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Abstract
Given the values of a measurable function m : Rd → R at n arbitrarily chosen points in
Rd the problem of estimating m on whole Rd, such that the L1 error (with integration
with respect to a fixed but unknown probability measure) of the estimate is small, is
considered. Under the assumption that m is (p, C)-smooth (i.e., roughly speaking, m is
p-times continuously differentiable) it is shown that the optimal minimax rate of conver-
gence of the L1 error is n−p/d, where the upper bound is valid even if the support of the
design measure is unbounded but the design measure satisfies some moment condition.
Furthermore it is shown that this rate of convergence cannot be improved even if the
function is not allowed to change with the size of the data.

AMS classification: Primary 62G08; secondary 62G05.
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1 Introduction

In this article the problem of estimating a measurable function m : Rd → R from n
observations of the value of the function m at points z1, . . . , zn ∈ Rd, which might be
arbitrarily chosen, is considered. Any estimate of m uses in a first step a strategy to
choose the points

z1, z2 = z2((z1,m(z1))), . . . , zn = zn((z1,m(z1)), . . . , (zn−1,m(zn−1))) (1)

and then uses the data

Dn = {(z1,m(z1)), . . . , (zn,m(zn))} (2)

to estimate m by mn(·) = mn(·,Dn) : Rd → R. In numerical analysis this problem is
known under the name scattered data approximation (usually with non-adaptively chosen
∗Running title: Noiseless regression with adaptive design
†Corresponding author: Tel. +49-6151-16-6846, Fax. +49-6151-16-6822
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points z1, . . . , zn ∈ Rd), see, e.g., Wendland (2010) and the literature cited therein. In
this paper it is studied from a statistical point of view.
Motivated by a problem in density estimation, where mn is used to generate additional

data for the density estimate and where the error of the method crucially depends on the
L1 error of mn (cf., Devroye, Felber and Kohler (2013) and Felber, Kohler and Krzyżak
(2013)), the error of mn is measured in this paper by the L1 error computed with respect
to a fixed but unknown probability measure µ, i.e., by∫

|mn(x)−m(x)|µ(dx). (3)

In order to derive nontrivial rate of convergence results it is assumed in the sequel that
the regression function is (p, C)–smooth according to the following definition.

Definition 1 Let p = k + β for some k ∈ N0 and 0 < β ≤ 1, and let C > 0. A function
m : Rd → R is called (p, C)-smooth, if for every α = (α1, . . . , αd) ∈ Nd0 with

∑d
j=1 αj = k

the partial derivative ∂km
∂x
α1
1 ...∂x

αd
d

exists and satisfies

∣∣∣∣ ∂km

∂xα1
1 . . . ∂xαdd

(x)− ∂km

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖β
for all x, z ∈ Rd, where N0 is the set of non-negative integers.

In the sequel minimax rate of convergence results for the L1 error (3) are derived. More
precisley, for function classes F (p,C) of (p, C)–smooth functions f : Rd → R the behaviour
of

inf
m̃n

sup
m∈F(p,C)

∫
|m̃n(x)−m(x)|µ(dx)

is analyzed, and estimates mn are constructed such that∫
|mn(x)−m(x)|µ(dx) ≈ inf

m̃n
sup

m∈F(p,C)

∫
|m̃n(x)−m(x)|µ(dx).

A related problem is nonparametric regression estimation, where the x-values of the data
Dn defined by (1) and (2) are given by an independent and identically distributed sample
of µ and the corresponding function values are observed with additional errors with mean
zero. This problem has been extensively studied in the literature. The most popular
estimates include kernel regression estimate (cf., e.g., Nadaraya (1964, 1970), Watson
(1964), Devroye and Wagner (1980), Stone (1977, 1982), Devroye and Krzyżak (1989)
or Kohler, Krzyżak and Walk (2009)), partitioning regression estimate (cf., e.g., Györfi
(1981), Beirlant and Györfi (1998) or Kohler, Krzyżak andWalk (2006)), nearest neighbor
regression estimate (cf., e.g., Devroye (1982) or Devroye, Györfi, Krzyżak and Lugosi
(1994)), least squares estimates (cf., e.g., Lugosi and Zeger (1995) or Kohler (2000))
and smoothing spline estimates (cf., e.g., Wahba (1990) or Kohler and Krzyżak (2001)).
Minimax rates of convergence in this context have been derived in Stone (1980,1982,
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1985, 1994), Antos, Györfi and Kohler (2000) and Kohler, Krzyżak and Walk (2006,
2009).
Kohler and Krzyżak (2013) have analyzed how the minimax rate of convergence results

