
Nonparametric estimation of a conditional density
∗

Ann-Kathrin Bott† and Michael Kohler.
Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289

Darmstadt, Germany, email: abott@mathematik.tu-darmstadt.de,
kohler@mathematik.tu-darmstadt.de

June 18, 2014

Abstract
In this paper we estimate a conditional density. In contrast to standard results in the
literature in this context we assume that for each observed value of the covariate we
observe a sample of the corresponding conditional distribution of size larger than one.
A density estimate is defined taking into account the data from all the samples by com-
puting a weighted average using weights depending on the covariates. The error of the
density estimate is measured by the L1–error. Results concerning consistency and rate of
convergence of the estimate are presented, and the performance of the estimate for finite
sample size is illustrated by using simulated data. Furthermore the estimate is applied
to a problem in fatigue analysis.

AMS classification: Primary 62G07; secondary 62G20.
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1 Introduction

A well-known problem in literature is the problem of density estimation. Given an
independent sample Y1, . . . , Yn of an Rd–valued random variable Y , the goal is to estimate
the density f of the distribution of Y , which is assumed to exist. This can be done, e.g.,
by the famous Rosenblatt-Parzen kernel density estimate (cf., Rosenblatt (1956) and
Parzen (1962)), defined by

fn(x) =
1

n · hdn
·
n∑
k=1

K

(
x− Yk
hn

)
. (1)

Here hn > 0 is the so-called bandwidth and the kernel K : Rd → R, e.g., the naive kernel
K(u) = 1/2d ·1[−1,1]d(u), is a density. This density estimate can be used, e.g., to estimate
all probabilities of the underlying distribution, and provided we control the L1–error of
∗Running title: Estimation of a conditional density
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the density estimate we can bound via the Lemma of Scheffé (cf., e.g., Devroye and
Györfi (1985)) the total variation error of the corresponding estimate of the distribution.
It is well-known that there exist estimates which are L1–consistent for all densities. E.g.,
the above kernel density estimate is L1–consistent for all densities provided

hn → 0 (n→∞) and n · hdn →∞ (n→∞),

see Devroye (1983). Further results on density estimation can be found in the books
Devroye and Györfi (1985), Devroye (1987) and Devroye and Lugosi (2001).
In applications sometimes the sample size is rather small, e.g. in case that a data point

corresponds to a rather time expensive experiment. A concrete application in connection
with fatigue analysis where this effect occurs is described in Section 3 below. This
motivates to try to combine several data sets from different (but somehow related) density
estimation problems in order to estimate a general density depending on a covariate.
We do this in the context of conditional density estimation. Usually it is assumed

here that a sample (X1, Y1), . . . , (Xn, Yn) of an Rd × R–valued random vector (X,Y ) is
available. Already Rosenblatt (1969) introduced an estimator of a conditional density.
This estimator and many others are motivated by the definition of a conditional density.
Let g(X,Y )(x, y) be the joint density of (X,Y ) and gX(x) the marginal density of X.
Then the conditional density gY |X(y, x) of Y given X is given by

gY |X(x, y) =
g(X,Y )(x, y)

gX(x)
.

Replacing the joint and marginal density by density estimates we obtain an estimator
of the conditional density. To estimate the marginal density of X we can directly apply
the Rosenblatt -Parzen kernel density estimate (1) with density K and bandwidth Hn >
0. Using the product kernel estimator (c.f., e.g., Rosenblatt (1969), Scott (1992) and
Hyndman et al. (1996)) the estimator for the joint density is given by

ĝ(X,Y )(x, y) =
1

n ·Hd
n · hn

n∑
i=1

K

(
‖x−Xi‖
Hn

)
·K

(
|y − Yi|
hn

)
where K : R→ R+ is a density and hn, Hn > 0 are bandwidths. Hence, we can estimate
the conditional density by

ĝY |X(y, x) =

∑n
i=1K

(
‖x−Xi‖
Hn

)
·K

(
|y−Yi|
hn

)
hn
∑n

j=1K
(
‖x−Xj‖
Hn

) . (2)

This conditional density estimation problem can also be seen as a nonparametric regres-
sion problem. It is well known that

E

{
1

hn
·K

(
y − Y
hn

) ∣∣∣∣∣X = x

}
→ gY |X(y, x) (n→∞)
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for Lebesgue almost all y and PX -almost all x (c.f., e.g. Fan et al. (1996)). Thus, the
estimator (2) can be seen as a kernel regression estimate (cf., e.g., Chapter 5 in Györfi
et al. (2002)) applied to(

X1,
1

hn
·K

(
y − Y1

hn

))
, . . . ,

(
Xn,

1

hn
·K

(
y − Yn
hn

))
,

c.f., e.g., Fan and Yim (2004) and Gooijer (2003).
Instead of the above kernel density estimate of the conditional density one can also

define a partitioning estimate of the conditional density. Results concerning universal
consistency and rate of convergence of the L1–error of such a partitioning estimate have
been derived in Györfi and Kohler (2007). Sharp minimax bounds on the L2–errors of
conditional density estimates are presented in Efromovich (2007).
In the sequel we assume that for each covariate Xi (i ∈ {1, . . . , Nn}) we have given

not only one observation of the value of Yi, but instead a whole sample

D(i)
n =

{
Y

(i)
1 , Y

(i)
2 , . . . , Y

(i)
li,n

}
of size li,n ∈ N. Here we assume that for given Xi the data points in D(i)

n are (con-
ditionally) independent and identically distributed as Yi, and that all data sets D(i)

n

(i = 1, . . . , Nn) are independent. For each of these data samples we can estimate the
conditional density of Yi given Xi by

f̂n(y,Xi) =
1

li,n · hn
·
li,n∑
k=1

K

(
y − Y (i)

k

hn

)
, (3)

where K is a density. Since the amount of data li,n is decisive for the quality of the
above defined density estimators f̂n(·, Xi), we will use a local average of kernel density
estimates with an additional weighting through the amount of data corresponding to the
different densities, and define our estimate via

fn(y, x) =

∑Nn
i=1 li,n ·G

(
‖x−Xi‖
Hn

)
f̂n(y,Xi)∑Nn

j=1 lj,n ·G
(
‖x−Xj‖
Hn

)

