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Abstract

Nonparametric estimation of a quantile of a random variable m(X) is considered, where m : Rd →

R is a function which is costly to compute and X is a Rd-valued random variable with given density.

An importance sampling quantile estimate of m(X), which is based on a suitable estimate mn of

m, is defined, and it is shown that this estimate achieves a rate of convergence of order log1.5(n)/n.

The finite sample size behavior of the estimate is illustrated by simulated data.

AMS classification: Primary 62G05; secondary 62G30.

Key words and phrases: Nonparametric quantile estimation, importance sampling, rate of conver-

gence.

1 Introduction

In this paper we consider a simulation model of a complex technical system described by

Y = m(X),

where X is a Rd-valued random variable with density f : Rd → R and m : Rd → R is a known

function which is expensive to evaluate. Let
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Running title: Nonparametric extreme quantile estimation
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G(y) = P{Y ≤ y} = P{m(X) ≤ y}

be the cumulative distribution function (cdf) of Y . For α ∈ (0, 1) we are interested in estimating

quantiles of the form

qα = inf{y ∈ R : G(y) ≥ α}

using at most n evaluations of the function m. Here we assume that the density f of X is known.

A simple idea is to estimate qα using an i.i.d. sample X1, . . . , Xn of X and to compute the

empirical cdf

Gm(X),n(y) =
1

n

n∑
i=1

I{m(Xi)≤y} (1)

and to use the corresponding plug-in estimate

qα,n = inf{y ∈ R : Gm(X),n(y) ≥ α}. (2)

Set Yi = m(Xi) (i = 1, . . . , n) and let Y1:n, . . . , Yn:n be the order statistics of Y1, . . . , Yn, i.e.,

Y1:n, . . . , Yn:n is a permutation of Y1, . . . , Yn such that

Y1:n ≤ . . . ≤ Yn:n.

Since

qα,n = Ydnαe:n

is in fact an order statistic, the properties of this estimate can be studied using the results from

order statistics. In particular Theorem 8.5.1 in Arnold, Balakrishnan and Nagaraja (1992) implies

that in case that m(X) has a density g which is continuous and positive at qα we have

√
n · g(qα) ·

Ydnαe:n − qα√
α · (1− α)

→ N(0, 1) in distribution.

This implies

P

{
|q̄α,n − qα| >

cn√
n

}
→ 0 (n→∞) (3)

whenever cn →∞ (n→∞).

In this paper we apply importance sampling (IS) to obtain a better estimate of qα. Importance

sampling is a technique to improve estimation of the expectation of a function φ : Rd → R by sample

averages. Instead of using an independent and identically distributed sequence X,X1, X2, . . . and

estimating Eφ(X) by

1

n

n∑
i=1

φ(Xi),

one can use importance sampling, where a new random variable Z with a density h satisfying for

all x ∈ Rd

φ(x) · f(x) 6= 0 ⇒ h(x) 6= 0
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is chosen and for Z,Z1, Z2, . . . independent and identically distributed

E{φ(X)} = E

{
φ(Z) · f(Z)

h(Z)

}
is estimated by

1

n

n∑
i=1

φ(Zi) ·
f(Zi)

h(Zi)
, (4)

whereas we assume that 0
0 = 0. Here the aim is to choose h such that the variance of (4) is small

(see for instance Chapter 4.6 in Glasserman (2004), Nedermayer (2009) and the literature cited

therein).

Quantile estimation using importance sampling has been considered by Cannamela, Garnier

and Iooss (2008), Egloff and Leippold (2010) and Morio (2012). All three papers proposed new

estimates in various models, however only Egloff and Leippold (2010) investigated theoretical

properties (consistency) of their method. None of the papers contain any results on the rates of

convergence.

In this paper we propose a new importance sampling quantile estimate and analyze its rates

of convergence. The basic idea is to use an initial estimate of the quantile based on the order

statistics of samples of m(X) in order to determine an interval [an, bn] containing the quantile.

Then we construct an estimate mn of m and restrict f to the inverse image m−1
n ([an, bn]) of [an, bn]

to construct a new random variable Z. Our final estimate of the quantile is then defined as an

order statistic of m(Z). Under suitable assumptions on the smoothness of m and on the tails of f

we are able to show that this estimate achieves the rate of convergence of order log1.5 n
n .

Throughout this paper we use the following notations: N, N0, Z and R are the sets of positive

integers, nonnegative integers, integers and real numbers, respectively. For a real number z we

denote by bzc and dze the largest integer less than or equal to z and the smallest integer larger

than or equal to z, respectively. ‖x‖ is the Euclidean norm of x ∈ Rd. For f : Rd → R and A ⊆ Rd

we set

‖f‖∞,A = sup
x∈A
|f(x)|.

Let p = k + s for some k ∈ N0 and 0 < s ≤ 1, and let C > 0. A function m : Rd → R is

called (p, C)-smooth, if for every α = (α1, . . . , αd) ∈ Nd0 with
∑d
j=1 αj = k the partial derivative

∂km
∂x
α1
1 ...∂x

αd
d

exists and satisfies∣∣∣∣ ∂km

∂xα1
1 . . . ∂xαdd

(x)− ∂km

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖s
for all x, z ∈ Rd.

