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1 Fachgebiet Systemzuverlässigkeit und Maschinenakustik SzM, Technische Universität

Darmstadt, Magdalenenstr. 4, 64289 Darmstadt, Germany,

email: {enss, goetz}@szm.tu-darmstadt.de

2 Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289

Darmstadt, Germany, email: kohler@mathematik.tu-darmstadt.de

3 Department of Computer Science and Software Engineering, Concordia University, 1455 De

Maisonneuve Blvd. West, Montreal, Quebec, Canada H3G 1M8, email: krzyzak@cs.concordia.ca

4 Fraunhofer Institute for Structural Durability and System Reliability LBF, Bartningstr. 47,

64289 Darmstadt, Germany, email: roland.platz@lbf.fraunhofer.de

May 16, 2014

Abstract

A simulation model of a complex system is considered, for which the outcome is described by

m(p,X), where p is a parameter of the system, X is a random input of the system and m is a

real-valued function. The maximum (with respect to p) of the quantiles of m(p,X) is estimated.

The quantiles of m(p,X) of a given level are estimated for various values of p by an order statistic

of values m(pi, Xi) where X,X1, X2, . . . are independent and identically distributed and where pi

is close to p, and the maximal quantile is estimated by the maximum of these quantile estimates.

Under assumptions on the smoothness of the function describing the dependency of the values

of the quantiles on the parameter p the rate of convergence of this estimate is analyzed. The

finite sample size behavior of the estimate is illustrated by simulated data and by applying it in a

simulation model of a real mechanical system.
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1 Introduction

We consider a simulation model of a complex system described by

Y = m(p,X),

where p is a parameter of the system from some compact subset P of Rl, X is a Rd-valued random

variable with known distribution and m : P × Rd → R is a given (measurable) function. Let

Gp(y) = P{m(p,X) ≤ y}

be the cumulative distribution function (cdf) of Y for a given value of p. For α ∈ (0, 1) let

qp,α = min{y ∈ R : Gp(y) ≥ α}

be the α-quantile of m(p,X). Using at most n function evaluations m(pi, xi) of m for arbitrarily

chosen values

(p1, x1), . . . , (pn, xn) ∈ P × Rd

we are interested in estimating the maximal α-quantile

sup
p∈P

qp,α.

This problem is motivated by research carried out at the Collaborative Research Centre SFB 805

at the Technische Universität Darmstadt which focuses on uncertainty in load-carrying systems

such as truss structures. The truss structure under consideration is a typical system for load

distribution in mechanical engineering (cf., Figure 1). It is made of ten nodes and 24 equal beams
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Figure 1: Truss structure
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with circular cross sections and fixed boundary conditions. Four equal tetrahedron structures may

be assembled into modules. The truss is supported statically determined at nodes 2, 3 and 4. A

single force Fz in z-direction acts at node 1 and two symmetric moments M act at nodes 6 and 7 as

shown in Figure 1. Due to the non-symmetric loading, the maximum equivalent stress σv (cf., e.g.,

Gross et al. (2007)) is not equal in every beam. It is influenced not only by the non-symmetric

loading via Fz and M but also by the beam’s material parameter Young’s modulus E as well as

geometric parameters radius r and length l. We assume that from the manufacturing process of

the truss structure we know for each beam parameter E, r and l the corresponding ranges [a, b].

The parameter vector p = (E, r, l) describes the parameters for all 24 equal beams within the truss

structure.

The occurring random force Fz is normally distributed and the moments M have truncated

normal distribution restricted to positive half-axis. A numerical finite element model is built that

calculates the maximum equivalent stress Y = σv,1, Y = σv,2 and Y = σv,3 in the beams 1, 2 and

3, resp., that are the members with the highest equivalent stresses in this specific truss structure.

