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Abstract
In this paper we estimate a conditional density by a conditional kernel density esti-
mate. The error of the estimate is measured by the L1–error. Based on the combina-
torial method of Devroye and Lugosi (1996) we propose a new method for choosing the
bandwidths adaptively and derive a theoretical result about the quality of this method.
Moreover we illustrate the performance of the estimate for finite sample size by using
simulated data.
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1 Introduction

One major problem in statistics is the estimation of a distribution from a given sample.
Let Z be a Rd-valued random variable with distribution µ and let Z1, . . . , Zn be an
independent sample of Z. According to the theorem of Glivenko-Cantelli the empirical
distribution function

µn(A) =
1

n

n∑
i=1

1A(Zi) (A ∈ Bd)

is a consistent estimate of the probabilities of all intervals. However, if we are interested
in an estimation of general sets, we want to construct estimates µ̂n such that the total
variation error

sup
B∈Bd

|µ̂n(B)− µ(B)| (1)

(where Bd denotes the Borel sigma-field) converges to zero almost surely. It is well known,
that there does not exist any estimate µ̂n such that

sup
B∈Bd

|µ̂n(B)− µ(B)| → 0 a.s.

for all distributions (cf., Devroye and Györfi (1990)). But if µ has a density f with
respect to the Lebesgue-Borel measure, then we can construct universally L1–consistent
∗Corresponding author. Tel: +49-6151-16-75878
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density estimates fn, i.e., estimates fn satisfying∫
|fn(x)− f(x)| dx→ 0 a.s.

for all densities (cf., e.g., Devroye (1983)). E. g., the Rosenblatt-Parzen kernel density
estimate defined by

fn(x) =
1

n ·Hn
·
n∑
k=1

K

(
‖x− Zk‖
Hn

)
with density K and bandwidth Hn > 0 (cf., e.g., Rosenblatt (1956) and Parzen (1962))
has this property whenever the bandwidth is chosen such that

Hn → 0 (n→∞) and n ·Hd
n →∞ (n→∞)

(cf., e.g., Mnatsakanov and Khmaladze (1981) and Devroye (1983); general results in
density estimation can be also found in the books of Devroye and Györfi (1985), Devroye
(1987) and Devroye and Lugosi (2001)). If fn is a density, then the Lemma of Scheffé
states that

sup
B∈Bd

|µ̂n(B)− µ(B)| = 1

2

∫
|fn(x)− f(x)| dx,

where
µ̂n(B) =

∫
B
fn(x) dx

is the corresponding distribution estimate, hence, the corresponding distribution estimate
enables a consistent estimation of the probability of all sets.
Like the kernel density estimate most estimates depend on parameters. For instance,

the histogram estimate depends on the partition of Rd. Considering a finite sample the
parameter choice is of great interest. Let Z1, . . . , Zn be an independent sample of an Rd–
valued random variable Z with density f . Moreover we assume that a class of density
estimates (fn,θ)θ∈Θ is given. Now we want to choose a parameter θ̂ ∈ Θ such that∫

|f(x)− fn,θ̂(x)| dx ≈ inf
θ∈Θ

∫
|f(x)− fn,θ(x)| dx.

Due to the fact that f is unknown, the L1–error cannot be determined. This raises
the question how to select parameters in order to minimize the L1–error. Typically this
question is considered in the literature in connection with the L2–error, see, e.g., Rudemo
(1982), Hall (1983), Bowman (1984), Stone (1984), Hall et al. (1991) and the literature
cited therein.
But much less is known concerning adaptation result in connection with the L1–error.

In this respect Devroye and Lugosi (1996) intoduced the so called combinatorial method
to choose the parameters of a density estimate in dependence of the given sample. At
first, the sample is splitted into testing data Z1, . . . , Zm and learning data Zm+1, . . . , Zn
for 0 < m ≤ bn/2c. The learning data is used to define the estimate which is denoted by
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fn−m,θ(·) = fn−m,θ(· , Zm+1, . . . , Zn). The empirical distribution function of the testing
data is defined as

µm(A) =
1

m

m∑
i=1

1A(Zi) (A ∈ Bd).

The combinatorial method chooses the parameter θ̂ ∈ Θ for which the expression

∆θ = sup
A∈A

∣∣∣∣∫
A
fn−m,θ(x) dx− µm(A)

∣∣∣∣ (2)

is minimal, where A denotes the Yatracos class of subsets of Rd, given by

A =
{{

x ∈ Rd : fn−m,θ1(x) > fn−m,θ2(x)
}

: θ1, θ2 ∈ Θ
}
.