in Stone (1982) change in case that the function m can be observed without error. The
main results there are that firstly for estimating (p, C)-smooth functions no estimate can
achieve a rate better than n−p/d. Secondly, a nearest neighbor estimate achieves this
rate if p ≤ 1. Thirdly, a nearest neighbor polynomial interpolation estimate achieves this
rate for arbitrary p ∈ N in case d = 1 provided the distribution µ satisfies regularity
assumptions (which are satisfied, e.g., in case of the uniform distribution). And fourthly
it was shown that without regularity assumption on µ no estimate can achieve a rate of
convergence better than n−1. Througout this paper it was assumed that the support of
µ is bounded.
In this article it is investigated how these rate of convergence results change in case

that the estimate is allowed to choose the design points, i.e., the points where the func-
tion values of m are observed, in an adaptive way as described by (1). Surprisingly,
the minimax rate of convergence for estimation of (p, C)–smooth functions still remains
n−p/d, but this time it is achievable even in case p/d > 1 without regularity conditions
on the design measure µ. Furthermore it is shown that this rate of convergence cannot
be improved even if the function is not allowed to change with the size of the data, and
that this rate of convergence can be achieved even if the support of the design measure
is unbounded but the design measure satisfies some moment condition.
Throughout the paper the following notation is used: The sets of natural numbers,

integers and real numbers are denoted by N, Z and R, resp. For z ∈ R the smallest
integer greater than or equal to z is denoted by dze, and bzc is the largest integer less
than or equal to z. For f : Rd → R

‖f‖∞ = sup
x∈Rd

|f(x)|

is its supremum norm, and the supremum norm of f on a set A ⊆ Rd is denoted by

‖f‖∞,A = sup
x∈A
|f(x)|

‖x‖ is the Euclidean norm of a vector x ∈ Rd. The components of x ∈ Rd are denoted
by x(1), . . . , x(d), i.e.,

x = (x(1), . . . , x(d))T .

The support of a probability measure µ defined on the Borel sets in Rd is abbreviated by

supp(µ) =
{
x ∈ Rd : µ(Sr(x)) > 0 for all r > 0

}
,

where Sr(x) is the ball of radius r around x.
The outline of the paper is as follows: The main results are formulated in Section 2.

The proofs are contained in Section 3.
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2 Main results

In our first result we assume that the support of µ is bounded. In order to simplify
the notation we assume w.l.o.g. that supp(µ) = [0, 1]d. We will use well-known results
from spline theory to show that if we choose in this case the designs points z1, . . . , zn
equidistantly in [0, 1]d, then a properly defined spline approximation of a (p, C)-smooth
function achieves the rate of convergence n−p/d.
In order to define the spline approximation, we introduce polynomial splines, i.e., sets

of piecewise polynomials satisfying a global smoothness condition, and a corresponding
B-spline basis consisting of basis functions with compact support as follows:
Choose K ∈ N and M ∈ N0, and set uk = k/K (k ∈ Z). For k ∈ Z let Bk,M :

R → R be the univariate B-spline of degree M with knot sequence (ul)l∈Z and support
supp(Bk,M ) = [uk, uk+M+1]. In caseM = 0 this means that Bk,0 is the indicator function
of the interval [uk, uk+1), and for M = 1 we have

Bk,1(x) =


x−uk

uk+1−uk , uk ≤ x ≤ uk+1,
uk+2−x

uk+2−uk+1
, uk+1 < x ≤ uk+2,

0 , else,

(so-called hat-function). The general definition of Bk,M can be found, e.g., in de Boor
(1978), or in Section 14.1 of Görfi et al. (2002). These B-splines are basis functions of
sets of univariate piecewise polynomials of degree M , where the piecewise polynomials
are globally (M − 1)–times continuously differentiable and where the M -th derivative of
the functions have jump points only at the knots ul (l ∈ Z).

For k = (k1, . . . , kd) ∈ Zd we define the tensor product B-spline Bk,M : Rd → R by

Bk,M (x(1), . . . , x(d)) = Bk1,M (x(1)) · · ·Bkd,M (x(d)) (x(1), . . . , x(d) ∈ R).

With these functions we define SK,M as the set of all linear combinations of all those of
the above tensor product B-splines, where the support has nonempty intersection with
[0, 1]d, i.e., we set

SK,M =

 ∑
k∈{−M,−M+1,...,K−1}d

ak ·Bk,M : ak ∈ R

 .

