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Abstract

The problem of estimation of a univariate regression function from latent variables given
an independent and identically distributed sample of the observable variables in the cor-
responding common factor analysis model is considered. Nonparametric least squares
estimates of the regression function are defined. The strong consistency of the esti-
mates is shown for subgaussian random variables whose characteristic function vanishes
nowhere. This consistency result does not require any assumptions on the structure or
the smoothness of the regression function.
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1 Introduction

One of the fundamental problems of modern statistics is the problem of nonparametric
regression. Here one considers an R? x R-valued random vector (Z1, Zo) with EZ2 < oo
and the dependency of Z5 on the value of Z; is of interest. More precisely, the goal is to
find a function f : RY — R such that f(Z;) is a “good approximation” of Z,. If the main
aim of the analysis is minimization of the mean squared prediction error or Lo risk

E{|f(Z1) — Z|*}, (1)

then the optimal function is the so-called regression function m : RY — R, m(z) =
E{Z5|Z, = z1}. Indeed, for an arbitrary (measurable) function f : R? — R we have

E{|f(Z1) - ]’} = E{lm(Z1) - Z[*} +/|f(21) —m(z1)]"Pz(dz1)  (2)
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(cf., e.g., Section 1.1 in Gyorfi et al. (2002)). Since the integral on the right-hand side of
(2) is always nonnegative, (2) implies that the regression function is the optimal predictor
in view of minimization of the L9 risk:

E{|m(Z)) — Zo|*} = f:{é}}gRE{!f(Zl) — Zo|*}. (3)

In addition, any function f is a good predictor in the sense that its Lo risk is close to
the optimal value, if and only if the so-called Lo error

/ F(z1) — m(z1) PP, (d21) (1)

is small. This motivates to measure the error caused by using a function f instead of the
regression function by the Ly error (4).

In applications, usually the distribution of (Z1, Z3) (and hence also the regression func-
tion) is unknown. But often it is possible to observe a sample of the underlying dis-
tribution. This leads to the regression estimation problem. Here (Z1,Z2), (Z1,1,Z2.1),
(Z12, 22,2, ...) are independent and identically distributed random vectors. The set of
data

Dn = {(2171, Z271), cey (Zl,na Zg,n)}

is given, and the goal is to construct an estimate my,(-) = my(-,Dy) : R? = R of the
regression function such that the Lo error [ |my,(21) — m(z1)*Pz, (dz1) is small.

The problem of nonparametric regression in the above described setting is nowadays well
understood. In particular it was shown in Stone (1977) that there exists universally
consistent regression estimates, i.e., that suitably defined nearest neighbor estimates m,,
satisfy

E/ mn(z1) — m(21) PP (d21) = 0 (1 — 00)

for all distributions of (Z1, Zs) satisfying EZ2 < co. Related results have been shown
for many other estimates, which include, e.g., results on the kernel regression estimate
(cf., e.g., Nadaraya (1964, 1970), Watson (1964), Devroye and Wagner (1980) or Devroye
and Krzyzak (1989)), the partitioning regression estimate (cf., e.g., Gyorfi (1981), Nobel
(1996) or Beirlant and Gyorfi (1998)), the nearest neighbor regression estimate (cf.,
e.g., Devroye (1982), Devroye, Gyorfi, Krzyzak and Lugosi (1994), Mack (1981) or Zhao
(1987)), least squares estimates (cf., e.g., Lugosi and Zeger (1995)) or smoothing spline
estimates (cf., e.g., Kohler and Krzyzak (2001)). A summary of the main results can be
found in the monograph by Gyorfi et al. (2002).

The main aim of the current paper is to try to achieve similar results in a setting, where
the variables Z; and Zs cannot be observed explicitely, instead only observable indicators
corresponding to these random variables are given. Such models are studied in various
areas including psychology, social sciences, education or economics, where theoretical
concepts such as intelligence, desirability or welfare are of great importance. These
concepts cannot be measured directly but observable indicators (or manifest variables),



such as scores on IQ-tests, are given. To model such concepts theoretically usually latent
variable models are used.

The starting point of latent variable models are structural assumptions on the underlying
latent variable model. Let X and Y be R?x- and R% -valued observable random variables
(manifest variables). In order to analyze the relation between X and Y we assume that
they depend linearly on some hidden and unobservable variables Z; and Zs, where Z; and
Zy are dz,- and dgz,-dimensional random vectors, resp. We assume a simple structure
in terms of a single cause of variation (i.e., a single latent variable) for each manifest
variables. l.e., each of the components of the manifest variables is influenced by at most
one of the components of the latent variables. In order to simplify the notation, we will
assume furthermore that the two latent variables Z; and Z, are real-valued, in which
case our model is given by

xM 1-74 €1
X(z) ay - Z1 €9
X(d) Qaq '. Z1 E.d
Yy [~ | 1.2 T 5l (5)
y® by - Zy 02
y® by - Zo 0
Here as, ..., b; are real numbers and Z1, Zs, €1, ... €4, 61, ..., 6; are real random variables

such that E{e;} = E{0}} = 0 holds.

One possibility to fit such a (or even a much more general) latent variable model to data
is to assume that the underlying distribution is Gaussian, and therefore it is uniquely
determined by its covariance structure. Then the maximum likelihood principle can be
used to fit the latent variable model to observed data.

In this paper we try to avoid as far as possible assumptions on the distributions of the
random variables occuring in the above latent variable model and we use techniques of
nonparametric regression in order to analyze the dependency between the latent variables

Z1 and ZQ.

Of course, in order to be able to do this we need assumptions which ensure that the joint
distribution of the latent variables is uniquely determined by the joint distribution of
the observable manifest variables. The main trick here is that we make an independence
assumption: We assume that random errors occurring in the manifest variables are inde-
pendent from the latent variables, furthermore we need to assume that the characteristic
function of the manifest variables does not vanish at any point.

Our main result is a consistency result of a nonparametric regression estimate of the
regression function m(z1) = E{Z|Z; = 21} which holds whenever suitable exponential



moments of the random variables in (5) exists. Here we do not need any assumption on
structure or the smoothness of the regression function.

Known applications of regression estimation to latent variables in the literature are
mainly restricted to parametric models, often formulated with so-called structural equa-
tions models, for surveys see, e.g., Marsh, Wen and Hau (2004) or Schumacker and
Marcoulides (1998). In Paul et al. (2008) a high-dimensional linear regression problem is
considered, where a low dimensional latent variable model determines the response vari-
able. Principal component analysis is used to estimate the underlying latent variables,
and it is assumed that all variables have a Gaussian distribution. A generalization of
Gaussian latent variable models to the case that the manifest variables are indirect obser-
vations of normal underlying variables can be done via generalized linear latent variable
models, cf., e.g., Conne, Ronchetti and Victoria-Feser (2010). Surveys on latent variables
and its applications can be found, e.g., in Bollen (2002) and Skrondal and Rabe-Hesketh
(2007).

The only nonparametric regression estimate we know in this context was proposed in
Kelava et al. (2012), however the consistency result there is valid only for Lipschitz
continuous regression functions where a bound on the Lipschitz constant must be known.
Our method extends this results to non smooth regression functions by modifying the
estimate there. Instead of trying to estimate the latent variable model (5) such that
the independence assumption between latent variables and the errors in the manifest
variables is satisfied, we estimate it such that certain relations between the characteristic
function of the random variables in model (5) hold.

1.1 Notation
Throughout this paper we use the following notation: the sets of integers, rational num-
bers and real numbers are denoted by N, Q, and R respectively. For a real-valued function
f D — R with domain D, let
[ flloo := sup| f ()]
€D
denote its supremum norm. In the same spirit, we will use

[ flloo.r := sup|f ()]
zel
to denote the supremum of f over some subset I C D.
We will call a random variable Z subgausian if there exists ¢ > 0 such that

E{exp(clZ1 )} < oo

holds.



If X is a R%valued random variable, we denote the j-th component of X by X@). The
characteristic function of X is given by

ox(u) = E{e"" X} (ueRY).

Given an independent and identically distributed sample X7, X9, X3,... of X, we will
denote the empirical characteristic function by

n

1 Ty
@X{L(U):ﬁzew %,

j=1
The distribution of X will be denoted by Px. For f: D — R we write

z = argmin f(2)

in case that

rz €D and f(a;):rzré%f(z)

To simplify notation concerning rates of convergence, we will use a generic constant
C > 0, i.e., the value of C might be different in each equation containing C.

1.2 Outline

The estimate is defined in Section 2, the main result is formulated in Section 3, and the
proofs are given in Section 4.

