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1 Fachgebiet Systemzuverlässigkeit und Maschinenakustik SzM, Technische Universität

Darmstadt, Magdalenenstr. 4, 64289 Darmstadt, Germany,

email: enss@szm.tu-darmstadt.de

2 Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289

Darmstadt, Germany, email: kohler@mathematik.tu-darmstadt.de

3 Department of Computer Science and Software Engineering, Concordia University, 1455 De

Maisonneuve Blvd. West, Montreal, Quebec, Canada H3G 1M8, email: krzyzak@cs.concordia.ca

4 Fraunhofer Institute for Structural Durability and System Reliability LBF, Bartningstr. 47,

64289 Darmstadt, Germany, email: roland.platz@lbf.fraunhofer.de

February 11, 2016

Abstract

Nonparametric estimation of a quantile qm(X),α of a random variable m(X) is considered, where

m : Rd → R is a function which is costly to compute and X is an Rd-valued random variable with

known distribution. Monte Carlo surrogate quantile estimates are considered, where in a first step

the function m is estimated by some estimate (surrogate) mn and then the quantile qm(X),α is

estimated by a Monte Carlo estimate of the quantile qmn(X),α. A general error bound on the error

of this quantile estimate is derived which depends on the local error of the function estimate mn,

and the rates of convergence of the corresponding Monte Carlo surrogate quantile estimates are

analyzed for two different function estimates. The finite sample size behavior of the estimates is

investigated in simulations.
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1 Introduction

In this paper we consider a simulation model of a complex system described by

Y = m(X),

where X is an Rd-valued random variable with known distribution PX and m : Rd → R is a black

box function which can be computed at any point x ∈ Rd but which is costly to evaluate. Let

G(y) = P{Y ≤ y} = P{m(X) ≤ y}

be the cumulative distribution function (cdf) of Y . For α ∈ (0, 1) we are interested in estimating

quantiles of the form

qm(X),α = inf{y ∈ R : G(y) ≥ α}

using at most n evaluations of function m.

A simple idea to estimate qm(X),α is to use observations m(X1), . . . , m(Xn), where X1, . . . , Xn

is an i.i.d. sample of X, to compute the empirical cdf

Ĝm(X),n(y) =
1

n

n∑
i=1

I{m(Xi)≤y} (1)

and to estimate the quantile by the corresponding plug-in estimate

q̂m(X),n,α = inf{y ∈ R : Ĝm(X),n(y) ≥ α}. (2)

Since q̂m(X),n,α is in fact an order statistic, results from order statistics, e.g., Theorem 8.5.1 in

Arnold, Balakrishnan and Nagaraja (1992), imply that in case that m(X) has a density g which

is continuous and positive at qm(X),α we have

√
n · g(qm(X),α) ·

q̂m(X),n,α − qm(X),α√
α · (1− α)

→ N(0, 1) in distribution.

This implies

|q̂m(X),n,α − qm(X),α| = OP

(
1√
n

)
, (3)

where we write Xn = OP(Yn) if the nonnegative random variables Xn and Yn satisfy

lim
c→∞

lim sup
n→∞

P{Xn > c · Yn} = 0.

There are quite a few approaches studied already in the literature for improving the rate of

convergence of the above simple quantile estimate in a simulation model of a costly-to-evaluate

function. These include variance reduction techniques like control variates (cf., e.g., Hesterberg

and Nelson (1998)), controlled stratification (cf., e.g., Cannamela, Garnier and Ioss (2008)) and
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importance sampling (cf., e.g., Glynn (1996) for a parametric and Morio (2012) for a nonparametric

approach), and Bayesian methods, in particular Bayesian methods based on Gaussian process

modelling (cf., e.g., Santner, Williams and Notz (2003)). For the to quantile estimation related

problem of rare event simulation an extensive survey is presented in Morio et al. (2014).

In this paper we study estimates based on so–called surrogate models in non-Bayesian setting.

The basic idea is to first construct an estimate mn of m and then to estimate the quantile qm(X),α

by a Monte Carlo estimate of the quantile qmn(X),α, where

qmn(X),α = inf
{
y ∈ R : PX{x ∈ Rd : mn(x) ≤ y} ≥ α

}
.

Our main result concerns an analysis of the error of this Monte Carlo estimate. We show that if

the local error of mn is small in areas where m(x) is close to qm(X),α, i.e., if for some small δn > 0

|mn(x)−m(x)| ≤ δn
2

+
1

2
· |m(x)− qm(X),α| for PX -almost all x,

then the error of the Monte Carlo estimate q̂
(MC)
mn(X),Nn,α

of qm(X),α is small, i.e.,

∣∣∣q̂(MC)
mn(X),Nn,α

− qm(X),α

∣∣∣ = OP

(
δn +

1√
Nn

)
,

where Nn is the sample size of the Monte Carlo estimate (cf., Theorem 1 below). We use this

result to analyze the rate of convergence of two different estimates, where for the first estimate

the error of mn is globally small but where for the second estimate it is only locally small. Here

we show in particular that if m is (p, C)–smooth, i.e., roughly speaking (see below for the exact

definition), if m is p-times continuously differentiable, then the first estimate is able to achieve (up

to some logarithmic factor) a rate of convergence of order n−p/d (as compared to the rate n−1/2

of the order statistics estimate above), but the second one is able to achieve (again up to some

logarithmic factor) a rate of convergence of order n−(p/d)−(p/d2)−(p2/d2).

In order to construct the surrogate mn any kind of nonparametric regression estimate can

be used. For instance we can use kernel regression estimate (cf., e.g., Nadaraya (1964, 1970),

Watson (1964), Devroye and Wagner (1980), Stone (1977, 1982) or Devroye and Krzyżak (1989)),

partitioning regression estimate (cf., e.g., Györfi (1981) or Beirlant and Györfi (1998)), nearest

neighbor regression estimate (cf., e.g., Devroye (1982) or Devroye, Györfi, Krzyżak and Lugosi

(1994)), orthogonal series regression estimate (cf., e.g., Rafaj lowicz (1987) or Greblicki and Pawlak

(1985)), least squares estimates (cf., e.g., Lugosi and Zeger (1995) or Kohler (2000)) or smoothing

spline estimates (cf., e.g., Wahba (1990) or Kohler and Krzyżak (2001)).

The idea of estimating the distribution of a random variablem(X) by the distribution ofmn(X),

where mn is a suitable surrogate (or estimate) of m, has been considered already in quite a few

papers. E.g., surrogate models have been introduced and investigated with the aid of simulated
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and real data in connection with quadratic response surfaces in Bucher and Burgund (1990), Kim

and Na (1997) and Das and Zheng (2000), in connection with support vector machines in Hurtado

(2004), Deheeger and Lemaire (2010) and Bourinet, Deheeger and Lemaire (2011), in connection

with neural networks in Papadrakakis and Lagaros (2002), and in connection with kriging in

Kaymaz (2005) and Bichon et al. (2008). Theoretical results concerning the rate of convergence

of the corresponding estimates are not derived in these papers.

As a tool to derive various versions of importance sampling algorithms surrogate models have

been used in Dubourg, Sudret and Deheeger (2013) and in Kohler, Krzyżak, Tent and Walk (2014),

where in the latter article theoretical results have also been provided.

