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Abstract
The problem of estimating a time–dependent density at each time point t ∈ [0, 1] given
independent samples of the density at discrete time points in [0, 1] is considered. It is
assumed that the distribution corresponding to the density of time t depends smoothly
on t. The error of the estimate is measured pointwise by the L1–error. Results concerning
consistency and rate of convergence of a local average of kernel density estimates of the
density at the discrete time points are presented. The finite sample size performance of
the estimate is illustrated by applying it to simulated and real data.

AMS classification: Primary 62G07; secondary 62G20.
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1 Introduction

Let (Xt)t∈[0,1] be an R–valued stochastic process. For discrete time points t1, . . . , tN ∈
[0, 1] we assume that we have given independent samples

D(tk)
N =

{
X

(tk)
1 , . . . , X(tk)

nk,N

}
(1)

of Xtk (k = 1, . . . , N), and we are interested in estimating all marginal distributions µt
of Xt (t ∈ [0, 1]).
If we try to reconstruct a distribution µ of some real–valued random variable X given

an independent sample of X of size n, it is well–known that there does not exist any
estimate µ̂n which is consistent with respect to the total variation error

sup
B∈B
|µ̂n(B)− µ(B)|

(where B denotes the Borel sigma-field) for all distributions (cf. Devroye and Györfi
(1990)). However, in case that a density f of µ with respect to the Lebesgue–Borel
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measure exists, it is possible to construct universally L1–consistent estimates of this
density, i.e., there exist estimates fn based on independent samples of f of size n satisfying∫

R
|fn(x)− f(x)| dx→ 0 a.s.

no matter which form the underlying density f has (cf., e.g., Devroye (1983)). If we use
such a sequence of density estimates to define corresponding distribution estimates via

µ̂n(B) =

∫
B
fn(x) dx (B ∈ B),

then the Lemma of Scheffé (cf., e.g., Theorem 1 in Chapter 1 of Devroye and Györfi
(1985)) implies

sup
B∈B
|µ̂n(B)− µ(B)| = 1

2
·
∫
R
|fn(x)− f(x)| dx

and hence µ̂n is consistent in total variation for all distributions which have a density
with respect to the Lebesgue-Borel measure.
In the sequel we assume that Xt has a density f(·, t) : R → R with respect to the

Lebesgue–Borel measure for all t ∈ [0, 1]. The task is to construct distribution estimates
µ̂N,t of µt which depend only on the data sets (1) for k = 1, . . . , N such that

sup
B∈B
|µ̂N,t(B)− µt(B)|

is “small” for every t ∈ [0, 1]. Again, this can be achieved by the Lemma of Scheffé if we
construct density estimates fN (·, t) such that∫

R
|fN (x, t)− f(x, t)| dx

is “small” for every t ∈ [0, 1].
We proceed in two steps in order to construct such estimates: First we define standard

kernel density estimates (cf., e.g., Rosenblatt (1956), Parzen (1962)) of f(·, tk) using the
data set (1), i.e., we define

f
(tk)
N (x) =

1

nk,N · hk,N
·
nk,N∑
i=1

K

(
x−X(tk)

i

hk,N

)
(x ∈ R) (2)

with some kernel function K : R→ R, which is a density (e.g., the naive kernel K(u) =
1/2 · 1[−1,1](u)), and some bandwidth hk,N > 0, which is the smoothing parameter of
the estimate f (tk)

N . Then we use local averaging of these density estimates in order to
define an estimate fN (·, t) of f(·, t) for arbitrary t ∈ [0, 1]. Here we choose another kernel
H : R→ R (e.g., again the naive kernel) and a bandwidth hN > 0 and define

fN (x, t) =

∑N
k=1H

(
t−tk
hN

)
· nk,N · hk,N · f

(tk)
N (x)∑N

j=1H
(
t−tj
hN

)
· nj,N · hj,N

(x ∈ R, t ∈ [0, 1]). (3)
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In the sequel we show that under suitable conditions on the bandwidth the estimate fN
is pointwise L1–consistent for all densities which depend smoothly on t. Furthermore,
we analyze the rate of convergence of this estimate and present a data–driven method to
choose the bandwidth hN .

Our estimate can be regarded as a kernel estimate applied to the functional dataset(
t1,

1

n1,Nh1,N

n1,N∑
i=1

K

(
x−X(t1)

i

h1,N

))
, . . . ,

(
tN ,

1

nN,NhN,N

nN,N∑
i=1

K

(
x−X(tN )

i

hN,N

))
.

For an introduction to functional data analysis we refer to the monographs Ramsay and
Silverman (1997, 2002, 2005), Ferraty and View (2006) and Ferraty and Romain (2011).
There exists a vast literature on functional nonparametric regression when the response
variable is scalar (see, e.g., Burba, Ferraty and Vieu (2009), Ferraty et al. (2010) and
Masry (2005) and the literature cited therein). But there are very few results for the
current case when the response variable is functional, cf., e.g., Bosq and Delecroix (1985),
Lecoutre (1990) and Ferraty et al. (2011). The case of a functional response variable,
which is a density, is not considered in these articles.
A comprehensive introduction in L1–consistent density estimation can be found in

Devroye and Györfi (1985), Devroye (1987) and Devroye and Lugosi (2001).
Throughout the paper the following notation is used: The sets of natural numbers and

real numbers are denoted by N and R, resp. B denotes the set of all Borel sets in R and
1B denotes the indicator function of the set B.
The outline of the paper is as follows: The main results are presented in Section 2,

Section 3 illustrates the estimate by applying it to simulated and real data, and Section
4 contains the proofs.

2 Main results

2.1 Consistency

In our first theorem we present sufficient conditions for the consistency of our estimate.

Theorem 1 Let (Xt)t∈[0,1] be an R–valued stochastic process such that Xt has a density
f(·, t) : R → R with respect to the Lebesgue–Borel measure. For N ∈ N let t1, . . . , tN ∈
[0, 1], hN > 0 and let K be a symmetric density satisfying∫

R
K2(u) du <∞ and

∫
R
|u| ·K(u) du <∞.