=

∑Nn
i=1G

(
‖x−Xi‖
Hn

)∑li,n
k=1K

(
y−Y (i)

k
hn

)
hn
∑Nn

j=1 lj,n ·G
(
‖x−Xj‖
Hn

) , (4)

where G = 1[0,1]. Clearly, the estimator (2) is a special case of our estimator (4) for
K(x) = G(x) and lj,n = 1, j = 1, . . . , Nn.
Our estimate can be also considered as a kernel regression estimate applied to func-

tional data. In contrast to most results in the literature about functional data analysis
(for an introduction see, e.g., Ramsay and Silverman (2002, 2005) and Ferraty and Ro-
main (2011)), which deal with a functional predictor and a scalar response (cf., e.g.,

3



Ferraty et al. (2010), Masry (2005), Burba et al. (2009)), we consider the case of a
functional response and a scalar predictor. This has also be done, e.g., in Ferraty et
al. (2011), Lecoutre (1990), Bosq and Delecroix (1985), however, not in the context of
conditional density estimation which is considered in the current paper.
We measure the quality of our estimate by the average L1–error∫ ∫

|fn(y, x)− f(y, x)| dy PX(dx),

which is (via the Lemma of Scheffé) directly linked to the total variation error of the corre-
sponding distribution estimate. We derive sufficient conditions for the L1–consistency of
our estimates and we investigate the rate of convergence of the expected average L1–error
in case of smooth densities. Motivated by an application in fatigue analysis described
below we extend all of the above results to the case that the data points Y (i)

k can be
observed only with additional measurement errors, which do not need to be independent
or have expectation zero, but vanish on average asymptotically. The finite sample size
performance of our estimates is illustrated using simulated and real data.
Throughout the paper the following notation is used: The sets of natural numbers,

integers, real numbers and positive real numbers including zero are denoted by N,Z,R
and R+, resp. B denotes the set of all Borel sets in R and 1B denotes the indicator
function of the set B. ‖x‖ is the Euclidean norm of a vector x ∈ Rd. The support of a
probability measure µ defined on the Borel sets in Rd is abbreviated by

supp(µ) =
{
x ∈ Rd : µ(Sr(x)) > 0 for all r > 0

}
,

where Sr(x) is the ball of radius r around x.
The outline of this paper is as follows: The main results are presented in Section 2 and

proven in Section 4. Section 3 illustrates the finite sample size behaviour of our estimate
by applying it to simulated and real data.

2 Main results

Let (X,Y ) be an Rd ×R valued random vector such that the conditional distribution of
Y given X = x has a density f(·, x) : R → R+ (with respect to the Lebesgue measure).
In the sequel we assume that f is a (measurable) real-valued function defined on R×Rd.
Consequently, since f(·, x) is a density for all x ∈ Rd, we have∫

Rd

∫
R
f(y, x) dyPX(dx) = 1 <∞.

Let (X,Y ), (X1, Y1), . . . (XNn , YNn) be independent and identically distributed. We
assume that for each i ∈ {1, . . . , Nn} we observe Xi and a conditionally independent
sample

D(i)
n =

{
Y

(i)
1 , Y

(i)
2 , . . . , Y

(i)
li,n

}
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of Yi. Furthermore we assume that all data sets D(i)
n are independent. The estimator of

f(y, x) is given by

fn(y, x) =

∑Nn
i=1G

(
‖x−Xi‖
Hn

)∑li,n
k=1K

(
y−Y (i)

k
hn

)
hn
∑Nn

j=1 lj,n ·G
(
‖x−Xj‖
Hn

)
with G = 1[0,1].

Theorem 1 Assume that f : R× Rd → R+ satisfies∫
R
|f(y, x1)− f(y, x2)| dy ≤ L(‖x1 − x2‖) (x1, x2 ∈ Rd)

for some L : R+ → R+ with the property limz→0 L(z) = 0 = L(0). Let fn be the above
defined density estimate of f and let the kernel K : R → R+ be a square integrable
density. Then

(A1) hn → 0, Hn → 0, Nn ·Hd
n →∞ (n→∞)

and

(A2) Nn ·Hd
n · hn · min

1≤i≤Nn
li,n →∞ (n→∞)

imply

E

∫ ∫
|fn(y, x)− f(y, x)| dy PX(dx)→ 0 (n→∞).

Remark 1. The conditions in (A1) are typical conditions on the bandwidth, that are
needed to assure consistency of kernel regression and kernel density estimates. The
condition (A2) is weaker than the condition

hn · min
1≤i≤Nn

li,n →∞

that is needed (besides hn → 0) to guarantee that all inserted density estimates are
consistent.

Corollary 1 In addition to the assumptions of Theorem 1 we assume that the same
amount of data is given for each covariate, i.e. l1,n = l2,n = . . . = lNn,n =: ln. Then
(A1) and

(A2’) Nn ·Hd
n · ln · hn →∞ (n→∞)

imply

E

∫ ∫
|fn(y, x)− f(y, x)| dy PX(dx)→ 0 (n→∞).
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Proof. Due to the additional assumption we have

min
1≤i≤Nn

li,n = ln

and hence condition (A2) of Theorem 1 simplifies to (A2’). �

Next we analyze the rate of convergence of our estimate.

Theorem 2 Assume that f : R× Rd → R+ satisfies∫
R
|f(y, x1)− f(y, x2)| dy ≤ c1 · ‖x1 − x2‖α (x1, x2 ∈ Rd)

for some c1 > 0, α ∈ (0, 1]. Let fn be the above defined density estimate of f with
l1,n = l2,n = . . . = lNn,n =: ln. Then the conditions

(A3) The densities f(·, x) (x ∈ Rd) are Hölder-continuous with exponent r ∈ (0, 1] , i.e.

|f(u, x)− f(v, x)| ≤ c2 · |u− v|r for all u, v ∈ R, x ∈ Rd and some c2 > 0,

(A4) There exist a compact set B ∈ B such that

f(y, x) = 0 for all y /∈ B and PX–almost all x ∈ Rd,

(A5) C = supp(PX) is compact

and

(A6) K is a density satisfying∫
R
K2(u) du <∞ and

∫
R
K(u) · |u|r du <∞

imply that there exist constants c3, c4, c5 and c6 > 0 such that for all n ∈ N we have