Devroye and Lugosi (1996) showed that the L1–error of the resulting estimate fn−m,θ̂ is
linked to the L1–error with the optimal parameter choice. If

∫
fn−m,θ(x) dx = 1 for all

θ ∈ Θ, it holds∫
|f(x)− fn−m,θ̂(x)| dx ≤ 3 · inf

θ∈Θ

∫
|f(x)− fn−m,θ(x)| dx+ 4∆ +

3

n
, (3)

where
∆ = sup

A∈A

∣∣∣∣∫
A
f(x) dx− µm(A)

∣∣∣∣ .
If the condition

∫
fn−m,θ(x) dx = 1 is not fulfilled for all θ ∈ Θ, the statement also holds

but with factor "5" instead of "3". In addition, Devroye and Lugosi (1997a) derived
upper bounds for E{∆} by combinatorial tools. For a suitable choice of m the last two
summands are asymptotically neglectable. Hence, the L1–error can be bounded by a
multiple of the L1–error of the estimate with the optimal bandwidth. In Chapter 11 of
Devroye and Lugosi (2001) concrete results for the classes of kernel density estimates are
summarised. A comparison to other methods and simulation results are given in Devroye
and Lugosi (1997b).
In this paper we deal with conditional density estimation. Here, one is interested in

the conditional density of a random variable Y given a random vector X. This problem
can be seen as generalization of regression. One is interested in the full density rather
than in the expected value. In conditional density estimation it is usually assumed that
a sample (X1, Y1), . . . , (Xn, Yn) of an Rd × R–valued random vector (X,Y ) is available.
Already in Rosenblatt (1969) the kernel estimate of a conditional density was introduced.
But it first received serious attention in Fan et al. (1996) and Hyndman et al. (1996).
This estimator is motivated by the definition of a conditional density. Let f(X,Y )(x, y) be
the joint density of (X,Y ) and fX(x) the marginal density of X. Then the conditional
density fY |X(y, x) of Y given X is given by

fY |X(x, y) =
f(X,Y )(x, y)

fX(x)
.
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Replacing the joint and marginal density by density estimates we obtain an estimator of
the conditional density. The marginal density of X can by estimated by the Rosenblatt-
Parzen kernel density estimate given by

fn(x) =
1

n ·Hd
n

·
n∑
k=1

K

(
‖x−Xk‖

Hn

)
(4)

with density K and bandwidth Hn > 0. Using the product kernel estimator (cf., e.g.,
Rosenblatt (1969), Scott (1992) and Hyndman et al. (1996)) we can estimate the joint
density by

f̂(X,Y )(x, y) =
1

n ·Hd
n · hn

n∑
i=1

K

(
‖x−Xi‖
Hn

)
·K

(
|y − Yi|
hn

)
where K : R→ R+ is a density and hn, Hn > 0 are bandwidths. Hence, we can estimate
the conditional density by

f̂Y |X(y, x) =

∑n
i=1K

(
‖x−Xi‖
Hn

)
·K

(
|y−Yi|
hn

)
hn
∑n

j=1K
(
‖x−Xj‖
Hn

) . (5)

This conditional density estimation problem can also be seen as a nonparametric regres-
sion problem. It is well known that

E

{
1

hn
·K

(
y − Y
hn

) ∣∣∣∣∣X = x

}
→ fY |X(y, x) (n→∞)

for Lebesgue almost all y and PX -almost all x (cf., e.g., Fan et al. (1996)). Thus, the
estimator (5) can be seen as a kernel regression estimate (cf., e.g., Chapter 5 in Györfi
et al. (2002)) applied to(

X1,
1

hn
·K

(
y − Y1

hn

))
, . . . ,

(
Xn,

1

hn
·K

(
y − Yn
hn

))
,

cf., e.g., Fan and Yim (2004) and Gooijer (2003). Also other regression estimates can be
applied to this setting, for instance, Györfi and Kohler (2007) considered a partitioning
estimate.
The question now arises how to adaptively select the bandwidths. Literature only deals
with methods concerning the L2–error. Various attempts start with choosing the band-
width hn by referencing rules and afterwards select Hn by known methods for kernel
regression estimate. Fan et al. (1996) choose hn by the normal referencing rule of Sil-
verman (1986) and Hn by the residual squares criterion (Fan and Gijbles (1996)). Also
Bashtannyk and Hyndman (2001) and Hyndman and Yao (2002) first apply bandwidth
rules based on a reference distribution to determine one of the bandwidths and then
apply regression based bandwidth selectors to determine the second one. These methods
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use strong assumptions on the distributions and therefore work only well in a limited
number of cases. Hall et al. (1999) proposed a bootstrap method, that works well for
polynomial regression models. Also Bashtannyk and Hyndman (2001) considered this
approach and extended the method. Fan and Yim (2004) proposed a method without
restrictive assumptions. They choose the bandwidth by cross-validation. While the first
mentioned ad-hoc methods can be efficiently calculated, they perform poorly on finite
samples for most distributions. On the other hand the bootstrap method and cross-
validation method are time-consuming but more reliable. Holmes et al. (2010) try to
balance between both aspects and proposed a likelihood cross-validation method.
In this paper we derive and analyze a data dependent method to choose the bandwidths