So our parameter set is P = [aE , bE ]× [ar, br]× [al, bl]. The function m : P ×R+ → R+ describes

the physical model of the truss structure and Y = m(p,X) is the occurring maximum equivalent

stress in beam 1, 2 and 3, resp., of the truss structure with load vector X = (Fz,M).

We are interested in quantifying the uncertainty in the random quantity Y = m(p,X) which we

characterize by determining an interval in which the value of Y is contained with high probability.

Such an interval can be determined by computing quantiles of Y for α close to one (leading to the

right end point of the interval) and α close to zero (leading to the left end point of the interval).

However, we do not know the exact value of p ∈ P. Hence instead of computing the right end point

of the interval by a quantile of Y we compute for each p ∈ P the α-quantile qp,α of m(p,X) and

use supp∈P qp,α for α close to one as the right end point of the interval. Similarly we can construct

the left end point of the interval by computing infp∈P qp,α for α close to zero.

In the sequel we will describe how we can define estimates of these quantities. In order to

simplify the notation we consider only supp∈P qp,α, the other value can be estimated similarly.

For p ∈ P we estimate the α-quantile of Gp by the α-quantile of an empirical cumulative dis-

tribution function corresponding to data points m(pi, Xi), where pi is close to p and X, X1, X2,

. . . are independent and identically distributed random variables. Then we estimate the maximum

quantile by the maximum of these quantile estimates. Under suitable assumptions on the smooth-

ness of the function describing the dependency of the quantiles on the parameter we analyze the

rate of convergence of this estimate. The finite sample size behavior of the estimate is illustrated

using simulated data.

In our proofs the main trick is to relate the error of our quantile estimates to the behavior of
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the order statistics of a fixed sequence of independent random variables uniformly distributed on

(0, 1).

The estimation problem in this paper is estimation of a quantile function in a fixed design

regression problem. Usually this kind of problem is studied in the literature in the context of

random design regression, see, e.g., Yu, Lu and Stander (2003), Koenker (2005), and the literature

cited therein. In the context of random design regression the rate of convergence results for local

averaging estimates of conditional quantiles have been derived in Bhattacharya and Gangopadhya

(1990). Results concerning estimates based on support vector machines can be found in Steinwart

and Christmann (2011). The problem of estimating the maximal quantile was not considered in

the papers mentioned above.

The concept of local averaging considered in this paper is also very popular in the context of

nonparametric regression, cf., e.g., Nadaraya (1964, 1970), Watson (1964), Stone (1977), Devroye

and Wagner (1980), Györfi (1981), Devroye (1982), Devroye and Krzyżak (1989), Devroye, Györfi,

Krzyżak and Lugosi (1994) or Beirlant and Györfi (1998).

Throughout the paper we use the following notation: N, R and R+ are the set of positive

integers, real numbers, and nonnegative real numbers, resp. For z ∈ R we denote the smallest

integer greater than or equal to z by dze. For a set A its indicator function (which takes on

value one on A and zero outside of A) is denoted by IA. ‖x‖∞ = max{x(1), . . . , x(d)} is the

supremum norm of a vector x = (x(1), . . . , x(d))T ∈ Rd. For z1, . . . , zn ∈ R the corresponding

order statistics are denoted by z1:n, . . . , zn:n, i.e., z1:n, . . . , zn:n is a permuation of z1, . . . , zn

satisfying z1:n ≤ · · · ≤ zn:n. Similarly, the order statistics of real valued random variables are

defined. If Zn are real valued random variables and δn > 0 are positive real numbers, we write

Zn = OP(δn) if

lim
c→∞

lim sup
n→∞

P {|Zn| > c · δn} = 0.

The definition of our estimate of the maximum quantile is given in Section 2, the main result is

formulated in Section 3 and proven in Section 5. The finite sample size behaviour of the estimate

is illustrated in Section 4 using simulated data.

2 Definition of the estimate

In order to simplify the notation we assume in the sequel for all of our theoretical considerations

that the set of parameters is given by P = [0, 1]l.