Throughout this paper we use the following notation: N, N0, Z, R and R+ are the sets of positive

integers, nonnegative integers, integers, real numbers and positive real numbers, respectively. For

a real number z we denote by bzc and dze the largest integer less than or equal to z and the

smallest integer larger than or equal to z, respectively. ‖x‖ is the Euclidean norm of x ∈ Rd, and

the diameter of a set A ⊆ Rd is denoted by

diam(A) = sup {‖x− z‖ : x, z ∈ A} .

For f : Rd → R and A ⊆ Rd we set

‖f‖∞,A = sup
x∈A
|f(x)|.

Let p = k + s for some k ∈ N0 and 0 < s ≤ 1, and let C > 0. A function f : Rd → R is

called (p, C)-smooth, if for every α = (α1, . . . , αd) ∈ Nd0 with
∑d
j=1 αj = k the partial derivative

∂kf

∂x
α1
1 ...∂x

αd
d

exists and satisfies∣∣∣∣ ∂kf

∂xα1
1 . . . ∂xαdd

(x)− ∂kf

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖s
for all x, z ∈ Rd. In other words, a function f is (p, C)–smooth if and only if it belongs to the

Hölder space Ck,s (the space of functions that are k times differentiable and such that all their

partial derivatives of order k are Hölder continuous with exponent s), with seminorm |f |k,s =

max|β|=k |Dβf |0,s = C.

For nonnegative random variables Xn and Yn we say that Xn = OP(Yn) if

lim
c→∞

lim sup
n→∞

P(Xn > c · Yn) = 0.

A general error bound on Monte Carlo surrogate quantile estimates is presented in Section 2.

Results concerning the rate of convergence of estimates based on non-adaptively and adaptively

chosen surrogates are presented in Section 3 and in Section 4, respectively. In Section 5 we illustrate

the finite sample size performance of the estimates using simulated data. The proofs are contained

in Section 6.
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2 A general error bound

Let X, X1, X2, . . . be independent and identically distributed random variables. In this section

we consider a general Monte Carlo surrogate quantile estimate, which is defined as follows: In a

first step data

(x1,m(x1)), . . . , (xn,m(xn))

is used to construct an estimate

mn(·) = mn(·, (x1,m(x1)), . . . , (xn,m(xn))) : Rd → R

of m. Here xi = Xi is one possible choice for the values of x1, . . . , xn ∈ Rd, but not the only one

(see Sections 3 and 4 below). Then Xn+1, . . . , Xn+Nn are used to define a Monte Carlo estimate

of the α-quantile of mn(X) by

q̂
(MC)
mn(X),Nn,α

= inf
{
y ∈ R : Ĝ

(MC)
mn(X),Nn

(y) ≥ α
}
,

where

Ĝ
(MC)
mn(X),Nn

(y) =
1

Nn

Nn∑
i=1

I{mn(Xn+i)≤y}.

Intuitively it is clear that the error of mn will influence the error of the above quantile estimate.

Our main result states that for the error of the above quantile estimate it is not important that

the local error of mn is small in areas where m is far away from the quantile to be estimated.

Theorem 1 Let X be an Rd-valued random variable, let m : Rd → R be a measurable function

and let α ∈ (0, 1). Define the Monte Carlo surrogate quantile estimate q̂
(MC)
mn(X),Nn,α

of qm(X),α as

above. For n ∈ N let βn, δn > 0 be such that the estimate mn satisfies

|mn(x)−m(x)| ≤ δn
2

+
1

2
· |qm(X),α −m(x)| for PX–almost all x ∈ [−βn, βn]d, (4)

and assume that

Nn ·P
{
X /∈ [−βn, βn]d

}
→ 0 (n→∞). (5)

Then we have ∣∣∣q̂(MC)
mn(X),Nn,α

− qm(X),α

∣∣∣ = OP

(
δn +

1√
Nn

)
.

Remark 1. Condition (4) is in particular satisfied if we choose

δn = 2 · ‖mn −m‖∞,supp(PX)∩[−βn,βn]d ,

so Theorem 1 implies∣∣∣q̂(MC)
mn(X),Nn,α

− qm(X),α

∣∣∣ = OP

(
‖mn −m‖∞,supp(PX)∩[−βn,βn]d +

1√
Nn

)
. (6)

5



However, in general we can derive from Theorem 1 a much better bound on the error of the

quantile estimate q̂
(MC)
mn(X),Nn,α

, since it is not important for a small error bound that the error of

the estimate mn be small at points x where m(x) is far away from qm(X),α (cf., (4)).

Remark 2. In the proof of Theorem 1 we will see that (4) can be replaced by the weaker condition

that with probability one the inequality

|mn(Xn+i)−m(Xn+i)| ≤
δn
2

+
1

2
· |qm(X),α −m(Xn+i)| (7)

holds simultaneously for all i ∈ {1, . . . , Nn} where Xi ∈ [−βn, βn]d. We will use this condition in

Section 4 in order to construct an adaptive surrogate.

3 A surrogate quantile estimate based on a non-adaptively

chosen surrogate

In this section we choose mn as a non-adaptively chosen spline approximand in the definition of

our Monte Carlo surrogate quantile estimate.

To do this, we choose r > 1 and set βn = (log n)r. Next we define a spline approximand which

approximates m on [−βn, βn]d. In order to do this, we introduce polynomial splines, i.e., sets

of piecewise polynomials satisfying a global smoothness condition, and a corresponding B-spline

basis consisting of basis functions with compact support. Here our presentation is based on Kohler

(2014), which in turn is an extension of the material presented in Chapters 14 and 15 of Györfi et

al. (2002) to the case d > 2.

Choose K ∈ N and M ∈ N0, and set uk = k · βn/K (k ∈ Z). For k ∈ Z let Bk,M : R → R

be the univariate B-spline of degree M with knot sequence (ul)l∈Z and support supp(Bk,M ) =

[uk, uk+M+1]. In caseM = 0 this means that Bk,0 is the indicator function of the interval [uk, uk+1),

and for M = 1 we have

Bk,1(x) =


x−uk

uk+1−uk , uk ≤ x ≤ uk+1,

uk+2−x
uk+2−uk+1

, uk+1 < x ≤ uk+2,

0 , else,

(so-called hat-function). The general definition of Bk,M can be found, e.g., in de Boor (1978), or

in Section 14.1 of Györfi et al. (2002). These B-splines are basis functions of sets of univariate

piecewise polynomials of degree M , where the piecewise polynomials are globally (M − 1)–times

continuously differentiable and where the M -th derivative of the functions have jump points only

at the knots ul (l ∈ Z).

For k = (k1, . . . , kd) ∈ Zd we define the tensor product B-spline Bk,M : Rd → R by

Bk,M (x(1), . . . , x(d)) = Bk1,M (x(1)) · · ·Bkd,M (x(d)) (x(1), . . . , x(d) ∈ R).
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And we define SK,M as the set of all linear combinations of all those of the above tensor product

B-splines, where the support has nonempty intersection with [−βn, βn]d, i.e., we set

SK,M =

 ∑
k∈{−K−M,−K−M+1,...,K−1}d

ak ·Bk,M : ak ∈ R

 .