hn, Hn > 0 of a conditional kernel estimate without any assumptions on the distribution
of (X,Y ). This method is motivated by the above mentioned combinatorial method of
Devroye and Lugosi (1996). Since we do not estimate one single density, we transform ∆θ

such that the resulting adaptive estimate is an appropriate estimate of f(·, x) for PX -
almost all x ∈ Rd. The main difficulty here is that we estimate simultaneously f(·, Xi)
for i ∈ {1, . . . , n}, where for each i we have available only a sample of size one which we
cannot split into learning and testing data.
Since we are interested in an estimation of the conditional distribution of Y given X,

we measure the quality of the adaptive estimate by the L1–error. More precisely, we
consider the average L1–error∫ ∫

|fn(y, x)− f(y, x)| dyPX(dx),

and we show that the expected average L1–error of our newly proposed adaptive estimate
is (up to a term of order

√
log(n)/

√
n) less than or equal to five times the expected L1–

error which we would get if we would be able to choose the bandwidth in an optimal
way (which is never possible in an application). The proofs are based on a generalization
of results from empirical process theory to a setting where the data is independent but
not identically distributed, which requires various non-trivial modifications of known
techniques.
Throughout the paper the following notation is used: The sets of natural numbers,

integers, real numbers and positive real numbers including zero are denoted by N,Z,R
and R+, respectively. Bd denotes the set of all Borel sets in Rd and 1B denotes the
indicator function of the set B. ‖x‖ is the Euclidean norm of a vector x ∈ Rd. For a real
number z we denote by bzc and dze the largest integer less than or equal to z and the
smallest integer larger than or equal to z, respectively.

The outline of this paper is as follows: The main results are presented in Section 2 and
proven in Section 4. Section 3 illustrates the finite sample size behavior of our estimate
by applying it to simulated data.

2 Main results

We assume that an independent and identically distributed sample (X1, Y1), . . . , (Xn, Yn)
of an Rd × R–valued random vector (X,Y ) is available. We select simultaneously the
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bandwidths hn, Hn > 0 of our estimate

fn(y, x) =

∑n
i=1K

(
‖x−Xi‖
Hn

)
K
(
|y−Yi|
hn

)
hn
∑n

j=1K
(
‖x−Xj‖
Hn

)
where K(x) = 1

2 · 1[−1,1](x) is the naive kernel. At first we choose a parameter set

Pn ⊆
{

(h,H) ∈ R2
∣∣h ∈ [1/n, n], H > 0

}
.

Now we split the data samples into two halves. The second half of the data (Xbn/2c+1, Ybn/2c+1),
. . . , (Xn, Yn) is the so called learning data and is used to define our estimate:

f̂θ(y, x) =

∑n
i=bn/2c+1K

(
‖x−Xi‖

H

)
K
(
|y−Yi|
h

)
hn
∑n

j=bn/2c+1K
(
‖x−Xj‖

H

)
with θ = (h,H). On the basis of the first half of the data (testing data) we evaluate
our estimator and choose the parameters. Our goal is to select θ̂ ∈ Pn such that the
average L1–error of the corresponding estimate f̂θ̂ is small. We select θ̂ = (ĥ, Ĥ) through
minimizing

∆θ = sup
θ1,θ2∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

∫
Ai(θ1,θ2)

f̂θ(y,Xi) dy −
1

bn/2c

bn/2c∑
i=1

1Ai(θ1,θ2)(Yi)

∣∣∣∣∣∣ ,
where

Ai(θ1, θ2) =
{
y ∈ R : f̂θ1(y,Xi) > f̂θ2(y,Xi)

}
.

If the minimum does not exist, we choose θ̂ = (ĥ, Ĥ) ∈ Pn such that

∆θ̂ < inf
θ∈Pn

∆θ +
1

n
.