Let X, X1, X2, . . . be independent and identically distributed and let p1, . . . , pn be equidistantly

chosen from P. In the sequel we estimate the maximum quantile supp∈P qp,α from the data

Dn = {((p1, X1),m(p1, X1)), . . . , ((pn, Xn),m(pn, Xn))} .
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For p ∈ P we estimate the cumulative distribution function

Gp(y) = P{m(p,X) ≤ y}

by the empirical cumulative distribution function based on all those m(pi, Xi) where the distance

between pi and p in supremum norm is at most hn. Here hn > 0 is a parameter of the estimate.

In order to define this estimate, let

K = I[−1,1]l

be the naive kernel. Then

Ĝp(y) =

∑n
i=1 I{m(pi,Xi)≤y} ·K

(
p−pi
hn

)
∑n
j=1K

(
p−pj
hn

)
is our estimate of Gp(y).

Next, the quantile

qp,α = min {y ∈ R : Gp(y) ≥ α}

is estimated by the plug-in estimate

q̂p,α = min
{
y ∈ R : Ĝp(y) ≥ α

}
.

Finally, we estimate the maximal quantile

sup
p∈P

qp,α

by the maximum of the estimated quantile q̂p,α for p ∈ {p1, . . . , pn}, i.e., by

M̂n = max
i=1,...,n

q̂pi,α. (1)

3 Main results

Our main result is the following bound on the error of our maximal quantile estimate.

Theorem 1 Let α ∈ (0, 1), let P = [0, 1]l and let m : P × Rd → R be a measurable function. Let

X be a Rd-valued random variable and for p ∈ P let Gp be the cumulative distribution function of

m(p,X). Let

qp,α = min{y ∈ R : Gp(y) ≥ α}

be the α-quantile of m(p,X).

Assume that there exists δ > 0 such that for some c1 > 0 for all p ∈ P the derivative of Gp

exists on [qp,α− δ, qp,α+ δ] and is continuous on this interval and greater than c1. Let the estimate

M̂n be defined as in (1) for some hn > 0 satisfying

hn → 0 (n→∞) and n · hln →∞ (n→∞).
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Then ∣∣∣∣M̂n − sup
p∈P

qp,α

∣∣∣∣ = OP

(
log(n)√
n · hln

+ sup
p1,p2∈P : ‖p1−p2‖∞≤hn

|qp1,α − qp2,α|

)
.

If we impose some smoothness condition on the function describing the dependency of the values

of the quantiles on the parameter p, we can derive from the above theorem the following rate of

convergence result.

Corollary 1 Assume that the assumptions of Theorem 1 hold and that, in addition, qp,α is (r, C)-

smooth as a function of p ∈ P for some r ∈ (0, 1] and C > 0, i.e.,

|qp1,α − qp2,α| ≤ C · ‖p1 − p2‖r∞ (p1, p2 ∈ P).

Set

hn = c ·
(

log2(n)

n

)1/(2r+l)

and define the estimate M̂n as in Section 2. Then∣∣∣∣M̂n − sup
p∈P

qp,α

∣∣∣∣ = OP

((
log2(n)

n

)r/(2r+l))
.

Proof. Since qp,α is (r, C)-smooth as a function of p ∈ P we can conclude from Theorem 1∣∣∣∣M̂n − sup
p∈P

qp,α

∣∣∣∣ = OP

(
log(n)√
n · hln

+ C · hrn

)
.

The definition of hn implies the result. �

Remark 1. The rate of convergence in Corollary 1 is (up to some logarithmic factor) the same as

the optimal minimax rate of convergence for estimation of a (r, C)–smooth function on a compact

subset of Rl in supremum norm derived in Stone (1982).