2 Definition of the estimate

In the sequel we consider the common factor analysis (5) with the following additional
assumptions:

Al) d>3and >3
A2) the coefficients ag, ...,aq € R and be,...,b; € R are all different from zero

A3) Z; and Z, are square integrable real-valued random variables with E{Z?} > 0 and
E{Z2} >0

A4) €,...,¢q and 41, ..., 0; are real-valued random variables with E{¢;} = E{0;} =0
forall j < dand k <1

A5) (Zy,73), €1,...,¢€q4, 01,...,0; are independent

A6) the characteristic function of (X,Y) := (XM ... X@ y® y®) vanishes
nowhere



Let
(X7Y)7 (Xlam)a (XQa}/Q)a s

be independent and identically distributed, and denote the latent variables and random
errors corresponding to X; = (X.(l), . ,Xi(d))T and Y; = (Y;(l), . .,Yi(Z))T by Zi1i, Za,

)
€1y -+ 5[}2'. Given

D, ={(X1,Y1),...,(Xn,Yn)}

we consider the problem of constructing an estimate m,(-) = mu(-,D,) : R — R of
m : R — R defined by
m(zl) = E{Z2|Zl = Z1}

such that
/ [ (21) — m(21)[2P 2z, (d21)
is small.

We start with the definition of the estimate by estimating the coefficients a; and b;. We
set a1 := 1 and b; := 1. By our independence assumption we observe that for i £ j we
have

E{XV. XU} = B{(¢;Z1 + ¢j) - (i Z1 + &)}
= E{ajaiZIQ} + E{Gj . aiZl} + E{EZ . a]’Zl} + E{El . Ej}
= a;a;B{Z}}.
Thus, since Z1, Z, are square integrable we have

E{X®.Xx0)} E{X® .X(j)}

“ B0 xo} M YT gy xmy PrieBed

a2

and similarly

E{y(2) . y(k)}

E(YD . y®) for k € {3,...,1}.

by = —L " S and by =

We set a1 = by = 1 and construct our estimates as the empirical analogues

% Z?:l Xz‘(g) ) Xi(j)

(
Gy = 2 '~ and a; =
% Z?:l ‘Xl(l) XZ(3) ’ % Z?:l Xi(l) ’ XZ ?
and
RO IRAC) L @)y ®)
i _n2g= Yy Y i _ w2 Y
=i S0 e M ST Tm e
n 2j=1Y; J w2 Y Y
for 5,k > 2.



Let 21 ; be an estimate of Z; ;. By x0) —a;Z1 =¢j for j € {1,...,d} we obtain estimates
éj,i of €51 = Xi(J) — ajlei via

&= X7 — a2,
The estimates of 0y ; are similarly defined as

Opi = Yi(k) — biZa.

Next we define the estimates (21, 22,) of (Z1,,Z2,;) for i = 1,...,n. It follows from
Kelava et al. (2012)(cf., Lemma 1 below), that the following three relations between the
characteristic functions of (X,Y"), (Z1, Z2), €1 and 6; and their partial derivatives hold:

QO(X,Y)(ulaOa -5 0,01,0, ... ?O) = SO(Zl,Zg)(ul?vl) " Pey (ul) : @51(1)1),

0 0
TMSO(X,Y)(UL 07 s 7077)17 07 s 70) = az- %W(Zl,zg)(ulﬂfl) " Pey (Ul) 2 (Ul)

and

0 0
%@(X,Y)(ulvov s ,0,’[)1,0, s 70) = b2 : aivlgp(ZhZQ)(ulvvl) ’ 9061(”1) © 95, ('Ul).

In the definition of our estimate we choose (2, 22,) such that these relations approxi-
mately hold between the corresponding empirical characteristic functions. More precisely,
we choose K,, € Ny depending on the data Xi,..., X,,Y1,...,Y, by

K, =

1 1
min< |n1t |, max{K € N : inf n(um, vmw)| > ) 6
{L ], max{ We[_ﬁ’ﬁ}\@(xm,ym)l( )| ] }} (6)

We will show in the proofs that K, tends to mﬁmty almost surely Let us define a
truncation height by Ln = VK, and set L* =2 Ln =2-vK,. We construct an

estimated sample (21,1, 22.1), ..., (Zl,n, Zop) of (Z1, Z3) by minimizing
Tn(fl, 22) =
(7TU1 7'('1)1) (7['11,1 71’1)1) (TI'U1> (71'1)1)
sup Pxwywy (= =) = Penap (5 5 0) e () - wsn (=
ul,v1€[—2kn,2f(n} ( i L Ln b L L o Ln b Ln
0 U1 U1
— n(—,0,...,0,—,0,...,0
+ 90 Py ( i i )
. 0 Tup U1 U] U1
— a2 90(21,z2)”(A7*aA7*) e ( = ) psn ( = )
ou 1 Ly L L1t T, L1 LE
0 U1 U1
— n(—,0,...,0,—,0,...,0
+ Dy ‘P(X,Y)l( ir ix )




Tu1 TU1
St R

* *

Ln Ln

U1
A*
LTL

U1
T *
LTL

- 0
— by - 871)1410(21,22)?( ) : SOé’f’l( ) : ‘P(ﬁﬁl( )

} (7)

under the constraint % . Z?Zl 237 i<V K,. We estimate the regression function m by
a least squares estimate

n

1 . .
ma() = arg min =3 (52 = f() ®

where F,, is the set of trigonometric polynomials

]-"n:{f:R—HR‘

Kn Ky,
f(z)= Zakcos kel +Zbksin kel , ag, by € [—ﬁn,ﬁn]}. (9)
Ly, L,
Here the degree K,, is defined in (6) and B, > 0 is a parameter of the estimate.

Our main result is the following theorem.
Theorem 1. Assume that in the model (5) the assumptions Al),...A6) hold. Further-
more assume that Z1 and Zo as well as €1, ...,0; are subgaussian.

Define K,, by (6) and F,, as in (9) with L* =2 - L, = 2- VK, and B, = nit. Define
the estimated sample (21;,22;) of (Z1,Z2) by minimizing (7) under the constraint * -

S 25, <V K,. Define my, as in (8).

Then the Lo-error of m, converges to 0 almost surely, i.e.,
/ ma(z) = m(@) Pz, (dr) = 0 (n — o)

with probability one.

Remark 1. The above consistency result holds whenever several regularity assumption
in the common factor analysis model (5) are satisfied. First of all, we need that in
our common factor analysis model the distribution of the observable variables uniquely
determines the distribution of the latent variables, therefore we assume that the errors
are independent of the latent variables and have mean zero, and that the characteristic
function of the observable random variables does not vanish at any point. Secondly we
need that all random variables satisfy some exponential moment condition. Otherwise
we do not need any regularity conditions, in particular we do not need that the regression
function satisfies some structural assumption or that it is smooth, and we do not make
any parametric assumption on the underlying distribution.

Remark 2. It should be possible to extend the above result to a latent variable model
where the dimension of Z; is multivariate and to derive in this model a consistency result



of the corresponding multivariate regression function. In order to simplify the notation
we did not try to do this in the current paper.

Remark 3. It is an open problem how to extend the above result to a more general least
squares estimates (based on a general function space) and whether the above consistency
result holds under weaker moment conditions.

Remark 4. As soon as one imposes smoothness assumption on the regression function,
it should be possible to derive in the above common factor analysis model even results
concerning the rate of convergence of the Lo error. It is an open problem what the
optimal minimax rates of convergence are in the above model and how one can define
estimates which achieve them.

3 Proofs

In the proofs we will need bounded variants of the random variables occurring in the
latent variable model. We define the truncated Z; by

zZ for | 21| < L
A L '1 ) or | 1‘ o (10)
sign(Zy1) - Ly, for |Z1]| > Ly,.
Truncated variants of Zo, XM ..., Y1 ¢;, ... 6 are defined similarly.

Furthermore we need a set of trigonometric polynomials in two variables corresponding
to Fp. Let G, be the set consisting of all functions of the form

2.Kp,
T .
g(z1,29) = g aj-cos| k-=—-21]-cos|j- =2

3

~>

I *

7,k=0 n n
2-Kn
+ Z bjr-cos |k

7r ) ! < . )
— 21 | -sin | j- - 29
3,k=0 Ly
s LT
— 21| -cos|j =22
Ly, Ly,

2.K,
. us . .om
—i—Zdj’k'sm <k 7 -zl> - sin (j-z*-zz>

7,k=0

where a; k, bj k, ¢k, djr € [—10 - K, B2,10 - K, - 52].