For nonnegative random variables Xn and Yn we say that Xn = OP(Yn) if

lim sup
n→∞

P(Xn > c1 · Yn) = 0

3



for some finite constant c1 > 0.

The estimate of the quantile is defined in Section 2. The main result is formulated in Section 3

and proofs are provided in Section 5. In Section 4 we illustrate the finite sample size performance

of the estimate using simulated data.

2 Definition of the estimate

Let n = n1 + n2 + n3 where n1 = n1(n) = bn/3c = n2 = n2(n) and n3 = n3(n) = n − n1 − n2.

We will use n1 evaluations of m in order to generate an initial estimate of qα, n2 evaluations of m

to construct an approximation of m, and we will use n3 further evaluations of m to improve our

initial estimate of qα.

Let qα,n1
be the quantile estimate based on order statistics introduced in Section 1. In or-

der to improve it by importance sampling, we will use additional observations (x1,m(x1)), . . . ,

(xn2 ,m(xn2)) of m at points x1, . . . , xn2 ∈ Rd and use an estimate

mn(·) = mn(·, (x1,m(x1)), . . . , (xn2
,m(xn2

))) : Rd → R

of m : Rd → R. Both will be specified later. Let Kn = [−ln, ln]d for some ln > 0 such that ln →∞

as n→∞ and assume that the supremum norm error of mn on Kn is bounded by βn > 0, i.e.,

‖mn −m‖∞,Kn := sup
x∈Kn

|mn(x)−m(x)| ≤ βn. (5)

Set

an = qα,n1
− 2 · log n√

n
− 2 · βn and bn = qα,n1

+ 2 · log n√
n

+ βn,

where both quantities depend (via qα,n1
) on the data

Dn1
= {(X1,m(X1)), . . . , (Xn1

,m(Xn1
)} .

We then replace X by a random variable Z which has the density

h(x) = c2 ·
(
I{x∈Kn : an≤mn(x)≤bn} + I{x/∈Kn}

)
· f(x)

where

c2 =

(∫
Rd

(
I{x∈Kn : an≤mn(x)≤bn} + I{x/∈Kn}

)
f(x)dx

)−1

=
1

1− γ1 − γ2
.

Here

γ1 = P{X ∈ Kn,mn(X) < an|Dn1} =

∫
Rd

1Kn(x) · 1{x :mn(x)<an} · f(x)dx

and

γ2 = P{X ∈ Kn,mn(X) > bn|Dn1
} =

∫
Rd

1Kn(x) · 1{x :mn(x)>bn} · f(x)dx
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can be computed exactly for given f and mn. In our application below we approximate them by

the suitable Riemann sums. Observe that an and bn depend on Dn1
and therefore the density h

and the distribution of Z are random quantities. Furthermore on the event{
|qα,n1

− qα| ≤
log n√
n

}
we have that∫

Rd

(
I{x∈Kn : an≤mn(x)≤bn} + I{x/∈Kn}

)
f(x)dx ≥ P

{
qα −

log n√
n
≤ m(X) ≤ qα +

log n√
n

}
> 0, (6)

provided, e.g., the density of m(X) is positive and continuous at qα. Hence outside of an event

whose probability tends to zero for n→∞ the constant c2 and the density h are in this case well

defined. The main trick in the sequel is that we can relate the quantile qα to a quantile of m(Z)

as shown in Lemma 1 below.

Lemma 1 Assume that (5) holds, m(X) has a density which is continuous and positive at qα and

let Z be a random variable defined as above. Furthermore set

ᾱ =
α− γ1

1− γ1 − γ2

and

qm(Z),ᾱ = inf{y ∈ R : P{m(Z) ≤ y|Dn1} ≥ ᾱ}

where Dn1
= {(X1,m(X1)), . . . , (Xn1

,m(Xn1
)}. Then we have with probability tending to one for

n→∞ that

qα = qm(Z),ᾱ.

Let Z, Z1, Z2, . . . be independent and identically distributed and set

Gm(Z),n3
(y) =

1

n3

n3∑
i=1

I{m(Zi)≤y}.

We estimate qα = qm(Z),ᾱ (which is outside of an event whose probability tends to zero for n→∞

according to Lemma 1 equal to qm(Z),ᾱ) by

q̄m(Z),ᾱ,n3
= inf

{
y ∈ R : Gm(Z),n3

(y) ≥ ᾱ
}

= inf

{
y ∈ R : Gm(Z),n3

(y) ≥ α− γ1

1− γ1 − γ2

}
.

As before we have that q̄m(Z),ᾱ,n3
is an order statistic of m(Z1), . . . , m(Zn3):

q̄m(Z),ᾱ,n3
= m(Z)dᾱ·n3e:n3

.

One possible choice for an estimate mn of m is a spline approximation of m, which we introduce

next. We will use well-known results from spline theory to show that if we choose the design points
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z1, . . . , zn equidistantly in Kn = [−ln, ln]d, then a properly defined spline approximation of a

(p, C)-smooth function achieves the rate of convergence lpn/n
p/d.