It can be shown by using standard arguments from spline theory, that the functions in
SK,M are in each component (M−1)-times continuously differentiable, that they are equal
to a (multivariate) polynomial of degree less than or equal to M (in each component) on
each rectangular

[uk1 , uk1+1)× · · · × [ukd , ukd+1) (k = (k1, . . . , kd) ∈ Zd), (4)

and that they vanish outside of the set[
−M
K
, 1 +

M

K

]d
.
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Next we define spline approximations using so-called quasi interpolands: For a function
m : [0, 1]d → R we define a approximating spline by

(Qm)(x) =
∑

k∈{−M,−M+1,...,K−1}d
Qkm ·Bk,M

where
Qkm =

∑
j∈{0,1,...,M}d

ak,j ·m(tk1,j1 , . . . , tkd,jd)

for some ak,j ∈ R and some suitable chosen points tk,j ∈ supp(Bk,M ) ∩ [0, 1]. It can be
shown that if we set

tk,j =
k ·M + j

K ·M
(j ∈ {0, . . . ,M}, k ∈ {0, . . . ,K − 1})

and
tk,j =

j

K ·M
(j ∈ {0, . . . ,M}, k ∈ {−M,−M + 1, . . . ,−1}),

then there exists coefficients ak,j (which can be computed by solving a linear equation
system), such that

|Qkf | ≤ c1 · ‖f‖∞,[uk1 ,uk1+M+1]×···×[ukd ,ukd+M+1] (5)

for any k ∈ {−M,−M + 1, . . . ,K − 1}d, any f : [0, 1]d → R and some universal constant
c1, and such that Q reproduces polynomials of degree M or less (in each component)
on [0, 1]d, i.e., for any multivariate polynomial p : Rd → R of degree M or less in each
component we have

(Qp)(x) = p(x) (x ∈ [0, 1]d) (6)

(cf., e.g., Theorem 14.4 and Theorem 15.2 in Györfi et al. (2002)).
Next we define our estimate mn as a quasi interpoland. We fix the degree M ∈ N and

set

K = Kn =

⌊
bn1/dc − 1

M

⌋
.

Furthermore we choose z1, . . . , zn such that all of the (M ·K + 1)d points of the form(
j1

M ·K
, . . . ,

jd
M ·K

)
(j1, . . . , jd ∈ {0, 1, . . . ,M ·K})

are contained in {z1, . . . , zn}, which is possible since (M ·K + 1)d ≤ n. Then we define

mn(x) = (Qm)(x),

where Qm is the above defined quasi interpoland satisfying (5) and (6). The computation
of Qm requires only function values of m at the points z1, . . . , zn and hence mn is well
defined.
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Theorem 1 Let p = k+β for some k ∈ N0 and 0 < β ≤ 1, and let C > 0. Assume that
m : Rd → R is (p, C)-smooth. Let mn be the above defined estimate with degree M ≥ k.
Then for n ≥ max{2d · (M + 1)d, 4d}

‖mn −m‖∞,[0,1]d ≤ c2 · n−p/d (7)

for some constant c2 > 0 which depends only on M , C, p and d. In particular, if
supp(µ) ⊆ [0, 1]d, then we also have∫

Rd
|mn(x)−m(x)|µ(dx) ≤ c2 · n−p/d. (8)

Next we show, that if we want to estimate a (p, C)-smooth function m : Rd → R on
whole Rd, it is in case of the L1(µ)-norm possible to achieve the same rate of convergence
provided µ satisfies some moment condition, namely∫

‖x‖γµ(dx) <∞ for some γ > 1 + 3 · p (9)

We define our estimate in case of an unbounded support of µ as follows: Above we have
introduced a quasi interpoland on the cube [0, 1]d, which uses (M ·K + 1)d observations
of function values of m at equidistant points in [0, 1]d and B-splines of degree M with
knots uk = k/K (k ∈ Z). Analogously we define a quasi interpoland

QN,M,[a,a+δ]dm

of the function m : Rd → R of degree M on the cube

[a,a + δ] = [a(1), a(1) + δ]× . . .× [a(d), a(d) + δ]

for a = (a(1), . . . , a(d)) and δ > 0. This quasi interpoland uses observations of m at(⌊
bN1/dc − 1

M

⌋
·M + 1

)d
equidistant points in [a,a + δ] and B-splines of degree M with knots

u
(i)
k = a(i) + k · δ

b bN
1/dc−1
M c

(k ∈ Z)

for the univariate B-splines for the i-th component of Rd (i ∈ {1, . . . , d}). Set

jmax(n) =
⌊
np/(d·γ)

⌋
and define the estimate by zero outside of

[−jmax(n)− 1, jmax(n) + 1]d .
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For c3 > 0 defined below we set

Nj =
c3 · n

(j + 1)
d
p
·(γ−1−2·p)

(j ∈ N0).