Remark 2. In any application of the above estimate we have to select the bandwidth hn of the

estimate in a data-driven way. We suggest to choose the bandwidth in a optimal way in view

of estimation of Gp(y) by Ĝp(y) (p ∈ P) for suitable chosen y ∈ R. To do this, we propose to

use a version of the well-known splitting of the sample technique in nonparametric regression (cf.,

e.g., Chapter 7 in Györfi et al. (2002)). More precisely, let us assume that we have available n

additional random variables X̄1, . . . , X̄n such that X, X1, . . . , Xn, X̄1, . . . , X̄n are independent

and identically distributed, and that we observe m(pi, X̄i) for these random variables. We choose

y as the α-quantile of the empirical cumulative distribution function corresponding to m(p1, X1),

. . . , m(pn, Xn), and choose hn by minimizing

1

n

n∑
i=1

∣∣∣I{m(pi,X̄i)≤y} − Ĝpi(y)
∣∣∣2 .
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In the next section we will investigate the performance of this data-driven way of choosing the

bandwidth using simulated data.

4 Application to simulated data

In this section we illustrate the finite sample size behaviour of our estimate (in particular in view

of the data-driven choice of the bandwidth in Remark 2) with the aid of simulated data.

In all simulations we choose the sample size for the estimate of the maximal quantile as n =

20, 000, where we use half of the data to choose the bandwidth of the estimate from a finite set

of bandwidths as described in Remark 2. In each simulation we compute the absolute difference

between the true value of the maximal quantile and firstly the estimate with the data-driven choice

of the bandwidth and secondly with the estimate with sample size n/2 applied with that value of

the bandwidth which leads to the minimal error for the given set of data. The level of the quantile

is chosen as α = 0.95. We repeat each simulation 100 times and report the mean values and the

standard deviations of the resulting 100 error values for the two estimates.

In our first example we choose X as a standard normally distributed random variable, P = [0, 1]

and define

m(p,X) = 0.5 · sin(2 · π · p) +X.

Hence m(p,X) is normally distributed with mean 0.5 · sin(2 · π · p) and variance 1. In this case

the α = 0.95 quantile of m(p,X) is given by qp,α ≈ 0.5 · sin(2 · π · p) + 1.64. We choose in

this example the bandwidth from the set {0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4}. In Figure 2 we show a

typical simulation for the two quantile estimates using the data-driven bandwidth and the optimal

bandwidth, respectively. The mean values (standard deviations) of our errors are in case of our

data driven choice of the bandwidth approximately given by 0.044 (0.034) as compared to 0.017

(0.015) in case of the optimal bandwidth choice, which is not applicable in practice since it depends

on the unknown maximal value. Hence the mean absolute error of our estimate using the data-

driven choice of the bandwidth is approximately only 2.5-times larger than the mean absolute error

of the estimate using the optimal choice of the bandwidth, which is not known in practice.

In our second example we again choose random variable X with a standard normal distribution

and P = [0, 1], but this time we define m by

m(p, x) = exp(p+ x),

which implies that m(p,X) is lognormally distributed and its logarithm has mean p and variance 1.

Again the α-quantiles are known and can be computed with a statistics package. The bandwidth

is chosen from the same set as in the first example. In Figure 3 we show typical simulation for the
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Figure 2: Typical simulation in the first model

two quantile estimates using the data-driven bandwidth and the optimal bandwidth, respectively.

In this example the mean values (standard deviations) of our errors are in case of our data driven
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Figure 3: Typical simulation in the second model

choice of the bandwidth approximately given by 0.827 (0.517) as compared to 0.344 (0.285) in

case of the optimal bandwidth choice, hence the mean error of the data-driven bandwidth choice

is within a factor of 2.5 of the mean value of the optimal (and in practice not available) bandwidth

choice.

In our third example we choose X = (X(1), X(2), X(3))T where X(1), X(2) and X(3) are inde-
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pendent standard normally distributed random variables, P = [−0.5, 0.5]3 and

m(p, x) = (p(1) + x(1))2 + (p(2) + x(2))2 + (p(3) + x(1))2.