In order to define the spline approximation, we introduce polynomial splines, i.e., sets of piece-

wise polynomials satisfying a global smoothness condition, and a corresponding B-spline basis

consisting of basis functions with compact support as follows:

Choose K ∈ N and M ∈ N0, and set uk = k · ln/K (k ∈ Z). For k ∈ Z let Bk,M : R → R

be the univariate B-spline of degree M with knot sequence (uk)k∈Z and support supp(Bk,M ) =

[uk, uk+M+1]. In case M = 0 B-spline Bk,0 is the indicator function of the interval [uk, uk+1), and

for M = 1 we have

Bk,1(x) =


x−uk

uk+1−uk , uk ≤ x ≤ uk+1,

uk+2−x
uk+2−uk+1

, uk+1 < x ≤ uk+2,

0 , elsewhere,

(so-called hat-function). The general recursive definition of Bk,M can be found, e.g., in de Boor

(1978), or in Section 14.1 of Györfi et al. (2002). These B-splines are basis functions of sets

of univariate piecewise polynomials of degree M , where the piecewise polynomials are globally

(M − 1)–times continuously differentiable and where the M -th derivatives of the functions have

jump points only at the knots ul (l ∈ Z).

For k = (k1, . . . , kd) ∈ Zd we define the tensor product B-spline Bk,M : Rd → R by

Bk,M (x(1), . . . , x(d)) = Bk1,M (x(1)) · . . . ·Bkd,M (x(d)) (x(1), . . . , x(d) ∈ R).

With these functions we define SK,M as the set of all linear combinations of all those tensor product

B-splines above, whose support has nonempty intersection with Kn = [−ln, ln]d, i.e., we set

SK,M =

 ∑
k∈{−K−M,−K−M+1,...,K−1}d

ak ·Bk,M : ak ∈ R

 .

It can be shown by using standard arguments from spline theory, that the functions in SK,M
are in each component (M − 1)-times continuously differentiable and that they are equal to a

(multivariate) polynomial of degree less than or equal to M (in each component) on each rectangle

[uk1 , uk1+1)× · · · × [ukd , ukd+1) (k = (k1, . . . , kd) ∈ Zd), (7)

and that they vanish outside the set[
−ln −M ·

ln
K
, ln +M · ln

K

]d
.

Next we define spline approximations using so-called quasi interpolants: For a continuous function

m : Rd → R we define an approximating spline by

(Qm)(x) =
∑

k∈{−K−M,−K−M+1,...,K−1}d
Qkm ·Bk,M
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where

Qkm =
∑

j∈{0,1,...,M}d
ak,j ·m(tk1,j1 , . . . , tkd,jd)

for some ak,j ∈ R and some suitably chosen points tk,j ∈ supp(Bk,M ) = [k ·ln/K, (k+M+1)·ln/K].

It can be shown that if we set

tk,j = k · ln
K

+
j

M
· ln
K

(j ∈ {0, . . . ,M}, k ∈ {−K,−K −M + 1, . . . ,K − 1})

and

tk,j = −ln +
j

M
· ln
K

(j ∈ {0, . . . ,M}, k ∈ {−K −M,−K −M + 1, . . . ,−K − 1}),

then there exist coefficients ak,j (which can be computed by solving a linear equation system), such

that

|Qkf | ≤ c3 · ‖f‖∞,[uk1 ,uk1+M+1]×···×[ukd ,ukd+M+1] (8)

for any k ∈ Zd, any continuous f : Rd → R and some universal constant c1, and such that Q

reproduces polynomials of degree M or less (in each component) on Kn = [−ln, ln]d, i.e., for any

multivariate polynomial p : Rd → R of degree M or less in each component we have

(Qp)(x) = p(x) (x ∈ Kn) (9)

(cf., e.g., Theorem 14.4 and Theorem 15.2 in Györfi et al. (2002)).

Next we define our estimate mn as a quasi interpolant. We fix the degree M ∈ N and set

K =

⌊
bn1/d

2 c − 1

2M

⌋
,

where we assume that n2 ≥ (2M + 1)d. Furthermore we choose x1, . . . , xn2
such that all of the

(2M ·K + 1)d points of the form(
j1

M ·K
· ln, . . . ,

jd
M ·K

· ln
)

(j1, . . . , jd ∈ {−M ·K,−M ·K + 1, . . . ,M ·K})

are contained in {x1, . . . , xn2
}, which is possible since (2M ·K + 1)d ≤ n2. Then we define

mn(x) = (Qm)(x),

where Qm is the above defined quasi interpolant satisfying (8) and (9). The computation of Qm

requires only function values of m at the points x1, . . . , xn2 and hence mn is well defined.

It follows from spline theory (cf., e.g., proof of Theorem 1 in Kohler (2013)) that if m is (p, C)-

smooth for some 0 < p ≤ M + 1 then the above quasi interpolant mn satisfies for some constant

c4 > 0

‖mn −m‖∞,Kn := sup
x∈Kn

|mn(x)−m(x)| ≤ c4 ·
lpn

n
p/d
2

, (10)

i.e., (5) is satisfied with βn = c4 · lpn/n
p/d
2 .
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3 Main results

First we show the rate of convergence result for the quantile estimate using a general estimate of

m.