For each k ∈ {1, . . . , N} let f (tk)
N = f

(tk)
N (·,D(tk)

N ) be the estimate of f(·, tk) defined by
(2). Let H : R → R be a nonnegative bounded function with compact support satisfying
H ≥ c1 · 1(−δ,δ) for some δ, c1 > 0 and define the estimate fN (·, t) of f(·, t) by (3).
Assume that for all k ∈ {1, . . . , N}

Xtk , X
(tk)
1 , . . . , X(tk)

nk,N
are independent and identically distributed (4)
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and that
X

(t1)
1 , . . . , X(t1)

n1,N
, . . . , X

(tN )
1 , . . . , X(tN )

nN,N
are independent. (5)

Assume furthermore that
hN → 0 (N →∞), (6)

inf
k∈{1,...,N}

|t− tk|
hN

→ 0 (N →∞) for every t ∈ [0, 1], (7)

N∑
j=1

H

(
t− tj
hN

)
· nj,N · hj,N →∞ (N →∞) for every t ∈ [0, 1] (8)

and
max

j∈{1,...,N}
hj,N → 0 (N →∞). (9)

Then the estimate fN satisfies

E

∫
R
|fN (x, t)− f(x, t)| dx→ 0 (N →∞) (10)

for every t ∈ [0, 1] and for all functions f such that f(·, t) is a density for all t ∈ [0, 1]
and such that

sup
s,t∈[0,1],|s−t|<δ

∫
|f(x, s)− f(x, t)|dx→ 0 (δ → 0). (11)

If, in addition,

∞∑
N=1

exp

−δ2

2

(∑N
k=1H

(
t−tk
hN

)
· nk,N · hk,N

)2

∑N
l=1H

2
(
t−tl
hN

)
· nl,N · h2

l,N

 <∞ (12)

for every δ > 0, then the convergence in (10) holds even almost surely.

Remark 1. In case tk = k/N and nk,N = nN (k = 1, . . . , N) conditions (6)–(9) are
satisfied provided we choose hN and hk,N = h̃N (k = 1, . . . , N) such that

hN → 0 (N →∞), h̃N → 0 (N →∞), N · hN →∞ (N →∞)

and
N · hN · nN · h̃N →∞ (N →∞).

And in this case (∑N
k=1H

(
t−tk
hN

)
· nk,N · hk,N

)2

∑N
l=1H

2
(
t−tl
hN

)
· nl,N · h2

l,N

≥ nN

implies that (12) holds whenever

∞∑
N=1

exp

(
−δ

2

2
· nN

)
<∞.
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2.2 Rate of convergence

Next we study the rate of convergence of our estimate. For simplicity we consider here
only equidistant time points, where for each time point we have the same sample size.
Furthermore, we choose the bandwidths independent of the time point and H as the
naive kernel.

Theorem 2 Let (Xt)t∈[0,1] be an R-valued stochastic process such that Xt has a density
f(·, t) : R → R with respect to the Lebesgue-Borel measure. Let N ∈ N, set tk = k/N
(k = 1, . . . , N), let hN > 0 and let K be a symmetric density satisfying∫

R
K2(u) du <∞ and

∫
R
|u| ·K(u) du <∞.

Assume that the sample sizes of the data sets (1) are equal, i.e., assume that

n1,N = · · · = nN,N = nN .

Let h̃N > 0. For each k ∈ {1, . . . , N} let f (tk)
N = f

(tk)
N (·,D(tk)

N ) be defined by

f
(tk)
N (x) =

1

nN · h̃N
·
nN∑
i=1

K

(
x−X(tk)

i

h̃N

)
(x ∈ R).

Let H = 1/2 · 1[−1,1] be the naive kernel and define the estimate fN (·, t) of f(·, t) by (3)
for some hN ≥ 1/N .
Assume that there exists a compact set B ∈ B such that

f(x, t) = 0 for all x /∈ B and all t ∈ [0, 1], (13)

that f(·, t) is Hölder continuous with exponent r ∈ (0, 1] and with Hölder constant C > 0
for all t ∈ [0, 1], i.e.,

|f(x, t)− f(y, t)| ≤ C · |x− y|r for all x, y ∈ R and all t ∈ [0, 1], (14)

and that f(x, ·) is Hölder continuous with exponent p ∈ (0, 1] and with Hölder constant
C > 0 for all x ∈ R, i.e.,

|f(x, s)− f(x, t)| ≤ C · |s− t|p for all s, t ∈ [0, 1] and all x ∈ R. (15)

Assume furthermore that for all k ∈ {1, . . . , N}

Xtk , X
(tk)
1 , . . . , X(tk)

nN
are independent and identically distributed (16)

and that
X

(t1)
1 , . . . , X(t1)

nN
, . . . , X

(tN )
1 , . . . , X(tN )

nN
are independent. (17)
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Then we have

E

∫
|fN (x, t)− f(x, t)| dx = O

(√
1

N · hN · nN · h̃N
+ h̃rN + hpN

)
(18)

for every t ∈ [0, 1]. In particular, if we set hN = c2 · (N · nN )
− r

(2r+1)·p+r and h̃N =

c3 · (N · nN )
− p

(2r+1)·p+r we get

E

∫
|fN (x, t)− f(x, t)| dx = O

(
(N · nN )

− p·r
(2r+1)·p+r

)
for every t ∈ [0, 1].

2.3 Data–dependent choice of the bandwidth

In this section we present a data–driven method to choose the bandwidth hN of our
estimate fN . Our aim is to to choose the bandwidth such that the L1–error of the
estimate fN (·, t) is small for any t ∈ [0, 1], and to achieve this we try to choose the
bandwidth such that the maximal L1–error of fN (·, t) is small for t ∈ {t1, . . . , tN}. To
do this, we adapt the combinatorial method of Devroye and Lugosi (2001) to our setting.
First, we fix a vector of sample sizes

mN = (m1,N , . . . ,mN,N ) ∈ ZN+ with mk,N ≤
nk,N

2
, k = 1, . . . , N,

and define a class of density estimates F =
{
f̃mN ,hN : hN > 0

}
, where

f̃mN ,hN (x, t) =

∑N
k=1H

(
t−tk
hN

)
·mk,N · hk,N · f

(tk)
mk,N (x)∑N

j=1H
(
t−tj
hN

)
·mj,N · hj,N

is our estimate (3) based on standard kernel density estimates

f (tk)
mk,N

(x) =
1

mk,N · hk,N
·
mk,N∑
i=1

K

(
x−X(tk)

i

hk,N

)
(x ∈ R)

evaluated on the first parts of the data sets (1). Here, we choose H and K as naive
kernels and hk,N are the smoothing parameters, which can be determined, e.g., by cross-
validation or by the combinatorial method of Devroye and Lugosi (2001). Then we
project the empirical measure µmk,N

defined on the held–out data, i.e.,

µmk,N
(A) =

1

nk,N −mk,N
·

nk,N∑
i=mk,N+1

1A

(
X

(tk)
i

)
,
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on F . For this purpose, we define the sets

Atk =
{{

x ∈ R : f̃mN ,h1(x, tk) > f̃mN ,h2(x, tk)
}

: h1, h2 > 0
}
,

k = 1, . . . , N , for fixed N , and choose the bandwidth ĥN by minimizing the distance

∆hN := max
k∈{1,...,N}

sup
A∈Atk

∣∣∣∣∫
A
f̃mN ,hN (x, tk) dx− µmk,N

(A)

∣∣∣∣
over all hN > 0. Since it is possible that the minimum of ∆hN does not exist, we select
ĥN > 0 such that

∆ĥN
< inf

hN>0
∆hN +

1

N

and define
f̂N = f̃mN ,ĥN

.