It can be shown by using standard arguments from spline theory, that the functions in SK,M are in

each component (M − 1)-times continuously differentiable, that they are equal to a (multivariate)

polynomial of degree less than or equal to M (in each component) on each rectangle

[uk1 , uk1+1)× · · · × [ukd , ukd+1) (k = (k1, . . . , kd) ∈ Zd), (8)

and that they vanish outside of the set[
βn −M ·

βn
K
,βn +M · βn

K

]d
.

Next we define spline approximands using so-called quasi interpolands: For a function f : [−βn, βn]d →

R we define an approximating spline by

(Qf)(x) =
∑

k∈{−K−M,−K−M+1,...,K−1}d
Qkf ·Bk,M (x)

where

Qkf =
∑

j∈{0,1,...,M}d
ak,j · f(tk1,j1 , . . . , tkd,jd)

for some ak,j ∈ R and for suitably chosen points tk,j ∈ supp(Bk,M ) ∩ [−βn, βn]. It can be shown

that if we set

tk,j =
k

K
· βn +

j

K ·M
· βn =

k ·M + j

K ·M
· βn (j ∈ {0, . . . ,M}, k ∈ {−K, . . . ,K − 1})

and

tk,j = −βn +
j

K ·M
(j ∈ {0, . . . ,M}, k ∈ {−K −M,−K −M + 1, . . . ,−K − 1}),

then there exist coefficients ak,j (which can be computed by solving a linear equation system), such

that

|Qkf | ≤ c1 · ‖f‖∞,[uk1 ,uk1+M+1]×···×[ukd ,ukd+M+1] (9)

for any k ∈ {−M,−M + 1, . . . ,K − 1}d, any f : [−βn, βn]d → R and some universal constant c1,

and such that Q reproduces polynomials of degree M or less (in each component) on [−βn, βn]d,

i.e., for any multivariate polynomial p : Rd → R of degree M or less (in each component) we have

(Qp)(x) = p(x) (x ∈ [−βn, βn]d) (10)
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(cf., e.g., Theorem 14.4 and Theorem 15.2 in Györfi et al. (2002)).

Next we define our estimate mn as a quasi interpoland. We fix the degree M ∈ N and set

K = Kn =

⌊
bn1/dc − 1

2 ·M

⌋
.

Furthermore we choose x1, . . . , xn such that all of the (2 ·M ·K + 1)d points of the form(
j1

M ·K
· βn, . . . ,

jd
M ·K

· βn
)

(j1, . . . , jd ∈ {−M ·K,−M ·K + 1, . . . ,M ·K})

are contained in {x1, . . . , xn}, which is possible since (2 ·M ·K + 1)d ≤ n. Then we define

mn(x) = (Qm)(x),

where Qm is the above defined quasi interpoland satisfying (9) and (10). The computation of Qm

requires only function values of m at the points x1, . . . , xn, i.e., the estimate depends on the data

(x1,m(x1)), . . . , (xn,m(xn)),

and hence mn is well defined.

Theorem 2 Let X be an Rd-valued random variable, let m : Rd → R be a measurable function

and let α ∈ (0, 1). Assume that m(X) has a density which is continuous and positive at qm(X),α

and that m is (p, C)-smooth for some p > 0 and some C > 0. Let r > 1 and define the Monte

Carlo surrogate quantile estimate q̂
(MC)
mn(X),Nn,α

of qm(X),α as in Section 2, where mn is the spline

approximand defined above with parameter M ≥ p− 1.

Assume furthermore that

Nn ·P{X /∈ [−(log n)r, (log n)r]d} → 0 (n→∞). (11)

Then ∣∣∣q̂(MC)
mn(X),Nn,α

− qm(X),α

∣∣∣ = OP

(
(log n)r·p

np/d
+

1√
Nn

)
.

In particular, if we set Nn = dn2p/d/(log n)2·r·pe then we get∣∣∣q̂(MC)
mn(X),Nn,α

− qm(X),α

∣∣∣ = OP

(
(log n)r·p

np/d

)
.

Proof. The definition of our spline approximand and the (p, C)-smoothness of m imply that

‖mn −m‖∞,[−βn,βn]d ≤ c2 · (log n)r·p · n−p/d

(cf., e.g., proof of Theorem 1 in Kohler (2014)). From this we can conclude that (4) is satisfied for

δn = 2 · c2 · (log n)r·p · n−p/d
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and consequently Theorem 1 yields the assertion. �

Remark 3. It follows from Theorem 2 that in case that m is (p, C)-smooth for some p > d/2

or some p > d, respectively, the above Monte Carlo surrogate quantile estimate achieves a rate of

convergence better than n−1/2 or n−1, respectively whenever

n2·p/d ·P{X /∈ [−(log n)r, (log n)r]} → 0 (n→∞)

is satisfied.

Remark 4. It follows from Markov inequality that (11) is for instance satisfied if we have for

some c3, s > 0

E{exp(c3 · ‖X‖)} <∞ and
Nn
ns
→ 0 (n→∞).

This holds, since by application of Markov inequality we have

Nn ·P{X /∈ [−(log n)r, (log n)r]d} ≤ Nn ·P{c3 · ‖X‖ > c4(log n)r} ≤ Nn ·
E{exp(c3 · ‖X‖)}
exp (c4(log n)r)

,

and since r > 1 implies
ns

exp (c4(log n)r)
→ 0 (n→∞)

for any s > 0 and any c4 > 0 as s− c4(log n)r−1 →∞ as n→∞.

4 A surrogate quantile estimate based on an adaptively cho-

sen surrogate

In the sequel we define an adaptive surrogate Monte Carlo quantile estimate. In order to simplify

the presentation, we first present a simple partitioning estimate which achieves a good rate of

convergence for Hölder-smooth m and then we explain how to extend the definition such that the

estimate achieves a very good rate of convergence in case of higher smoothness.

Our partitioning estimate depends on a partition Pn = {A0, A1, . . . , An−1} of Rd and on the

evaluation of m at points xA0
∈ A0, xA1

∈ A1, . . . , xAn−1
∈ An−1, i.e., on the data

(xA0
,m(xA0

)), . . . , (xAn−1
,m(xAn−1

)). (12)

For x ∈ Rd denote by An(x) that cell Aj ∈ Pn which contains x. Then the partitioning estimate

mn is defined by

mn(x) = m(xAn(x)). (13)

The key trick in the definition of our adaptive partitioning estimate is an adaptive choice of the

sets A0, A1, . . . , An−1 (the values of the points xAj ∈ Aj are not important). Here our main goal

is to define mn such that

|mn(Xn+i)−m(Xn+i)| ≤
δn
2

+
1

2
· |qm(X),α −m(Xn+i)| (14)
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holds for i ∈ {1, . . . , Nn} for some small δn > 0 (cf., Remark 2).

To do this, we start by subdividing our data (12) into two parts of size

n1 =
⌈n

2

⌉
and n2 = n− n1.

We choose r > 1, set

Cn := [−(log n)r, (log n)r]
d

and partition Cn into bn1/d
1 cd equivolume cubes of side length 2 · (log n)r/bn1/d

1 c. We denote these

cubes by Aj (j = 1, . . . , bn1/d
1 cd), set A0 = Rd \ Cn and let mn1

be the partitioning estimate

corresponding to the partition Pn1 = {Aj : j = 0, 1, . . . , bn1/d
1 cd} of Rd, where for A ∈ Pn1 the

point xA ∈ A is arbitrarily chosen.