E

∫ ∫
|fn(y, x)−f(y, x)| dy PX(dx) ≤ c3√

Nn · ln · hn ·Hd
n

+c4·Hα
n+c5·hrn+

c6

Nn ·Hd
n

. (5)

In order to determine the optimal rate of convergence in Theorem 2 we have to choose
the bandwidths hn and Hn such that the righ-hand side of (5) is minimal. Minimizing
this term with respect to hn leads to

hn = c7 · (Nn · ln)−
1

2r+1 ·H
− d

2r+1
n ,

and using this bandwidth we get from (5)

E

∫ ∫
|fn(y, x)−f(y, x)| dy PX(dx) ≤ c8·(Nn · ln)−

r
2r+1 ·H

− d·r
2r+1

n +c4·Hα
n+

c6

Nn ·Hd
n

. (6)
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The optimal bandwidth Hn which minimizes the right-hand side of (6) satisfies

c8 · (Nn · ln)−
r

2r+1 · d · r
2r + 1

·H
− d·r

2r+1
−1

n +
c6

Nn
· d ·H−d−1

n = c4 · α ·Hα−1
n .

For the optimal bandwidth either the first term on the left-hand side above is greater
than or equal to the second term or vice versa. From this we can conclude that the
optimal Hn lies either between the two solutions of

c8 · (Nn · ln)−
r

2r+1 · d · r
2r + 1

·H
− d·r

2r+1
−1

n = c4 · α ·Hα−1
n

and
2 · c8 · (Nn · ln)−

r
2r+1 · d · r

2r + 1
·H
− d·r

2r+1
−1

n = c4 · α ·Hα−1
n

or between the two solutions of
c6

Nn
· d ·H−d−1

n = c4 · α ·Hα−1
n and 2 · c6

Nn
· d ·H−d−1

n = c4 · α ·Hα−1
n .

Hence, up to some constant the optimal Hn satisfies in case (Nn · ln)−
r

2r+1 · H
− d·r

2r+1
n ≥

1
Nn
·H−dn the equation

(Nn · ln)−
r

2r+1 ·H
− d·r

2r+1
n = Hα

n

and in case (Nn · ln)−
r

2r+1 ·H
− d·r

2r+1
n < 1

Nn
·H−dn the equation

1

Nn
·H−dn = Hα

n .

Corollary 2 Assume that the assumptions of Theorem 2 hold.
(i) In case that N−α(r+1)

n ≤ l
−r(α+d)
n we set hn = c9 · (Nn · ln)

− α
(2·α+d)r+α and Hn =

c10 · (Nn · ln)
− r

(2·α+d)r+α . For suitable chosen c11 > 0 it holds

E

∫ ∫
|fn(y, x)− f(y, x)| dy PX(dx) ≤ c11 · (Nn · ln)

− α·r
(2·α+d)r+α .

(ii) In case that N−α(r+1)
n > l

−r(α+d)
n we set hn = c12 · N

− α
(α+d)(2·r+1)

n · l
− 1

2·r+1
n and

Hn = c13 ·N
− 1
α+d

n . For suitable chosen c14 > 0 it holds

E

∫ ∫
|fn(y, x)− f(y, x)| dy PX(dx) ≤ c14 ·N

− α
α+d

n .

Proof. The assertion follows directly from Theorem 2 and the definitions of hn and Hn.
�

Remark 2. In case of ln = 1, Nn = n and α = r = 1 Corollary 2 states that our
estimate achieves a rate of convergence of O(n−

1
d+3 ). Györfi and Kohler (2007) obtained

the same rate for a partitioning estimate.
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We now assume that we have only data

D̄(i)
n =

{
Ȳ

(i)
1 , Ȳ

(i)
2 , . . . , Ȳ

(i)
li,n

}
(i = 1, . . . , Nn)

with additional measurement errors. An application, where this is indeed the case, is
described in Section 3. The data Ȳ (i)

1 , Ȳ
(i)

2 , . . . , Ȳ
(i)
li,n

(i ∈ {1, . . . , Nn}) do not need to be
conditionally independent or identically distributed. We assume that the measurement
errors are "small" and for this reason we ignore them completely. Consequently we define
our density estimate f̄n of f as

f̄n(y, x) =

∑Nn
i=1G

(
‖x−Xi‖
Hn

)∑li,n
k=1K

(
y−Ȳ (i)

k
hn

)
hn ·

∑Nn
j=1 lj,n ·G

(
‖x−Xj‖
Hn

) .

In the following theorem we show that under appropriate assumptions our density esti-
mate remains L1–consistent.

Theorem 3 Assume that f : R× Rd → R+ satisfies∫
R
|f(y, x1)− f(y, x2)| dy ≤ L(‖x1 − x2‖) (x1, x2 ∈ Rd)

for some L : R+ → R+ with the property limz→0 L(z) = 0 = L(0). Let f̄n be the
above defined density estimate of f with a symmetric density K, which is bounded and
monotonically decreasing on R+. Then (A1), (A2) and

(A7) E


∑Nn
i=1G

(
‖X−Xi‖
Hn

)∑li,n
k=1

∣∣∣Ȳ (i)
k −Y

(i)
k

∣∣∣
hn·
∑Nn
j=1 lj,n·G

(
‖X−Xj‖
Hn

)
→ 0 (n→∞)

imply

E

∫ ∫
|f̄n(y, x)− f(y, x)| dy PX(dx)→ 0 (n→∞).

Remark 3. The conditions (A1) and (A2) are also needed for data without additional
measurement errors. Condition (A7) specifies how the measurement errors need to behave
such that our estimator remains consistent.

Theorem 4 Assume that f : R× Rd → R+ satisfies∫
R
|f(y, x1)− f(y, x2)| dy ≤ c15 · ‖x1 − x2‖α (x1, x2 ∈ Rd)

for some c15 > 0, α ∈ (0, 1] and let fn be the above defined density estimate of f with
l1,n = l2,n = . . . = lNn,n =: ln. Then (A3), (A4), (A5),

(A6’) K is a symmetric density, which is bounded, monotonically decreasing on the pos-
itive real axis and which satisfies∫

R
K2(u) du <∞ and

∫
R
K(u) · |u|r du <∞
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and

(A7’)
1

ln

ln∑
k=1

E
{
|Ȳ (i)
k − Y

(i)
k |
∣∣X,Xi

}
≤ c16 ·

hn
δn

almost surely for all 1 ≤ i ≤ Nn, c16 > 0 and δn > 0

imply that there exist constants c17, c18, c19, c20 and c21 > 0 such that for all n ∈ N we
have

E

∫ ∫
|f̄n(y, x)− f(y, x)| dy PX(dx) ≤ c17√

Nn · ln · hn ·Hd
n

+ c18 ·Hα
n + c19 · hrn

+
c20

Nn ·Hd
n

+ c21 · δ−1
n .