The next theorem states that the expected maximal L1–error of this estimate is almost
as small as that of the best estimate in F .

Theorem 3 Let f̂N be defined as above. Then

E

{
max

k∈{1,...,N}

∫ ∣∣∣f̂N (x, tk)− f(x, tk)
∣∣∣ dx}

≤ 3E

{
inf
hN>0

max
k∈{1,...,N}

∫ ∣∣∣f̃mN ,hN (x, tk)− f(x, tk)
∣∣∣ dx}

+ 32 ·

√√√√ log
(

220 ·N17 ·maxk∈{1,...,N}m
16
k,N

)
mink∈{1,...,N}mk,N

+
7

N
.

3 Application to simulated and real data

In this section we apply our estimate to real and simulated data.

In the next three examples we assume that we have givenN = 101 equidistant time points
and n = 20 data points X(tk)

1 , . . . , X
(tk)
20 for each time point tk ∈ [0, 1], k = 1, . . . , 101.

We use the Gaussian kernel for the kernel functions H and K. We set mk,n = bn2 c = 10

for every k = 1, . . . , 101. We use the same bandwidth h̃N = h1,N = · · · = hN,N for each
time point and choose the bandwidths (HN , hN ) of our estimate fN from the set

{0.05, 0.1, 0.2, 0.4, 0.8} × {0.01, 0.05, 0.1, 0.25, 0.5, 1}

via the data-dependent method described in Section 2.3. Then we compare the proposed
estimate with the estimate of Rosenblatt and Parzen which can only be calculated for
the observed time points tk, k = 1, . . . , 101, using for each time point all n = 20 data
points corresponding to the time point. For this estimate the bandwidth is chosen by
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cross-validation. In our newly proposed algorithm all integrals are approximated by Rie-
mann sums.

In our first example we choose (Xt)t∈[0,1] as exponentially distributed with variable rate
1.5− t. Since the result of our simulation depends on the randomly occuring data points,
we repeat the whole procedure 100 times with independent realizations of the occuring
random variables for each observed time point. Figure 1 shows boxplots of the average
and maximal occured L1–error for each time point. The mean of the average (with re-
spect to the 101 time points) L1–errors of the proposed estimate (0.3018) is less than the
mean average L1–error of the Rosenblatt-Parzen density estimate (0.5568). In addition,
the mean of the maximal (with respect to the 101 time points) L1–errors of our estimate
(0.4736) is lower than the mean of the maximal L1–errors of the Rosenblatt and Parzen
estimate (1.0909).

●
●

●

●

●
●●

●

mean est mean RP max est max RP

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Figure 1: Boxplots of the average and maximal occuring L1–errors in the first model

In our second example we choose (Xt)t∈[0,1] as weibull distributed with shape parameter
1 and variable scale parameter 1 + t. In Figure 2 we compare again boxplots of the
average and maximal occuring L1–errors of the two estimates. The mean of the average
(0.3252) and the maximal (0.4652) L1–error of our estimate are much lower than the
ones of Rosenblatt and Parzen (0.4725 and 0.8627).
In Figure 3 we repeat the same procedure with gamma distributed process (Xt)t∈[0,1]

with shape parameter 0.5 + t and scale parameter 2. The mean of the average (0.2499)
and the maximal L1–errors (0.3686) are again lower than the mean average (0.3099) and
mean maximal L1–error (0.7123) of the Rosenblatt–Parzen estimate.
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Figure 2: Boxplots of the average and maximal occuring L1–errors in the second model

●

●

●

●

●

●

●

mean est mean RP max est max RP

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3: Boxplots of the average and maximal occuring L1–errors in the third model

Finally, we illustrate the usefulness of our estimate by applying it to real data gained
by the Collaborative Research Foundation 805 which is interested in the measurement of
uncertainty in load-bearing systems like bearing structures of aeroplanes. We consider
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the load distribution in the three legs of a tripod (Figure 4), which is an example of a
load-bearing system in mechanical engineering. In the experiments a static force is ap-
plied on the tripod. On the bottom side of the legs force sensors are mounted to measure
the legs’ axial force. If the holes where the legs are plugged in have exactly the same
diameter, a third of the general load should be measured in each leg. Unfortunately, such

Figure 4: Tripod

an accurate drilling is not possible in the manufacturing process. Since there is always
a small deviation, the force is distributed nonuniformly in the three legs. Due to wear
engineers expect that the diameters expand over time. To examine the influence of a
larger diameter to the force distribution in the three legs, we assume that the diameter
in the first leg behaves like a standard normally distributed process expand over time
and behave like independent normally distributed processes (X

(1)
t )t∈[0,1] with expecta-

tion 15 + 2 · t (in mm) and standard deviation 0.5. The diameters of the other two legs
are independet and normally distributed with expectation 15 and standard deviaton 0.5.
Based on the physical model of the tripod we are able to calculate the resulting load
in each leg in dependence of the values of the three diameters at time t ∈ [0, 1]. For
simplicity, we consider only the first leg of the tripod. To estimate the density of the
resulting load in the first leg of the tripod we calculate our density estimate as described
before using nk = 20 measurements at each of the 101 equidistant time points. The
bandwidths (HN , hN ) of the estimate is selected by our data-driven method from the set

{0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.15, 0.2} ×
{0.00001, 0.00015, 0.0002, 0.00025, 0.00003, 0.00005, 0.0001}

and is selected as HN = 0.15 and h̃N = 0.00015. Figure 5 shows how the estimated
density changes over time. From the figure it can be seen that less force is distributed
into the first leg as the diameter increases.
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Figure 5: Density estimate for the tripod

4 Proofs

4.1 Proof of Theorem 1

Let ε > 0 be arbitary. Because of (11) we can choose K̃ ∈ N and s1, . . . , sK̃ ∈ [0, 1] such
that

min
k∈{1,...,K̃}

∫
R
|f(x, t)− f(x, sk)| dx < ε (19)

for all t ∈ [0, 1]. For k ∈ {1, . . . , K̃} let gk be a continuously differentiable density with
compact support satisfying ∫

R
|gk(x)− f(x, sk)| dx < ε

and let B be the (compact) union of the supports of g1, . . . , gK̃ . Set z+ = max{z, 0} for
all z ∈ R. Let t ∈ [0, 1] be arbitrary. Choose k̃t ∈ {1, . . . , K̃} such that∫

R
|f(x, t)− f(x, sk̃t)| dx < ε.