Assume that m is (p, C)–smooth for some p ≤ 1. Then we have for any x ∈ Cn:

|mn1
(x)−m(x)| ≤ C · ‖xAn1 (x) − x‖p ≤ C · diam(An1

(x))p,

where diam(A) = sup{‖x1 − x2‖ : x1, x2 ∈ A} denotes the diameter of set A. By construction of

Pn1
this implies

|mn1
(x)−m(x)| ≤ 1

2
· (log n)r·p+1 · n−p/d

for n sufficiently large.

We use mn1
to define the Monte Carlo surrogate quantile estimate

q̂
(MC)
mn1

(X),Nn,α
= inf{y ∈ R : Ĝ

(MC)
mn1

(X),Nn
(y) ≥ α} (15)

where

Ĝ
(MC)
mn1

(X),Nn
(y) =

1

Nn

Nn∑
i=1

I{mn1
(Xn+i)≤y}.

If

Nn ≥ n2p/d and Nn ·P{X /∈ Cn} → 0 (n→ 0),

then we know from the proof of Theorem 1 below that outside of an event whose probability tends

to zero we have ∣∣∣q̂(MC)
mn1

(X),Nn,α
− qm(X),α

∣∣∣ ≤ (log(n)r·p+1

np/d
(16)

and (as already derived above) we have for any partition Pn ⊇ Pn1 (which we will construct in the

sequel) and the corresponding partitioning estimate mn

|mn(x)−m(x)| ≤ log(n) · diam(An(x))p for all x ∈ Cn. (17)

Upon application of the triangle inequality we can conclude from (16)∣∣∣q̂(MC)
mn1

(X),Nn,α
−mn(Xn+i)

∣∣∣ ≤ (log n)r·p+1

np/d
+
∣∣qm(X),α −m(Xn+i)

∣∣+ |m(Xn+i)−mn(Xn+i)| (18)
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for i ∈ {1, . . . , Nn}.

If (16) (and hence also (18)) holds, then (14) holds as well for all i ∈ {1, . . . , Nn} if for all

i ∈ {1, . . . , Nn} at least one of the following two conditions is satisfied:

|mn(Xn+i)−m(Xn+i)| ≤
δn
2

(19)

or

|mn(Xn+i)−m(Xn+i)| ≤
δn
2

+
1

2
· |q̂(MC)

mn1 (X),Nn,α
−mn(Xn+i)| −

1

2
· (log n)r·p+1

np/d

−1

2
· |mn(Xn+i)−m(Xn+i)|. (20)

Here (20) is equivalent to

3 · |mn(Xn+i)−m(Xn+i)| ≤ δn + |q̂(MC)
mn1

(X),Nn,α
−mn(Xn+i)| −

(log n)r·p+1

np/d
. (21)

Using the bound (17) for the pointwise error of our estimate mn we see that for sufficiently large

n (14) holds for all i ∈ {1, . . . , Nn} if for all i ∈ {1, . . . , Nn} at least one of the following two

conditions is satisfied:

2 · log(n) · diam(An(Xn+i))
p ≤ δn (22)

or

3 · log(n) · diam(An(Xn+i))
p +

(log n)r·p+1

np/d
− |q̂(MC)

mn1 (X),Nn,α
−mn(Xn+i)| ≤ δn. (23)

Hence we aim at choosing our partition so that the following term is small:

max
i∈{1,...,Nn},Xn+i∈Cn

min

{
2 · log(n) · diam(An(Xn+i))

p,

3 · log(n) · diam(An(Xn+i))
p +

(log n)r·p+1

np/d
− |q̂(MC)

mn1
(X),Nn,α

−mn(Xn+i)|

}
. (24)

We do this recursively as follows: Given A0, . . . , AK for some bn1/d
1 cd ≤ K ≤ n − 2d, we choose

such set Aj (1 ≤ j ≤ K) that there exists Xn+i ∈ Aj such that

min

{
2 · log(n) · diam(Aj)

p,

3 · log(n) · diam(Aj)
p +

(log n)r·p+1

np/d
− |q̂(MC)

mn1
(X),Nn,α

−mn(Xn+i)|

}
(25)

is maximal (among all Xn+k ∈ Cn, k ∈ {1, . . . , Nn}). Then we subdivide this set into 2d equivolume

sets, and apply recursively the same procedure again until the number of evaluations of m is larger

than n− 2d.

As our next result (Theorem 3 below) shows that Monte Carlo surrogate quantile estimate

corresponding to the partitioning estimate mn with the adaptively chosen partition (described

11



above) achieves the rate of convergence better than that in Theorem 2 provided the set of all x

values, where m(x) is ”close” to the true quantile qm(X),α is in some sense ”small”.

Theorem 3 Let X be an Rd-valued random variable, let m : Rd → R be a measurable function

and let α ∈ (0, 1). Assume that m(X) has a density which is continuous and positive at qm(X),α

and that m is (p, C)–smooth for some p ≤ 1. Define the Monte Carlo surrogate quantile estimate

q̂
(MC)
mn(X),Nn,α

of qm(X),α as in Section 2 where mn is the adaptive partitioning estimate defined

above. Assume furthermore

Nn ≥ n2p/d and Nn ·P{X /∈ [−(log n)r, (log n)r]} → 0 (n→∞). (26)

a) Then ∣∣∣q̂(MC)
mn(X),Nn,α

− qm(X),α

∣∣∣ = OP

(
(log n)r·p+1

np/d

)
.

b) If, in addition, for some c5, ε0 > 0 we have that for any 0 < h ≤ ε ≤ ε0

{x ∈ Rd : m(x) ∈ [qm(X),α − ε, qm(X),α + ε]} (27)

can be covered by at most c5 · ε
hd−1 (open) balls of radius h, then∣∣∣q̂(MC)

mn(X),Nn,α
− qm(X),α

∣∣∣ = OP

(
(log n)5+2·r

n(p/d)+(p/d2)+(p2/d2)
+

1√
Nn

)
,

and in particular for Nn = n(2p/d)+(2·p/d2)+(2·p2/d2) we get∣∣∣q̂(MC)
mn(X),Nn,α

− qm(X),α

∣∣∣ = OP

(
(log n)5+2·r

n(p/d)+(p/d2)+(p2/d2)

)
.

Remark 5. Let m(x) = h(‖x‖) for some continuously differentiable function h : R+ → R, for

which the derivative is less than zero on R+. Then the inverse function h−1 of h exists. Let

t = h−1(qm(X),α). Since we have

|m(x)− qm(X),α| ≤ ε ⇔ |h(‖x‖)− h(t)| ≤ ε ⇒ |‖x‖ − t| ≤ c6 · ε

for some c6 > 0, then set (27) is contained in{
x ∈ Rd : t− c6 · ε ≤ ‖x‖ ≤ t+ c6 · ε

}
.

Let l be the maximal number of disjoint (open) balls of radius h/2 that are contained in that set

and let c7 be the volume of the unit ball in Rd. Then we have

l · c7 ·
(
h

2

)d
≤ c7 · (t+ c6 · ε)d − c7 · (t− c6 · ε)d,

from which we can conclude

l ≤ (t+ c6 · ε)d − (t− c6 · ε)d

(h/2)d
≤ c8 ·

ε

hd
.