2K,
+ Z Cjk * Sin (k

5,k=0

Lemma 1. Let XU .. X@ y®  vO 7, Zy e1,....€4,01,...,0 be real-valued
random variables such that the assumptions Al) to A6) are fulfilled. If (5) holds for
some constants as, . ..,aq,bs,...,b; we have

SD(X,Y) (Ul, 07 cee 307 U1, Oa v 70) = @(Zl,Zg)(uh Ul) * Pey (’Uq) 2 (Ul)’



0 0
P y)(u1,0,...,0,01,0,...,0) = az - aTLlSO(Zl,Zg)(UbUl) “Per (u1) - s, (V1)

8’11,2

and
0 0

%@(X,Y) (ulu 07 oo 707 U1, 07 R )O) = b2 ’ Bi’UlgO(Zl’Zz)(UL /Ul) " Pey (ul) 2 (/Ul)‘
Furthermore, the coefficients aa, . ..,aq,ba, ..., b and the distribution of (Z1,Z2) as well
as the distributions of the errors €1,...,€q4,01,...,0; are uniquely determined by the dis-
tribution of (XMW, ... X y1)  y®),
Proof. This is Lemma 1 in Kelava et al. (2012). O

Lemma 2. Let (K,), be a sequence of R-valued random variables with K, — co almost
surely and let (Bn)n be a sequence of R-valued random variables. If

. T T . T T
P(21,22)} <j ’ E’k ’ D) — P(21,22) (‘7 ' F’ & i’%) ‘ ol

n n

-3 2
K- B - sup )
k,jGZ,IHSQ'Kn,lleQ'Kn

almost surely, then

n

1 A
sup | = > g(21,, %2, —/Q(ZbZ2)P(Zl,22)(d(zhz2)) — 0
gegn n =1
almost surely.
Proof. Set
- s T
Apg = sup — cos (k: 21 l) - COS (j c = 2y l)
. - . ~ n * ? L* )
kJEL|K|<2-Kn,|§|<2-Kn | 7 =1 n n

I

7
T . T
- /COS <7€ 7 '21> © COS <] : i : Z2> P(2,,25)(d(z1, 22))
. LT

™
: 22> P z,,2,)(d(21, 22))

3
N——

1 — T
—Zcos (kz 7 “Z1
1

—/cos(k:- jr -21>‘sin
Ly

n
1 . T
— E sin | k- =21,
*
= Ly

10

]‘ .

)

VR

Ap3 = sup
kjJEZ,|k|<2-Ky,||<2- Ko,

N——




. 2 n ‘
. s . . i
- /sm (k 7 -Z1) -sin <J " -22> P (7,,2,)(d(21, 22))

n

By assumption the product of Kgﬁ% and the absolute value of

-k k
]k = Zexp 72’1[4- %221)) E{exp(i- ( L j Z1 + WL Zg))}

n n n

converges uniformly to 0 a.s. for every (j, k) € {—2- Kn, —2.K,+1,...,2- Kn}z Thus
K362 - 1(©jk + O (—)| also converges to 0 uniformly almost surely. By

Reexp(ix) = cos(x) and cos(xz +y) + cos(x —y) = 2cos(z)cos(y) (z,y € R)

we obtain
Re (exp( ( LnjA Ln’“ ))) + Re <exp(z'(”£’;sl,l 4 ”‘i(;’“)z«Q,l))>
= cos(7an”7 214 +Z . :22,5) + cos(ﬁﬁ; 21+ T ﬁ;;_ %))
:2cos(7TA* ) 'COS(WA'*I{A )

Together with

Re(@'k#-@‘(, )) =

mk T T (—k
I ) e CUCL SN en)

T 7 (—k)
~E{R i+ -7
{e(exp@(% R 2>>>
T Tk
+R i+ 7 ,
(ol a2 )
we get A
K352 sup |Re(© 1 + 0 (_p)| =2 K362A, ..

k,jEZ,|k|<2-Kn,|j|<2-Kn

11



Since

K3p2 sup |Re(®4 + O i)l
k,JEL,|k|<2-Kn,|j]<2-Kn

< f(zﬁi sup |(©k + O, ( )] -0 (a.s.)
k,jEZ,|k|<2-Kn,|j|<2-Kn

we obtain K3(2A, 1 — 0 almost surely. With Im(exp(iz)) = sin(x),
sin(x — y) + sin(z + y) = 2sin(z) cos(y)

and
cos(z — y) — cos(z + y) = 2sin(z) sin(y)

analogous results follow for A, 2, A, 3 and A, 4. Because of

sup Zg 210, 22.) /9(21,Z2)P(thz)(d(z17z2))‘
gEgn
1 2-Kn T
— sup = Z [a] s cos( 21,1) cos(j=—22,)
ks by ko di | TV J,k=0 n Ln

€[-10-K,82,10-K,, 82]

T
+bj7kcos( 7

J) sin(j%zu) + ik sin(kg—*éu) cos(j%zQ,l)

n n n

+ dj,k sin(k‘%iu) sin(j ﬁ

7122,1)]
T
_/[aj’kCOS( IA/*

n n
. . T
—21) sin(j =22

) Cos(jg* zg) + bk cos(

+cjk sin(k%zl) cos(jgk ZQ) +djx sin(k%zl) sin(jg* zg)} dP(ZlyZQ)(d(zl, 22))‘

n n n n
X Q-f(n -
< 10‘Kn'ﬂfl Z Zcos (]IA/* 2255)
=0 1= n

—/COS( ;k

) COS(j;:k 22) dP(Z1,Z2)(d(Zl7 Zg))‘

1 n
+ choS( 2 ,)Sln(] = Zzl) /cos( fr )sin(j ATr Z2) dP(ZhZQ)(d(Zl,ZQ))‘
=1 n Ly Lx L
+ ill sin( L7T;‘L 2 ,)cos(jé; Z01) — /sin( gn )cos(jé%zz) dP(ZhZQ)(d(zl?zQ))‘
+ % 2 sin( : 21, )sin(jg; Z91) — /sin( gn )sin(jé;sz) dP(ZhZQ)(d(zl,zQ))‘

12



4 4
r=1

r=1

for K, > 1, this implies the assertion. O

Lemma 3. Let F,, be the set consisting of all functions of the form
Ky, - Ky, .
z = ag-cos | k-—-z1 | + by -sin|k-— -2
flo = 2 (L:a )Z (Lz )
where ag, by € [—Pn, Bn]. Choose K,, depending on the data Xfl), .. ,bel), Yl(l), . Yél)

as in (6). Assume K, — co almost surely, set L* = 2- L, = 2- /K, and B, = nit.
Furthermore, assume that Z1 and Zy are subgaussian. Define

1~ ;
mn() = arg min E Z ’Z’i,Q - f(zl71)’2
=1

fEFn
Then
A . T T . s T
KEB% sup o |P(51,22)7 ]'iak"j = P(Z1,22) J'A**ak" s —0
ke J €7, | k| <2Kn,|j|<2K 7 Ly Ly Ly L

almost surely implies

|y (21) — m(zl)lszl (dz1) — 0

almost surely.

Proof. We use a variant of the decomposition for the Lo error of least square estimates
(cf., e.g., Lemma 10.1 in Gyorfi et al. (2002)) and obtain, for 6 > 0,

[ mn(e1) = m(1) PP (d1) = B{ima(20) = 26 |Do} - B{im(21) - Z?)
= E{|mn(Z1) = Z|*|Dp} — (1 +0)° fien]ﬁn E{|f(Z1) — Z|*}

+(1+06)8 [fien]g E{|f(Z1) — Zo|*} — E{|m(Z1) — Z2|*}
+ (L4 8)*E{|m(Z1) — Z2*} — E{|m(Z1) — Z5|*}
= Tl,n + T2,n + TS,n~

In the next steps of the proof we will establish upper bounds for 77 ,,, 75, and T3 ,,. Let
e > 0 be arbitrary. Since E{|m(Z;) — Z3|*} is independent of n, we may choose § such
that

Tsn = ((140)* — DE{|m(Z1) — Zo|*} <¢

13



holds. By the standard decomposition of the Lo-risk (cf., e.g., Section 1.1 in Gyorfi et
al. (2002)) we see that

T = (40" ing [ 17(20) = m(a) PP (d).

The function m can be approximated by smooth functions with compact support in
Ly(Pyz,) (cf., e.g., Theorem A.1 in Gyorfi et al. (2002)). Thus it suffices to show that
continuously differentiable functions with compact 5upport can be approximated arbi-
trarily well in Lo(Py, ) by functions f € UneN]—" Let m* be a smooth function with
compact support. By our assumption on Kn, we have L — o0 a.s. and hence the sup-
port of m* is a.s. contained in [— L:‘L, L;‘;] for n large enough. Thus, for n large enough,
there exists a uniquely determined Lipschitz continuous and 2[:;'; periodic continuation of
m* from [—L%, L*] to R. Denote this continuation of m* by mZ. Clearly, m? is bounded
by [[m*||s. Additionally, the coefficients of the Fourier series of m} are bounded by
||m |lco- Thus the coefficients are bounded by lm*||co- By Bn = nit, we see that the
K,,-th partial sum of the Fourier series of my,, which we denote by S i is contained
in F,, for n large enough. Since m™* is Lipschltz continuous, every m is also Lipschitz
continuous with the same Lipschitz constant K.