11



By the triangle inequality and the Lemma of Scheffé (cf., e.g., Theorem 1 in Chapter 1
of Devroye and Györfi (1985)) we have

E

∫
R
|fN (x, t)− f(x, t)| dx

< E

∫
R
|fN (x, t)− f(x, sk̃t)| dx+ ε

< E

∫
R
|fN (x, t)− gk̃t(x)| dx+ 2 ε

= 2E

∫
R

(gk̃t(x)− fN (x, t))+ dx+ 2 ε

= 2E

∫
B

(gk̃t(x)− fN (x, t))+ dx+ 2 ε

≤ 2E

∫
B
|fN (x, t)−E {fN (x, t)} | dx+ 2

∫
B
|E {fN (x, t)} − f(x, t)| dx

+ 2

∫
B

∣∣∣f(x, t)− f(x, sk̃t)
∣∣∣ dx+ 2

∫
B
|f(x, sk̃t)− gk̃t(x)| dx+ 2 ε

< E{T1,N}+ T2,N + 6 ε,

where

T1,N = 2

∫
B

∣∣∣∣∣∣
∑N

k=1H
(
t−tk
hN

)
· nk,N · hk,N · (f

(tk)
N (x)−E{f (tk)

N (x)})∑N
j=1H

(
t−tj
hN

)
· nj,N · hj,N

∣∣∣∣∣∣ dx
and

T2,N = 2

∫
B

∣∣∣∣∣∣f(x, t)−

∑N
k=1H

(
t−tk
hN

)
· nk,N · hk,N ·E{f

(tk)
N (x)}∑N

j=1H
(
t−tj
hN

)
· nj,N · hj,N

∣∣∣∣∣∣ dx.
First, we bound E{T1,N}. Let |B| be the Lebesgue measure of the set B. By Cauchy-
Schwarz inequality, Jensen inequality, theorem of Fubini and assumption (5), which im-
plies that f (tj)

N (x) and f (tk)
N (x) are independent for j 6= k and hence

E
{(
f

(tj)
N (x)−E{f (tj)

N (x)}
)
·
(
f

(tk)
N (x)−E{f (tk)

N (x)}
)}

= 0

for all x ∈ R, j, k ∈ {1, . . . , N} with j 6= k, we get

E{T1,N}

≤ 2 ·
√
|B| ·E


∫

B

∣∣∣∣∣∣
∑N

k=1H
(
t−tk
hN

)
· nk,N · hk,N ·

(
f

(tk)
N (x)−E{f (tk)

N (x)}
)

∑N
j=1H

(
t−tj
hN

)
· nj,N · hj,N

∣∣∣∣∣∣
2

dx


1/2

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≤ 2 ·
√
|B| ·

E


∫
B

∣∣∣∣∣∣
∑N

k=1H
(
t−tk
hN

)
· nk,N · hk,N ·

(
f

(tk)
N (x)−E{f (tk)

N (x)}
)

∑N
j=1H

(
t−tj
hN

)
· nj,N · hj,N

∣∣∣∣∣∣
2

dx




1/2

= 2 ·
√
|B| ·


∑N

k=1H
(
t−tk
hN

)2
· n2

k,N · h2
k,N ·

∫
B E

{∣∣∣f (tk)
N (x)−E{f (tk)

N (x)}
∣∣∣2} dx(∑N

j=1H
(
t−tj
hN

)
· nj,N · hj,N

)2


1/2

.

Since H is nonnegative and bounded we have H2(z) ≤ c4 ·H(z) for all z ∈ R. Further-
more, using (4) and the theorem of Fubini we get∫

R
E
∣∣∣f (tk)
N (x)−E{f (tk)

N (x)}
∣∣∣2 dx

≤
∫
R

1

nk,N
· 1

h2
k,N

·
∫
R
K2

(
x− u
hk,N

)
· f(u, tk) du dx

=
1

nk,N · hk,N
·
∫
R
f(u, tk) ·

∫
R

1

hk,N
·K2

(
x− u
hk,N

)
dx du

=

∫
RK

2(z) dz

nk,N · hk,N
. (20)

This implies

E{T1,n} ≤ 2 ·
√
|B| ·

√
c4 ·


∑N

k=1H
(
t−tk
hN

)
· nk,N · hk,N · c5(∑N

j=1H
(
t−tj
hN

)
· nj,N · hj,N

)2


1/2

≤ c6√∑N
j=1H

(
t−tj
hN

)
· nj,N · hj,N

for n sufficiently large.
Next we bound T2,N . Because of (6) and the compact support of H we can conclude

from (11) that H((t− tk)/hN ) > 0 implies∫
|f(x, t)− f(x, tk)| dx < ε (21)

for all t ∈ [0, 1] for N sufficiently large. For t ∈ [0, 1] choose again k̃t ∈ {1, . . . , K̃} such
that g∗ = gk̃t satisfies∫

|f(x, t)− g∗(x)| dx ≤
∫
|f(x, t)− f(x, sk̃t)| dx+

∫
|f(x, sk̃t)− g

∗(x)| dx < 2 ε.

We have

T2,N

13



= 2

∫
B

∣∣∣∣∣∣
∑N

k=1H
(
t−tk
hN

)
· nk,N · hk,N ·

∫
R

1
hk,N
·K

(
x−u
hk,N

)
· f(u, tk) du∑N

j=1H
(
t−tj
hN

)
· nj,N · hj,N

− f(x, t)

∣∣∣∣∣∣ dx
≤ 2 ·

∑N
k=1H

(
t−tk
hN

)
· nk,N · hk,N ·

∫
B

∫
R

1
hk,N
·K

(
x−u
hk,N

)
· |f(u, tk)− f(u, t)| du dx∑N

j=1H
(
t−tj
hN

)
· nj,N · hj,N

+ 2

∫
B

∣∣∣∣∣∣
∑N

k=1H
(
t−tk
hN

)
· nk,N · hk,N ·

∫
R

1
hk,N
·K

(
x−u
hk,N

)
· f(u, t) du∑N

j=1H
(
t−tj
hN

)
· nj,N · hj,N

− f(x, t)

∣∣∣∣∣∣ dx
≤ 2 ·

∑N
k=1H

(
t−tk
hN

)
· nk,N · hk,N ·

∫
B

∫
R

1
hk,N
·K

(
x−u
hk,N

)
· |f(u, tk)− f(u, t)| du dx∑N

j=1H
(
t−tj
hN

)
· nj,N · hj,N

+ 2 ·

∑N
k=1H

(
t−tk
hN

)
· nk,N · hk,N ·

∫
B

∫
R

1
hk,N
·K

(
x−u
hk,N

)
· |f(u, t)− g∗(u)| du dx∑N

j=1H
(
t−tj
hN

)
· nj,N · hj,N

+ 2

∫
B

∣∣∣∣∣∣
∑N

k=1H
(
t−tk
hN

)
· nk,N · hk,N ·

∫
R

1
hk,N
·K

(
x−u
hk,N

)
· g∗(u) du∑N

j=1H
(
t−tj
hN

)
· nj,N · hj,N

− g∗(x)

∣∣∣∣∣∣ dx
+ 2

∫
B
|g∗(x)− f(x, t)| dx

= T3,N + T4,N + T5,N + T6,N .