12



This implies that function m satisfies the assumption in Theorem 3 b) (cf., e.g., Lemma 9.2 in

Györfi et al. (2002)).

Remark 6. a) It is possible to modify the definition of the estimate such that it achieves the rate

of convergence n−(p/d)−(p/d2)−(p2/d2) (up to some logarithmic factor) also when m is (p, C)–smooth

for some 1 < p < d. To do this, we choose M ∈ N and define for a cube

A = [x(1), x(1) + h]× · · · × [x(d), x(d) + h] ⊆ Rd

an operator QA as follows: In order to compute a polynomial QAf corresponding to a function

f : Rd → R, QA uses function evaluations of f at (M + 1)d points(
x(1) +

j1
M
· h, . . . , x(d) +

jd
M
· h,
)

(j1, . . . , jd ∈ {0, 1, . . . ,M}) (28)

to construct a polynomial

(QAf)(x) =

M∑
j1=0

· · ·
M∑
jd=0

aj1,...,jd · (x(1))j1 · · · (x(d))jd

satisfying

‖f −QAf‖∞,A ≤ c9 · hp

in case that f is (p, C)–smooth for some 0 < p ≤ M + 1. Such a polynomial can be constructed,

e.g., similarly as the spline interpoland in Section 3, or by interpolating f at the points (28).

Then we define the partition {A0, A1, . . . , Ad(n−1)/2de} as above and define mn by

mn(x) = (QAn(x)m)(x).

As in the proof of Theorem 3 it is possible to show that the corresponding Monte Carlo surrogate

quantile estimate achieves under the assumptions of Theorem 3 b) the rate of convergence∣∣∣q̂(MC)
mn(X),Nn,α

− qm(X),α

∣∣∣ = OP

(
(log n)(5+2·r)·p

n(p/d)+(p/d2)+(p2/d2)

)
if m is (p, C)–smooth for some 0 < p ≤ min{d,M + 1}.

b) In case of (p/d) + (p/d2) + (p2/d2) < 1/2 the rate of convergence of the estimate in Theorem 3

or in Remark 6 a) is worse than the rate of convergence n−1/2 of the Monte Carlo estimate in (3).

But we can improve the rate in case that d > 2p as follows: in the first step of the definition of the

estimate we estimate the quantile qm(X),α by q̂
(MC)
m(X),n1,α

, and replace the term (logn)r·p+1

np/d
in (25)

by the term (logn)√
n

. In this case it follows as in the proof of Theorem 3 that the resulting estimate

satisfies under the assumptions of Theorem 3 b)∣∣∣q̂(MC)
mn(X),Nn,α

− qm(X),α

∣∣∣ = OP

(
(log n)p+r·p+3·p/d

n(p/d)+(p/(2·d))+(p/d2)

)
.

13



However, for large d this rate of convergence may be still worse than the rate of convergence of the

simple order statistic provided p is not large enough (cf., Remark 7 a) below)).

Remark 7. a) The rates of convergence in Theorems 2 and 3 get worse whenever d gets larger,

which is a consequence of the well-known curse of dimensionality in nonparametric regression,

which states that estimation of d-dimensional regression function gets harder and harder as d

increases.

b) The proof of Theorem 1 utilizes order statistics and their error bound (cf., (3)) to derive the

result. Since this error bound relies on the fact that α is fixed (i.e., it is an error bound on a central

order statistic), it is not obvious how to generalize Theorem 1 towards the case that α depends on

n and gets close to zero or one for n tending to infinity. The authors intend to study their estimate

in this setting in a forthcoming paper.

c) The minimum number of evaluations of m that should be used to apply our newly proposed

surrogate quantile estimates depends on function m and dimension d. In our simulations in the

next section we study the finite sample size behaviour of our estimates in several examples.

5 Application to simulated data

In this section we consider the finite sample size behaviour of five different quantile estimates.

The first quantile estimate (est. 1) is the estimate based on order statistics and defined by (1)

and (2).

All remaining estimates are based on non-adaptively or on adaptively chosen surrogate. For

the non-adaptive surrogate we use a smoothing spline (as implemented in the routine Tps() in R

with smoothing parameter chosen by generalized cross-validation as implemented in this routine).

Since we apply it to data where the function is observed without additional error (i.e., in a noiseless

regression estimation problem), this estimate results in an interpolating spline which gives similar

result as the quasi-interpoland in Section 3, but is easier to implement.

The second quantile estimate (est. 2) uses the non-adaptive surrogate as a control variate as

explained in Section 2 in Cannamela, Garnier and Ioss (2008). Here the true quantile of the

control variate is replaced by a Monte Carlo estimate of the quantile using Nn ∈ {50000, 10000}

evaluations of the surrogate on randomly generated values of X.

The third quantile estimate (est. 3) uses the non-adaptive surrogate for controlled stratification

with the three strata [0, 0.85], (0.85, 0.95] and (0.95, 1] as explained in Subsection 3.2 in Cannamela,

Garnier and Ioss (2008). Here dn/3e evaluations of m are used for the estimation of the surrogate,

and the remaining n − dn/3e evaluations are split approximately equally in the three different

strata.
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The fourth quantile estimate (est. 4) is the non-adaptive Monte Carlo surrogate quantile es-

timate of Section 2 with the above smoothing spline surrogate instead of a quasi-interpoland of

Section 2. The pseudocode in Algorithm 1 shows how our proposed method can be implemented.

Compute a sample X1, . . . , Xn of X;

Compute m(X1), . . . , m(Xn);

Use (X1,m(X1)), . . . , (Xn,m(Xn)) to compute a thin plate spline estimate mn;

Compute a second sample Xn+1, . . . , Xn+Nn of X;

Compute mn(Xn+1), . . . , mn(Xn+Nn);

set result to the dNn · αe-th biggest of these values;

return result;

Algorithm 1: Proposed non-adaptive surrogate quantile estimate using at most n evaluations

of function m.

For our fifth estimate (est. 5) we use p = 1 in our definition of the adaptive quantile estimate

in Section 4 and start with an equidistant partition of [−5, 5]d, where we ignore all the cells which

contain none of Xn+1, . . . , Xn+Nn . Furthermore we replace the factor (logn)r·p+1

np/d
by log(n)/

√
n,

and use for d > 2 order statistics with sample size dn/3e as initial quantile estimate (and construct

the partitioning estimate by using only n−dn/3e evaluations of m). The pseudocode in Algorithm 2

shows how our proposed method can be implemented in case d ≤ 2 (for d > 2 the initial partitioning

surrogate quantile estimate will be replaced by order statistics of m(X1), . . . , m(Xdn/3e)).