Theorem 1 Assume that X is a Rd-valued random variable which has a density with respect to the

Lebesgue measure. Let m : Rd → R be a measurable function. Assume that m(X) has a density g

with respect to the Lebesgue measure. Let α ∈ (0, 1) and let qα be the α-quantile of m(X). Assume

that the density g of m(X) is positive at qα and continuous on R.

Let the estimate q̄Z,ᾱ,n of qα be defined as in Section 2 with βn = logn√
n

and assume that

regression estimate mn satisfies (5). Furthermore assume that

P{X /∈ Kn} = O

(√
log(n)√
n

)
(11)

Then

|q̄m(Z),ᾱ,n3
− qα| = OP

(
log1.5(n)

n

)
.

When the spline estimate from Section 2 is used to estimate m, then we get the following result.

Corollary 1 Assume that X is a Rd-valued random variable which has a density with respect to

the Lebesgue measure. Let m : Rd → R be a (p, C)-smooth function for some p > d/2. Assume

that m(X) has a density g with respect to the Lebesgue measure. Let α ∈ (0, 1) and let qα be the

α-quantile of m(X). Assume that the density g of m(X) is positive at qα and continuous on R.

Let mn be the spline estimate from Section 2 with M ≥ p− 1 and define the estimate q̄Z,ᾱ,n of

qα as in Section 2 with βn = logn√
n

and ln = log n. Furthermore assume that

P{||X|| ≥ log n} = O

(√
log(n)√
n

)
. (12)

Then

|q̄m(Z),ᾱ,n3
− qα| = OP

(
log1.5(n)

n

)
.

Proof. The assertion follows directly from Theorem 1 and inequality (10) observing that p > d/2

implies

c4 ·

(
lpn

n
p/d
2

)
≤ log n√

n

for n sufficiently large. �

Remark 1. It follows from Markov inequality that (12) is satisfied whenever

E

{
exp

(
1

2
· ‖X‖

)}
<∞.
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If (12) does not hold it is possible to change the definition of ln in Corollary 1 to get an (maybe

modified) assertion under a weaker tail condition.

Remark 2. It is possible to improve the factor log1.5(n) in Corollary 1, provided one changes

the definition of an and bn. More precisely, let (γn)n be a monotonically increasing sequence of

positive real values which tends to infinity and assume

P{||X|| ≥ log n} = O

(√
γn√
n

)
.

Set

an = qα,n1
−
√
γn√
n

and bn = qα,n1
+

√
γn√
n
.

By applying (3) in the proof of Theorem 1 it is possible to show that under the assumptions of

Corollary 1 the estimate based on the above modified values of an and bn satisfies

|q̄m(Z),ᾱ,n − qα| = OP

(γn
n

)
.

4 Application to simulated data

In this section we apply the method described above to simulated data and estimate the corre-

sponding 90%-quantile and 95%-quantile. For this purpose the number n of observations will be

set to 200, 500, 1000 and 2000, respectively. As suggested in Section 2 we choose n1 = n1(n) =

bn/3c = n2 = n2(n) and n3 = n3(n) = n − n1 − n2. The value of βn will be set to log(n)√
n

, and

our estimate of m is the quasi interpolant introduced in Section 2 with M = 3, ln = log(n) and

K = K(n) =
⌊
(bn1/d

2 c−1)/2M
⌋
. We compare our estimate to the plug-in estimates corresponding

to the empirical cdf of the observed data, i.e., to q̄0.9,n and q̄0.95,n (cf., (1) and (2)). In practice it

might occur that the value of ᾱ, as defined in Lemma 1, is not in (0, 1). This is due to the fact

that ᾱ depends on an estimate of the quantile qα, based on the first bn/3c samples. Now if the

difference between this first estimate and the true quantile is quite large, the true quantile may

lay outside of the set the random variable Z, as defined in Section 2, is concentrated on. There

are several ways to tackle this problem. In the following we pursue two possible strategies. The

first strategy is to alter the value of an or bn, so that the true quantile will lay inside this modified

set. For this notice that by definition ᾱ is negative if γ1 is larger than α and we have ᾱ > 1 if γ2

is larger than 1 − α. Now in order to decrease γ1 the value of an has to be decreased and if we

want to decrease γ2 the value of bn has to be increased. So the first strategy 1 is to decrease an

by log(n)/
√

(n) if ᾱ ≤ 0 and to increase bn by log(n)/
√

(n) if ᾱ ≥ 1. This will lead to an altered

version of our random variable Z and we will have to recompute ᾱ. We repeat this procedure until

ᾱ ∈ (0, 1).
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90%-quantile 95%-quantile
q0.9 ≈ 3.6022 q0.95 ≈ 5.1803

size of n 200 500 1000 2000 200 500 1000 2000

average value with IS start1 3.604 3.604 3.600 3.600 5.170 5.185 5.176 5.180

average value with IS strat 2 3.625 3.614 3.597 3.599 5.145 5.157 5.187 5.163

average sq. error with IS strat 1 0.026 0.005 0.002 0.0004 0.026 0.004 0.001 0.0005

average sq. error with IS strat 2 0.082 0.013 0.002 0.0005 0.221 0.062 0.024 0.014

average sq. error without IS 0.130 0.073 0.037 0.021 0.575 0.240 0.125 0.066

Table 1: Simulation results for m(x) = exp(x)

Since the computation of ᾱ is the most costly part of our method one might want to avoid the

recomputation of ᾱ as suggested by strategy one. So in the second approach we just generate a

new sample of random values drawn from the distribution of Z as defined originally and use a

somewhat more loose definition of the quantile. More precisely if we have ᾱ ≤ 0 we will just take

the smallest value of our new sample and if we have ᾱ > 1 we will take the largest one.