Using the theorem of Fubini and the fact that K is a density we see that∫
B

∫
R

1

hk,N
·K

(
x− u
hk,N

)
· |f(u, tk)− f(u, t)| du dx

=

∫
R

∫
B

1

hk,N
·K

(
x− u
hk,N

)
dx · |f(u, tk)− f(u, t)| du

≤
∫
R
|f(u, tk)− f(u, t)| du

and ∫
B

∫
R

1

hk,N
·K

(
x− u
hk,N

)
· |f(u, t)− g∗(u)| du dx ≤

∫
R
|f(u, t)− g∗(u)| du

from which we conclude via (21) and the choice of g∗ that we have T3,N < 2 ε and
T4,N < 4 ε. Furthermore, again by choice of g∗ we have T6,N < 4 ε. It remains to
bound T5,N . Since g1, . . . , gK̃ are continuously differentiable with bounded support,
they are also Lipschitz continuous. Denote the maximum of the Lipschitz constants of
g1, . . . , gK̃ by C. Because of (7) and H ≥ c1 · 1(−δ,δ) we can assume w.l.o.g. that∑N

k=1H
(
t−tk
hN

)
· nk,N · hk,N > 0 and hence for N sufficiently large

T5,N

14



≤ 2 ·

∑N
k=1H

(
t−tk
hN

)
· nk,N · hk,N ·

∫
B

∫
R

1
hk,N
·K

(
x−u
hk,N

)
· |g∗(u)− g∗(x)| du dx∑N

j=1H
(
t−tj
hN

)
· nj,N · hj,N

≤ 2 ·

∑N
k=1H

(
t−tk
hN

)
· nk,N · hk,N ·

∫
B

∫
R

1
hk,N
·K

(
x−u
hk,N

)
· C · |x− u| du dx∑N

j=1H
(
t−tj
hN

)
· nj,N · hj,N

≤ 2 ·

∑N
k=1H

(
t−tk
hN

)
· nk,N · hk,N · C · |B| · hk,N ·

∫
R |z|K(z) dz∑N

j=1H
(
t−tj
hN

)
· nj,N · hj,N

≤ 2 · C · |B| ·
∫
R
|z|K(z) dz · max

k∈{1,...,N}
hk,N .

Summarizing the above results we see that for N sufficiently large

E

∫
R
|fN (x, t)− f(x, t)| dx

≤ c6√∑N
j=1H

(
t−tj
hN

)
· nj,N · hj,N

+ c7 · max
k∈{1,...,N}

hk,N + 10 ε.

Because of (8) and (9) we conclude

lim sup
N→∞

E

∫
R
|fN (x, t)− f(x, t)| dx ≤ 10 ε,

and since ε > 0 was arbitrary this implies (10).

In order to show the second assertion, we observe∫
R
|fN (x, t)− f(x, t)| dx =

∫
R
|fN (x, t)− f(x, t)| dx−E

{∫
R
|fN (x, t)− f(x, t)| dx

}
+ E

{∫
R
|fN (x, t)− f(x, t)| dx

}
for every t ∈ [0, 1]. The second term can be bounded like before. For the first term, let
z

(tk)
1 , . . . , z

(tk)
nk,N , z̄

(tl)
jl
∈ R for k = 1, . . . , N , l = 1, . . . , N , jl = 1, . . . , nl,N . Define

g(z
(t1)
1 , . . . , z(t1)

n1,N
, . . . , z

(tN )
1 , . . . , z(tN )

nN,N
)

=

∫
R

∣∣∣∣∣∣∣∣
∑N

k=1H
(
t−tk
hN

)∑nk,N

i=1 K

(
x−z(tk)

i
hk,N

)
∑N

k=1H
(
t−tk
hN

)
· nk,N · hk,N

− f(x, t)

∣∣∣∣∣∣∣∣ dx
for every t ∈ [0, 1]. With ||a| − |b|| ≤ |a − b| for a, b ∈ R and the Lemma of Scheffé it
holds∣∣∣g(z

(t1)
1 , . . . , z

(tl)
jl
, . . . , z(tN )

nN,N
)− g(z

(t1)
1 , . . . , z

(tl)
jl−1, z̄

(tl)
jl
, z

(tl)
jl+1, . . . , z

(tN )
nN,N

)
∣∣∣

15



≤
∫
R

∣∣∣∣∣∣∣∣∣∣
H
(
t−tl
hN

)
·

(
K

(
x−z(tl)

jl
hl,N

)
−K

(
x−z̄(tl)

jl
hl,N

))
∑N

k=1H
(
t−tk
hN

)
· nk,N · hk,N

∣∣∣∣∣∣∣∣∣∣
dx

=
2 ·H

(
t−tl
hN

)
· hl,N∑N

k=1H
(
t−tk
hN

)
· nk,N · hk,N

∫
R

(
1

hl,N
K

(
x− z(tl)

jl

hl,N

)
− 1

hl,N
K

(
x− z̄(tl)

jl

hl,N

))
+

dx

≤
2 ·H

(
t−tl
hN

)
· hl,N∑N

k=1H
(
t−tk
hN

)
· nk,N · hk,N

for all l ∈ {1, . . . , N}, jl ∈ {1, . . . , nl,N}. Let δ > 0 be arbitrary. Using the inequality
of McDiarmid (cf., e.g., Theorem A.2. in Györfi et al. (2002)) and assumption (12) we
have

∞∑
N=1

P

(∣∣∣∣∫
R
|fN (x, t)− f(x, t)| dx−E

{∫
R
|fN (x, t)− f(x, t)| dx

}∣∣∣∣ ≥ δ)

=

∞∑
N=1

P
(∣∣∣g (X(t1)

1 , . . . , X(tN )
nN,N

)
−E

{
g
(
X

(t1)
1 , . . . , X(tN )

nN,N

)}∣∣∣ ≥ δ)

≤
∞∑
N=1

2 · exp

−δ2

2

(∑N
k=1H

(
t−tk
hN

)
· nk,N · hk,N

)2

∑N
l=1H

2
(
t−tl
hN

)
· nl,N · h2

l,N

 <∞.

An application of the lemma of Borel Cantelli implies the assertion. �

4.2 Preliminaries to the proof of Theorem 2

In this subsection we formulate and prove two general results, which we will use to prove
Theorem 2.