Remark 4. We can draw the following conclusions from Corollary 2 and Theorem 4:
In case that N−α(r+1)

n ≤ l
−r(α+d)
n we set hn = c22 · (Nn · ln)

− α
(2·α+d)r+α and Hn = c23 ·

(Nn · ln)
− r

(2·α+d)r+α . For suitable chosen c24 > 0 it holds

E

∫ ∫
|f̄n(y, x)− f(y, x)| dy PX(dx) ≤ c24 ·max{(Nn · ln)

− α·r
(2·α+d)r+α , δ−1

n }.

And in case that N−α(r+1)
n > l

−r(α+d)
n we set hn = c25 · N

− α
(α+d)(2·r+1)

n · l
− 1

2·r+1
n and

Hn = c26 ·N
− 1
α+d

n . For suitable chosen c27 > 0 it holds

E

∫ ∫
|f̄n(y, x)− f(y, x)| dy PX(dx) ≤ c27 ·max{N

− α
α+d

n , δ−1
n }.

3 Application to simulated and real data

In this section we consider three different examples of simulated data. In all cases the
covariate is uniformly distributed, whereas the distribution of the data sets varies. At
first we sample N = 80 covariates {X1, X2, . . . , X80}, and afterwards we sample the
corresponding data sets Di = {Y (i)

1 , Y
(i)

2 , . . . , Y
(i)

25 } where we observe for each value of
the covariate 25 points. Overall we sample n = 2000 data points beside the covariates.
Our estimator uses the corresponding data of those covariates for which the difference
of the covariates to the considered covariate is less than the bandwidth H. And for
each covariate the density estimate with bandwidth h is considered. We choose both
bandwidths θ = (h,H) with h,H > 0 out of a set of parameters Θ by adapting the
combinatorial method of Devroye and Lugosi (2001) in our setting. Here we let Θ =
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}2. We define the empirical measure based on
the data set Di by

µ̂i(A) =
1

25

25∑
k=1

1A(Y
(i)
k ) (A ⊆ R)
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and the proposed estimator without the data set Di is defined by

fi,θ(y, x) =

∑80
l=1,l 6=iG

(
‖x−Xl‖
H

)∑25
k=1K

(
y−Y (l)

k
h

)
h
∑80

j=1,j 6=i 25 ·G
(
‖x−Xj‖

H

) .

We select θ̂ = (ĥ, Ĥ) through minimizing

∆θ =

80∑
i=1

sup
Ai∈Ai

∣∣∣∣∫
Ai

fi,θ(y,Xi) dy − µ̂i(Ai)
∣∣∣∣ ,

where
Ai =

{{
y ∈ R : f̂i,θ1(y,Xi) > f̂i,θ2(y,Xi)

}
: θ1, θ2 ∈ Θ

}
,

i.e., we choose
θ̂ = (ĥ, Ĥ) = arg min

θ∈Θ
∆θ.

With this bandwidths θ̂ we define our estimator

fθ̂(y, x) =

∑80
l=1G

(
‖x−Xl‖
Ĥ

)∑25
k=1K

(
y−Y (l)

k

ĥ

)
ĥ
∑80

j=1 25 ·G
(
‖x−Xj‖

Ĥ

) .

In the implementation of our estimate we approximate all integrals by Riemann sums.
In addition to our proposed estimator we consider two variants of the Rosenblatt-Parzen
density estimator. The first one (RP1) is the Rosenblatt-Parzen estimator applied to 25
data points which are specially sampled to the considered covariate. Hence, this estimator
uses data that is actually not available and therefore it is in practice not applicable to
our setting. The second version (RP2) uses those data points (25 points) for which the
corresponding covariate of our covariate sample comes closest to the considered covariate.
For both the bandwidths are chosen by unbiased cross validation. For all three estimators
we use the naive kernel.
In the first simulation model we let the data be independent normally distributed with

variance one. In this case the covariate corresponds to the expected value which varies
with each data set. We let the covariate be uniformly distributed on [−0.5, 0.5].

Figure 1 shows a typical simulation of the three estimators and the real density for
µ = 0.16. While the Rosenblatt-Parzen density estimators used only 25 data points, the
proposed estimator used in this case 475 data points. Since the results of our simulation
depend on randomly occurring data points, we repeat the whole procedure 100 times
and report boxplots in Figure 2. We compare the estimated average L1–errors of all
these estimators. The mean of the estimated average L1–errors of the proposed estimate
(0.236) is less than the mean of the estimated average L1–errors of the Rosenblatt-Parzen
estimators (0.324, 0.442).
Secondly, we consider exponentially distributed data with parameters λ that are uni-

formly distributed on [0.5, 1.5]. In Figure 3 an illustrative comparison of the proposed
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Figure 1: Typical simulation for µ = 0.16
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Figure 2: Boxplots of the estimated average L1–errors
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Figure 3: Typical simulation for λ = 0.89

estimator (which uses 975 data points) and the Rosenblatt-Parzen density estimators
(based on 25 data points) is pictured in case of λ = 0.89. As before we compare in
Figure 4 the estimated L1–errors of these estimates. The means of the estimated average
L1–error of the Rosenblatt-Parzen estimators (0.473, 0.550) are nearly twice the mean
of the proposed estimate (0.253).
As a third example we consider lognormally distibuted data with variance one. As in

the first simulation model the covariate corresponds to the expected value and is uni-
formly distributed on [−0.5, 0.5]. Figure 5 shows a simulation example for µ = 0. Here
the proposed estimator uses 2000 data points. Comparing the estimated average L1–
errors for 100 repetitions we obtain the boxplot in Figure 6. Also in this example the
proposed estimator outperforms the other estimators. The means of the estimated aver-
age L1–error of the Rosenblatt-Parzen estimators (0.497, 0.549) are considerably higher
than the mean of the proposed estimate (0.243).
The advantages of our estimator become evident in applications where the sample size
per covariate is very small or where no sample for the considered covariate is available.
If we want to estimate a density in dependence of one particular covariate where a cor-
responding sample exists, we can also apply the Rosenblatt-Parzen estimator to this
sample. This corresponds to the above introduced RP1. Because of the small sample
size this estimator performs worse than our estimator. Clearly, this effect could reverse
with a larger data sample per covariate. Simulations showed that in the first example
around 50 real data points are enough, while in the other two examples the Rosenblatt-
Parzen estimator needs around 120 data points to achieve results that are comparable
to the ones of our estimator.
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Figure 6: Boxplots of the estimated average L1–errors