Then we define

mn(x) =


(QN0,M,[−1,1]dm)(x) if x ∈ [−1, 1]d,

(QNj ,M,[a,a+1]dm)(x) if x ∈ [a,a + 1]d ⊆ [−j − 1, j + 1]d \ (−j, j)d

for some a ∈ Zd, 1 ≤ j ≤ jmax(n),

0 if x /∈ [−jmax(n)− 1, jmax(n) + 1]d.

For j ∈ N the set [−j − 1, j + 1]d \ [−j, j]d contains

(2j + 2)d − (2j)d ≤ c4 · jd−1

sets of the form [a,a + 1]d, a ∈ Zd. Since

N0 +

jmax(n)∑
j=1

c4 · jd−1Nj ≤ n · c3 ·

1 +

∞∑
j=1

c4

(j + 1)
d
p
·(γ−1−2·p)−d+1


= n · c3 ·

1 +
∞∑
j=1

c4

(j + 1)
1+ d

p
·(γ−1−3·p)


this estimate needs at most n observations of the function values ofm provided we choose
c3 > 0 such that

c3 ≤
1

1 +
∑∞

j=1
c4

(j+1)
1+ dp ·(γ−1−3·p)

.

For this estimate we can show the following result:

Theorem 2 Let p = k+β for some k ∈ N0 and 0 < β ≤ 1, and let C > 0. Assume that
m : Rd → R is (p, C)-smooth and let µ be a probability measure satisfying (9). Let mn

be the above defined estimate with degree M ≥ k. Then for sufficiently large n∫
Rd
|mn(x)−m(x)|µ(dx) ≤ c5 · n−p/d (10)

for some constant c5 > 0 which depends only on M , C, p and d.

Our next theorem shows that the above rate of convergence results are optimal in the
minimax sense.

Theorem 3 Let p = k + β for some k ∈ N0 and 0 < β ≤ 1, let C > 0 and let F (p,C) be
the set of all (p, C)-smooth functions f : Rd → R . Then we have for any n ∈ N

inf
mn

sup
m∈F(p,C)

∫
[0,1]d

|mn(x)−m(x)| dx ≥ c6 · n−p/d
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for some constant c6 > 0 which depends only on p, C and d. In other words: for any
estimate mn applied to a data set described by (1) and (2) and any data size n we can
find a (p, C)-smooth function m : [0, 1]d → R such that∫

[0,1]d
|mn(x)−m(x)| dx ≥ c6 · n−p/d.

In the above result the worst function, which leads to a large error of an estimate mn,
changes with the number n of the observed function values. But in an application often
it is possible to observe more and more function values of some fixed function. As our
next result shows, the rate of convergence in Theorem 3 cannot be improved even if the
function to be approximated is not allowed to change with n.

Theorem 4 Let p = k + β for some k ∈ N0 and 0 < β ≤ 1, and let C > 0. Let
(mn)n∈N be an arbitrary sequence of estimates and let an be an arbitrary sequence of
positive numbers converging monotonically towards zero. Then there exists a (p, C)-
smooth function m : [0, 1]d → R such that

lim sup
n→∞

∫
[0,1]d |mn(x)−m(x)| dx

an · n−p/d
=∞.

3 Proofs

3.1 Proof of Theorem 1

In the proof of Theorem 1 we need the following lemma.

Lemma 1 Let p = k+β for some k ∈ N0 and 0 < β ≤ 1, and let C > 0. Let f : Rd → R
be a (p, C)–smooth function, let x0 ∈ Rd and let pk be the Taylor polynomial of f of total
degree k around x0, i.e.,

pk(x) =
∑

j1,...,jd∈{0,1,...,k},
j1+···+jd≤k

1

j1! · · · jd!
· ∂j1+···+jdf

∂j1x(1) . . . ∂jdx(d)
(x0) · (x(1)−x(1)

0 )j1 · · · (x(d)−x(d)
0 )jd .

Then we have for any x ∈ Rd

|f(x)− pk(x)| ≤ c7 · C · ‖x− x0‖p

for some constant c7 ∈ R depending only on k and on d.