We compare these three quantile estimates in four different models, where in each model we

estimate a quantile of level α = 0.95. In each model X is chosen as a d-dimensional random variable

with standard normal distribution, where in case d > 1 all d components of X are independent

random variables with standard normal distribution. In the first and in the second model the

dimension of X is d = 1, we allow n ∈ {20, 200, 2000} evaluations of m, and all quantile estimates

except the first one are based on Nn = 50, 000 and (in case of n = 2000) Nn = 100, 000 additionally

observed values of X. In the third model the dimension of X is d = 2 and we choose n ∈

{30, 300, 3000} and set Nn = 50, 000 (for n < 3000) and Nn = 100, 000 (for n = 3000) In the

fourth model the dimension of X is d = 4 and we choose n ∈ {50, 300, 3000} and set Nn = 50, 000

(for n < 3000) and Nn = 100, 000 (for n = 3000)

Since the result of our simulation depends on the randomly occurring data points, we repeat

the whole procedure 100 times with independent realizations of the occurring random variables

and report boxplots of the errors of the quantile estimates (more precisely, of the absolute values

of the difference between the quantile estimates and the real quantile).
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Generate sample Xn+1, . . . , Xn+Nn of X;

Set Cn := [−5, 5]
d

and n1 = dn2 e;

Partition Cn into bn1/d
1 cd equivolume cubes;

Evaluate m at the centers of the bn1/d
1 cd sets Aj of this partition;

Let mn1 be the corresponding partitioning estimate of m;

Compute mn1(Xn+1), . . . , mn1(Xn+Nn) ;

Let q̂
(MC)
mn1

(X),Nn,α
be the dNn · αe-th biggest of these values;

Let Pn be the initial partition of Cn defined above;

Set nv (number of evaluations of m) equal to bn1/d
1 cd;

while nv is less than n− 2d + 1 do

Choose set Aj ∈ Pn for which there exists some Xn+i ∈ Aj such that (25) is maximal ;

Subdivide Aj into 2d equivolume sets;

Replace Aj in Pn by the above 2d sets;

Evaluate m at the centers of the above 2d sets;

Compute the partitioning estimate mn corresponding to Pn;

Increase nv by 2d;

end

Compute mn(Xn+1), . . . , mn(Xn+Nn) ;

Let q̂
(MC)
mn(X),Nn,α

be the dNn · αe-th biggest of these values;

return q̂
(MC)
mn(X),Nn,α

;

Algorithm 2: Proposed adaptive surrogate quantile estimate using at most n evaluations of

function m.

For the first model we choose

m(x) = exp(x) (x ∈ R),

hence m(X) has lognormal distribution. The boxplots of the errors of five different estimates

occurring in 100 simulations for each sample size are presented in Figure 1.

In the second model we modify m in such a way that a good local approximation in an area

which is important for the computation of the quantile improves the computation of the surrogate

quantile estimate. To do this, we set

m(x) =


exp(x) , x ≤ u0.95,

exp(u0.95) , u0.95 < x ≤ 1.9,

exp(x− 1.9 + u0.95) , elsewhere,
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Figure 1: Boxplots of the estimation errors in model 1 for the three different sample sizes. In the

left panel we have n = 20 and Nn = 50, 0000, in the middle panel n = 200 and Nn = 50, 000, and

in the right panel n = 2, 000 and Nn = 100, 000.

where u0.95 ≈ 1.645 is the 0.95-quantile of the standard normal distribution. The sample sizes are

chosen as before, and the errors in 100 simulation for each pair of sample sizes are presented in

the boxplots in Figure 2.

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

est1 est2 est3 est4 est5

0
1

2
3

●

●

●

●

●

●

●

●

●

●●

●

●
●●
●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●

●

●●●●●●●

est1 est2 est3 est4 est5

0.
0

0.
5

1.
0

1.
5

●

●

●

●

●

●

●

●

●
●

●

●

●●●●
●

●
●
●

●
●
●

est1 est2 est3 est4 est5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Figure 2: Boxplots of the estimation errors in model 2 for the three different sample sizes. In the

left panel we have n = 20 and Nn = 50, 0000, in the middle panel n = 200 and Nn = 50, 000, and

in the right panel n = 2, 000 and Nn = 100, 000.

In the third model we set d = 2, and we define

m(x(1), x(2)) = exp
(

1 + (x(1))2 + (x(2))2
)

(x(1), x(2) ∈ R),

hence m(X) is a monotonically increasing function of random variable which has chi-square dis-

tribution with two degrees of freedom. The sample sizes are chosen as n = 30 and Nn = 50, 000,

n = 300 and Nn = 50, 000, and n = 3000 and Nn = 100, 000, resp., and the errors in 100

simulations for each pair of sample sizes are presented in the boxplots in Figure 3.
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Figure 3: Boxplots of the estimation errors in model 3 for the three different sample sizes. In the

left panel we have n = 30 and Nn = 50, 0000, in the middle panel n = 300 and Nn = 50, 000, and

in the right panel n = 3, 000 and Nn = 100, 000.

In our fourth model we set d = 4 and use again a function which is constant in an area which

is important for the computation of the quantile. Consequently here a good local approximation

of the function is especially useful. We set

m(x) =


√

1 + ‖x‖2 , ‖x‖2 ≤ χ2
0.95,4,√

1 + χ2
0.95,4 , χ2

0.95,4 ≤ ‖x‖2 ≤ χ2
0.95,4 + 1.5,√

1 + ‖x‖2 − 1.5 , elsewhere.

The sample sizes are chosen as n = 50 and Nn = 50, 000, n = 300 and Nn = 50, 000, and n = 3000

and Nn = 100, 000, resp., and the errors in 100 simulations for each pair of sample sizes are

presented in the boxplots in Figure 4.
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Figure 4: Boxplots of the estimation errors in model 4 for the three different sample sizes. In the

left panel we have n = 50 and Nn = 50, 0000, in the middle panel n = 300 and Nn = 50, 000, and

in the right panel n = 3, 000 and Nn = 100, 000.

In all four models our newly proposed adaptive partitioning Monte Carlo quantile estimate
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(est. 5) outperforms for large sample sizes all other four quantile estimates, although sometimes

the control variate quantile estimate based on the non-adaptively chosen smoothing spline surrogate

(est. 3) is better for a small sample size (e.g., for n ∈ {20, 200} in model 2, for n = 30 in model 3

and for n ∈ {50, 300} in model 4).

Finally we illustrate the usefulness of our newly proposed estimate by applying it to a simulation

model in engineering. Here we consider a physical model of a spring-mass-damper with active

velocity feedback for the purpose of vibration isolation (cf., Figure 5). The aim is to analyze

Figure 5: Spring-mass-damper with active velocity feedback (Platz and Enss (2015)).

the uncertainty occuring in the maximal magnification |Vmax| of the vibration amplitude in case

that four parameters of the system, namely the system’s mass (m), the spring’s rigidity (k), the

damping (b) and the active velocity feedback (g), are varied according to prespecified random

processes. Based on the physical model of the spring-mass-damper, we are able to compute for

given values of the above parameters the corresponding value of the maximal magnification

|Vmax| = f(m, k, b, g)

of the vibration amplitude by a MATLAB program (cf., Platz and Enss (2015)), which needs

approximately 0.2 seconds for one function evaluation. So our function |Vmax| is given by this

MATLAB program, and computation of 2,000 function evaluations can be easily completed in

approximately seven minutes, but computation of 100,000 values requires about 5.5 hours.

