.000 observed values leads to the
solid line in Figure 7. We calculate our estimates as described before assuming that
n = 200 measurements are available. Again, the newly proposed estimate is printed by
the dashed line, and the dotted line represents the estimate of Rosenblatt and Parzen.
Similary as before, the run of the curve of our estimate lies much closer to the solid line
than the one of Rosenblatt and Parzen.

4 Proofs

4.1 Auxiliary results

In this subsection we prove two auxiliary results, from which we will conclude Theorem
1 and Theorem 2 easily.

Lemma 1 Let the kernel function K be a symmetric, bounded density which is mono-
tonically decreasing on R+. Then it holds∫ ∣∣∣∣K (y − z1hn

)
−K

(
y − z2
hn

)∣∣∣∣ dy ≤ 2 ·K(0) · |z1 − z2|

for arbitrary z1, z2 ∈ R.

Proof of Lemma 1. Without loss of generality we assume z1 ≤ z2 and set

K̄(y) :=

∣∣∣∣K (y − z1hn

)
−K

(
y − z2
hn

)∣∣∣∣ .
This function is axial symmetric to x = z1+z2

2 , because for all t ∈ R we can conclude
from K(u) = K(−u) (u ∈ R)

K̄

(
z1 + z2

2
+ t

)
=

∣∣∣∣K (z2 − z1 + 2t

2hn

)
−K

(
z1 − z2 + 2t

2hn

)∣∣∣∣
=

∣∣∣∣K (z1 − z2 − 2t

2hn

)
−K

(
z2 − z1 − 2t

2hn

)∣∣∣∣
=

∣∣∣∣K (z2 − z1 − 2t

2hn

)
−K

(
z1 − z2 − 2t

2hn

)∣∣∣∣
=K̄

(
z1 + z2

2
− t
)
.

With the assumption z1 ≤ z2 we can conclude that

|y − z1| ≤ |y − z2| for all y ≤ z1 + z2
2

, (9)
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because in case of y ≤ z1 we have

|y − z1| = z1 − y ≤ z2 − y = |y − z2|,

and in case of z1 < y ≤ z1+z2
2 we get

|y − z1| = y − z1 ≤
z1 + z2

2
− z1 = z2 −

z1 + z2
2

≤ z2 − y = |y − z2|.

Since the symmetric kernel K is monotonically decreasing on R+, we obtain by (9)

K

(
y − z1
hn

)
≥ K

(
y − z2
hn

)
for all y ≤ z1 + z2

2
. (10)

Applying the observation about the symmetry, we can conclude∫ ∣∣∣∣K (y − z1hn

)
−K

(
y − z2
hn

)∣∣∣∣ dy
=

∫
K̄(y) dy

= 2

∫ z1+z2
2

−∞
K̄(y) dy

(10)
= 2

[∫ z1+z2
2

−∞
K

(
y − z1
hn

)
dy −

∫ z1+z2
2

−∞
K

(
y − z2
hn

)]
dy

= 2 · hn

[∫ z2−z1
2hn

−∞
K (u) du−

∫ z1−z2
2hn

−∞
K (v) dv

]

= 2 · hn
∫ z2−z1

2hn

z1−z2
2hn

K (y) dy

Because K is symmetric and monotonically decreasing on R+, K(0) is the maximum
value of K and thus we get∫ ∣∣∣∣K (y − z1hn

)
−K

(
y − z2
hn

)∣∣∣∣ dy ≤ 2 · hn ·K(0) ·
(
z2 − z1

2hn
− z1 − z2

2hn

)
= 2 ·K(0) · |z2 − z1|

The proof is complete. �

Lemma 2 Let (X,Y ), (X1, Y1), . . . be independent and identically distributed Rd × R-
valued random variables. Assume that densities (with respect ot the Lebesgue-Borel-
measure) f and g of X and Y exist. Let K be a symmetric, bounded density, which
is monotonically decreasing on R+, let fn be an estimate of f , let mn be an estimate of
m and let the estimate gn of g be defined as in Section 2. Then∫

|gn(y)− g(y)| dy
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≤
∫
|fn(x)− f(x)| dx+ 2 ·K(0) ·