Now, if f is a Lipschitz continuous function with Lipschitz constant A and period 2L,
then =z — f(% - x) ist 27 periodic and is Lipschitz continuous with Lipschitz constant
% - . Using this we can apply Corollary 1 from Jackson (1930) and obtain

AfNF = o 2 ) S 19 me = M oo o252 < OLnlIl}(iKn)' .
for some C > 0. Here we have used that the trigonometric polynomials contained in F,
are of degree K,. Outside of this interval, m* vanishes for ﬁ;‘; large enough. Z; and ZAL;EL
are independent since I:* depends only on the data (Xi,Y7),.... Using the same upper
bound for the coeficents of S Ry, 8 above as well as the inequality of Markov we get
that almost surely, for n large enough,

inf / |f(@) - m* (@) PP, (de) < / S ()P (d)
{lz|>L%} {|=|>Lx} e

fe€Fn
< (2 Ko +1) - [m*lle)® - PllZ1] = L]

R 1

<9-Im*||% - K2-Elexp(c- |2 ?) —————

<9 [l K3 Blexp(e- 1) =}

< CR2 Blesp(—c- K)) -

holds for some C' > 0 depending only on m*. Here we have used that Z; is subgaussian.
By definition L* — oo and K, — oo almost surely, which implies that (11) tends to 0
almost surely. Using dominated convergence, we see that (12) tends to 0. This yields

14



T3, — 0 almost surely.

To establish an upper bound for 77, we use an approximation through trigonometric
polynomials in two variables. Consider hy,, : [—Lpn,Ly] = R, hyn(22) = 2z2. Define
hin : R — R as the uniquely determined 4Ly -periodic continuation of
9L, —x for x € [Ly,3Ly)
T — ~ ~
x for x € (—Ly, Ly,).

For every n € N| El,n is a periodic continuation of h; and is Lipschitz continuous with
Lipschitz constant one. The Fourier coefficients of hy, are bounded by |h1p|lecc = L.
Together with

A . 1
LnSKnSnﬁ:Bm

this implies that the Kn—th partial sum of the Fourier series g1, of l~11,n is contained
in F,. For a f, € F, we define gy, n(21,22) := fu(21) — g1n(22). Now gy, is a
trigonometric polynomial in two variables of degree K,. Using a similar argument as
above and applying Corollary 1 from Jackson (1930) again, we obtain

sup ’(fn(zl) - ﬁl,n(zz)) - gfn,n(Zh 22)’ sup h1,n(22) - g1,n(22) —0
21,22€[— L* L*] z2€[— L* L*]

for n — oo. Since iLLn is a continuation of hi,, we also observe that gy, ,, uniformly
approximates f(z1) — 2o for 21,29 € [—Ly, Ly]. Additionally, although gy, , depends on
fn € Fyn the above error is independent of f,, by our construction of gy, .

Now we use the decomposition

1 & X X
Tin = sup [E{lmn(zl) ~ ZPIDn} — (1 + 5)45 D Ima(215) — 22,407
eFn =1

+(1+90) ( Z\mn 515) —zz,j|2—f2\f —22,j|2>

(1+3)’ Z\f — 2052 = (14 0°B{If(21) - Z2I}]

= sup [Tl(,rz + T(Z) + Tl( )]
fE€Fn

By our definition of m,, we have Tl(iz < 0. This yields

T, < sup [T( )—I-Tl( )] = T( )+ sup T1(373

n
f€Fn fE€Fn

15



Next, we will use the elementary inequality

%)bQ (6 >0;a,b€R). (13)

(a+b)2—(146)a*><(1+
We have
Tl(,lrg :E{|mn(Zl)_ZQ|2‘Dn} 1+(5 Z|mn le —223|

= E{|mn(21) = Z*|Dn} = (1 +9) -E{!mn 21) = 2y 1, I*|Pn}
+ (1 +0) E{|mu(Z1) - Zy 1| *[Dn} — (1+0)%  E{gm,n(Z1, Z 20 )*|Dn }
(1+5 E{gmnn Zl; 2L ‘D } 1+5 E{gmnn 21722 {,D }

(1"—5 <E{gmnn Z17Z2 ‘D }_ ngnn 2137223)2)

+(1+6)° ngnnZ]_],ZQ] (1+0)* Z\mn 5) — %242

Applying (13) yields
) < (1 + (15> E{(mn(Zl) Ty (mn(Zl) - ZQLL))2 Dn}

<13 {(mn *gmn,n(ZhZQ’ﬁn))ﬂDn}

1 2 2
(gmnn Z, Z. 2.0m ) gmn,n(Z17Z2)) Dn}

+(1+<)(1+9)
n
ng n(21j722j)2]
n “ Ty 9 9
7=1
n

2
Z(gmn,n(ﬁlm 205) — (mn(215) — 22,j))

J=1

+(1+

+(1+ 5) [E{gmmn(Zl, Zs)?

+(1+6)° [% > (97214 227j))2 ~Blopn(21, 22}

=1

16



+ (1040 (1+ 9B (97a(21,20) — 95021, 2,1.)) '}
(4 8 (o100 2.0 - (20 - 22,,)) '}
+(146) (14 %)E{ (f(Zl) ~ 2y, — (f(Z) - Z2))2}

10 - (k)
_kZ_G 1,n

+(1+6)°

Since m,, € F, by our definition of the estimate, it now suffices to show that if we re-
place above m,, by some f € JF, then the above expressions converge to 0 uniformly
in F,,. Beforehand, let us loosely classify the above expressions into three types. Let
us denote 7Y, 7

s 175 Tl(%z and Tl(ly?) as expressions of type i. For these, we will use

that Z, i, converges to Zs. T1(272 and Tl(?rg are of type ii. For these the approximation

properties of gy, are used. ~1(52 and Tl(éz are of type ii¢, where we will use a com-

bination of the arguments used on type ¢ and type éi. The remaining expressions Tl(iz
and Tlm

-, constitute type v. Expression of type iv converge to 0 if Lemma 2 is applicable.

Let us begin with the expressions of type i. For f € F,, we have

grn(x,y) = f(x) = g1n(y)

where g1, is our trigonometric approximation of the identity from above. Thus the
differences in our expressions of type ¢ are independent of f € F,,. Furthermore by
9in € Fn, 91,n is Lipschitz continuous. Since cosine and sine are Lipschitz continous
with Lipschitz constant one and the coefficients of g1, which are the Fourier-coefficients

- . NE!
of hi n, are bounded by L,, there exist a C' € R such that CK,; is a Lipschitz constant
for g1,,. Since 0 is constant, we only need to show

Sl

E{(ZQL,L — ZQ)Z} —0 a.s.

By assumption, Zs is subgaussian. As in (12) we use that Z, is independent from L,, as
well as dominated convergence. This yields

A3 ~ 3
ZE{(Z2 2, )*} < KiE{ly 1,23}

c2 72

< KEE{ZQGXP(CQ ?2)} (14)

exp(2L32)

il 2 e (222 €2 _ 2o
< nE{ exp( ZQ) exp( Zg)} E{exp( Ln)}
(6] 2 2

= i8] 2 exp(e223) | B exp (- 2 E) )5 0
- n Co P\C249 Xp 2 n

17



since K,, tends to infinity almost surely by assumption.

Let us consider type ¢ next. By the definition of gy, the expression is independent of
f. By 22 i, € [—Lp, Ly] it suffices to show the uniform convergence of g;, to hy, on

[—L,, L,). As above, we use that the Lipschitz constant of hi, is independent of n.
Since g1, is defined as the n-th Fourier polynomial of hi . and both functions are 2L*

periodic, we use the rescaled functions z — glyn(]f . ) and z — hl,n( 7? . ) and apply

Corollary 1 from Jackson (1930) again to obtain the same upper bound for the speed of
convergence as above. This yields

7 L, In(K,)
91,0 — hl,nHOO,[_fJ;”me < C’T.

and the right-hand side tends to zero almost surely by our assumptions on L, and K,,.
Thus the integrand in Tl(iz and Tl(’ ) tends uniformly to 0. Thus both T1(2) and T(g) tend
to 0 almost surely.

Now we deal with type i#i. Since J is constant we can neglect the first to factors of both
Tl(gg and Tl(fg Furthermore, by our definition of g, », we have

2 n 2
- Z( 21,5) i — 9214, 5'2,3‘)) = Z(mn(il,g‘) = 22,5 = gma (215 5’2,j)>

S|
<.
Il
-

(22,5 — 91n(%2,5))% = Jn.

|
SRS
-

<
Il
—

We construct an upper bound for J,, by introducing the truncated version Z, b of 23 ;.
This yields

1 i R “ 2 N ~ 2 ~ s 2
In < 35 Z|Z27j =2y 00" 120, = 91n(Z 1 ) 1010255 1, ) — 910 (22,5)]
j=1
=3- (Jl,n + J2,n + Jd,n)

Since z2 g is bounded by Ly, we can employ the same argument as we used for type
i1. Thus Ja,, — 0 holds with probablhty one. As above we use that there exists a
constant C' > 0 such that C'Kﬁ is a Lipschitz constant for g;,. This yields J3, <

.9
C’K,; Z?:ﬂzz,jjn — 5,47
Z?:1<2A12,j)8 < V/ K, holds by our definition of 25 ;, we see

. Using a similar argument as in (14) and the fact that %

6

2 < 2273
E 22,5 — ZQ,jLn E :223 i

7’L
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n

1 1
= ——— ) (%,)°
<Ln>6nj§ :

< (f{n)fZ.E).