In this case m(p,X) is non-central chi-square random variable with 3 degrees of freedom and non-

centrality factor (p(1))2 + (p(2))2 + (p(3))2. Again the α-quantiles are known and can be computed

with a statistics package. The bandwidth is chosen from the same set as above. In this example

the mean values (standard deviations) of our errors are in case of our data driven choice of the

bandwidth approximately given by 0.399 (0.376) as compared to 0.207 (0.144) in case of the optimal

bandwidth choice, hence the mean error of the data-driven bandwidth choice is within a factor of

approximately 2 of the mean value of the optimal (not available in practice) bandwidth choice.

Finally we apply our newly proposed estimation method in the application described in Section

1. The numerical simulation model of the truss structure in Figure 1 is obtained by finite elements

with the commercial software ANSYS. Each of the 24 beams is modeled with the same parameters

E, r and l. Timoshenko beam theory is applied to all beams by using BEAM189 elements in

ANSYS. The 10 connecting nodes are modeled as rigid links using MPC184 elements. Deflection

is constrained at node 2 in x-, y- and z-direction, at node 3 in y- and z-direction and at node 4 in

z-direction such that the truss is supported statically determined.

The beam parameters E, r and l are assumed to be in the intervals given in Table 1. Random

Table 1: Uncertain parameters

parameter p value unit

Young’s modulus E [69.7, 73.7] · 109 N/m2

radius r [0.0049, 0.0051] m

length l [0.3995, 0.4005] m

loading is applied to node 1 as a single force Fz in z-direction and two symmetric moments with

magnitude M that act around axes in the x-y-plane in an angle of +60◦ and −60◦ from x-direction

at nodes 6 and 7, respectively. The load Fz is normally distributed with mean value µFz and

standard deviation σFz. The moments M have truncated normal distribution restricted to positive

half axis, where the underlying normal distribution has mean value µM = 0 and standard deviation

σM , see Table 2. To obtain the maximum equivalent stresses σv,1, σv,2 and σv,3, a static analysis is

carried out for each parameter set and load set. Two independent random load sets were generated

for each combination of 41 values of each parameter set distributed equidistantly in the parameter

intervals. In total, 2 · 413 deterministic calculations were carried out.

Application of the newly proposed estimate of the maximum 0.95-quantile to this data results

in predicted maximum stresses of 7.05 · 106 N/m
2
, 17.67 · 106 N/m

2
and 17.67 · 106 N/m

2
in the
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Table 2: Uncertain loads

load X value unit

load Fz µFz = −1000, σFz = 33.33 N

moments M µM = 0, σM = 3.33 Nm

three considered beams, respectively. In contrast, if we ignore the uncertainty in the parameters

and just compute 0.95-quantiles using the mean values of these parameters and a data set of 413

corresponding values, we get instead 6.78 ·106 N/m
2
, 16.80 ·106 N/m

2
and 16.80 ·106 N/m

2
, hence

we get values which are 3.8%, 4.9% and 4.9% lower, respectively.

5 Proofs

5.1 Auxiliary results

In this subsection we formulate and prove two lemmas which we will need in the proof of Theorem

1. Our first lemma shows that if we mix coupled samples from several different distributions, the

empirical quantile of the mixed samples lies with probability one between the minimal and the

maximal quantiles of the individual samples. Here we use the fact that we do not change the joint

distribution of our samples if we assume that the random variables are defined by applying the

inverse of the cumulative distribution function to uniformly distributed random variables.

More precisely, our setting is the following: Let M ∈ N be the number of samples which we

mix, and for k ∈ {1, . . . ,M} let H(k) : (0, 1) → R be a monotonically increasing function (which

we will choose later as the inverse function of a cumulative distribution function). Let N ∈ N, let

u1, . . . , uN ∈ (0, 1) and denote by u1:N , . . . , uN :N the corresponding order statistics. We define M

different coupled samples by

z
(k)
i = H(k)(ui) (i = 1, . . . , N)

for k ∈ {1, . . . ,M}, and we mix them by choosing

zi ∈ {z(1)
i , . . . , z

(M)
i }

for i = 1, . . . , N .