In the following we distinguish between two cases: firstly the passive case, where the active

velocity feedback g equals zero and secondly the active case, where the value of g is given by

the normally distributed random variable with mean 45 Ns/m and a standard deviation of 2.25

Ns/m. In both cases in our simulation the remaining variables are also normally distributed, but

their means and standard deviations are different. The means of m, k and b are 1 kg, 1000 N/m

and 0.095 Ns/m, respectively and their standard deviations are 0.017 kg, 33.334 N/m and 0.009

Ns/m, respectively.
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In the active case we simulate the value of x = (m, k, b, g) with independent random variables,

as defined above, and use order statistics with sample size n = 100, 000 to compute a reference

value of the α = 0.95 quantile of the maximal magnification of the vibration amplitude. This yields

|Vmax| = 0.10217 dB. But if we want to estimate this value using only n = 2, 000 evaluations of our

function, we get with order statistics, the surrogate quantile estimate and the adaptive partitioning

quantiles estimates the values 0.096206 dB, 0.102315 dB and 0.10119 dB, resp. As we can see,

both the value of the surrogate quantile estimate and the adaptive partitioning estimate are much

closer to our reference value than the result produced by order statistics with sample size 2, 000.

In the passive case we simulate the value of x = (m, k, b, g = 0) as explained above. As before

we use order statistics with sample size n = 100, 000 and get the estimate 51.92 dB as a reference

value. We again compare the reference value with the value we get with sample size n = 2, 000

in case of the order statistics (51.916 dB), the surrogate quantile estimate (51.91965 dB) and the

adaptive partitioning quantile estimate (51.922 dB). Again the last two estimates are closer to the

reference value than the order statistics estimate.

6 Proofs

6.1 Proof of Theorem 1

In the proof we will apply the following two lemmata.

Lemma 1 Let µ be an arbitrary probability measure on Rd, let m, m̄ : Rd → R be measurable

functions and let α ∈ (0, 1). Set

qm,µ,α = inf
{
y ∈ R : µ({x ∈ Rd : m(x) ≤ y}) ≥ α

}
)

and

qm̄,µ,α = inf
{
y ∈ R : µ({x ∈ Rd : m̄(x) ≤ y}) ≥ α

}
.

Let δ > 0 and assume that m and m̄ satisfy for µ-almost all x ∈ Rd

|m̄(x)−m(x)| ≤ δ

2
+

1

2
· |qm,µ,α −m(x)|. (29)

Then

|qm̄,µ,α − qm,µ,α| ≤ δ.

Proof. In the first step of the proof we show that the assertion follows from

µ
({
x ∈ Rd : m̄(x) ≤ qm,µ,α + δ

})
≥ α (30)
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and

µ
({
x ∈ Rd : m̄(x) ≤ qm,µ,α − δ − ε

})
< α for all 0 < ε < δ. (31)

To do this, assume that (30) and (31) hold. Then (30) implies

qm̄,µ,α = inf
{
y ∈ R : µ

(
{x ∈ Rd : m̄(x) ≤ y} ≥ α

})
≤ qm,µ,α + δ,

and since

µ
(
{x ∈ Rd : m̄(x) ≤ y1}

)
≤ µ

(
{x ∈ Rd : m̄(x) ≤ y2}

)
for all y1 ≤ y2

we can conclude from (31) that{
y ∈ R : µ

(
{x ∈ Rd : m̄(x) ≤ y} ≥ α

})
⊆ [qm,µ,α − δ,∞),

which implies

qm̄,µ,α = inf
{
y ∈ R : µ

(
{x ∈ Rd : m̄(x) ≤ y} ≥ α

})
≥ qm,µ,α − δ.

In the second step of the proof we show (30). Here it suffices to show

m(x) ≤ qm,µ,α =⇒ m̄(x) ≤ qm,µ,α + δ for µ–almost all x ∈ Rd, (32)

because from (32) and the definition of qm,µ,α we get

µ
(
{x ∈ Rd : m̄(x) ≤ qm,µ,α + δ}

)
≥ µ

(
{x ∈ Rd : m(x) ≤ qm(X),α}

)
≥ α.

In order to show (32), let x ∈ Rd be such that (29) holds and assume m(x) ≤ qm,µ,α. Then we get

by (29)

m̄(x) ≤ m(x) + |m̄(x)−m(x)|

≤ m(x) +
δ

2
+

1

2
· |qm,µ,α −m(x)|

= m(x) +
δ

2
+

1

2
· (qm,µ,α −m(x))

=
1

2
·m(x) +

1

2
· qm,µ,α +

δ

2

≤ qm,µ,α +
δ

2
,

where we have used m(x) ≤ qm,µ,α in the last inequality.

In the third step of the proof we show (31). To do this we will show

m̄(x) ≤ qm,µ,α − δ − ε =⇒ m(x) ≤ qm,µ,α − ε (33)

for µ-almost all x ∈ Rd and all 0 < ε < δ, which implies (31), because if (33) holds we can conclude

from the definition of qm,µ,α that

µ
(
{x ∈ Rd : m̄(x) ≤ qm,µ,α − δ − ε}

)
≤ µ

(
{x ∈ Rd : m(x) ≤ qm,µ,α − ε}

)
< α
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for all 0 < ε < δ.

Implication (33) is equivalent to

m(x) > qm,µ,α − ε =⇒ m̄(x) > qm,µ,α − δ − ε (34)

for µ-almost all x ∈ Rd and all 0 < ε < δ.

In order to prove (34), let x ∈ Rd be such that (29) holds and let 0 < ε < δ. Assume furthermore

that m(x) > qm,µ,α − ε. Then we can conclude from (29) that

m̄(x) ≥ m(x)− |m̄(x)−m(x)|

≥ m(x)− δ

2
− 1

2
· |qm,µ,α −m(x)|

= m(x)− δ

2
− 1

2
· |(m(x)− qm,µ,α + ε)− ε|

≥ m(x)− δ

2
− 1

2
· (m(x)− qm,µ,α + ε)− 1

2
· ε

=
1

2
·m(x) +

1

2
· qm,µ,α −

δ

2
− ε

>
1

2
· (qm,µ,α − ε) +

1

2
· qm,µ,α −

δ

2
− ε

= qm,µ,α −
1

2
· δ − 3

2
· ε

> qm,µ,α − ε− δ,

where the last inequality follows from 0 < ε < δ. �

Lemma 2 Let X be an Rd-valued random variable, let m : Rd → R be a measurable function and

let α ∈ (0, 1). Define the Monte Carlo surrogate quantile estimate q̂
(MC)
mn(X),Nn,α

of qm(X),α as in

Section 2 and let q̂
(MC)
m(X),Nn,α

be the Monte Carlo quantile estimate of qm(X),α based on m(Xn+1),

. . . , m(Xn+Nn), i.e.,

q̂
(MC)
m(X),Nn,α

= inf
{
y ∈ R : Ĝ

(MC)
m(X),Nn

(y) ≥ α
}
,

where

Ĝ
(MC)
m(X),Nn

(y) =
1

Nn

Nn∑
i=1

I{m(Xn+i)≤y}.

For n ∈ N let δn > 0 be such that the estimate mn satisfies

|mn(Xn+i)−m(Xn+i)| ≤
δn
2

+
1

2
· |qm(X),α −m(Xn+i)| for all i ∈ {1, . . . Nn}. (35)

Then we have ∣∣∣q̂(MC)
mn(X),Nn,α

− qm(X),α

∣∣∣ ≤ δn + 2 ·
∣∣∣q̂(MC)
m(X),Nn,α

− qm(X),α

∣∣∣ .