Using Kn — 00 almost surely, this yields J; , — 0 and J3, — 0 almost surely.

It remains to show that expressions of type iv converge to 0 almost surely uniformly over
Frn. This follows directly from Lemma 2 if gj% ,, is contained in G,,. Since the needed com-
putation is a straightforward application of the relations between trigonometric functions
such as

sin(z) sin(y) = = (cos(z — y) — cos(z + y)),

DN — DN

cos(z) cos(y) = = (cos(z — y) + cos(z + y))

and

sin(x) cos(y) = %(sin(m —y) + sin(z + y))7

we will not show every detail but just the important steps. For f, € F,,, we have

9% n(21,22) = fn(21)” + g1n(22)% + 2fn(21) 910 (22).

With

n

Kn
. m T
(1) - gin(z2) = Z <akaj cos (k: 7 -21> cos (] . IA/:; -22>

k,j=0
+brajsin | k - fr ~z1 |cos| g ZT - 29

Ly, Ly
+ak5jcos k- fr ~z1 |sin | g - ZT - 29

Ly, Ly

T ™ . . T
+by.bj sin (k‘ I:;EL -zl> sin (] . IE . 22> )

we see that 2f,(21) - g1,n(22) is a trigonometric polynomial of degree K, in two variables
and all coefficients are bounded by 242. Furthermore, we have

Ru e .
fn(zl)2 _ Z Gk2aj [cos (U{:l}kj) . Zl) + cos (U{:}/_;) . Z1>i|

k,j=0 "

bpajr. [ (k—j)m . (k+j)m
+2|:SID<IA/*'Zl + sin T’Z'Zl ]

n
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+ akaj{sin (U_i*kha) + sin <(‘]—£*k)ﬂzl>]
bib; (k—j)m (k+j)m
—i—%[cos <I:;Z1> — COs (i;;zq)}

By reordering the above sum and conflating the appropriate summands we see that
fn(21)? (and analogously also gi,(22)?) is a trigonometric polynomial of degree 2 - K,
and all coefficients can be bounded by (2 - K,, + 2) - 82. Thus gJ%n ,, is a trigonometric

polynomial of degree 2 - K,, with coefficients bounded by
202-K,+2)8% +262<10- K, - 3.
This shows gjzcmn € Gp,. Now we may apply Lemma 2 and obtain
T =0 as. for ke {4,7).
This completes the proof. [l

Lemma 4. Let (31, %)} be defined as in Section 2. Define K, depending on the data
(X1,Y1),...,(Xpn, Yy) by (6). Set B, = nﬁ, and L* = 2L, = 2/ K,. Furthermore let
the assumptions of Theorem 1 hold. Then

~ um vm umw vT
K362 sup QO(Q 29)7 (Ai, Ai) QD(Z Zz)( = ,Ai) 0
" n|u|§2.1%n,|v|§2-f%n AL L ' Ly Ly,

almost surely.

Before we prove Lemma 4 we will formulate and prove several auxiliary results.

Lemma 5. Assume that W and V) are real-valued random variables that are subgaus-
sian and that (WO, V(l)),(Wl(l), Vl(l)), ... are independent and identically distributed.

Then
vn

sup ‘%0 1)y U, VT ) — Q) y()yn (UTT, VT ’—>O
log(n) wwe[—nn] wmv )( ) wm v )1( )

almost surely.

Remark 5. Under the assumptions of Theorem 1, Z1, Zo, XM, YW ¢ and §; are sub-
gaussian. This yields

Vn um uw um uw
TN sup P(Z1,2)\ 7 7 ) = P(Z1,Z:)0\ 7> =
080 e i oy |7 By 7)o 0 )

n
< Vi sup ‘@(zl,zz)(umm)—@(21,22);1(WT,U7T)’

IOg(n) u,v€ [_Ln,i/n]
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sup

log(n) wwe[—n,n] P(21,25) (U, VT) = @7, Z)7 n(um, vm)| .

Here we have used L* = 2L, = 2V K n, the upper bound K, < nu, and the fact that
€[- 2K,, 2K, ] implies 7 € [ —2K, 2K"] Consequently, Lemma 5 implies

iy Ly
Vn um v umw v
sup P(Z1,2)\ 75> — oz, Z)m (= =)| =0 as
log(n) we[ 2o 28] (Z1 2)(LZ L;kz) (%1 2)1( . L;ﬁz)

Analogous results for (X, Y (1) ¢; and §; are obtained in the same way.

Proof of Lemma 5. As in the proof of Lemma 3 we use truncated versions of W)
and V(). However, we choose truncation heights that do not depend on the data. Set
M,, =log(n). We obtain

sup
u,vE€[—n,n]

P,y m) (U, o) — )y (u, W)‘

< sup

u,vE€[—n,n]

P,y (um, vm) = g o, (e, W)‘

+ sup

u,vE€[—n,n]

um,vm) — uTm, vT

P vy (W,UW)—<P(W<1>,v<1>);z(umv7r)‘

+  sup

u,vE[—n,n]

= Tl,n + TQ,n + T3,n

Next, we show that 1‘() ‘T, 10‘g() Ty, and

102() Ts , converge to zero almost surely.

We use exp(iz) = cos(x) + isin(z) together with the mean value theorem and obtain

Tipn < sup E{ ‘cos WDur + VWOyr) — cos(Wﬁiuw + VJ\(}TEUT[')‘

u,v€[—n,n]

+ }Sin(W( Jur + VHyr) — sin(W(l)mr + V(l)mr)‘}

< sup E{mvmu+vmm—4wmu+v“)\w

u,v€[—n,n]

+KWmu+VmM—UVmu+VU)}W}

<27 sup E{|u(W(1) - Wﬁn” + (V) - VI\(JB”}

u,v€[—n,n]

< 2mn- [BUWO W} + B{O - VP,

Since W™ and V() are subgaussian we apply the same argument as in (14). By the
Cauchy-Schwarz inequality we have

E{w® - wd |} < /B{wo - wD}
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and a similiar upper bound for E{|(V(") — VJ\(/}3|} This yields

T30 < 20y Blexp(eW O]} -exp(-A2)

c

+ \/iE{eXp(CIV(”\Q)} rexp(—3

< C-27mn - exp(—eM?2).

)|

By M,, =log(n) we have

Vn 2C7-\/n-n

Tog(n) 1n < Tog(n) . exp(—élog(n)2) —0

since for any é > 0, exp(—¢log(n)?) tends to 0 faster than any polynomial in n.

To establish an upper bound for 73, we use the same arguments as for T4 ,. With the
Cauchy-Schwarz inequality we get

1< 1N
Ty < 2mn [ SOWD WD 4+ STV - v | (15)
=1 J=1

1 -2 (1) 1 -2 (1) -
< 2mn - H;Cexp(ch 2) + n;CeXp(CIVj 2)| - exp(—&M;)

for some & > 0. Now W) and V(1) are subgaussian and our sample consists of inde-
pendent and identically distributed random copies of W) and V(). The strong law of
large numbers implies that the second factor converges with probability one and is thus
bounded with probability one. This yields

" 70

Vn
log(n)

with probability one by the same argument as above.

To show the convergence of 15 ,, we will use a discretization argument. Thus we are inter-
ested in the Lipschitz continuity of ¢, ) ), (u,v) and ¢, ) 1), (%, v) as functions
(WJ\/IH’VI\/In) (WJ\/IH’VI\/In)l
of w and v. If f is a Lipschitz continuous function with Lipschitz constant [, then for any
c € R the function

x— f(cx) (c € R)

is also Lipschitz continuous with Lipschitz constant |c| - [. Furthermore the sum of two
Lipschitz continuous functions with Lipschitz constants [y and [y is also Lipschitz con-
tinuous with Lipschitz constant I3 + l2. Since sin(x) and cos(z) are Lipschitz continuous

with Lipschitz constant one and W]E/}Z, Vl\(jz are bounded by M,, we obtain

vy v () = v v (v o)
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< 2My (Ju — uol + |v — o))

Mp Y Mp

and similarly

|, ) 3
(xW y

(1 )
MY M )1

(u,v) — (p(Xf\}Lﬂst}i)?(uO’ vo)| < 2My (Ju — uo| + v — vol).
We use

I == [-n,n]N[j/n—1/2n,j/n+1/2n] (j€Z, |j|<n?

to partition [—n,n] into intervals of length % or less. By our previous observation on the
Lipschitz constants, this yields

‘ ( ) (j k )‘ < 2w M,
su UT, V) — =, —m)| <
B R vy v (™l < =5
as well as analogous upper bound for the discretization error of ¢, 1) . «a),,. Thus for
Wagy Var,)1
any C' > 0 there exists a ng € N such that for all n > ng
vn
su UT, VT ) — um,vm)| > C
0801 w1,y PR i (T V) = L vy (v v)
implies the existence of a (£, %) with [j], [k] < n* with
Vn J k J k C
— = .m, =7 = =M, =T > = 16
tog(n) |Povii i G ™ ™ T e v Gy M > (10)

Splitting ¢ into real and imaginary parts and applying the Hoeffding inequality (cf., e.g.,
Lemma A.3 in Gyorfi et al. (2002)) yields

p {‘so(wm,w))(u, v) = P, ymye (U, v)‘ > 6}
€
<P |Re U, V) — n(u,v))| > —
< {| (v vy () = oy vy (u,0))| \/5}
€
+P {!Im(w(wu),v(l))(%v) - SD(W(l),Vu));L(U,U)H > \/5}
—n-e2 —n-e?
<2. (%T) — 475

Combining the above inequality with (16), we obtain, for n > ng and C' > 0

NLD
P{log(n) sup > C}

@) Ly (UT,vT) =@ ) @y, (um,uT)
u,v€[—n,n] (Wit Viar,) Wty Va1

Mnp Y Mp )1
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k
< (22 +1)2. P{ JonE.
S@THDT max Py s e Gy ™

1], |k|<n?