Proof. The proof is a straightforward extension of the proof of Lemma 11.1 in Görfi et
al. (2002). For the sake of completeness we present nevertheless a complete proof.
The definition of pk and the integral form of the remainder of a Taylor series imply

f(x)− pk(x)
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= f(x)− pk−1(x)−
∑

j1,...,jd∈{0,1,...,k},
j1+···+jd=k

1

j1! · · · jd!
· ∂j1+···+jdf

∂j1x(1) . . . ∂jdx(d)
(x0)

·(x(1) − x(1)
0 )j1 · · · (x(d) − x(d)

0 )jd

=
∑

j1,...,jd∈{0,1,...,k},
j1+···+jd=k

k

j1! · · · jd!
·
∫ 1

0
(1− t)k−1 · ∂j1+···+jdf

∂j1x(1) . . . ∂jdx(d)
(x0 + t · (x− x0)) dt

·(x(1) − x(1)
0 )j1 · · · (x(d) − x(d)

0 )jd

−
∑

j1,...,jd∈{0,1,...,k},
j1+···+jd=k

k

j1! · · · jd!
·
∫ 1

0
(1− t)k−1 ∂j1+···+jdf

∂j1x(1) . . . ∂jdx(d)
(x0) dt

·(x(1) − x(1)
0 )j1 · · · (x(d) − x(d)

0 )jd

=
∑

j1,...,jd∈{0,1,...,k},
j1+···+jd=k

k

j1! · · · jd!
· (x(1) − x(1)

0 )j1 · · · (x(d) − x(d)
0 )jd

·
∫ 1

0
(1− t)k−1

(
∂j1+···+jdf

∂j1x(1) . . . ∂jdx(d)
(x0 + t · (x− x0))− ∂j1+···+jdf

∂j1x(1) . . . ∂jdx(d)
(x0)

)
dt.

Using the triangle inequality and the (p, C)–smoothness of f we conclude

|f(x)− pk(x)|

≤
∑

j1,...,jd∈{0,1,...,k},
j1+···+jd=k

k

j1! · · · jd!
· ‖x− x0‖k ·

∫ 1

0
(1− t)k−1 · C · tβ · ‖x− x0‖β dt

≤ c7 · C · ‖x− x0‖k+β,

which completes the proof. �
Proof of Theorem 1. The proof is an easy consequence of the properties (5) and (6)
of Qm and of Lemma 1. Let x ∈ [0, 1]d be arbitrary. Let k ∈ {0, 1, . . . ,K}d be the index
of the rectangular

[uk(1) , uk(1)+1]× · · · × [uk(d) , uk(d)+1]

which contains x (in case that there exists several of these rectangles containing x, choose
one of them). Let px be the Taylor polynomial of m of total degree k around x. Then
px(x) = m(x). Using this and (5) and (6) and the facts that only those B-splines with
index j satisying k(l) −M ≤ j(l) ≤ k(l) for all l ∈ {1, . . . , d} do not vanish at x and that
the B-splines sum up to one (cf., e.g., Lemma 15.4 in Györfi et al. (2002)) we get

|mn(x)−m(x)|
= |(Qm)(x)− px(x)|
= |(Qm)(x)− (Qpx)(x)|

=

∣∣∣∣∣∣
∑

j∈{−M,−M+1,...,K−1}d
Qj(m− px) ·Bj,M (x)

∣∣∣∣∣∣
9



≤
∑

j∈{−M,−M+1,...,K−1}d:
k(l)−M≤j(l)≤k(l) (l∈{1,...,d})

|Qj(m− px)|

≤ (M + 1)d · ‖m− px‖∞,[u
k(1)−M ,uk(1)+M+1

]×···×[u
k(d)−M ,uk(d)+M+1

].

By Lemma 1 we know that

‖m− px‖∞,[u
k(1)−M ,uk(1)+M+1

]×···×[u
k(d)−M ,uk(d)+M+1

]

≤ c7 · C ·
(√

d · M + 1

K

)p
= c7 · C · (

√
d · (M + 1))p · 1

(
⌊
bn1/dc−1

M

⌋
)p
,

which implies (7). Inequality (8) is a immediate consequence of (7). �

3.2 Proof of Theorem 2

The proof of Theorem 1 implies that in case of N ≥ 4d · (M + 1)d we have

‖QN,M,[a,a+δ]dm−m‖∞,[a,a+δ]d ≤ c8 ·

(
δ

bN1/dc−1
M

)p
,

hence c3 · n ≥ 4d · (M + 1)d implies

‖QN0,M,[−1,1]dm−m‖∞,[−1,1]d ≤ c9 · n−p/d

and for any j ∈ N and a ∈ Zd we have

‖QNj ,M,[a,a+1]dm−m‖∞,[a,a+1]d ≤ c9 · (j + 1)γ−1−2p · n−p/d

provided c3 · n ≥ 4d · (M + 1)d · (j + 1)(d/p)·(γ−1−2·p). Since

(jmax(n) + 1)(d/p)·(γ−1−2·p)

n
→ 0 (n→∞),

we can assume w.l.o.g. that n satisfies the above two inequalities. We conclude∫
|mn(x)−m(x)|µ(dx)