In our first example X is standard normally distributed and the function m : R→ R is defined

by m(x) = exp(x). In this case m(X) is log-normally distributed. We generate a set of simulated

data to which we apply our estimate with a quasi interpolant of degree M = 3. In order to compute

γ1 and γ2 we use the routine integrate() from the basic library of the statistics package R. This

procedure is repeated 100 times for the different values of n. The averages of our 100 estimated

values of the quantiles can be found in Table 1. In addition we compute the average squared error

of our estimated quantile values and the true quantile. Finally we use the above mentioned plug-in

estimate to compute a reference value for our average squared error.

In our second example we set X = (X1, X2), where random variables X1 and X2 independent

standard normally distributed and choose m(x1, x2) = 2 ·x1 +x2 + 2. In this case m(X) is normal

with expectation 2 and variance 22+12 = 5. As before we generate a set of simulated data on which

we apply our estimate. Unlike in our first example, we now use the procedure adaptIntegrate() from

the library cubature in the statistics package R to compute γ1 and γ2, since the routine integrate()

is not applicable to multidimensional domains. As before we repeat this procedure 100 times for

the different values of n and compare the results with those of the plug-in estimate described at

the beginning of this section. The results can be found in Table 2.

In our third example we set X = (X1, X2) for independent standard normally distributed

random variables X1 and X2 and choose m(x1, x2) = x2
1 + x2

2. Consequently m(X) is chi-square

10



90%-quantile 95%-quantile
q0.9 ≈ 4.8656 q0.95 ≈ 5.678

size of n 200 500 1000 2000 200 500 1000 2000

average value with IS strat 1 4.691 4.855 4.869 4.865 5.409 5.593 5.635 5.690

average value with IS strat 2 4.691 4.855 4.869 4.865 5.410 5.597 5.634 5.690

average sq. error with IS strat 1 0.070 0.005 0.002 0.0005 0.117 0.023 0.005 0.0008

average sq. error with IS strat 2 0.070 0.005 0.002 0.0005 0.115 0.024 0.006 0.0008

average sq. error without IS 0.093 0.029 0.012 0.005 0.124 0.038 0.021 0.008

Table 2: Simulation results for m(x, y) = 2x+ y + 2

90%-quantile 95%-quantile
q0.9 ≈ 4.6052 q0.95 ≈ 5.9915

size of n 200 500 1000 2000 200 500 1000 2000

average value with IS strat 1 4.112 4.207 4.601 4.604 5.393 5.432 5.604 5.990

average value with IS strat 2 4.115 4.208 4.600 4.604 5.427 5.459 5.625 5.987

average sq. error with IS strat 1 0.329 0.206 0.001 0.0005 0.549 0.408 0.213 0.0004

average sq. error with IS strat 2 0.329 0.206 0.002 0.0005 0.570 0.437 0.196 0.002

average sq. error without IS 0.195 0.083 0.036 0.017 0.286 0.158 0.079 0.044

Table 3: Simulation results for m(x, y) = x2 + y2

random variable with two degrees of freedom. The results of our estimate are presented in Table

3.

As one can see, with our proposed procedure all quantiles are well estimated in the average (for

n sufficiently large). In addition for large n the average squared error of our estimate is significantly

lower compared to the plug-in estimate.

In our last example the function m is motivated by experiments of the Collaborative Research

Centre 805 at the Technische Universität Darmstadt, which studies uncertainty in load-bearing

systems. A simple example of such load-bearing system is a tripod. Here every leg’s end is

equipped with sensors to measure the axial force. Since the manufacturing process can not be

assumed to be perfect, the holes where the legs are attached to the head in will differ in size.

Consequently, a force applied to the tripod will not be partitioned equally between the three legs.

In case that one hole is too small, the leg won’t fit in and the tripod could not be used. So we’ll

concentrate on the case of holes with too large diameters. In this case a plugged in leg will be loose
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and so the center of the hole will differ from the leg’s center. This difference is called excentricity,

which will be measured in meters. Since the excentricity and the diameter of the hole correlate, we

will use the excentricity as indicator. Let now m : R3
+ → R be a function that returns the resulting

load in one fixed leg, depending on the values (x(1), x(2), x(3)) of the excentricities in the three

holes. We simulate the value of x = (x(1), x(2), x(3)) with independent and uniformly distributed

random variables on (0, 0.1) and use our method with n = 2000, to estimate the 99%-quantile of

the share of the load in one observed leg. As result we get a share of 46.59% of the whole weight

in the observed leg, as 99%-quantile. For comparison we also estimate this quantile with order

statistics and a sample of size 2,000 and 100,0000, respectively. In the first case the computed value

is 47.06% whereas in the latter case we get a value of 46.60% in the observed leg. These results

show, that here our estimate performs better than the simple estimate based on order statistics

using the same sample size.