J k C log(n)}
P v mn T T e
C'log(n)

<4-(2n*+1)2%- e (G (2n2 4 1)2 . ¢~ @7 los(n)?/16, (17)

This yields

ZP{log (n)

n=1

sup
u,v€[—n,n]

>c}

um, vm) — um, vm
P v (T T = P v o (v o)

< 00
for any C' > 0. By the first Lemma of Borel-Cantelli

AR,
log(n) u,vE[—n,n]

um, vTm) — uTm, v
2wt v (W) = P i (o)

converges to 0 almost surely. Together with the previous results on 77, and T3, this
implies the assertion. ([

Lemma 6. Assume that V = (V) V@ VD) gnd W = (WO, w@ . wh) are
R%-valued and Rt-valued random vectors, resp., such that V), W), V@ and W2 are
subgaussian. Assume furthermore that (V,W),(V1,W1),... are independent and identi-
cally distributed. Then

Vn 0
S um,0,...,0,v1m,0,...,0
log(n)? ,, vle[pnn} 8u280(V,W)( 1 1 )
0

_ TWSO(V’W)? (uim,0,...,0,v1m,0,...,0)| = 0

almost surely. The same assertion holds if 6%2 1s replaced by 8%2'

Remark 6. As for the previous lemma, a direct application of Lemma 6 yields

NG 0 U (K
W Sul? R 8 QO(X’7 )( 0,...,0,A7*,O,...,0)
ogln u1,v1 €[—2K,,2Ky] U2 n Ln
0 UL VT
- = nAi,OV..,O,Ai,O,...,O —0 a.s.
By P i i )

Similiar results are obtained for %‘P(X,Y)a a%l‘P(ZhZz) and 3%2@(2122).

Proof of Lemma 6. It is well known that the characteristic function of a real-valued
random variable is k-times differentiable if the absolute moments of order k& are finite.
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Since V@ and W® are subgaussian, they are also square integrable. We obtain the
partial derivative of p/ ) as

iSD(VW)(ul 0,...,0,v1,0 0) = E{z‘V(Q)ei(mV“)+0-v(2>+-~~+v1W“)+--~+0)}
au2 5 b b b ) ) AR |

_ E{iV(Q)ei(mV(l)-i-mW(l)) }

We also compute the derivative of the empirical variant of the characteristic function

0 1 & () (1)
a—w(vw)?(ul,o,...,o,vl,o,...,o):—Zﬂg@)e’(“% W),
U9 ’ n

j=1

Now we proceed as in Lemma 5. With M,, := log(n) we have

sup
u,v€[—n,n]

E{iv(Q)ei(wrv(l)errW(l))} _ 1 i 'V.(Q)ei(Uﬂ'Vj(l)+”7TW;1))’
J

n <
Jj=1

< sup E{Z-V(Q)eiﬂ-(uV(l)Jer(l))} _ E{ivﬂ(j)eiﬁ(u\/ﬁi—kvw&i)}‘
u,vE[—n,n] "
n
@) invD oW D)) LT @) v row]) )
+ sup E{ZVMne M M - E zVMmje Mp,j Mp,j

u,vE[—n,n] J=1

+ BN v vy w1 @) v e ®

. May,j M) 2V 7r(uV. +oW )
Sup ‘n > iVap, je g mit— > iV el i)
u,vE[—n,n] =

j=1
= Tl,n + TQ,n + T3,n-
Using the elementary inequality
lab—cd| <l|a—c¢|-|b| +|c|-|b—d| (a,b,c,deER)

we obtain the desired rate of convergence for T, and T3, as in Lemma 5. The upper
bound for T3, is also obtained analogously to Lemma 5. We have the Lipschitz estimate

‘ZXZ(\/2[) eiw(uXJ(Vllzl—i-vY]\(/}T)L) . lXJ(VZI) eiw(uoXj(\;Zl—l—onﬁi”
< 27 (M,)*(Ju — uo| + v — vol).

Thus the discretization error that arises over a partion with intervals of length % is

bounded by some constant times % — log(n)? Now, for n large enough,

n
vn sup

log(n) 2 u,vE€[—n,n]

n
1 -(2) iﬂ(uVA(}>+vW]E/})) _ l 1 (2) iﬂ(uV]E{l) -Jer](\;) )
E{ZVMne n n - E 1 zVMmje % %
j:

>C

implies the existence of a (£, £) with [j|, |k| < n? with

n’n

\/ﬁ . (2) ’iﬂ'(iV(l)+EW(1)) 1 ° . (2) iﬂ(lV(l) _+Ew(1) ) C
fog? [PV e TR} = D5 S e )

Jj=1
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Following the argument in the proof of the previous lemma, we apply the Hoeffding
inequality to obtain

P v X gilun X)) +on¥p) Y X2 inX() vaYp) )
E{ix®) gilunXip, +on X0 YD )] s
{log(n)2 u,v;lf)n,n} {z My, © } H;Z M,,j€ J J _C}
C-log(n)2 9 1
< . 2 2_ _ .
<4-(2n°+1) exp( n( NG ) 6 n)z)
—log(n)?
< 3. oV ),
<Cn exp( 16 )

Again, the right hand side of the above inequality is summable. Thus the first assertion
follows as in the proof of Lemma 5. The second assertion follows in the same way. [

Lemma 7. Define K,, as in 6). If XN and Y are subgaussian and Ox)y )
vanishes nowhere, we have
K, — >
almost surely.
Proof. It suffices to show that
1

log(n)

tends to infinity almost surely. We use Lemma 5. Since X" and Y1) are subgaussian
we have

}

max{K € N: inf (i, om)| >
{ u,vE[— Q\ﬁgf}‘ (X (1),y(1))1( )‘

NLD

sup
log(n) u,v€[—n,n]

almost surely. By assumption ¢(y, y;) is continuous and vanishes nowhere. Thus for
every interval I there exist a constant C7 such that

(p(X(l),Y(l)) (u7r, ’U7T) — SO(X(U,Y(U){L (U7T, ’U7T)’ —0

x,,v1) (w,v) > Cp
holds for all (u,v) € I2. Thous almost surely for n large enough, we have
1 C C
s U T

logn 2 and USEEIW()Q Y7 (w,v) = o v (w,0)] < 5

1

This implies that with probability one the inequality min, ,es Pxmym)r (u,v) > Tog(n
holds on I for n large enough. Since I was arbitrary this completes the proof. l%l

Lemma 8. Assume ag # 0 and by # 0 and that XMV, ... YD are subgaussian. Further-
more assume EZ? > 0, EZ2 > 0 and choose the pammeters K, and L* as in Theorem

1. Then /i
no .
W‘UQ*GQ| — 0 and

almost surely.
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Proof. Since XM, X2 and X©) are subgaussian, the products XM X2 and XD xG)
are square integrable. By the law of the iterated logarithm (c.f. i.e. Theorem 33.1 in
Bauer (1996)) we conclude that with probability one

\/ﬁ’ ! ZX(I) x® _g{x® .X(3>}‘
2log(log(n)) 'n =

and

n 1 (3) @) v(3)
v/2log(log(n ‘ ZX R G }‘

are bounded. This implies

- 1) x(3) ’
X X —E{x" 0
log(n ‘ { =

and

‘f X(Q) x® _E{x® (3>}’—>0

almost surely.