Let

Ĝ(k)(y) =
1

N
·
N∑
i=1

I{z(k)
i ≤y}

and Ĝ(y) =
1

N
·
N∑
i=1

I{zi≤y}

be the empirical cumulative distribution functions corresponding to z
(k)
1 , . . . , z

(k)
N and z1, . . . , zN ,

resp., and let

q̂(k)
α = min

{
y ∈ R : Ĝ(k)(y) ≥ α

}
and q̂α = min

{
y ∈ R : Ĝ(y) ≥ α

}
10



be the corresponding quantile estimates. Then the following result holds.

Lemma 1 Define q̂
(k)
α and q̂α as above. Then

min
k=1,...,M

q̂(k)
α ≤ q̂α ≤ max

k=1,...,M
q̂(k)
α .

Proof. By construction we have

q̂(k)
α = H(k)(udN ·αe:N ) (2)

for k ∈ {1, . . . ,M}. Furthermore, for k1, . . . , kN ∈ {1, . . . ,M} suitably chosen we have that

H(k1)(u1:N ), . . . ,H(kN )(uN :N )

is a permuation of z1, . . . , zN .

Choose kmin, kmax ∈ {1, . . . ,M} such that

min
k=1,...,M

q̂(k)
α = q̂(kmin)

α and max
k=1,...,M

q̂(k)
α = q̂(kmax)

α .

Then by (2) we have for any k ∈ {1, . . . ,M}

H(kmin)(udN ·αe:N ) ≤ H(k)(udN ·αe:N ) ≤ H(kmax)(udN ·αe:N ).

Using this relation and the monotonicity of H(k) we get for any i ∈ {1, . . . , dN · αe}

H(ki)(ui:N ) ≤ H(ki)(udN ·αe:N )

≤ H(kmax)(udN ·αe:N )

= max
k=1,...,M

q̂(k)
α

and for any i ∈ {dN · αe, . . . , N}

H(ki)(ui:N ) ≥ H(ki)(udN ·αe:N )

≥ H(kmin)(udN ·αe:N )

= min
k=1,...,M

q̂(k)
α .

Now, let z1:N , . . . , zN :N be the order statistics of z1, . . . , zn. Then the above inequalities imply

min
k=1,...,M

q̂(k)
α ≤ zdN ·αe:N ≤ max

k=1,...,M
q̂(k)
α .

Since zdN ·αe:N = q̂α this completes the proof. �

Our second lemma relates the error of the quantile estimate to the behavior of order statistics

corresponding to some fixed sequence of independent random variables distributed uniformly on

(0, 1).
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Lemma 2 Let p ∈ P be fixed and let the estimate q̂p,α be defined as in Section 2. Assume that there

exists a constant c1 > 0 such that for some δ > 0 we have that Gp̄ is continuously differentiable on

[qp̄,α − δ, qp̄,α + δ] with derivative bounded from below by c1, for all p̄ ∈ P satisfying ‖p̄− p‖∞ ≤ δ.

Let

N = |{1 ≤ i ≤ n : ‖p− pi‖∞ ≤ hn}|

be the number of parameters pi which have at most supnorm distance hn to p. Let U1, . . . , UN be

independent random variables distributed uniformly on (0, 1) and denote their order statistics by

U1:N , . . . , UN :N . Then we have for any 0 < ε < δ satisfying δ ≥ hn:

P

{
|q̂p,α − qp,α| > ε+ sup

p̄∈P:‖p̄−p‖∞≤hn

|qp̄,α − qp,α|

}
≤ 2 ·P

{∣∣UdN ·αe:N − α∣∣ > c1 · ε
}
.