Finally we apply our estimator to examine the fatigue behavior of steel under cyclic
loading. The data is obtained by relatively time consuming experiments where for each
material m and several adjusted total strain amplitudes ε the corresponding numbers of
cycles N till failure are determined. We are interested in the random behavior of N . In
our model we assume that the behavior of the numbers of cycles N till failure can be
described by

N(m, ε) = µ(m, ε) + σ(m, ε) · δ(m), (7)

where µ(m, ε) is the expected value of N(m, ε) and σ(m, ε) is its standard variation. δ(m)

is an error term with expected value zero. Hence, we expect the numbers of cycles till
failure to vary around the expected value by a random error term. While the numbers of
cycles till failure and accordingly its expected value and variance depend on the material
m and the total strain amplitudes ε, we assume that the error δ(m) only depends on the
material m and has a density. Our goal is to estimate the density of δ(m) using given
data sets {

(ε
(m)
1 , N

(m)
1 ), . . . , (ε

(m)
lm

, N
(m)
lm

)
}

for each material m. Since these experiments are very time consuming, the number of
observations per material is low. Here we consider 26 materials with 305 observations
in total. Hence, the sample size per covariate is very low (at most 21 observations, on
average 12). We will apply our estimator to estimate the density of δ(m̄), m̄ ∈ {1 . . . , 26}.
But at first we need to construct data of δ(m) for each material m. Because of (7) we
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have samples of δ(m) given by

δ
(m)
i =

N
(m)
i − µ(m, ε

(m)
i )

σ(m, ε
(m)
i )

(i = 1, . . . , lm)

for each material m = 1, . . . , 26. Since µ and σ are unknown, we plug in estimates
µ̂(m, ε) of µ(m, ε) and σ̂(m, ε) of σ(m, ε). Due to this estimates we obtain only data with
measurement errors. We apply the parametric estimator of Williams et al. (2002) to
estimate µ(m, ε). Therefore we need to assume that the mean behavior of N is given by
the cyclic stress-strain curve (cf., Manson (1965)) and consequently we need to estimate
only the parameters that determine this curve. The estimation of the variance is more
complicated, because we need to apply a nonparametric estimator that usually needs
more data. This is the reason, why we generate artificial data points like in Furer and
Kohler (2013) and apply the referred smoothing spline estimator to the real and artificial
data. Thus, for all considered materials we construct a data sample

δ̂
(m)
1 , . . . , δ̂

(m)
lm

via

δ̂
(m)
i =

N
(m)
i − µ̂(m, ε

(m)
i )

σ̂(m, ε
(m)
i )

,

where µ̂(m, ε) and σ̂(m, ε) are the above mentioned estimators. Thereby we can apply our
estimator and get a density estimate of the error variable in dependence of the material.
We determine the bandwidth of our estimator as in the case of simulated data.
If we consider one particular material, we obtain density estimates of the numbers of

cycles till failure in dependence of the total strain amplitudes ε, because for each material
m and total strain amplitude ε, µ(m, ε) and σ(m, ε) and respectively µ̂(m, ε) and σ̂(m, ε)
are fix. Let f̂ (m) be the density estimate of δ(m), then (7) implies that

ĝ(m)(·) =
f̂ (m)

(
· −µ̂(m,ε)
σ̂(m,ε)

)
σ̂(m, ε)

is a density estimate of N(m, ε). While f̂ (m) is fix for all strain amplitudes ε, µ̂(m, ε) and
σ̂(m, ε) vary with each strain amplitude and thus, ĝ(m) alters for each ε. In the following
Figure 7 you can see our estimator ĝ(m) in dependence of ε for one specified material.
The maxima to each curve describe the cyclic stress-strain curve with the estimated
parameters as before. The figure shows, how the numbers of cycles N till failure vary
around its expected value.
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Figure 7: Estimated densities of N in dependence of ε

4 Proofs

4.1 Proof of Theorem 1

Let B ⊂ R be compact. According to the Lemma of Scheffé it holds∫ ∫
|fn(y, x)− f(y, x)| dy PX(dx)

=2 ·
∫ ∫

(f(y, x)− fn(y, x))+ dy PX(dx)
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≤2 ·
∫ ∫

B
|fn(y, x)− f(y, x)| dy PX(dx) + 2 ·

∫ ∫
Bc
f(y, x) dy PX(dx)

whenever fn(·, x) 6= 0. Trivially this also holds in case fn(·, x) = 0. For suitable chosen
B the second summand is arbitrary small and thus it suffices to show

E

∫ ∫
B
|fn(y, x)− f(y, x)| dy PX(dx)→ 0 (n→∞). (8)

With C ⊂ R it holds

E

∫ ∫
B
|fn(y, x)− f(y, x)| dy PX(dx)

≤E
∫
C

∫
B
|fn(y, x)− f(y, x)| dy PX(dx) + 2 · PX(Cc)

We can choose C ⊂ R compact such that the second summand is arbitrary small, thus,
we consider only the first summand. By Fubini’s Theorem and the triangle inequality
we get

E

∫
C

∫
B
|fn(y, x)− f(y, x)| dy PX(dx)

=

∫
C

∫
B
E {|fn(y, x)− f(y, x)|} dy PX(dx)

≤
∫
C

∫
B
E {|fn(y, x)−E{fn(y, x) |X1, . . . , XNn}|} dy PX(dx)

+

∫
C

∫
B
E {|E{fn(y, x) |X1, . . . , XNn} − f(y, x)|} dy PX(dx)

=:A1,n +A2,n.