Theorem 4 Let (Xt)t∈[0,1] be an R-valued stochastic process such that Xt has a density
f(·, t) : R→ R with respect to the Lebesgue-Borel measure. Let N ∈ N, t1, . . . , tN ∈ [0, 1]

and for each k ∈ {1, . . . , N} let f (tk)
N = f

(tk)
N (·,D(tk)

N ) be an estimate of f(·, tk). Let
H : R → R be a nonnegative bounded function with compact support and define the
estimate fN (·, t) of f(·, t) by (3).
Assume that there exists a compact set B ∈ B such that

f(x, t) = 0 for all x /∈ B and all t ∈ [0, 1]. (22)

Assume furthermore that the estimates f (t1)
N , . . . , f (tN )

N are densities satisfying for some
r ∈ (0, 1] and some constants c8, c9 > 0∫

R
E
∣∣∣f (tk)
N (x)−E{f (tk)

N (x)}
∣∣∣2 dx ≤ c8

nk,N · hk,n
(k ∈ {1, . . . , N}), (23)
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∫
R

∣∣∣E{f (tk)
N (x)} − f(x, tk)

∣∣∣ dx ≤ c9 · hrk,N (k ∈ {1, . . . , N}) (24)

and
f

(tj)
N (x), f

(tk)
N (x) independent (x ∈ R, j, k ∈ {1, . . . , N}, j 6= k). (25)

Then we have for any t ∈ [0, 1] such that
∑N

j=1H
(
t−tj
hN

)
· nj,N · hj,N > 0 :

E

∫
|fN (x, t)− f(x, t)| dx

≤ c10√∑N
j=1H

(
t−tj
hN

)
· nj,N · hj,N

+ 2 · c9 · max
k:H(

t−tk
hN

)>0

hrk,N

+2 · sup
s∈[0,1] :H( t−s

hN
)>0

∫
R
|f(x, t)− f(x, s)| dx.

Proof of Theorem 4. For z ∈ R set z+ = max{z, 0}. By the Lemma of Scheffé (cf.,
e.g., Theorem 1 in Chapter 1 of Devroye and Györfi (1985)) and assumption (22) we have∫

R
|fN (x, t)− f(x, t)| dx = 2

∫
R

(f(x, t)− fN (x, t))+ dx = 2

∫
B

(f(x, t)− fN (x, t))+ dx.

Using
(a+ b)+ ≤ |a|+ |b| (a, b ∈ R)

we get ∫
R
|fN (x, t)− f(x, t)| dx ≤ T1,N + T2,N

where

T1,N = 2

∫
B

∣∣∣∣∣∣
∑N

k=1H
(
t−tk
hN

)
· nk,N · hk,N · (f

(tk)
N (x)−E{f (tk)

N (x)})∑N
j=1H

(
t−tj
hN

)
· nj,N · hj,N

∣∣∣∣∣∣ dx
and

T2,N = 2

∫
B

∣∣∣∣∣∣f(x, t)−

∑N
k=1H

(
t−tk
hN

)
· nk,N · hk,N ·E{f

(tk)
N (x)}∑N

j=1H
(
t−tj
hN

)
· nj,N · hj,N

∣∣∣∣∣∣ dx.
First, we bound E {T1,N} with similar arguments as in the proof of Theorem 1. Let |B|
be the Lebesgue measure of the set B. By Cauchy-Schwarz inequality, Jensen inequality,
the theorem of Fubini and assumption (25), which implies

E
{(
f

(tj)
N (x)−E{f (tj)

N (x)}
)
·
(
f

(tk)
N (x)−E{f (tk)

N (x)}
)}

= 0

for all x ∈ R, j, k ∈ {1, . . . , N} with j 6= k, we get

E{T1,N}
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≤ 2 ·
√
|B| ·

E


∫
B

∑N
k=1H

(
t−tk
hN

)
· nk,N · hk,N ·

(
f

(tk)
N (x)−E{f (tk)

N (x)}
)

∑N
j=1H

(
t−tj
hN

)
· nj,N · hj,N

2

dx


1/2


≤ 2 ·
√
|B| ·


∑N

k=1H
(
t−tk
hN

)2
· n2

k,N · h2
k,N ·

∫
B E

{∣∣∣f (tk)
N (x)−E{f (tk)

N (x)}
∣∣∣2} dx(∑N

j=1H
(
t−tj
hN

)
· nj,N · hj,N

)2


1/2

.

Since H is nonnegative and bounded we have H2(z) ≤ c11 · H(z) for all z ∈ R. Using
this and assumption (23) we get

E{T1,n} ≤ 2 ·
√
|B| ·

√
c11 ·


∑N

k=1H
(
t−tk
hN

)
· nk,N · hk,N · c8(∑N

j=1H
(
t−tj
hN

)
· nj,N · hj,N

)2


1/2

=
c10√∑N

j=1H
(
t−tj
hN

)
· nj,N · hj,N

.

Next, we bound T2,N . Using triangle inequality, condition (24) and the fact that H is
nonnegative we get

T2,n ≤ 2

∫
B

∣∣∣∣∣∣f(x, t)−

∑N
k=1H

(
t−tk
hN

)
· nk,N · hk,N · f(x, tk)∑N

j=1H
(
t−tj
hN

)
· nj,N · hj,N

∣∣∣∣∣∣ dx
+2

∫
B

∑N
k=1H

(
t−tk
hN

)
· nk,N · hk,N ·

∣∣∣f(x, tk)−E{f (tk)
N (x)}

∣∣∣∑N
j=1H

(
t−tj
hN

)
· nj,N · hj,N

dx

≤ 2

∑N
k=1H

(
t−tk
hN

)
· nk,N · hk,N ·

∫
B |f(x, t)− f(x, tk)| dx∑N

j=1H
(
t−tj
hN

)
· nj,N · hj,N

+ 2

∑N
k=1H

(
t−tk
hN

)
· nk,N · hk,N · c9 · hrk,N∑N

j=1H
(
t−tj
hN

)
· nj,N · hj,N

≤ 2 · sup
s∈[0,1] :H( t−s

hN
)>0

∫
R
|f(x, t)− f(x, s)| dx+ 2 · c9 · max

k:H(
t−tk
hN

)>0

hrk,N .