Proof. For p̄ ∈ P let

G−1
p̄ (u) = min {y ∈ R : Gp̄(y) ≥ u} (u ∈ (0, 1))

be the generalized inverse of Gp̄. Then it is well-known that G−1
p̄ (U1) has the same distribution

as m(p̄, X1). Since Ĝp is by definition (observe that K is the naive kernel) the empirical cumu-

lative distribution function of m(pi1 , Xi1), . . . , m(piN , XiN ) for suitable chosen pairwise distinct

i1, . . . , iN ∈ {1, . . . , n}, we see that it has the same distribution as the empirical cumulative distri-

bution function ĜN of G−1
pi1

(U1), . . . , G−1
piN

(UN ). Consequently, q̂p,α has the same distribution as

the quantile estimate q̂Uα corresponding to ĜN which implies for any η > 0

P {|q̂p,α − qp,α| > η} = P
{∣∣q̂Uα − qp,α∣∣ > η

}
.

Let

Ĝ(k)(y) =
1

N

N∑
i=1

I{G−1
pik

(Ui)≤y}

be the cumulative emprirical distribution function of G−1
pik

(U1), . . . , G−1
pik

(UN ) and denote by q̂
(k)
α

the corresponding quantile estimate (k = 1, . . . , N). Application of Lemma 1 yields for any η > 0

P
{∣∣q̂Uα − qp,α∣∣ > η

}
≤ P

{∣∣∣∣ min
k=1,...,N

q̂(k)
α − qp,α

∣∣∣∣ > η

}
+ P

{∣∣∣∣ max
k=1,...,N

q̂(k)
α − qp,α

∣∣∣∣ > η

}
≤ 2 ·P

{
max

k=1,...,N

∣∣∣q̂(k)
α − qpik ,α

∣∣∣+ max
k=1,...,N

∣∣∣qpik ,α − qp,α∣∣∣ > η

}
.

Summarizing the above results we see that we have shown

P

{
|q̂p,α − qp,α| > ε+ sup

{p̄∈P:‖p̄−p‖∞≤hn}
|qp̄,α − qp,α|

}

≤ 2 ·P
{

max
k=1,...,N

∣∣∣q̂(k)
α − qpik ,α

∣∣∣ > ε

}
= 2 ·P

{
max

k=1,...,N

∣∣∣G−1
pik

(UdN ·αe:N )−G−1
pik

(α)
∣∣∣ > ε

}
.
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By the assumptions of Lemma 2, on [qpik ,α − δ, qpik ,α + δ] the derivative of Gpik exists and is

bounded from below by c1 > 0. Consequently, on [α − c1 · δ, α + c1 · δ], the inverse function of

Gpik is continuously differentiable with derivative bounded from above by 1/c1. So in case that∣∣UdN ·αe:N − α∣∣ < c1 · δ we can conclude from the mean value theorem that we have∣∣∣G−1
pik

(UdN ·αe:N )−G−1
pik

(α)
∣∣∣ ≤ 1

c1
·
∣∣UdN ·αe:N − α∣∣ .

This implies

P

{
max

k=1,...,N

∣∣∣G−1
pik

(UdN ·αe:N )−G−1
pik

(α)
∣∣∣ > ε

}
≤ P

{∣∣UdN ·αe:N − α∣∣ > c1 · ε
}
,

which completes the proof. �

5.2 Proof of Theorem 1

Since ∣∣∣∣M̂n − sup
p∈P

qp,α

∣∣∣∣ ≤ ∣∣∣∣M̂n − max
i=1,...,n

qpi,α

∣∣∣∣+

∣∣∣∣ max
i=1,...,n

qpi,α − sup
p∈P

qp,α

∣∣∣∣
it suffices to show∣∣∣∣M̂n − max

i=1,...,n
qpi,α

∣∣∣∣ = OP

(
log(n)√
n1/l · hn

+ sup
p1,p2∈P : ‖p1−p2‖∞≤hn

|qp1,α − qp2,α|

)
(3)

and ∣∣∣∣ max
i=1,...,n

qpi,α − sup
p∈P

qp,α

∣∣∣∣ = O

(
log(n)√
n1/l · hn

+ sup
p1,p2∈P : ‖p1−p2‖∞≤hn

|qp1,α − qp2,α|

)
. (4)