Recall that a is defined as

and that
E{X(Z) .X(3)}

E{XD.X®)}
holds. Now, by using the elementary inequality

ag =

oo x| _ zllyn =yl |yllen — 2]

Un YT |yunl [Yyyn|

we obtain
vnoo
fog( 2 "
IE{X®.X0)}. log(n) ‘% S XZ,(l) _X,(3) _ E{Xi(l) 'Xi(S)}‘
<
< B

iy xM o xP exY . xPy
)

B0 X0 il X X0 - BT X

n

Ly xMxPexD . xPy

For both of these fractions, the nominator tends towards E{X 1. X®)}2 = a2 # 0 almost
surely and the second factor of the denominator converges to 0 almost surely This yields

NLD

W‘&Q - a2] —0 a.s.
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The second assertion follows in the same way. (]

Lemma 9. Assume that assumptions Al) to A6) on our model (5) are fulfilled. Assume

furthermore that Z1 and Zy as well as €1,...,0; are subgaussian. Define T, as in (7).
Then
vn T, —0
log(n)?

almost surely.

Proof. Let us recall the definition of T},,. We have

Tn(él, 22) =

U] TUL Tup U UL U1
ul,vle[s_g%n,gkn}{ o, Y(l))l(L* ﬁ;;)_(p(zl’zz) (LTE Lﬁ).%h(ijﬁ).%?’l(ﬁ)
. ;W(p(xy)?(g,o,...,o,E,o,...,O)

gt an (o )i, () -0, ()
+ aU(P(X,Y)’f(EZ;?O’ 0’7?:’0’ 0)
o oty (G ) e () o, () }

Here 2; and 29 are chosen in such a way that they minimize 7;,, under the constraint
%Z? 1 22] < VK,. We define T}, by replacing 21 ; with Zj j, replacing 25 ; with Z ;,
(1 ) (1)

replacing €1 ; = Xj — 21, with € ; := Xj — Z1,; and replacing 51,]- = Yj( ) _ Z9 5 with
517]- = Yj(l) — Zj. Since Zy is subgaussian, EZ§ < oo and %Z?=1 ZQSJ converges to
EZ$ almost surely. By Lemma 7, K,, tends to co almost surely, thus with probability
one

T, <T,

holds for n large enough. Using the relations between the characteristic functions of
(X,Y) and (71, Z3) from the first part of Lemma 1, we have

T 7Tu1 U1 7ru1 U1
Tn < sup {|€0 xOymyr (= =) —oxm yay (=)
u1,01€[—2K,,2K,] i Ly L,"; ( ) L* L;;
7TU1 U1 U1 U1
o222 (5 i =) pa = i )-soal(ﬁfz)
U1 TU1 UL U1
- 90(21,22)’11( I:* L* ) Pep 1( I:; ) : 806{‘71([:7;)|
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0 Ul U] 0 TU] Ty
+ G S ) S Mg . %
|6uQ ‘P(X,Y)l( i i ) Ous SO(X,Y)( i e )l

n n n n
8 Tu1 TU1 UL U1
+ ‘a28u90(Z1,Z2)( L* s f/* ) 9061( ZA;;‘L) (p51(£;§)
0 7Tu1 Ty U U1
— a28 v(zl,zg)?( L L* =) '806111(7;) P8y 1(?2)’
0 Uy U, 0 TU] U]
+ 0,0, —,0,...) — — —-—0,...,—,0,...
‘81} PX,Y)p (= Lj; ix ) dvo SO(X,Y)( ir ix )l
0 TU] TU1 Ul U1
bo— s = ) =
g an (G T (G en(E)
0 7ru1 U1 Ul U1
= br oz (s ) - o () - o, () |
QiR Ly Ly T Ly T I
Applying Lemmas 5 to 8 to the above expressions yields
vn T, —0
log(n)?
almost surely. This completes the proof. O

Proof of Lemma 4. As a first step, let us verify that the conditions of Lemmas 5 — 9
are satisfied under the assumptions of Lemma 4. Under the assumptions of Theorem 1
all the occurring random variables are subgaussian. Thus the assumptions of Lemmas 5,
6 and 8 are satisfied. Under the assumptions of Theorem 1 the characteristic function
of (XM, Y (™) vanishes nowhere. This shows that the assumptions of Lemma 7 are sat-
isfied. Additionally the assumptions concerning our model that are needed in Lemma 9
are also part of the assumptions of Theorem 1. Thus Lemmas 5 — 9 are applicable under
the assumptions of Lemma 4.

By Lemma 9 almost surely

Sp o sy (s ) - ey, () 0an (52) — v (s o)
Z ’Z * * ' éna Ai* ' 8” A* (X Y ) * A*
u,vE[—an,2Kn} 1) Ln Ln o Ln bt Ln L Ln

log(n)? 1
=TVn S 2log(n)

for n large enough. On the other hand

o ‘ (u7r vw)| S 1
in O(x1 - >
ul<2n ol<2in T Y I TN og(n)

holds by our definition of K, in (6). Thus almost surely

nf o (u7r mr) (uw) (’Uﬂ')|> 1
m = . tn \ = =
u,vE[—an,Qf(n} (Zl 22)1 L* L* (’061 1 L:L g061,1 L:l 2 log(n)
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for n large enough. This implies that is suffices to show

~ um  vT um vTm
(Kn)*B2 sup a1z (7= =) — P,z (= =) = 0 (as.)
<ok ul<ak, | L Ly 7 2) Ly L7,

umT vTm

under the additional assumption that |<p(21,22)7f(£—*, L—) “Pen (Z—f) “Qgn (Z—f)| is bounded
n n ’ n 1,1 n

away from zero by ﬁg(n) on [-2K,,2K,)2.

As in the previous proofs, we will use

we -2k, 2K, & T e [_m/kn,m/m]

Ly,

to simplify the notation. We will also need some auxiliary result from complex analysis.
It is easy to see that the functions

@U,n(u) U 90(21,22)711 (U, U) and ‘Pu,n(v) DU @(21,22)? (U, U)

are continuously differentiable for any fixed v € R or v € R respectively. Furthermore,
it is a well know fact from probability theory (c.f. e.g. Theorem 25.2 in Bauer (1996))
that the characteristic function of a random variable is continuously differentiable if
moments of the appropriate order exist. Since Z; and Z, are subgaussian and thus
square integrable, we see that the functions

@U(u) U (p(ZLZQ)(u?U) and (pu(U) R 90(Z1,Z2)(u7 U)

are also continuously differentiable for fixed v and w respectively. If f : R — C is
continuously differentiable and does not vanish on an interval I C R we define L¢(t) for
any t € I by
t gt

e,
to f(T)
where wy is a complex number such that exp(wo) = f(to). Now Ly(t) defines a logarithm
of f(t), i.e. exp(Lf(t)) = f(t) (cf., e.g., Section III, §6 in Lang (1999)). The above

functions do not vanish on [—mv/K,, 7/ K,]?. Thus

0
u 9 ’0
wy = 0+/ bu (21,2 (% 0) dz
0 P(z,7)(2:0)

Ly(t) :==wo+

is a logarithm of ¢z, z,)(u,0) by In(p(z, 2,)(0,0)) = In(1) = 0. Thus

g 9

u Y ,0 v O ’

Lot) = [ BPEEED | [ otna ),
0 Pz1.2:)(%0) 0 P(z1,2:) (U, 2)

v O
:w0+/ 81}90(Z1,Z2)(u’z) d
0 P(Z1,22) (U, Z)
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statisfies exp(Ly, (v)) = ©(z,,2,)(u,v) for (u,v) € [—2K,,,2K,]?. An analogous expres-
sion is obtained for a logarithm Ly, . (v) of ¢ z,y»(u,v). To simplify notation in the
next step, let us denote Ly, ,, (v) as b, and Ly, (v) as b. This yields

‘@(21,22)’;(% v) — @(Zl,ZQ)(UW)} = ‘GXP(L%(U)) - eXp(Lgou,n (U))‘
—|exp { }epr by) —1|
|exp( | }exp Re(b—by,)) - exp(i- Im(b—by)) — 1‘
= |exp(bn)|| (exp(Re(b — by)) — 1) - exp(i Im(b by)) + exp(i - Im(b — by)) — 1|.

We have
lexp(bn)| = |@(z,20)n (u, )] < 1.

Therefore, with exp(0) = 1 and £ € R between 0 and Re(b — by,), using the mean value
theorem shows that the right hand side is bounded by

lexp(&) - [Re(b— by)|| - 1 + |cos(Im(b — by)) + isin(Im(b— b)) — 1|
< lexp(|Re(b = bp)[)] - [b = bn| 4 2[b — bn].

Here we have used the monotonicity of the exponential function and the Lipschitz con-
tinuity of sin and cos. If b,, converges to b almost surely,

exp(|Re(b—byp)|) = 1 a.s.

Combining this with the above upper bound for ‘90(»21 ) (u v) — 90(21722)(%”)‘, we see
that

(Kn)%82 sup |Lgyn(v) = Lp, (V)] = 0 a.s. (18)
[u|<mV K |v|<nV/ Ky

implies the assertion of the lemma.