∆θ is motivated by (2). But here we consider the arithmetic mean of estimated L1–
errors. And since we estimate a whole class of densities, we need to regard a whole class
of Yatracos sets, which are linked by the parameters θ1, θ2 ∈ Pn.
The following theorem bounds the expected average L1–error of this estimate by that

of the estimate with optimal parameter choice.

Theorem 1 Let f̂θ̂ be the above introduced estimate. It holds for all n > 1

E

{∫ ∫
|f̂θ̂(y, x)− f(y, x)| dyPX(dx)

}
≤5 · inf

θ∈Pn
E

{∫ ∫
|f̂θ(y, x)− f(y, x)| dyPX(dx)

}
+

2

n
+ 116

√
log n

bn/2c
+

306√
bn/2c · log n

.
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Remark 1. This theorem states that the expected average L1–error of the proposed
estimate lies close to five times the least possible. Here we have a factor of "5" instead
of "3", since our estimate f̂θ̂ is (possibly) no density for all x ∈ Rd. In case that for some
x ∈ Rd

n∑
i=bn/2c+1

K

(
‖x−Xj‖

Ĥ

)
= 0,

it holds f̂θ̂(y, x) = 0 for all y ∈ R.
Remark 2. Due to the splitting of the sample we compare the quality of our estimate
to that of an estimate using also only half of the data. It is an open problem to show
that

inf
θ∈Pn

E

{∫ ∫
|f̂θ(y, x)− f(y, x)| dyPX(dx)

}
with f̂θ using half of the data is not much larger than with f̂θ using all of the data.
Devroye and Lugosi (1997b) addressed this problem in case of density estimation (c.f.,
Devroye and Lugosi (1997b) and Theorem 10.3 in Devroye and Lugosi (2001)) .
Remark 3. By Theorem 1 a non-asymptotic upper bound of the expected average L1–
error is given. As we did not attempt to minimize the constants, the constants of the
last two summands could potentially be much smaller.

3 Simulations

In this section we illustrate the performance of our estimator for finite sample size and
finite parameter sets considering three examples. We compare the results to those of a
conditional kernel estimate with cross-validated bandwidths like in Fan and Yim (2004).
We evaluate the performance of both selection rules by the average L1–error. The pro-
posed estimate splits the data into learning and testing data. In Section 2 we assumed
that N = bn/2c points were used to test the estimate and n − N = dn/2e data points
to construct the estimate (new1). In addition we consider the proposed estimate with
N = bn/4c testing data points and n − N = d3n/4e learning data points (new2). To
get an impression how small the average L1–error could be under these circumstances,
we compare our results to the estimate with n data points and the optimal parameter
choice out of h ×H. In applications the underlying distribution is unknown and thus,
this estimator is not applicable. In the implementation we approximate all integrals by
Rieman sums. For each example an appropriate 10 × 10 grid h ×H of bandwidths is
considered and every method chooses the bandwidths out of this set.
In the first example 500 independent copies of (X,Y ) are sampled, where X is uni-

formly distributed on [0, 2] and Y is exponentially distributed with a rate depending on
the covariate. More precise,

Y ∼ Exp(λ) with λ = 0.25 +X and X ∼ U [0, 2].

The bandwidths are selected out of finite parameter sets

h ∈ h = { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

7



optimal new1 new2 CV
mean (sd) L1–error 0.202 (0.019) 0.278 (0.041) 0.254 (0.038) 0.345 (0.089)
mean (sd) H 0.664 (0.130) 0.646 (0.300) 0.718 (0.347) 1.590 (0.044)
mean (sd) h 0.205 (0.036) 0.171 (0.078) 0.151 (0.080) 0.503 (0.376)

Table 1: Results of the first example.

H ∈ H = {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}.

To avoid edge effects we are only interested in estimating the conditional densities f1 :
R× [0.5, 1.5]→ R+, even though X is uniformly distributed on [0, 2]. Since the results of
our simulation depend on randomly occuring data points, we repeat the whole procedure
100 times. The boxplots in Figure 1 report the average L1–errors for all four estimates.
Mean and standard deviation (sd) of the average L1–errors as well as mean and standard
deviation of the chosen bandwidths are given in Table 1. Here both proposed estimates
outperform considerably the crossvalidated estimate. The second version of our estimate
(new2) achieves even better results than the first version (new1). This results presumably
from the higher amount of data that is used for the second estimate (new2). Even
though the proposed estimates use less data than the crossvalidated estimate, the mean
bandwidths are smaller.
Secondly, we let Y be normally distributed with mean corresponding to the covariate

X and variance four. This means

Y ∼ N (X, 4) with X ∼ U [0, 5].

optimal new1 new2 CV
mean (sd) L1–error 0.103 (0.022) 0.161 (0.040) 0.172 (0.044) 0.194 (0.050)
mean (sd) H 1.520 (0.255) 1.590 (0.658) 1.515 (0.730) 2.750 (0.000)
mean (sd) h 2.195 (0.414) 2.360 (1.010) 2.170 (1.360) 2.590 (1.812)

Table 2: Results of the second example.