Because of ∣∣∣∣ max
i=1,...,n

qpi,α − sup
p∈P

qp,α

∣∣∣∣ = sup
p∈P

qp,α − max
i=1,...,n

qpi,α

= sup
p∈P

min
i=1,...,n

(qp,α − qpi,α)

≤ sup
p1,p2∈P : ‖p1−p2‖∞≤1/n1/l

|qp1,α − qp2,α|,

(4) follows from n−1/l ≤ hn for n sufficiently large, which is implied by n · hln →∞ (n→∞).

In order to prove (3) we observe that for ai, bi ∈ R (i = 1, . . . , n) we have∣∣∣∣ max
i=1,...,n

ai − max
i=1,...,n

bi

∣∣∣∣ ≤ max
i=1,...,n

|ai − bi|, (5)

which together with the union bound implies for arbitrary ε > 0

P

{∣∣∣∣M̂n − max
i=1,...,n

qpi,α

∣∣∣∣ > ε+ sup
p1,p2∈P : ‖p1−p2‖∞≤hn

|qp1,α − qp2,α|

}

≤ P

{
max

i=1,...,n
|q̂pi,α − qpi,α| > ε+ sup

p1,p2∈P : ‖p1−p2‖∞≤hn

|qp1,α − qp2,α|

}

≤ n · max
i=1,...,n

P

{
|q̂pi,α − qpi,α| > ε+ sup

p1,p2∈P : ‖p1−p2‖∞≤hn

|qp1,α − qp2,α|

}
. (6)
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Let Ui be defined as in Lemma 2 and let FN be the empirical cumulative distribution function

corresponding to U1, . . . , UN and let F be the cumulative distribution function of U1. Then

P
{∣∣UdN ·αe:N − α∣∣ > c1 · ε

}
= P

{∣∣∣∣F (UdN ·αe:N )− FN (UdN ·αe:N ) +
dN · αe
N

− α
∣∣∣∣ > c1 · ε

}
≤ P

{
sup
t∈R
|FN (t)− F (t)| > c1 · ε−

1

N

}
.

In case that c1 · ε > 1
N we can bound the last probability using well-known results from Vapnik-

Chervonenkis theory (cf., e.g., Theorem 12.4 in Devroye, Györfi and Lugosi (1996)) and get

P
{∣∣UdN ·αe:N − α∣∣ > c1 · ε

}
≤ 8 · (N + 1) · exp

(
−N ·

(
c1 · ε−

1

N

)2

/32

)
.

Using this, N ≈ n · hln, Lemma 2 and (6) we conclude

P

{∣∣∣∣M̂n − max
i=1,...,n

qpi,α

∣∣∣∣ > ε+ sup
p1,p2∈P : ‖p1−p2‖∞≤hn

|qp1,α − qp2,α|

}

≤ c3 · n · (n · hln + 1) · exp

(
−c3 · n · hln ·

(
c1 · ε−

1

n · hln

)2
)
,

which implies∣∣∣∣M̂n − max
i=1,...,n

qpi,α

∣∣∣∣ = OP

(
log(n)

n · hln
+ sup
p1,p2∈P : ‖p1−p2‖∞≤hn

|qp1,α − qp2,α|

)
.

This completes the proof. �
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[6] Devroye, L. and Krzyżak, A. (1989). An equivalence theorem for L1 convergence of the kernel

regression estimate. Journal of Statistical Planning and Inference, 23, pp. 71–82.

[7] Devroye, L. and Wagner, T. J. (1980). Distribution-free consistency results in nonparametric

discrimination and regression function estimation. Annals of Statistics, 8, pp. 231–239.
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