=

∫
[−1,1]d

|mn(x)−m(x)|µ(dx) +

jmax(n)∑
j=1

∫
[−j−1,j+1]d\[−j,j]d

|mn(x)−m(x)|µ(dx)

+

∫
Rd\[−jmax(n)−1,jmax(n)+1]d

|mn(x)−m(x)|µ(dx)

10



≤ c9 · n−p/d +

jmax(n)∑
j=1

c9 · (j + 1)γ−1−2p · n−p/d · j−γ ·
∫

[−j−1,j+1]d\[−j,j]d
‖x‖γµ(dx)

+‖m‖∞ · (jmax(n) + 1)−γ ·
∫
Rd\[−jmax(n)−1,jmax(n)+1]d

‖x‖γµ(dx)

≤ c10 · n−p/d ·
∞∑
j=0

(j + 1)−1−2p ·
(

1 +

∫
Rd
‖x‖γµ(dx)

)
≤ c11 · n−p/d,

since by (9) we have ∫
Rd
‖x‖γµ(dx) <∞

and since −1− 2p < −1 implies
∞∑
j=0

(j + 1)−1−2p <∞.

�

3.3 Proof of Theorem 3

The proof is a modification of the proof of Theorem 3 in Kohler and Krzyżak (2013),
which in turn is based on the proof of a lower bound presented in Stone (1982) (see also
proof of Theorem 3.2 in Györfi et al. (2002)).
Set Mn = d(2 ·n)1/de and let {An,j}j=1,...,Md

n
be a partition of [0, 1]d into cubes of side

length 1/Mn. Choose a (p, 2β−1C)-smooth function g : Rd → [−1, 1] satisfying

supp(g) ⊆
[
−1

2
,
1

2

]d
and

∫
|g(x)| dx > 0.

For j ∈ {1, . . . ,Md
n} let an,j be the center of An,j and set

gn,j(x) = M−pn · g (Mn · (x− an,j)) .

We index the class of functions considered by cn = (cn,1, . . . , cn,Md
n
) ∈ {−1, 1}Md

n and
define m(cn) : Rd → [−1, 1] by

m(cn)(x) =

Md
n∑

j=1

cn,j · gn,j(x).

Let mn be an arbitrary estimate of m. As in the proof of Theorem 3.2 in Györfi et al.
(2002) we can see that m(cn) is (p, C)-smooth, which implies

sup
m∈F(p,C)

∫
|mn(x)−m(x)|PX(dx)

11



≥ sup
cn∈{−1,1}Md

n

∫
[0,1]d

|mn(x)−m(cn)(x)|dx.

In order to bound the right-hand side of the inequality above we randomize cn. Choose
independent random variables C1, . . . , CMd

n
satisfying

P{Ck = −1} = P{Ck = 1} =
1

2
(k = 1, . . . ,Md

n),

which are, in case that z1, . . . , zn random, also independent from z1, . . . , zn, and set

Cn = (C1, . . . , CMd
n
).

Then

sup
cn∈{−1,1}Md

n

∫
[0,1]d

|mn(x)−m(cn)(x)|dx

≥ E

∫
[0,1]d

|mn(x)−m(Cn)(x)|dx

=

Md
n∑

j=1

E

∫
An,j

|mn(x)− Cn,j · gn,j(x)|dx

≥
Md
n∑

j=1

E

{∫
An,j

|mn(x)− Cn,j · gn,j(x)|dx · I{z1,...,zn /∈An,j}

}

=

Md
n∑

j=1

E

{
E

{∫
An,j

|mn(x)− Cn,j · gn,j(x)|dx
∣∣Fn,j} · I{z1,...,zn /∈An,j}

}
,

where Fn,j is the σ-field generated by z1, . . . , zn, C1, . . . , Cj−1, Cj+1, . . . , CMd
n
. (Here

z1, . . . , zn are included in the σ-field Fn,j because it is in principle allowed that they are
randomly chosen.) If z1, . . . , zn are not contained in An,j , then m(Cn)(z1), . . .m(Cn)(zn)
and hence also mn(x) are independent of Cj , which implies