5 Proofs

We will use the following lemma in order to prove Lemma 1.

Lemma 2 Assume that X is a Rd-valued random variable which has a density with respect to the

Lebesgue measure. Let m : Rd → R be a measurable function. Assume that m(X) has a density g

with respect to the Lebesgue measure. Let α ∈ (0, 1) and let qα be the α-quantile of m(X). Assume

that g is bounded away from zero in a neighborhood of qα.

Let A and B be subsets of Rd such that for some ε > 0

m(x) ≤ qα − ε for x ∈ A and m(x) > qα for x ∈ B

and

P{X /∈ A ∪B} > 0.

Set

h(x) = c5 · I{x/∈A∪B} · f(x)

where

c−1
5 = P{X /∈ A ∪B},

and set

ᾱ =
α−P{X ∈ A}
P{X /∈ A ∪B}

.

Let Z be a random variable with density h. Then

qα = qm(Z),ᾱ.

12



Proof. Since the assumptions of the lemma imply

P{X ∈ A} ≤ P{m(X) ≤ qα − ε} < α and P{X ∈ B} ≤ P{m(X) > qα} = 1− α

we have

ᾱ =
α−P{X ∈ A}

1−P{X ∈ A} −P{X ∈ B}
∈ (0, 1].

Choose ε > 0 such that g is bounded away from zero on [qα − ε, qα] and let qα − ε < u ≤ qα. By

definition of Z we have

P{m(Z) ≤ u} =

∫
R
I{m(z)≤u}PZ(dz)

=

∫
R
I{m(x)≤u} · c5 · I{x/∈A∪B} · f(x) dx.

The assumptions of the lemma imply that A and B are disjoint and furthermore, because of

qα − ε < u ≤ qα, they imply

I{m(x)≤u} · I{x∈A} = I{x∈A} and I{m(x)≤u} · I{x∈B} = 0.

¿From this we conclude

P{m(Z) ≤ u} =

∫
R
I{m(x)≤u} · c5 · (1− I{x∈A} − I{x∈B}) · f(x) dx

= c5 ·
(∫

R
I{m(x)≤u} · f(x) dx−

∫
R
I{x∈A} · f(x) dx

)
= c5 · (P{m(X) ≤ u} −P{X ∈ A}) .

Using P{m(X) ≤ u} < α for u < qα, P{m(X) ≤ qα} = α and the definition of c5 we see that we

have shown

P{m(Z) ≤ u} < ᾱ for qα − ε < u < qα and P{m(Z) ≤ qα} = ᾱ.

The proof is complete. �

Proof of Lemma 1. In order to apply Lemma 2, at first we define

An := {x ∈ Kn : mn(x) < an} =

{
x ∈ Kn : mn(x) < q̄α,n1

− 2 · log n√
n
− 2 · βn

}
and

Bn := {x ∈ Kn : mn(x) > bn} =

{
x ∈ Kn : mn(x) > q̄α,n1

+ 2 · log n√
n

+ βn

}
.

Here we observe that using these sets we can characterite the factor c2 by

c−1
2 = P{X /∈ An ∪Bn|Dn1},

where by (6) we have P{X /∈ An ∪ Bn|Dn1
} > 0 outside of an event whose probability tends to

zero for n→∞. In addition by rewriting h(x) as

h(x) = c2 · I{x/∈An∪Bn} · f(x)

13



and ᾱ as

ᾱ =
α−P{X ∈ An|Dn1}
P{X /∈ An ∪Bn|Dn1

}

all factors are consistent with Lemma 2. Let now Cn be the event that for all x ∈ An and all

y ∈ Bn
m(x) ≤ qα − βn and m(y) > qα

hold. Then by Lemma 2 we get the relation

P{Cn} ≤ P{qα = qm(Z),ᾱ},

hence it suffices to show that P{Cn} is tending to one for n → ∞. Therefore we observe that

according to (5), for all x ∈ An and all y ∈ Bn we have

m(x) ≤ mn(x) + βn < q̄α,n − 2 · log n√
n
− βn

and

m(y) ≥ mn(y)− βn > q̄α,n + 2 · log n√
n
.

This implies

P{Cn} ≥ P

{
q̄α,n1

− 2 · log n√
n
− βn ≤ qα − βn and q̄α,n + 2 · log n√

n
≥ qα

}
= P

{
q̄α,n1

− 2 · log n√
n
≤ qα ≤ q̄α,n + 2 · log n√

n

}
→ 1 (n→∞)

by (3), which completes the proof. �

A crucial step in the proof of Theorem 1 is to show that the inverse of the cdf of m(Z) is locally

differentiable at ᾱ and to determine its derivative. We will do this in the next three lemmas.