22



Proof. The key trick in the proof of Lemma 2 is to apply Lemma 1 with µ equal to the empirical

distribution P̂X of Xn+1, . . . , Xn+Nn . To do this, we observe first that (35) together with triangle

inequality implies

|mn(x)−m(x)| ≤
δn + |qm(X),α − q̂

(MC)
m(X),Nn,α

|
2

+
1

2
· |q̂(MC)

m(X),Nn,α
−m(x)|

for P̂X -almost all x ∈ Rd. Since q̂
(MC)
mn(X),Nn,α

= qmn,P̂X ,α and q̂
(MC)
m(X),Nn,α

= qm,P̂X ,α, an application

of Lemma 1 yields ∣∣∣q̂(MC)
mn(X),Nn,α

− q̂(MC)
m(X),Nn,α

∣∣∣ ≤ δn + |qm(X),α − q̂
(MC)
m(X),Nn,α

|.

By the triangle inequality we get the assertion. �

Proof of Theorem 1. Set Kn = [−βn, βn]d and let An be the event that X1, . . . , XNn are all

contained in Kn. By (5) we know that

P(Acn) ≤ Nn ·P{X /∈ Kn} → 0 (n→∞).

If An holds, then we have with probability one for any i ∈ {1, . . . , Nn}

|mn(Xi)−m(Xi)| ≤
δn
2

+
1

2
· |qm(X),α −m(Xi)|,

from which we conclude by Lemma 2

|q̂mn(X),Nn,α − qm(X),α| ≤ δn + 2 · |q̂m(X),Nn,α − qm(X),α|.

This implies

lim
c→∞

lim sup
n→∞

P

{∣∣q̂mn(X),Nn,α − qm(X),α

∣∣ > c ·
(
δn +

1√
Nn

)}
≤ lim
c→∞

lim sup
n→∞

(
P(Acn) + P

{
δn + 2 · |q̂m(X),Nn,α − qm(X),α|

> c ·
(
δn +

1√
Nn

)})

≤ lim
c→∞

lim sup
n→∞

P

{
2 · |q̂m(X),Nn,α − qm(X),α| > c · 1√

Nn

}
= 0,

where the last equality follows from (3). �

6.2 Proof of Theorem 3

a) Since m is (p, C)–smooth we have for any x ∈ Cn

|mn(x)−m(x)| = |m(xAn(x))−m(x)| ≤ C · ‖xAn(x) − x‖p ≤ C · diam(An(x))p

≤ C · diam(An1(x))p ≤ C ·

(
√
d · 2 · (log n)r

bn1/d
1 c

)p
.

23



Hence condition (4) holds with

δn =
(log n)r·p+1

np/d

for n sufficiently large. Application of Theorem 1 yields the assertion.

b) Set

δn = max
i∈{1,...,Nn},Xn+i∈Cn

min

{
2 · log(n) · diam(An(Xn+i))

p,

3 · log(n) · diam(An(Xn+i))
p +

(log n)r·p+1

np/d
− |q̂(MC)

mn1 (X),Nn,α
−mn(Xn+i)|

}
. (36)

In the first step of the proof we show that the assertion follows from

δn = OP

(
(log n)5+2·r · n−(p/d)−(p/d2)−(p2/d2)

)
. (37)

If δn is defined as above, then by the construction of our estimate (cf., Section 4) and the proof of

part a) of Theorem 3 (which implies that (16) holds outside of an event whose probability tends

to zero) we know that mn satisfies (4) outside of an event whose probability tends to zero. As in

the proof of Theorem 1 this yields the assertion of step 1.

Set

Ccritical,n :=

{
x ∈ Rd : m(x) ∈

[
qm(X),α − 6 · (log n)r·p+2

np/d
, qm(X),α + 6 · (log n)r·p+2

np/d

]}
,

and let En be the event that |q̂(MC)
mn1 (X),Nn,α

− qm(X),α| is less than or equal to (log n)r·p+1/np/d.

In the second step of the proof we show that we have on En for x ∈ Cn \ Ccritical,n and for n

sufficiently large

3 · log(n) · diam(An(x))p +
(log n)r·p+1

np/d
− |q̂(MC)

mn1
(X),Nn,α

−mn(x)| ≤ 0. (38)

To do this we observe that triangle inequality and (p, C)–smoothness of m imply that we have on

En and for n sufficiently large

|qm(X),α −m(x)| ≤ (log n)r·p+1

np/d
+ |q̂(MC)

mn1
(X),Nn,α

−mn(x)|+ C · diam(An(x))p

≤ (log n)r·p+1

np/d
+ |q̂(MC)

mn1
(X),Nn,α

−mn(x)|+ (log n)r·p+1

np/d
.

This in turn implies for x ∈ Cn \ Ccritical,n and for n sufficiently large

3 · log(n) · diam(An(x))p +
(log n)r·p+1

n
− |q̂(MC)

mn1 (X),Nn,α
−mn(x)|

≤ 3 · (log n)r·p+2

np/d
+ 3 · (log n)r·p+1

np/d
− |qm(X),α −m(x)|

≤ 6 · (log n)r·p+2

np/d
− 6 · (log n)r·p+2

np/d
= 0.
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In the third step of the proof we show that we have outside of an event whose probability tends

to zero for all x ∈ Ccritical,n ∩ Cn we have

min

{
2 · log(n) · diam(An(x))p,

3 · log(n) · diam(An(x))p +
(log n)r·p+1

np/d
−
∣∣∣q̂(MC)
mn1

(X),Nn,α
−mn(Xn+i

∣∣∣ }
≤ c6 · (log n)5+2·r · n−(p/d)−(p/d2)−(p2/d2). (39)

By the result of step 2 we know that on En and for n sufficiently large (38) holds for all x ∈

Cn \Ccritical,n. Hence as long as as any cell of the partition of the partitioning estimate, which has

nonempty intersection with Ccritical,n ∩ Cn, does not satisfy (39), our algorithm does not choose

any cell from the partition which has empty intersection Ccritical,n ∩ Cn. By the assumption of

part b) of Theorem 3 we know that for n sufficiently large Ccritical,n∩Cn is contained in the union

of at most

log(n) · (log n)r·p+2/np/d

(log n)r·(d−1)/n1−1/d
≤ (log n)3+r·p−r·(d−1) · n1−1/d−p/d

many of the cubes of side length 2 ·(log n)r/bn1/d
1 c in Pn1

. By construction, our algorithm does not

subdivide any cube which is not contained in any of theses cubes, as long as (39) is not satisfied.

But after n2/(2
d + 1) many cubes are chosen, which are contained in one of the above described

cubes of Pn1
, we have for n sufficiently large and all x ∈ Ccritical,n ∩ Cn

diam(An(x)) ≤ log(n) · (log n)r

n1/d
·
(

n

(log n)3+r·p−r·(d−1) · n1−1/d−p/d

)−1/d

≤ (log n)4+2·r · n−(1/d)−(1/d2)−(p/d2),

which implies

2 log n · (diam(An(x)))p ≤ 2(log n)5+2·r · n−(p/d)−(p/d2)−(p2/d2).

This completes the third step of the proof.

The steps 2 and 3 of the proof imply the assertion of Theorem 3 b), because by the proof of part

a) of Theorem 3 we have P(En)→ 1 (n→∞) and P{Xn+1, . . . , Xn+Nn ∈ Cn} → 1 (n→∞). �
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