We sample again 500 data points. The bandwidths are selected out of sets

h ∈ h = {0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75}
H ∈ H = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}.

Since the results of our simulation depend on randomly occuring data points, we repeat
the whole procedure 100 times. We calculate the estimates of f2 : R × [1, 4] → R+ and
the boxplots in Figure 2 report the average L1–errors. Table 2 summarises the mean and
the standard deviation of the average L1–errors and chosen bandwidths. In this example
the differences are not as noticeable as in the first example. Nevertheless our method
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Figure 1: Boxplots of the estimates average L1–errors in the first example.
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Figure 2: Boxplots of the estimates average L1–errors in the second example.

shows better results. Again the cross-validation chooses larger mean bandwidths. In case
of H, the cross-validation even selects solely the largest bandwidth. In this example the
sample size seems to be big enough to avoid noticable differences between the proposed
estimates (new1 and new2).
In a third example we sample 200 independent copies of (X,Y ), where X is uniformly

distributed on {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and Y is chi-squared distributed with degrees of
freedom corresponding to the covariate. More precise,

Y ∼ χ2(X) and X ∼ U{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

In this case the choice of H is naurally given, since the covariate is discrete on
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. But we evaluate the estimates only on {2, 3, 4, 5, 6, 7, 8, 9}. The
bandwidths are selected out of the finite parameter sets

h ∈ h = {0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5}
H ∈ H = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

As before we compare in Figure 3 the average L1–errors for 100 repetitions and sum-
marised results are given in Table 3. In this case our proposed estimates outperform the
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cross-validation method considerably. The cross-validation selects an remarkble large
bandwidth H, while h is smaller in mean compared to the other estimates. The second
proposed estimate (new2) seems to have an advantage compared to the first (new1) due
to the smaller total sample size.

optimal new1 new2 CV
mean (sd) L1–error 0.218 (0.027) 0.326 (0.046) 0.302 (0.059) 0.563 (0.020)
mean (sd) H 1.600 (0.492) 1.630 (0.720) 1.720 (0.996) 8.000 (0.000)
mean (sd) h 1.473 (0.066) 1.141 (0.275) 1.062 (0.328) 0.976 (0.344)

Table 3: Results of the third example.

To sum up, our estimates outperform the cross-validation method in all three exam-
ples. Except of the second example the differences are remarkable. Furthermore, an
asymmetric splitting of the sample seems to be advisable if the total sample size is small.

● ●

●
●
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Figure 3: Boxplots of the estimates average L1–errors in the third example.
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4 Proofs

The following lemma is the basis of the proof of Theorem 1 and a generalization of (3)
(c.f., Theorem 10.1, Devroye and Lugosi (2001)).

Lemma 1 It holds for all n > 1

1

bn/2c

bn/2c∑
i=1

∫
|f̂θ̂(y,Xi)− f(y,Xi)| dy

≤5 · inf
θ∈Pn

1

bn/2c

bn/2c∑
i=1

∫
|f̂θ(y,Xi)− f(y,Xi)| dy + 4∆ +

2

n
,

where

∆ = sup
θ1,θ2∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

∫
Ai(θ1,θ2)

f(y,Xi) dy −
1

bn/2c

bn/2c∑
i=1

1Ai(θ1,θ2)(Yi)

∣∣∣∣∣∣ .
Proof. We choose θ∗ ∈ Pn arbitrary. With the triangle inequality we get

1

bn/2c

bn/2c∑
i=1

∫
|f̂θ̂(y,Xi)− f(y,Xi)| dy

≤ 1

bn/2c

bn/2c∑
i=1

∫
|f̂θ̂(y,Xi)− fθ∗(y,Xi)| dy +

1

bn/2c

bn/2c∑
i=1

∫
|f̂θ∗(y,Xi)− f(y,Xi)| dy

=:An +Bn.

By definition fθ∗(·, x) is a density for all x ∈ Rd. f̂θ̂(·, x) is also a density, with the
exception of cases where f̂θ̂(y, x) = 0 for all y ∈ R. In this case∫

|f̂θ̂(y, x)− fθ∗(y, x)| dy =

∫
|fθ∗(y, x)| dy =

∫
(fθ∗(y, x)− f̂θ̂(y, x))+ dy.