The proof is complete. �

Theorem 5 Let (Xt)t∈[0,1] be an R-valued stochastic process such that Xt has a density
f(·, t) : R→ R with respect to the Lebesgue-Borel measure. Let N ∈ N, t1, . . . , tN ∈ [0, 1],
hN > 0 and let K be a symmetric density satisfying∫

R
K2(u) du <∞ and

∫
R
|u| ·K(u) du <∞.
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For each k ∈ {1, . . . , N} let f (tk)
N = f

(tk)
N (·,D(tk)

N ) be the estimate of f(·, tk) defined by
(2). Let H : R→ R be a nonnegative bounded function with compact support and define
the estimate fN (·, t) of f(·, t) by (3).
Assume that there exists a compact set B ∈ B such that

f(x, t) = 0 for all x /∈ B and all t ∈ [0, 1], (26)

and that f(·, tk) is Hölder continuous with exponent r ∈ (0, 1] and with Hölder constant
C > 0 for all k ∈ {1, . . . , N}, i.e.,

|f(x, tk)− f(y, tk)| ≤ C · |x− y|r for all x, y ∈ R and all k ∈ {1, . . . , N}. (27)

Assume furthermore that for all k ∈ {1, . . . , N}

Xtk , X
(tk)
1 , . . . , X(tk)

nk,N
are independent and identically distributed (28)

and that
X

(t1)
1 , . . . , X(t1)

n1,N
, . . . , X

(tN )
1 , . . . , X(tN )

nN,N
are independent. (29)

Then we have for any t ∈ [0, 1] such that
∑N

j=1H
(
t−tj
hN

)
· nj,N · hj,N > 0 :

E

∫
|fN (x, t)− f(x, t)| dx

≤ c10√∑N
j=1H

(
t−tj
hN

)
· nj,N · hj,N

+ 2 · c9 · max
k:H(

t−tk
hN

)>0

hrk,N

+2 · sup
s∈[0,1] :H(

t−tk
hN

)>0

∫
R
|f(x, t)− f(x, s)| dx.

Proof of Theorem 5. The result follows directly from Theorem 4 provided we can
show that the conditions (23), (24) and (25) are satisfied. Clearly, (25) follows from (29).
The proof of Theorem 1 (cf., (20)) implies (23). Finally, by using the Lemma of Scheffé,
(26), (28) and (27) we observe∫

R

∣∣∣E{f (tk)
N (x)} − f(x, tk)

∣∣∣ dx
= 2

∫
R

(
f(x, tk)−E{f (tk)

N (x)}
)

+
dx

= 2

∫
B

(
f(x, tk)−E{f (tk)

N (x)}
)

+
dx

≤ 2 · |B| · sup
x∈B

∣∣∣∣f(x, tk)−
1

hk,N

∫
R
K

(
x− u
hk,N

)
· f(u, tk) du

∣∣∣∣
≤ 2 · |B| · sup

x∈B

1

hk,N

∫
R
K

(
x− u
hk,N

)
· |f(x, tk)− f(u, tk)| du

19



≤ 2 · |B| · sup
x∈B

1

hk,N

∫
R
K

(
x− u
hk,N

)
· C · |x− u|r du

≤ 2 · |B| · C ·
∫
R
|z|rK(z) dz · hrk,N .

(Here |B| denotes again the Lebesgue measure of B). Since∫
R
|z|rK(z) dz ≤

∫
R

(1 + |z|) ·K(z) dz = 1 +

∫
R
|z|K(z) dz <∞

this implies (24), which completes the proof. �

4.3 Proof of Theorem 2

Because of hN ≥ 1/N and the choice of tk and H we have
∑N

j=1H((t− tj)/hN ) > 0 for
all t ∈ [0, 1]. Application of Theorem 5 yields

E

∫
|fN (x, t)− f(x, t)| dx ≤ c10√

nN · h̃N ·
∑N

j=1H
(
t−tj
hN

) + c9 · hrN

+2 · sup
s,t∈[0,1] : |s−t|≤hN

∫
R
|f(x, t)− f(x, s)| dx.

Again by the choice of tk and H we get
∑N

j=1H
(
t−tj
hN

)
≥ 1

2 · (2 ·N ·hN −1) = N ·hN − 1
2 .

Furthermore, by the Lemma of Scheffé and assumptions (13) and (15) we get

sup
s,t∈[0,1] : |s−t|≤hN

∫
R
|f(x, t)− f(x, s)| dx

= sup
s,t∈[0,1] : |s−t|≤hN

2 ·
∫
B

(f(x, t)− f(x, s))+ dx ≤ c11 · hpN ,

which proves (18). Plugging in the values of hN and h̃N we get the second assertion. �

4.4 Proof of Theorem 3

Define
∆ = max

k∈{1,...,N}
sup
A∈Atk

∣∣∣∣∫
A
f(x, tk) dx− µmk,N

(A)

∣∣∣∣
and let f̃mN ,h

∗
N
∈ F be any estimate which satisfies

max
k∈{1,...,N}

∫ ∣∣∣f̃mN ,h
∗
N

(x, tk)− f(x, tk)
∣∣∣ dx

≤ inf
hN>0

max
k∈{1,...,N}

∫ ∣∣∣f̃mN ,hN (x, tk)− f(x, tk)
∣∣∣ dx+

1

4 ·N
.
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W.l.o.g. we assume h∗N 6= ĥN . In the first step of the proof we show

max
k∈{1,...,N}

∫ ∣∣∣f̂N (x, tk)− f(x, tk)
∣∣∣ dx

≤ 3 · max
k∈{1,...,N}

∫ ∣∣∣f̃mN ,h
∗
N

(x, tk)− f(x, tk)
∣∣∣ dx+ 4 ∆ +

2

N
. (30)

It is very similar to the one of Theorem 6.3 in Devroye and Lugosi (2001) but we present
it here for the sake of completeness. By triangle inequality it holds

max
k∈{1,...,N}

∫ ∣∣∣f̂N (x, tk)− f(x, tk)
∣∣∣ dx (31)

≤ max
k∈{1,...,N}

∫ ∣∣∣f̂N (x, tk)− f̃mN ,h
∗
N

(x, tk)
∣∣∣ dx+ max

k∈{1,...,N}

∫ ∣∣∣f̃mN ,h
∗
N

(x, tk)− f(x, tk)
∣∣∣ dx.

Define
Gtk =

{
x ∈ R : f̂N (x, tk) > f̃mN ,h

∗
N

(x, tk)
}
.

With Scheffé’s identity, triangle inequality and the definition of ĥN and h∗N we get for
the first term

max
k∈{1,...,N}

∫ ∣∣∣f̂N (x, tk)− f̃mN ,h
∗
N

(x, tk)
∣∣∣ dx

= 2 max
k∈{1,...,N}

(∫
Gtk

f̂N (x, tk) dx−
∫
Gtk

f̃mN ,h
∗
N

(x, tk) dx

)

≤ 2 max
k∈{1,...,N}

sup
A∈Atk

∣∣∣∣∫
A
f̂N (x, tk) dx−

∫
A
f̃mN ,h

∗
N

(x, tk) dx

∣∣∣∣
≤ 2 max

k∈{1,...,N}
sup
A∈Atk

∣∣∣∣∫
A
f̂N (x, tk) dx− µmk,N

(A)

∣∣∣∣
+ 2 max

k∈{1,...,N}
sup
A∈Atk

∣∣∣∣µmk,N
(A)−

∫
A
f̃mN ,h

∗
N

(x, tk) dx

∣∣∣∣
≤ 2 ·

(
inf
hN>0

∆hN +
1

N

)
+ 2 ∆h∗N

≤ 4 ∆h∗N
+

2

N

≤ 4 max
k∈{1,...,N}

sup
A∈Atk

∣∣∣∣∫
A
f̃mN ,h

∗
N

(x, tk) dx−
∫
A
f(x, tk) dx

∣∣∣∣
+ 4 max

k∈{1,...,N}
sup
A∈Atk

∣∣∣∣∫
A
f(x, tk) dx− µmk,N

(A) dx

∣∣∣∣+
2

N

≤ 4 max
k∈{1,...,N}

sup
B∈B

∣∣∣∣∫
B
f̃mN ,h

∗
N

(x, tk) dx−
∫
B
f(x, tk) dx

∣∣∣∣+ 4 ∆ +
2

N

= 2 max
k∈{1,...,N}

∫ ∣∣∣f̃mN ,h
∗
N

(x, tk)− f(x, tk)
∣∣∣ dx+ 4 ∆ +

2

N
.
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This together with (31) leads to (30).