At first we consider A1,n. With the Cauchy-Schwarz inequality, the fact that B ⊂ R is
compact and Fubini’s Theorem we conclude that∫

C

∫
B
E {|fn(y, x)−E{fn(y, x) |X1, . . . , XNn}|} dy PX(dx)

≤
∫
C

∫
B

√
E {|fn(y, x)−E{fn(y, x) |X1, . . . , XNn}|2} dy PX(dx)

=

∫
C

∫
B

√
E
{
E
{
|fn(y, x)−E{fn(y, x) |X1, . . . , XNn}|2

∣∣∣X1, . . . , XNn

}}
dy PX(dx)

≤c28 ·

√∫
C
E

{∫
B
E
{
|fn(y, x)−E{fn(y, x) |X1, . . . , XNn}|2

∣∣∣X1, . . . , XNn

}
dy

}
PX(dx).
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Using the independence of the data sets D(i)
n and of the data within each data set we

obtain∫
B E

{
|fn(y, x)−E{fn(y, x) |X1, . . . , XNn}|2

∣∣∣X1, . . . , XNn

}
dy

=
∫
B E

{∑Nn
i=1G

(
‖x−Xi‖
Hn

)∑li,n
k=1

(
K

(
y−Y (i)

k
hn

)
−E
{
K

(
y−Y (i)

k
hn

) ∣∣∣X1,...,Xn

})
hn
∑Nn
j=1 lj,n·G

(
‖x−Xj‖
Hn

)


2

∣∣∣∣∣X1, . . . , XNn

}
dy

=
∫
B

∑Nn
i=1G

(
‖x−Xi‖
Hn

)∑li,n
k=1 E


(
K

(
y−Y (i)

k
hn

)
−E
{
K

(
y−Y (i)

k
hn

) ∣∣∣X1,...,Xn

})2

∣∣∣∣∣X1,...,XNn

(
hn
∑Nn
j=1 lj,n·G

(
‖x−Xj‖
Hn

))2 dy

=

∑Nn
i=1

li,n

h2n
G
(
‖x−Xi‖
Hn

) ∫
B E


(
K

(
y−Y (i)

k
hn

)
−E
{
K

(
y−Y (i)

k
hn

) ∣∣∣Xi})2

∣∣∣∣∣Xi
 dy

(∑Nn
j=1 lj,n·G

(
‖x−Xj‖
Hn

))2 .

Due to the square-integrability of K we know that there exists a constant c29 > 0 such
that ∫

R
K2(y) dy ≤ c29.

With ∫
B
E


(
K

(
y − Y (i)

k

hn

)
−E

{
K

(
y − Y (i)

k

hn

) ∣∣∣∣∣Xi

})2 ∣∣∣∣∣Xi

 dy

≤
∫
B
E

{
K2

(
y − Y (i)

k

hn

) ∣∣∣∣∣Xi

}
dy

=

∫
B

∫
K2

(
y − u
hn

)
f(u,Xi) du dy

≤
∫
R

∫
K2

(
y − u
hn

)
f(u,Xi) du dy

=hn

∫ ∫
R
K2(z) dz f(u,Xi) du

≤hn · c29

we obtain

A1,n ≤ c28 ·

√√√√√√∫
C
E


c29
hn

∑Nn
i=1 li,n ·G

(
‖x−Xi‖
Hn

)
(∑Nn

i=1 li,n ·G
(
‖x−Xi‖
Hn

))2

 PX(dx)
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= c28 ·

√√√√√∫
C
E

 c29

hn ·
∑Nn

i=1 li,n ·G
(
‖X−Xi‖
Hn

) · 1{∑Nn
j=1 li,n·G

(
‖x−Xj‖
Hn

)
>0

}
 PX(dx).

Applying Lemma 4.1 of Györfi et al. (2002) we get∫
C
E

 c29

hn ·
∑Nn

i=1 li,n ·G
(
‖x−Xi‖
Hn

) · 1{∑Nn
j=1 li,n·G

(
‖x−Xj‖
Hn

)
>0

}
PX(dx)

≤ c29

min
1≤i≤Nn

li,n · hn
·
∫
C
E

 1∑Nn
i=1G

(
‖x−Xi‖
Hn

) · 1{∑Nn
j=1G

(
‖x−Xj‖
Hn

)
>0

}
PX(dx)

≤ c29

min
1≤i≤Nn

li,n · hn
·
∫
C

2

(Nn + 1) ·P{‖x−X1‖ ≤ Hn}
PX(dx).

Due to compactness of C we can apply Equation (5.1) of the proof of Theorem 5.1 in
Györfi et al. (2002) and conclude that∫

C

1

P{‖x−X1‖ ≤ Hn}
PX(dx) ≤ c30

Hd
n

.

Hence,

A1,n ≤
c31√

Nn ·Hd
n · hn · min

1≤i≤Nn
li,n

.

Due to assumption (A2) A1,n converges to zero.
It remains to show that

A2,n =

∫
C
E

∫
B
|E{fn(y, x) |X1, . . . , XNn} − f(y, x)| dy PX(dx)→ 0 (n→∞).

Therefore we split A2,n into two terms that we discuss separately:∫
C
E

∫
B
|E{fn(y, x) |X1, . . . , XNn} − f(y, x)| dy PX(dx)

=

∫
C
E

∫
B

∣∣∣∣∣∣∣∣f(y, x)−

∑Nn
i=1 li,nG

(
‖x−Xi‖
Hn

)
E

{
K

(
y−Y (i)

1
hn

) ∣∣∣∣X1, . . . , XNn

}
hn
∑Nn

j=1 lj,n ·G
(
‖x−Xj‖
Hn

)
∣∣∣∣∣∣∣∣ dy PX(dx)

=

∫
C
E

∫
B

∣∣∣∣∣∣f(y, x)−

∑Nn
i=1 li,nG

(
‖x−Xi‖
Hn

)
1
hn

∫
K
(
y−u
hn

)
f(u,Xi) du∑Nn

j=1 lj,n ·G
(
‖x−Xj‖
Hn

)
∣∣∣∣∣∣ dy PX(dx)

≤
∫
C
E

∫
R

∣∣∣∣∣∣f(y, x)−

∑Nn
i=1 li,n ·G

(
‖x−Xi‖
Hn

)
f(y,Xi)∑Nn

j=1 lj,n ·G
(
‖x−Xj‖
Hn

)
∣∣∣∣∣∣ dy PX(dx)
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+

∫
C
E


∑Nn

i=1 li,n ·G
(
‖x−Xi‖
Hn

) ∫
B |
∫

1
hn
K
(
y−u
hn

)
· f(u,Xi) du− f(y,Xi)| dy∑Nn

j=1 lj,n ·G
(
‖x−Xj‖
Hn

)
 PX(dx)

=:B1,n +B2,n.