If f̂θ̂(·, x) is a density, we can apply the Lemma of Scheffé and obtain∫
|f̂θ̂(y, x)− fθ∗(y, x)| dy = 2 ·

∫
(fθ∗(y, x)− f̂θ̂(y, x))+ dy.

Hence,

An =
1

bn/2c

bn/2c∑
i=1

∫
|f̂θ̂(y,Xi)− fθ∗(y,Xi)| dy

≤2 · 1

bn/2c

bn/2c∑
i=1

∫ (
fθ∗(y,Xi)− f̂θ̂(y,Xi)

)
+
dy
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=2 · 1

bn/2c

bn/2c∑
i=1

∫
Ai(θ∗,θ̂)

fθ∗(y,Xi) dy − 2 · 1

bn/2c

bn/2c∑
i=1

∫
Ai(θ∗,θ̂)

f̂θ̂(y,Xi) dy

≤2 · sup
θ1,θ2∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

∫
Ai(θ1,θ2)

f̂θ∗(y,Xi) dy −
1

bn/2c

bn/2c∑
i=1

1Ai(θ1,θ2)(Yi)

∣∣∣∣∣∣
+ 2 · sup

θ1,θ2∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

∫
Ai(θ1,θ2)

f̂θ̂(y,Xi) dy −
1

bn/2c

bn/2c∑
i=1

1Ai(θ1,θ2)(Yi)

∣∣∣∣∣∣
≤4 · sup

θ1,θ2∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

∫
Ai(θ1,θ2)

f̂θ∗(y,Xi) dy −
1

bn/2c

bn/2c∑
i=1

1Ai(θ1,θ2)(Yi)

∣∣∣∣∣∣+
2

n

≤4 · sup
θ1,θ2∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

∫
Ai(θ1,θ2)

f̂θ∗(y,Xi) dy −
1

bn/2c

bn/2c∑
i=1

∫
Ai(θ1,θ2)

f(y,Xi) dy

∣∣∣∣∣∣
+ 4 · sup

θ1,θ2∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

∫
Ai(θ1,θ2)

f(y,Xi) dy −
1

bn/2c

bn/2c∑
i=1

1Ai(θ1,θ2)(Yi)

∣∣∣∣∣∣+
2

n

=:Cn + 4∆ +
2

n

According to the Lemma of Scheffé we have

2 · sup
Bi∈B

∣∣∣∣∫
Bi

f̂θ∗(y, x) dy −
∫
Bi

f(y, x) dy

∣∣∣∣ =

∫ ∣∣∣f̂θ∗(y, x)− f(y, x)
∣∣∣ dy,

if f̂θ∗(·, x) is a density. Otherwise f̂θ∗(y, x) = 0 for all y ∈ R and we have

sup
Bi∈B

∣∣∣∣∫
Bi

f̂θ∗(y, x) dy −
∫
Bi

f(y, x) dy

∣∣∣∣ = sup
Bi∈B

∣∣∣∣∫
Bi

f(y, x) dy

∣∣∣∣ =

∫ ∣∣∣f̂θ∗(y, x)− f(y, x)
∣∣∣ dy.

Thus, it holds

Cn ≤4 · 1

bn/2c

bn/2c∑
i=1

sup
Bi∈B

∣∣∣∣∫
Bi

f̂θ∗(y,Xi) dy −
∫
Bi

f(y,Xi) dy

∣∣∣∣
≤4 · 1

bn/2c

bn/2c∑
i=1

∫ ∣∣∣f̂θ∗(y,Xi)− f(y,Xi)
∣∣∣ dy

=4 ·Bn

Hence,

1

bn/2c

bn/2c∑
i=1

∫
|f̂θ̂(y,Xi)− f(y,Xi)| dy

13



≤5 · 1

bn/2c

bn/2c∑
i=1

∫
|f̂θ∗(y,Xi)− f(y,Xi)| dy + 4∆ +

2

n
,

for all θ∗ ∈ Pn. �

Proof of Theorem 1. With Lemma 1 we can conclude that

E

 1

bn/2c

bn/2c∑
i=1

∫
|f̂θ̂(y,Xi)− f(y,Xi)| dy


≤5 ·E

 inf
θ∈Pn

1

bn/2c

bn/2c∑
i=1

∫
|f̂θ(y,Xi)− f(y,Xi)| dy

+ 4 ·E(∆) +
2

n

≤5 · inf
θ∈Pn

E

{∫ ∫
|f̂θ(y, x)− f(y, x)| dyPX(dx)

}
+ 4 ·E(∆) +

2

n
.