Lemma 3 Let g be the density of m(X) and let A be a measurable subset of R with the property

that for all x ∈ Kn we have

m(x) ∈ A ⇒ an ≤ mn(x) ≤ bn. (13)

Then

P{m(Z) ∈ A|Dn1} = c2 ·
∫
A

g(y) dy.
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Proof. The definition of Z, (13) and the fact that g is the density of m(X) imply

P{m(Z) ∈ A|Dn1
} =

∫
R
I{m(z)∈A}PZ(dz)

=

∫
R
I{m(x)∈A} · c2 ·

(
I{x∈Kn : an≤mn(x)≤bn} + I{x/∈Kn}

)
· f(x) dx

= c2 ·
∫
R
I{m(x)∈A} ·

(
I{x∈Kn} + I{x/∈Kn}

)
· f(x) dx

= c2 ·
∫
R
I{m(x)∈A} · f(x) dx

= c2 ·P{m(X) ∈ A}

= c2 ·
∫
A

g(y) dy.

�

Lemma 4 Assume that a density g of m(X) exists and let Gm(Z) be the cdf of m(Z), i.e.,

Gm(Z)(y) = P{m(Z) ≤ y|Dn1}.

Then Gm(Z) is outside of an event, whose probability tends to zero for n→∞, at Lebegue-almost

all points y of the interval

I :=

(
qα −

log n√
n
, qα +

log n√
n

)
differentiable with derivative

G′m(Z)(y) = c2 · g(y). (14)

In particular, (14) holds for all continuity points y ∈ I of g.

Proof. Note that the distribution of Z depends on the density h, which depends (via the estimate

of the quantile) on Dn1 and hence is random itself. Now let An be the event that |qα−q̄α,n1 | ≤
logn√
n

.

Then (3) implies that P{An} tends to one for n→∞. In the following we assume that An holds.

The next step is to show that Lemma 3 is applicable for every subset A of I when n is large. To

this end notice that the inequality

m(x)− βn ≤ mn(x) ≤ m(x) + βn

holds for every x ∈ Kn, due to (5). So for x ∈ Kn with m(x) ∈ I we have since An holds

an = q̄α,n1 − 2 · log n√
n
− 2 · βn ≤ qα −

log n√
n
− 2 · βn ≤ m(x)− 2 · βn ≤ mn(x)

≤ m(x) + βn ≤ qα +
log n√
n

+ βn ≤ q̄α,n1
+ 2 · log n√

n
+ βn = bn.

This and Lemma 3 (applied with A = (min{y, y + h},max{y, y + h}]) imply that

Gm(Z)(y + h)−Gm(Z)(y)

h
= sign(h) · 1

h
·P{m(Z) ∈ (min{y, y + h},max{y, y + h}]}

=
1

h
·
∫ y+h

y

c2 · g(t) dt,
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for every y ∈ I and all h ∈ R small enough to fulfill y + h ∈ I. (Here sign(h) is the sign of h.)

Now for h tending to zero, we get by the Lebesgue density theorem

G′m(Z)(y) = lim
h→0

1

h
·
∫ y+h

y

c2 · g(t) dt = c2 · g(y)

for Lebesgue-almost all points y of the interval I. Trivially this relation also holds for all continuity

points y ∈ I of g. �

Observe that by definition c2 is bounded from below by one.

Lemma 5 Assume that the density g of m(X) exists, that it is continuous on R and positive at

qα. Then

G−1
m(Z)(u) = inf

{
y ∈ R : Gm(Z)(y) ≥ u

}
is outside of an event, whose probability tends to zero for n→∞, differentiable on the interval(

ᾱ− c6 ·
log n√
n
, ᾱ+ c6 ·

log n√
n

)
with derivative

d

du
G−1
m(Z)(u) =

1

c2 · g(G−1
m(Z)(u))

.

Proof. Observe that the premise of Lemma 4 is fulfilled, so outside of an event, whose probability

tends to zero for n→∞, G′m(Z)(y) = c2 · g(y) holds for all points y ∈ I =
(
qα − logn√

n
, qα + logn√

n

)
.

Since we assume g to be continuous and G′m(Z)(qα) = c2 · g(qα) to be positive, there exists a

neighbourhood U of qα such that g(u) > λ holds for all u ∈ U and some constant 0 < λ < g(qα).

By this we can apply the inverse function theorem on U ∩ I. Now for n large enough the interval

I will surely be a subset of U which means U ∩ I = I in fact. In this case we take a closer look at

the range Gm(Z)(I). Since Gm(Z) is continuous and strictly increasing on I, we have

Gm(Z)(I) =

(
Gm(Z)

(
qα −

log n√
n

)
, Gm(Z)

(
qα +

log n√
n

))
.

Now assume qα = qm(Z),ᾱ to hold. Then from

Gm(Z)

(
qα −

log n√
n

)
= Gm(Z)(qα)− c2 ·

∫ qα

qα− logn√
n

g(t)dt ≤ ᾱ− c2 · λ ·
log n√
n

and

Gm(Z)

(
qα +

log n√
n

)
= Gm(Z)(qα) + c2 ·

∫ qα+ logn√
n

qα

g(t)dt ≥ ᾱ+ c2 · λ ·
log n√
n

we conclude that

Gm(Z)(I) ⊇
(
ᾱ− c2 · λ ·

log n√
n
, ᾱ+ c2 · λ ·

log n√
n

)
=: Ĩ .
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Notice that Lemma 1 implies that P{qα = qm(Z),ᾱ} tends to one for n → ∞, so we’re outside of

an event, whose probability tends to zero for n→∞. Application of the inverse function theorem

implies
d

du
G−1
m(Z)(u) =

1

c2 · g(G−1
m(Z)(u))

, (15)

for all u ∈ Ĩ. Notice that since c2 ≥ 1, equality (15) holds for all u ∈
(
ᾱ− λ · logn√

n
, ᾱ+ λ · logn√

n

)
in particular. �

Proof of Theorem 1. At first notice that qm(Z),ᾱ implicitly depends on n. Denote by Cn the

event that qα = qm(Z),ᾱ for n ∈ N and notice that for every s ∈ R we have

P
{
|q̄m(Z),ᾱ,n3

− qα| > s
}
≤ P

{
|q̄m(Z),ᾱ,n3

− qm(Z),ᾱ| > s
}

+ P {Ccn} .