Let us denote the vectors (u,0,...,0,s,0,...,0) and (¢,0,...,0,0,0,...,0) by (ug,so)
and (o, 0) respectively. Using again the relations between the characteristic functions of
(X,Y), Z1, Z and their derivatives from Lemma 1 yields

b — by| = ‘/ 8u90(Z1,Z2 ,0) dt—i—/v %‘P(Zl,zﬁ(u,s) s
P(Zy, Zz ) 0 SO(ZLZQ)(’U,,S)

v 9
_/ %‘P(él,ﬁz)’f(a )dt—/ 5o P(21,22)7 (Us 8) ds‘
P(z1,50)n (£, 0) 0 Pzz)n (U )
‘/ 1 gean (0.0 1 ey (o s)
az

dt+ | —-
¢x,y)(to,0) 0o b2 vxy)(uo,s0)

_/ 5uP (1,207 (,0) dt—/v 5P (1 220y (U 8) ds‘
0 Pz (t0) 0 Pz (W, S)
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- ‘/“1 32-0(x,v)(to, O)d _/ 1 ai@(xyn(toyo)dt‘
“ o a2 oxy)(te,0) az vy (to,0)
+!/“}.8M¢MY (t0, 0) /‘awwumz<t®d4
0 G2 Py (to,0) 0 P (t0)
. /”1. %SD(XY UOaSO /”1‘ 932 Y (Uo,So)ds‘
0 b2 @(XY) o, S0) 0 by QD(XY)l(UOaSO)

n /”} %SO(XY) anSO / aUQ (21,22)7 (Us S)ds‘
0 by Pxy)r(uo, s0) 0 Pz (uss)

= Sl,n + S2,n + SS,n + S4,n-

We have
0 0
A 1 35 U, Vo 1 35 n(UQ, Vo
sup  Sip<m\/K, sup |—- 7z #000) ) — - By P71 )‘.
ol <n/ T al ol <n/Fn 02 exyy(uo,v0) a2 pxyyr (uo,vo)

For two sequences a,, € R, b, € R\ {0} with limits a € R and b € R\ {0}, the elementary

inequality
a(b—by)

bby,

an

_bn

< (a—an)b‘ N

bby,

SallS!

holds. Thus we obtain

7-0(x,v) (U0, v0) 5o @(x,y)r (1o, Vo)

Y)r
a2¥0(X,Y) (u0,vo) a2SO(X Y)?(Uo, )

(52 2(x,v) (10, v0) — F=0(x,vyr (U0, v0)) - a2(x,v) (o, vo)
a2p(x,v) (U0, vo) - a2(x,y)r (o, vo)

<

32-0(x,v) (10, v0) - (a2(x,y) (1o, vo) — o (x,yyp (o, o))
a2¢(x,y) (1o, vo) - a2p(x,y)r (o, vo)

_l’_

=51+ 55,

By the definition of K,,, we have lx,y)r (o, So0)| > % on K,, 7V K2 Now

P (x,y)r (o, S0) converges to ¢ x,y)(uo, so) with rate \}) almost surely by Lemma 5 and
as converges almost surely to as # 0 by Lemma 8. Thus there exists a C' > 0 depending
only on a such that with probability one the denominators are bounded away from zero
by Cr——% log(n)2 for n sufficiently large. The absolute value of the characteristic function is

bounded by one. Thus, by Lemma 6
Vvn 1
log(n)* Supb Ln
|ul,Jo] <7V Kn

is bounded for all n € N with probability one.
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2

To obtain analogous bounds for 57 ,,,

we observe that %SO(XJWH,YAML)(UO’ vo) is bounded
by some constant since all moments of X @ are finite. Thus we can use Lemma 5 and
Lemma 8 again. Thus

N

2
— sup 5]
4 ’n
log(n) [u],Jv|<my/ K,

is bounded for all n € N with probability one.
The same arguments as for Sy ,, are applicable to S3, and yield the same bounds.

To obtain these bounds for S ,, and Sy ,,, we may use an analogous argument. As we have
seen at the beginning of the proof we can assume that ¢, ) (u,v) - per (1) - 050 (V)]
’ ’ 1,1

is bounded away from zero by ﬁz(n)' Furthermore

1 ¢ . 1 1
‘W(X,Y)?(to,o)‘ = ‘ﬁ ;_1 exp (z - (t- XM 4. v( ))‘
is clearly bounded by one and

0 IRy 2) itxM oy M)y
|8TL290(X,Y);1(t0,0)!=|EZZXj et i)

Jj=1

1 n
< SIXP = EIX@) as.
j=1

implies that %QO( XY)r (to,0) is almost surely bounded. Thus using the same decompo-
sition for Sy and Sy as for S7 and applying Lemma 9 instead of Lemma 5 and Lemma 6
yields the desired bounds.

L ’ L

Returning to (18), we use the above bounds as well as §, = n1t and K, < nit. With
probability one, there exists a random C' > 0 such that
(Kn) 55 sup Ly, (v) = Ly, (v)]
[u| <V K, Jv| <7V Kn
< nit sup (Sin+ Som+ S3n+ San)
[u|<TV K, Jv|<nV Ky
4
<C.nit. log(n)*
< Jn
holds. Since the right hand side tends to 0 the assertion follows. O

Proof of Theorem 1. Under the assumptions of Theorem 1, Lemma 4 is applicable.
Thus we can conclude the assertion of Theorem 1 from Lemma 3. O
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Supplementary material for the referees, not for publication

Proof of Lemma 1 The first assertion follows from some elementary calculations. Using

(5) and the independence assumption we see that the characteristic function ¢ x y) of
(X,Y) is given by

ox,yy (U1, ..., ug, v, -, 0p)

d l
exp ZZ“J LX) 4. ka Yy (®)
j k=1

l

Uj'(aj'Zl‘i‘Ej)—l—i'ka-(bk-Z2+5k)
1 k=1

J

d l d

exp i-(ZUj-aj-Zl+ v - by - Z2) 'Hexp(i'uj'-ej)
j=1 k=1 j=1

I
=
—N A ——
7
o
~.
' <
(= 1

!
'HeXp(i'Uk'5k)}

k=1

d I d I
=0z | D_ui a, Y ve-bi | - [ wi) - T s (vr).
j=1 k=1 j=1 k=1

Furthermore, using

0; (0) =5, (0)=1 (j=2,...,d,k=2,...,])

and
Pr, (0) =i - Eeg = 0 = ¢, (0)
we get
SO(X,Y)(uh 07 ey 07 U1, 07 e 70) = @(Z1,Z2)(u17 ’Ul) * Peq (Ul) 2 ('Ul)
as well as
o (u1,0 0,v1,0 0)
8UQSO(X7Y) LYy, Yy U, Uy ooy
0
=ap- 87190(21,22)(”1, 1) * e (u1) - 5, (1)
+0(21,25) (U1, V1) - @y (u1) - 05, (V1) - e, (0)
0
=as- aiul(P(Zl,Zz)(ulvvl) “Per (u1) - sy (v1)
and

0 0
aT}ZSO(X,Y)(Ul,U, ,0,01,0,...,0) =ba - 87]190(21,22)(“1,01) - e (u1) - @5, (v1).



To show the second assertion, assume that in addition to (5)

x@) 1- 74 &
X as - 74 €s
X(d) . C~Ld : Zl + gd
YO L 12, o1
y(® by - Zo 5y
y® b - Zs o

also holds in distribution and that the appearing random variables are square integrable
and satisfy assumptions A4) and A5). Set a1 = a; = by = by = 1. By independence, we
have for i,j € {1,...,d}

;e B{Z7} = B{XV) . X} = a;a,E{Z]}

for i,7 € {1,...,d}. Since the left hand side does not vanish, every factor on the right
hand side shares this property. This yields

E{X®.Xx0}
a2 = ————————=— = a9.
E{X1.Xx®)}

Similiar arguments show a; = @; and b; = b; for all j € {1,...,d} and all i € {1,...,1}.
Using the same argument as in the proof of Lemma 3, we have

P(21,22) =

exp(/vl. 3?)280()(,1/)(%07---70’570>""0)d3)
0 b2 (P(ny)(u,o,...,0,3,0,---70)

0
o] t,0,...,0

-exp(/ —. a“2¢(X’Y)( )dt)
0o a2 Pxy)(t0,...,0)

and

SO(ZIVZQ)

v %@()@y)(u,o,...,O,S,O,...,O)
exp( — - ds)
0 b2 Lp(ny)(u,O,...,0,3,0,...,0)

P
wy o S £0,....0

.exp</ 1 i (XY ( )dt).
0 a2 SO(X,Y)(taoa-‘-vo)

With as = a9 and b~2 = by we conclude P(71,20) = P(Z1,22)" Combining this with

S0(21,22)((1]' “Ugj, 0) " PE; (u]) = P(X,Y) (07 0, Ugjs 0,... 70) = P(Z1,22) (aj T Ujs O) " Pe; (U’])
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and similar relations yields

Q0€j - 9063' and 8052 - SOSZ

forall j €{1,...,d} and all ¢ € {1,...,1}. Together with

@(21722) = sO(ZI,Z2)

this implies the second assertion.
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