In the second step of the proof we bound E(∆). Let ε > 0 be arbitrary. Since ∆ is
nonnegative, we have

E(∆) =

∫ ∞
0

P (∆ > u) du ≤ ε+

∫ ∞
ε

P (∆ > u) du. (32)

Let u > 0 be arbitrary. With a well-known result of Vapnik and Chervonenkis (1971)
(cf., e.g., Theorem 12.5 in Devroye, Györfi and Lugosi (1996)) it holds

P (∆ > u) ≤
N∑
k=1

P

(
sup
A∈Atk

∣∣∣∣∫
A
f(x, tk) dx− µmk,N

(A)

∣∣∣∣ > u

)

≤
N∑
k=1

8 · s (Atk ,mk,N ) · exp

(
−
mk,N · u2

32

)
, (33)

where
s (Atk ,mk,N ) = max

x1,...,xmk,N
∈R

#
{
A ∩

{
x1, . . . , xmk,N

}
: A ∈ Atk

}
is the mk,N–th shatter coefficient of Atk , which we bound in the sequel. For this purpose,
we have to count the number of subsets of

{
x1, . . . , xmk,N

}
which can be picked out from

sets of the form {
x ∈ R : f̃mN ,h1(x, tk) > f̃mN ,h2(x, tk)

}
,

h1, h2 > 0. Since H and K are naive kernels, this number is upper bounded by the
number of subsets of

{
x1, . . . , xmk,N

}
which can be picked out from sets of the formx ∈ R : a1 ·

N∑
j=1

1[−1,1]

(
t− tj
h1

)
·
mk,N∑
i=1

1[−1,1]

(
x−X(tk)

i

hk,N

)
(34)

> a2 ·
N∑
j=1

1[−1,1]

(
t− tj
h2

)
·
mk,N∑
i=1

1[−1,1]

(
x−X(tk)

i

hk,N

)
for arbitrary a1, a2 > 0. We start by counting the number of vectors of the form(

N∑
j=1

1[−1,1]

(
t− tj
h1

)
·
mk,N∑
i=1

1[−1,1]

(
xv −X(tk)

i

hk,N

)
,

N∑
j=1

1[−1,1]

(
t− tj
h2

)
·
mk,N∑
i=1

1[−1,1]

(
xv −X(tk)

i

hk,N

))
,

v ∈ {1, . . . ,mk,N}. The components of these vectors are natural numbers bounded by
N ·mk,N . Consequently, the number of different vectors does not exceed

Lk,N := (1 +N ·mk,N )2 .
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In the following we proceed as in the proof of Lemma 11.1 in Devroye and Lugosi (2001).
Let (

z
(1)
1 , z

(1)
2

)
, . . . ,

(
z

(Lk,N )
1 , z

(Lk,N )
2

)
be all these vectors. If

1{
a1·
∑N

j=1 1[−1,1]

(
t−tj
h1

)
·
∑mk,N

i=1 1[−1,1]

(
xv−X

(tk)
i

hk,N

)
> a2·

∑N
j=1 1[−1,1]

(
t−tj
h2

)
·
∑mk,N

i=1 1[−1,1]

(
xv−X

(tk)
i

hk,N

)}
6= 1{

a3·
∑N

j=1 1[−1,1]

(
t−tj
h̄1

)
·
∑mk,N

i=1 1[−1,1]

(
xv−X

(tk)
i

hk,N

)
> a4·

∑N
j=1 1[−1,1]

(
t−tj
h̄2

)
·
∑mk,N

i=1 1[−1,1]

(
xv−X

(tk)
i

hk,N

)}

for some v ∈ {1, . . . ,mk,N}, a1, a2, a3, a4, h1, h2, h̄1, h̄2 > 0, then

1{a1·z(w)
1 > a2·z(w)

2 } 6= 1{a3·z(w̄)
1 > a4·z(w̄)

2 }

for some w, w̄ ∈ {1, . . . , Lk,N}. Consequently, the number of subsets which can be picked
out by the sets of the form (34) is upper bounded by the L2

k,N–th shatter coefficient of
the set

C :=

{{
(z1, z2, z3, z4) ∈ R4 :

4∑
i=1

ai · zi > 0

}
: a1, a2, a3, a4 > 0

}
.

Theorem 9.3 and Theorem 9.5 of Györfi et al. (2002) lead to

s (C, Lk,N ) ≤
(
1 + L2

k,N

)4
.

Using this and (33) we have for ε ≥ 1/N

E(∆) ≤ ε+

∫ ∞
ε

N∑
k=1

8 ·
(
1 + L2

k,N

)4 · exp

(
−
mk,N · u2

32

)
du

≤ ε+ 8 ·
N∑
k=1

(
1 + L2

k,N

)4 ∫ ∞
ε

exp
(
−
mk,N · ε · u

32

)
du

= ε+ 8 ·
N∑
k=1

(
1 + L2

k,N

)4 · 32

mk,N · ε
· exp

(
−
mk,N · ε2

32

)

≤ ε+ 256 ·N ·
220 ·N16 ·maxk∈{1,...,N}m

16
k,N

mink∈{1,...,N}mk,N
· exp

(
−

mink∈{1,...,N}mk,N · ε2

32

)

= ε+ 256 · exp

(
log

(
220 ·N17 ·maxk∈{1,...,N}m

16
k,N

mink∈{1,...,N}mk,N

)
−

mink∈{1,...,N}mk,N · ε2

32

)

≤ ε+ 256 · exp

(
−

mink∈{1,...,N}mk,N · ε2

64

)
,
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provided we choose ε such that

mink∈{1,...,N}mk,N · ε2

64
≥ log

(
220 ·N17 ·maxk∈{1,...,N}m

16
k,N

mink∈{1,...,N}mk,N

)
.

With

ε = max

 1

N
,

√√√√ 64

mink∈{1,...,N}mk,N
· log

(
220 ·N17 ·maxk∈{1,...,N}m

16
k,N

mink∈{1,...,N}mk,N

)
we get the assertion. �
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