Using lj,n > 0 for all j ∈ {1, . . . , Nn} and n ∈ N we obtain

B1,n =

∫
C
E

∫ ∣∣∣∣∣∣f(y, x)−
Nn∑
i=1

li,n ·G
(
‖x−Xi‖
Hn

)
· f(y,Xi)∑Nn

j=1 lj,n ·G
(
‖x−Xj‖
Hn

)
∣∣∣∣∣∣ dy PX(dx)

≤E
∫ ∣∣∣∣∣∣f(y,X)−

Nn∑
i=1

li,n ·G
(
‖X−Xi‖
Hn

)
· f(y,Xi)∑Nn

j=1 lj,n ·G
(
‖X−Xj‖
Hn

)
∣∣∣∣∣∣ dy

≤E


Nn∑
i=1

li,n ·G
(
‖X−Xi‖
Hn

) ∫
|f(y,X)− f(y,Xi)| dy∑Nn

j=1 lj,n ·G
(
‖X−Xj‖
Hn

) · 1{∑Nn
j=1 lj,n·G

(
‖X−Xj‖
Hn

)
>0

}


+ E

{
1{∑Nn

j=1 lj,n·G
(
‖X−Xj‖
Hn

)
=0

}
}

=E


Nn∑
i=1

li,n ·G
(
‖X−Xi‖
Hn

) ∫
|f(y,X)− f(y,Xi)| dy∑Nn

j=1 lj,n ·G
(
‖X−Xj‖
Hn

) · 1{∑Nn
j=1G

(
‖X−Xj‖
Hn

)
>0

}


+ E

{
1{∑Nn

j=1G

(
‖X−Xj‖
Hn

)
=0

}
}

= : B
(1)
1,n +B

(2)
1,n

With B(2)
1,n we proceed analogously to the proof of Theorem 5.1, Equation (5.1) in Györfi

et al. (2002). We choose S ⊂ R compact such that PX(Sc) is arbitrary small. Then it
holds

B
(2)
1,n =P


Nn∑
j=1

G

(
‖X −Xj‖

Hn

)
= 0

 ≤ c32

Nn ·Hd
n

+ PX(Sc),

which implies B(2)
1,n → 0 for (n→∞).

Due to our assumptions we can conclude that

B
(1)
1,n =E


Nn∑
i=1

li,n ·G
(
‖X−Xi‖
Hn

) ∫
|f(y,X)− f(y,Xi)| dy∑Nn

j=1 lj,n ·G
(
‖X−Xj‖
Hn

) · 1{∑Nn
j=1G

(
‖X−Xj‖
Hn

)
>0

}


≤E


Nn∑
i=1

li,n ·G
(
‖X−Xi‖
Hn

)
L(‖X −Xi‖)∑Nn

j=1 lj,n ·G
(
‖X−Xj‖
Hn

) · 1{∑Nn
j=1G

(
‖X−Xj‖
Hn

)
>0

}

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≤ sup
0≤u≤Hn

L(u)→ 0 (n→∞).

Finally, we consider

B2,n ≤E


∑Nn

i=1 li,n ·G
(
‖X−Xi‖
Hn

) ∫
B |
∫

1
hn
K
(
y−u
hn

)
· f(u,Xi) du− f(y,Xi)| dy∑Nn

j=1 lj,n ·G
(
‖X−Xj‖
Hn

)


=E

{
1∑Nn

j=1 lj,n ·G
(
‖X−Xj‖
Hn

) · Nn∑
i=1

li,n ·G
(
‖X −Xi‖

Hn

)
·

∫
B

∣∣∣∣∣
(∫

1

hn
K

(
y − u
hn

)
· (f(u,Xi)− f(u,X)) du

)

+

(∫
1

hn
K

(
y − u
hn

)
· f(u,X) du− f(y,X)

)
+ (f(y,X)− f(y,Xi))

∣∣∣∣∣ dy
}

≤E


∑Nn

i=1 li,n ·G
(
‖X−Xi‖
Hn

) ∫
B |
∫

1
hn
K
(
y−u
hn

)
· (f(u,Xi)− f(u,X)) du| dy∑Nn

j=1 lj,n ·G
(
‖X−Xj‖
Hn

)


+ E

∫
B

∣∣∣∣∫ 1

hn
K

(
y − u
hn

)
· f(u,X) du− f(y,X)

∣∣∣∣ dy
+ E


∑Nn

i=1 li,n ·G
(
‖X−Xi‖
Hn

) ∫
R |f(y,X)− f(y,Xi)| dy∑Nn

j=1 lj,n ·G
(
‖X−Xj‖
Hn

)


=B
(1)
2,n +B

(2)
2,n +B

(3)
2,n.

Because K is a density, we can conclude with Fubini’s Theorem that∫
B

∣∣∣∣∫ 1

hn
K

(
y − u
hn

)
· (f(u,Xi)− f(u,X)) du

∣∣∣∣ dy
≤
∫ ∫

B

1

hn
K

(
y − u
hn

)
dy|f(u,Xi)− f(u,X)| du

≤
∫
R
|f(u,Xi)− f(u,X)| du.

Hence, B(1)
2,n ≤ B

(3)
2,n and due to our assumptions we can conclude that

B
(3)
2,n =E


∑Nn

i=1 li,n ·G
(
‖X−Xi‖
Hn

) ∫
R |f(y,X)− f(y,Xi)| dy∑Nn

j=1 lj,n ·G
(
‖X−Xj‖
Hn

)


≤E


∑Nn

i=1 li,n ·G
(
‖X−Xi‖
Hn

)
L(‖X −Xi‖)∑Nn

j=1 lj,n ·G
(
‖X−Xj‖
Hn

)

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≤ sup
0≤u≤Hn

L(u).