With Lemma 2 below we can conclude that

E

{∫ ∫
|f̂θ̂(y, x)− f(y, x)| dyPX(dx)

}

=E


∫ ∫

|f̂θ̂(y, x)− f(y, x)| dyPX(dx)− 1

bn/2c

bn/2c∑
i=1

∫
|f̂θ̂(y,Xi)− f(y,Xi)| dy


+ E

 1

bn/2c

bn/2c∑
i=1

∫
|f̂θ̂(y,Xi)− f(y,Xi)| dy


≤E

 1

bn/2c

bn/2c∑
i=1

∫
|f̂θ̂(y,Xi)− f(y,Xi)| dy

+ 48

√
log n

bn/2c
+

242√
bn/2c · log n

.

Due to Lemma 3 below it holds

E(∆) ≤ 17

√
log n

bn/2c
+

16√
bn/2c · log n

.

Hence, the assertion results from the following two lemmas. �
Remark 4. In the following two lemmas there may be some measureability problems
because the supremum is taken over a possible uncountable set. Since in applications
only countable sets are considered, we will ignore these problems and refer to van der
Vaart and Wellner (1996), where such problems are handled by using the notion of outer
probability.

Lemma 2 It holds for all n > 1

E

 sup
θ∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

∫
|f̂θ(y,Xi)− f(y,Xi)| dy −

∫ ∫
|f̂θ(y, x)− f(y, x)| dyPX(dx)

∣∣∣∣∣∣


14



≤48

√
log n

bn/2c
+

242√
bn/2c · log n

.

Proof. We proceed analogously to the proof of Theorem 9.1 in Györfi et al. (2002).
Step 1: Let ε >

√
32
bn/2c and X̄1, . . . , X̄bn/2c, X1, . . . , Xbn/2c be independent and identi-

cally distributed such that X̄1, . . . , X̄bn/2c is independent ofDn := {(X1, Y1), . . . , (Xn, Yn)}.
We select θ∗ ∈ Pn in dependence of Dn such that∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

∫
|f̂θ∗(y,Xi)− f(y,Xi)| dy −

∫ ∫
|f̂θ∗(y, x)− f(y, x)| dyPX(dx)

∣∣∣∣∣∣ > ε.

If no θ∗ ∈ Pn exists such that the above condition is fulfilled, we choose θ∗ ∈ Pn arbitrary.
Due to the independence of X̄1, . . . , X̄bn/2c it holds

P


∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

∫
|f̂θ∗(y, X̄i)− f(y, X̄i)| dy −E

{∫
|f̂θ∗(y,X)− f(y,X)| dy

∣∣∣Dn}
∣∣∣∣∣∣ > ε

2

∣∣∣∣∣Dn


=E

1{∣∣∣∣ 1
bn/2c

∑bn/2c
i=1

∫
|f̂θ∗ (y,X̄i)−f(y,X̄i)| dy−E

{∫
|f̂θ∗ (y,X)−f(y,X)| dy

∣∣∣Dn}∣∣∣∣> ε
2

}
∣∣∣∣∣Dn


=E

1{∣∣∣∣ 1
bn/2c

∑bn/2c
i=1

∫
|f̂θ∗ (y,X̄i)−f(y,X̄i)| dy−E

{∫
|f̂θ∗ (y,X)−f(y,X)| dy

∣∣∣Dn}∣∣∣∣2> ε2

4

}
∣∣∣∣∣Dn


≤E


∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

∫
|f̂θ∗(y, X̄i)− f(y, X̄i)| dy −E

{∫
|f̂θ∗(y,X)− f(y,X)| dy

∣∣∣Dn}
∣∣∣∣∣∣
2

· 4

ε2

∣∣∣∣∣Dn


=
4

ε2bn/2c2
·
bn/2c∑
i=1

E

{∣∣∣∣∫ |f̂θ∗(y, X̄i)− f(y, X̄i)| dy −E

{∫
|f̂θ∗(y,X)− f(y,X)| dy

∣∣∣Dn}∣∣∣∣2
∣∣∣∣∣Dn

}

≤ 4

ε2bn/2c2
·
bn/2c∑
i=1

E

{∣∣∣∣∫ |f̂θ∗(y, X̄i)− f(y, X̄i)| dy
∣∣∣∣2
∣∣∣∣∣Dn

}

≤ 16

ε2bn/2c
≤ 1

2
,

where we have used that
∫
|f̂θ∗(y, X̄i) − f(y, X̄i)| dy ≤ 2 for all i ∈ {1, . . . , bn/2c}.