E

{∫
An,j

|mn(x)− Cn,j · gn,j(x)|dx
∣∣Fn,j}

=
1

2
·
∫
An,j

|mn(x)− gn,j(x)|dx+
1

2
·
∫
An,j

|mn(x) + gn,j(x)|dx

=
1

2
·
∫
An,j

(|gn,j(x)−mn(x)|+ |gn,j(x) +mn(x)|) dx

≥ 1

2
·
∫
An,j

|(gn,j(x)−mn(x)) + (gn,j(x) +mn(x))| dx

=

∫
An,j

|gn,j(x)| dx,

12



where the latter inequality follows from triangle inequality. From this we conclude

Md
n∑

j=1

E

{
E

{∫
An,j

|mn(x)− Cn,j · gn,j(x)|dx
∣∣Fn,j} · I{z1,...,zn /∈An,j}

}

≥
Md
n∑

j=1

E

{∫
An,j

|gn,j(x)| dx · I{z1,...,zn /∈An,j}

}

= M−p−dn ·
∫
|g(x)| dx ·E


Md
n∑

j=1

I{z1,...,zn /∈An,j}


≥M−p−dn ·

∫
|g(x)| dx ·

(
Md
n − n

)
,

where we have used that there are at most n sets of theMd
n disjoint sets An,1, . . . , An,Md

n
,

which contain at least one of the n points z1, . . . , zn. Using the definition of Mn we see
that

M−p−dn ·
(
Md
n − n

)
≥ M−p−dn · n ≥ 1(

(2 · n)1/p + 1
)p+d · n ≥ 1

2p+d · (2n)(p+d)/d
· n

≥ 1

2p+d+1 · 2p/d
· n−p/d,

which completes the proof. �

3.4 Proof of Theorem 4

The proof is a modification of the proof of Theorem 3.3 in Györfi et al. (2002), which in
turn is based on Antos, Györfi and Kohler (2000) .
Let {Ij}j be a partition of [0, 1] into intervals Ij of length 2−j . The idea of the proof

is to use simultaneously on each of the sets Idj a partition corresponding to the one in
the proof of Theorem 3 for a suitable sample size nj determined below.

Since an tends monotonically to zero, we can find a subsequence (nj)j of (n)n such
that

anj ≤
1

2
· 4−p−d · 2−j·(p+d). (11)

Set
Mj =

⌈
(2 · nj)1/d

⌉
and partition Idj into Sj = Md

j cubes Aj,1, . . . , Aj,Sj of side length

2−j

Mj
≥ 2−j

(2 · nj)1/d + 1
≥ 2−j

2 · (2 · nj)1/d
≥ 1

4
· 2−j · n−1/d

j =: pj .

Choose a (p, 2β−1C)-smooth function g : Rd → [−1, 1] satisfying

supp(g) ⊆
[
−1

2
,
1

2

]d
and

∫
|g(x)| dx > 0.

13



For j ∈ N and k ∈ {1, 2, . . . , Sj} let aj,k be the center of Aj,k and set

gj,k(x) = ppj · g
(
p−1
j · (x− aj,k)

)
.

We index the class of functions considered by a vector

c = (c1,1, c1,2, . . . , c1,S1 , c2,1, c2,2, . . . , c2,S2 , . . . )

of +1 and −1 components and define m(c) : Rd → [−1, 1] by

m(c)(x) =
∞∑
j=1

Sj,k∑
k=1

cj,k · gj,k(x).

Let mn be an arbitrary estimate of m. As in the proof of Theorem 3.2 in Györfi et al.
(2002) we can see that m(c) is (p, C)-smooth, which implies

sup
m∈F(p,C)

lim sup
n→∞

∫
[0,1]d |mn(x)−m(x)| dx

an · n−p/d

≥ sup
c∈{−1,1}∞

lim sup
n→∞

∫
[0,1]d |mn(x)−m(c)(x)| dx

an · n−p/d
.

Let c ∈ {−1, 1}∞ be arbitrary and set

c̄n = (c̄n,1,1, . . . , c̄n,1,S1 , c̄n,2,1, . . . , c̄n,2,S2 , . . . ),

where

c̄n,j,k =

{
1 if

∫
Aj,k
|mn(x)− 1 · gj,k(x)| dx ≤

∫
Aj,k
|mn(x)− (−1) · gj,k(x)| dx

−1 else.