Now Lemma 1 implies that P {Ccn} is tending to zero for n→∞ and so

lim sup
n→∞

P

{
|q̄m(Z),ᾱ,n3

− qα| >
log1.5(n)

n

}
≤ lim sup

n→∞
P

{
|q̄m(Z),ᾱ,n3

− qm(Z),ᾱ| >
log1.5(n)

n

}
.

(16)

Let Gm(Z) be the cdf of m(Z), i.e.,

Gm(Z)(y) = P{m(Z) ≤ y|Dn1} (y ∈ R),

and set

G−1
m(Z)(u) = inf

{
y ∈ R : Gm(Z)(y) ≥ u

}
.

Let U , U1, U2, . . . be independent and uniformly on (0, 1) distributed random variables and denote

the order statistics of U1, . . . , Un3
by U1:n3

, . . . , Un3:n3
.

Since (
G−1
m(Z)(U1), . . . , G−1

m(Z)(Un3)
)

has the same distribution as

(m(Z1), . . . ,m(Zn3
))

and since G−1
m(Z) is monotonically increasing on (0, 1), due to (16) it suffices to show

∣∣∣G−1
m(Z)(Udᾱ·n3e:n3

)−G−1
m(Z)(ᾱ)

∣∣∣ = OP

(
log1.5(n)

n

)
.

It follows from Lemma 5 and the mean value theorem that outside of an event, whose probability

tends to zero for n→∞, we have∣∣∣G−1
m(Z)(Udᾱ·n3e:n3

)−G−1
m(Z)(ᾱ)

∣∣∣ =
∣∣Udᾱ·n3e:n3

− ᾱ
∣∣ · 1

c2 · g(G−1
m(Z)(Dn3))

whereDn3
is some random point between Udᾱ·n3e:n3

and ᾱ, provided the distance between Udᾱ·n3e:n3

and ᾱ is less than c6 · log(n)/
√
n.
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Let FU be the cdf of U and let FU,n3 be the empirical cdf corresponding to U1, . . . , Un3 . Then

we have with probability one that∣∣Udᾱ·n3e:n3
− ᾱ

∣∣ =

∣∣∣∣Udᾱ·n3e:n3
− FU,n3(Udᾱ·n3e:n3

) +
dᾱ · n3e
n3

− ᾱ
∣∣∣∣

≤ sup
t∈R
|FU,n3(t)− FU (t)|+ 1

n3
.

This implies ∣∣Udᾱ·n3e:n3
− ᾱ

∣∣ = OP

(√
log(n3)
√
n3

)
(cf., e.g., Theorem 12.4 in Devroye, Györfi and Lugosi (1996)). Furthermore, by Lemma 1 we

can assume that G−1
m(Z)(ᾱ) = qα holds, and we have that G−1

m(Z) is continuous at ᾱ and that g is

positive and continuous at qα. Hence it suffices to show

1

c2
=

∫
Rd

(
I{x∈Kn : an≤mn(x)≤bn} + I{x/∈Kn}

)
f(x)dx = OP

(
log(n)√

n

)
.

This in turn follows from

P
{
X ∈ Kn : an ≤ mn(X) ≤ bn

∣∣Dn1

}
= OP

(
log(n)√

n

)
(17)

and

P {X /∈ Kn} = OP

(√
log(n)√
n

)
. (18)

Note that (18) holds by assumption (11). In order to show (17) we assume that |qα− q̄α,n1
| ≤ logn√

n
.

Then the definitions of an, bn and βn imply

P
{
X ∈ Kn : an ≤ mn(X) ≤ bn

∣∣Dn1

}
≤ P

{
X ∈ Kn : an − βn ≤ m(X) ≤ bn + βn

∣∣Dn1

}
= P

{
q̄α,n1

− 2 · log n√
n
− 3 · βn ≤ m(X) ≤ q̄α,n1

+ 2 · log n√
n

+ 2 · βn
∣∣Dn1

}
≤ P

{
qα − 3 · log n√

n
− 3 · βn ≤ m(X) ≤ qα + 3 · log n√

n
+ 2 · βn

∣∣Dn1

}
≤ P

{
qα − 6 · log(n)√

n
≤ m(X) ≤ qα + 5 · log(n)√

n

}
≤ sup
x∈[qα−6 , qα+5]

g(x) · 11 · log(n)√
n

.

Here we have used the fact that the continuous function g is bounded on any finite interval around

qα and that log(n)√
n

is bounded from above by one. Finally (3) implies the assertion. �
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