Hence, B(1)
2,n as well as B(3)

2,n converge to zero for n to infinity. By assumption f(·, x) is a
density for all x ∈ Rd. For this reason we can apply Theorem 1, Chapter 2 in Devroye
and Györfi (1985) and conclude that∫

B

∣∣∣∣∫ 1

hn
K

(
y − u
hn

)
· f(u, x) du− f(y, x)

∣∣∣∣ dy → 0 (n→∞),

for all x ∈ Rd. Furthermore, the Lemma of Scheffé states that this term is dominated
by 2. Hence, we can conclude by dominated convergence theorem that B(2)

2,n converges to
zero. The proof is complete. �

4.2 Proof of Theorem 2

Due to (A4) and (A5) we can choose B,C ⊂ R compact such that

E

∫ ∫
|fn(y, x)− f(y, x)| dy PX(dx) ≤ 2 ·E

∫
C

∫
B
|fn(y, x)− f(y, x)| dy PX(dx).

According to the proof of Theorem 1 we have

E

∫
C

∫
B
|fn(y, x)− f(y, x)| dy PX(dx)

≤A1,n +B
(1)
1,n +B

(2)
1,n +B

(1)
2,n +B

(2)
2,n +B

(3)
2,n

≤ c33√
Nn ·Hd

n · hn · min
1≤i≤Nn

li,n

+ sup
0≤u≤Hn

L(u) +
c34

Nn ·Hd
n

+ sup
0≤u≤Hn

L(u)

+ E

∫
B

∣∣∣∣∫ 1

hn
K

(
y − u
hn

)
· f(u,X) du− f(y,X)

∣∣∣∣ dy
+ sup

0≤u≤Hn
L(u)

≤ c33√
Nn ·Hd

n · hn · min
1≤i≤Nn

li,n

+ 3 · sup
0≤u≤Hn

L(u) +
c34

Nn ·Hd
n

+ E

∫
B

∣∣∣∣∫ 1

hn
K

(
y − u
hn

)
· f(u,X) du− f(y,X)

∣∣∣∣ dy.
By assumption, it holds

min
1≤i≤Nn

li,n = ln

22



and
sup

0≤u≤Hn
L(u) = c1 ·Hα

n .

Thus, we need to consider only the last summand. By the Hölder-continuity of the
densities (cf., (A3)) and assumption (A6), we obtain∫

B

∣∣∣∣∫ 1

hn
K

(
y − u
hn

)
· f(u,Xi) du− f(y,Xi)

∣∣∣∣ dy
≤
∫
B

∫
1

hn
K

(
y − u
hn

)
· |f(u,Xi)− f(y,Xi)| du dy

≤ c35 ·
∫
B

∫
1

hn
K

(
y − u
hn

)
· |y − u|r du dy

= c35 · hrn ·
∫
B

∫
K(v) · |v|r dv dy

≤c36 · hrn.

The proof is complete. �

4.3 Proof of Theorem 3

Let fn be the estimator of f that uses real data Y (i)
k instead of Ȳ (i)

k (i = 1, . . . , Nn; k =
1 . . . , li,n). It holds

E

∫ ∫
|f̄n(y, x)− f(y, x)| dy PX(dx)

≤E
∫ ∫

|f̄n(y, x)− fn(y, x)| dy PX(dx) + E

∫ ∫
|fn(y, x)− f(y, x)| dy PX(dx).

By Theorem 1 we already know, that with the assumptions (A1) and (A2)

E

∫ ∫
|fn(y, x)− f(y, x)| dy PX(dx)→ 0 (n→∞).

Thus, it remains to show that

E

∫ ∫
|f̄n(y, x)− fn(y, x)| dy PX(dx)→ 0 (n→∞).

Due to our assumptions on the kernel K we can apply Lemma 1 of Bott, Felber and
Kohler (2013) which yields∫ ∣∣∣∣K (y − y1

hn

)
−K

(
y − y2

hn

)∣∣∣∣ dy ≤ 2 ·K(0) · |y1 − y2| for all y1, y2 ∈ R.

Hence,

E

∫ ∫
|f̄n(y, x)− fn(y, x)| dy PX(dx)
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=E

∫
|f̄n(y,X)− fn(y,X)| dy

≤E


1
hn

∑Nn
i=1G

(
‖X−Xi‖
Hn

)∑li,n
k=1

∫ ∣∣∣∣K (y−Ȳ (i)
k

hn

)
−K

(
y−Y (i)

k
hn

)∣∣∣∣ dy∑Nn
j=1 lj,n ·G

(
‖X−Xj‖
Hn

)


≤2 ·K(0) ·E


∑Nn

i=1G
(
‖X−Xi‖
Hn

)∑li,n
k=1

∣∣∣Ȳ (i)
k − Y

(i)
k

∣∣∣
hn ·

∑Nn
j=1 lj,n ·G

(
‖X−Xj‖
Hn

)
 .

The assertion follows by assumption (A7). �

4.4 Proof of Theorem 4

We know from Theorem 2 and the proof of Theorem 3 that

E

∫ ∫
|f̄n(y, x)− f(y, x)| dy PX(dx)

≤ c37√
Nn · ln · hn ·Hd

n

+ c38 ·Hα
n + c39 · hrn +

c40

Nn ·Hd
n

+ c41 ·E


∑Nn

i=1G
(
‖X−Xi‖
Hn

)∑ln
k=1

∣∣∣Ȳ (i)
k − Y

(i)
k

∣∣∣
hn ·

∑Nn
j=1 ln ·G

(
‖X−Xj‖
Hn

)
 .

Due to condition (A7′) it holds

E


∑Nn

i=1G
(
‖X−Xi‖
Hn

)∑ln
k=1

∣∣∣Ȳ (i)
k − Y

(i)
k

∣∣∣
hn ·

∑Nn
j=1 ln ·G

(
‖X−Xj‖
Hn

)


=E


∑Nn

i=1G
(
‖X−Xi‖
Hn

)∑ln
k=1 E

{
|Ȳ (i)
k − Y

(i)
k |
∣∣X,Xi

}
hn ·

∑Nn
j=1 ln ·G

(
‖X−Xj‖
Hn

)


≤E


∑Nn

i=1G
(
‖X−Xi‖
Hn

)
· c16 · ln · hnδn

hn ·
∑Nn

j=1 ln ·G
(
‖X−Xj‖
Hn

)


≤c16 · δ−1
n

The proof is complete. �
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