Using the definition of c̄n,j,k and the triangle inequality we see that∫
Aj,k

|mn(x)− cj,k · gj,k(x)| dx

≥ 1

2
·
∫
Aj,k

|mn(x)− cj,k · gj,k(x)| dx+
1

2
·
∫
Aj,k

|mn(x)− c̄n,j,k · gj,k(x)| dx

≥ 1

2
·
∫
Aj,k

|(mn(x)− cj,k · gj,k(x)) + (c̄n,j,k · gj,k(x)−mn(x))| dx

=
1

2
· |c̄n,j,k − cj,k| · pp+dj ·

∫
|g(x)| dx.

From this we conclude∫
[0,1]d

|mn(x)−m(c)(x)| dx

14



≥
∞∑
j=1

Sj∑
k=1

∫
Aj,k

|mn(x)− cj,k · gj,k(x)| dx

≥
∫
|g(x)| dx ·

∞∑
j=1

Sj∑
k=1

pp+dj · I{c̄n,j,k 6=cj,k}

≥
∫
|g(x)| dx ·

∑
j∈N :Sj≥2·n

Sj∑
k=1

pp+dj · I{c̄n,j,k 6=cj,k}

=:

∫
|g(x)| dx ·Rn(c).

Hence

sup
m∈F(p,C)

lim sup
n→∞

∫
[0,1]d |mn(x)−m(x)| dx

an · n−p/d
≥

∫
|g(x)| dx · sup

c∈{−1,1}∞
lim sup
n→∞

Rn(c)

an · n−p/d
.

Next we randomize c. Choose independent random variables C1,1, C1,2,. . . , C1,S1 , C2,1,
C2,2, . . . , C2,S2 , . . . satisfying

P{Cj,k = −1} = P{Cj,k = 1} =
1

2
(j ∈ N, k = 1, . . . , Sj),

which are, in case that z1, . . . , zn random, also independent from z1, . . . , zn, and set

C = (C1,1, C1,2, . . . , C1,S1 , C2,1, C2,2, . . . , C2,S2 , . . . ).

In the sequel we derive a lower bound for ERn(C). Let Fj,k be the σ-field generated by
z1, . . . , zn, and Ci,l (i ∈ N, l ∈ {1, . . . , Si}, (i, l) 6= (j, k)). If z1, . . . , zn are not contained
in Aj,k, then m(Cn)(z1), . . .m(Cn)(zn) and hence also mn(x) and c̄n,j,k are independent
of Cj,k, which implies

ERn(C) = E

 ∑
j∈N:Sj≥2n

Sj∑
k=1

pp+dj ·P{c̄n,j,k 6= Cj,k|Fj,k}


≥ E

 ∑
j∈N:Sj≥2n

Sj∑
k=1

pp+dj ·P{c̄n,j,k 6= Cj,k|Fj,k} · I{z1,...,zn /∈Aj,k}


=

1

2
·E

 ∑
j∈N:Sj≥2n

Sj∑
k=1

pp+dj · I{z1,...,zn /∈Aj,k}


≥ 1

2
·

∑
j∈N:Sj≥2n

pp+dj · (Sj − n),

where we have used that at most n of the Sj disjoint sets Aj,1, . . . , Aj,Sj contain at least
one of the n points z1, . . . , zn. Hence

ERn(C) ≥ 1

4
·

∑
j∈N:Sj≥2n

pp+dj · Sj .
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For n = nt we have
St = Md

t ≥ 2 · nt,

which together with inequality (11) implies

ERnt(C) ≥ 1

4
· pp+dt · St ≥

1

4
·
(

1

4
· 2−t · n−1/d

t

)p+d
· 2 · nt ≥ ant · n

−p/d
t .

We conclude

sup
c∈{−1,1}∞

lim sup
n→∞

Rn(c)

an · n−p/d
≥ sup

c∈{−1,1}∞
lim sup
t→∞

Rnt(c)

ERnt(C)

≥ E

{
lim sup
t→∞

Rnt(C)

ERnt(C)

}
.

Because of
Rnt(c)

ERnt(C)
≤

∑
j∈N:Sj≥2nt

pp+dj · Sj
1
4 ·
∑

j∈N:Sj≥2nt
pp+dj · Sj

≤ 4,

we can apply the Lemma of Fatou, which yields

E

{
lim sup
t→∞

Rnt(C)

ERnt(C)

}
≥ lim sup

t→∞
E

{
Rnt(C)

ERnt(C)

}
= 1.

Summarizing the above results we get

lim sup
n→∞

∫
[0,1]d |mn(x)−m(x)| dx

an · n−p/d
≥
∫
|g(x)| dx.

By replacing an by ān satisfying

an
ān
→ 0 (n→∞)

we get the assertion. �
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