∫
|mn(x)−m(x)|PX(dx)

hn

+

∫ ∣∣∣∣∫ 1

hn
K

(
y − z
hn

)
· g(z) dz − g(y)

∣∣∣∣ dy.
Proof of Lemma 2. We use the error decomposition∫

|gn(y)− g(y)| dy

≤
∫ ∣∣∣∣ 1

hn
·
∫
K

(
y −mn(x)

hn

)
· fn(x) dx− 1

hn
·
∫
K

(
y −mn(x)

hn

)
· f(x) dx

∣∣∣∣ dy
+

∫ ∣∣∣∣ 1

hn
·
∫
K

(
y −mn(x)

hn

)
· f(x) dx− 1

hn
·
∫
K

(
y −m(x)

hn

)
· f(x) dx

∣∣∣∣ dy
+

∫ ∣∣∣∣ 1

hn
·
∫
K

(
y −m(x)

hn

)
· f(x) dx− g(y)

∣∣∣∣ dy
=: T1,n + T2,n + T3,n.

Application of the theorem of Fubini yields

T1,n ≤
∫ ∫

1

hn
·K

(
y −mn(x)

hn

)
· |fn(x)− f(x)| dx dy

=

∫
|fn(x)− f(x)| ·

∫
1

hn
·K

(
y −mn(x)

hn

)
dy dx

=

∫
|fn(x)− f(x)| dx,

where the last equality follows from the fact that K is a density.
Next we bound T2,n. Using again the theorem of Fubini and Lemma 1 we conclude

T2,n ≤ 1

hn
·
∫ ∫ ∣∣∣∣K (y −mn(x)

hn

)
−K

(
y −m(x)

hn

)∣∣∣∣ · f(x) dx dy

=
1

hn
·
∫ ∫ ∣∣∣∣K (y −mn(x)

hn

)
−K

(
y −m(x)

hn

)∣∣∣∣ dy · f(x) dx

≤ 1

hn
·
∫

2 ·K(0) · |mn(x)−m(x)| · f(x) dx

= 2 ·K(0) ·
∫
|mn(x)−m(x)|PX(dx)

hn
.

Finally, we bound T3,n. Because X has density f and Y = m(X) has density g we have

T3,n =

∫ ∣∣∣∣E{ 1

hn
K

(
y −m(X)

hn

)}
− g(y)

∣∣∣∣ dy
=

∫ ∣∣∣∣∫ 1

hn
K

(
y − z
hn

)
· g(z) dz − g(y)

∣∣∣∣ dy.
The proof is complete. �
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4.2 Proof of Theorem 1

By Lemma 2 we have

E

∫
|gn(y)− g(y)| dy ≤ E

∫
|fn(x)− f(x)| dx+ 2 ·K(0) · E {|mn(X)−m(X)|}

hn

+

∫ ∣∣∣∣∫ 1

hn
K

(
y − z
hn

)
· g(z) dz − g(y)

∣∣∣∣ dy
=: T4,n + T5,n + T6,n. (11)

Because of (3) we can apply Theorem 1, Chapter 3, in Devroye and Györfi (1985) which
implies

T4,n → 0 (n→∞).

By (5) we get
T5,n → 0 (n→∞).

Finally, using (4) and Theorem 1, Chapter 2, in Devroye and Györfi (1985) we get

T6,n → 0 (n→∞).

This proves (6), assertion (7) follows in the same way. �

4.3 Proof of Theorem 2

Since
∫
|gn(y)− g(y)| dy ≤ 2 we can assume w.l.o.g. that hn is bounded. Since g and K

have compact support we can choose a bounded set S such that

g(y) = 0 and
∫
K

(
y − z
hn

)
g(z) dz = 0

for y /∈ S. Since g is Hölder continuous with exponent r we have∫ ∣∣∣∣∫ 1

hn
K

(
y − z
hn

)
· g(z) dz − g(y)

∣∣∣∣ dy
=

∫
S

∣∣∣∣∫ 1

hn
K

(
y − z
hn

)
· (g(z)− g(y)) dz

∣∣∣∣ dy
≤
∫
S

∫
1

hn
K

(
y − z
hn

)
· C · |z − y|r dz dy

= C · hrn ·
∫
|u|rK(u) du ·

∫
S

1 dy

≤ c · hrn.

This together with (11) implies the assertion. �
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