Thereby and with the definition of θ∗ we have

P

 sup
θ∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

∫
|f̂θ(y,Xi)− f(y,Xi)| dy −

1

bn/2c

bn/2c∑
i=1

∫
|f̂θ(y, X̄i)− f(y, X̄i)| dy

∣∣∣∣∣∣ > ε

2


≥P


∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

∫
|f̂θ∗(y,Xi)− f(y,Xi)| dy −

1

bn/2c

bn/2c∑
i=1

∫
|f̂θ∗(y, X̄i)− f(y, X̄i)| dy

∣∣∣∣∣∣ > ε

2


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≥P

{∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

∫
|f̂θ∗(y,Xi)− f(y,Xi)| dy −E

{∫
|f̂θ∗(y,X)− f(y,X)| dy

∣∣∣Dn}
∣∣∣∣∣∣ > ε,

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

∫
|f̂θ∗(y, X̄i)− f(y, X̄i)| dy −E

{∫
|f̂θ∗(y,X)− f(y,X)| dy

∣∣∣Dn}
∣∣∣∣∣∣ ≤ ε

2

}

=E

{
1{∣∣∣∣ 1

bn/2c
∑bn/2c
i=1

∫
|f̂θ∗ (y,Xi)−f(y,Xi)| dy−E

{∫
|f̂θ∗ (y,X)−f(y,X)| dy

∣∣∣Dn}∣∣∣∣>ε
}·

P

{∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

∫
|f̂θ∗(y, X̄i)− f(y, X̄i)| dy −E

{∫
|f̂θ∗(y,X)− f(y,X)| dy

∣∣∣Dn}
∣∣∣∣∣∣ ≤ ε

2

∣∣∣∣∣Dn
}}

≥E

{
1{∣∣∣∣ 1

bn/2c
∑bn/2c
i=1

∫
|f̂θ∗ (y,Xi)−f(y,Xi)| dy−E

{∫
|f̂θ∗ (y,X)−f(y,X)| dy

∣∣∣Dn}∣∣∣∣>ε
} · 1

2

}

=
1

2
·P

{∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

∫
|f̂θ∗(y,Xi)− f(y,Xi)| dy −E

{∫
|f̂θ∗(y,X)− f(y,X)| dy

∣∣∣Dn}
∣∣∣∣∣∣ > ε

}

=
1

2
·P

{
sup
θ∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

∫
|f̂θ(y,Xi)− f(y,Xi)| dy −

∫ ∫
|f̂θ(y, x)− f(y, x)| dyPX(dx)

∣∣∣∣∣∣ > ε

}
.

Hence,

P

{
sup
θ∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

∫
|f̂θ(y,Xi)− f(y,Xi)| dy −

∫ ∫
|f̂θ(y, x)− f(y, x)| dyPX(dx)

∣∣∣∣∣∣ > ε

}

≤2 ·P

 sup
θ∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

∫
|f̂θ(y,Xi)− f(y,Xi)| dy −

1

bn/2c

bn/2c∑
i=1

∫
|f̂θ(y, X̄i)− f(y, X̄i)| dy

∣∣∣∣∣∣ > ε

2

 .

Step 2: Let U1, . . . , Ubn/2c be random variables with

P{Ui = 1} = P{Ui = −1} =
1

2
(i = 1, . . . , bn/2c),

such that U1, . . . , Ubn/2c, (X1, Y1), . . . , (Xn, Yn), X̄1, . . . , X̄bn/2c are independent. Since
the joint distribution of of X1, . . . , Xbn/2c and X̄1, . . . , X̄bn/2c is not affected if one ran-
domly interchanges Xi, X̄i, (i ∈ {1, . . . , bn/2c}), we have

P

 sup
θ∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

∫
|f̂θ(y,Xi)− f(y,Xi)| dy −

1

bn/2c

bn/2c∑
i=1

∫
|f̂θ(y, X̄i)− f(y, X̄i)| dy

∣∣∣∣∣∣ > ε

2


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=P

 sup
θ∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui

(∫
|f̂θ(y,Xi)− f(y,Xi)| dy −

∫
|f̂θ(y, X̄i)− f(y, X̄i)| dy

)∣∣∣∣∣∣ > ε

2


≤P

 sup
θ∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui ·
∫
|f̂θ(y,Xi)− f(y,Xi)| dy

∣∣∣∣∣∣ > ε

4


+ P

 sup
θ∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui ·
∫
|f̂θ(y, X̄i)− f(y, X̄i)| dy

∣∣∣∣∣∣ > ε

4


=2 ·P

 sup
θ∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui ·
∫
|f̂θ(y,Xi)− f(y,Xi)| dy

∣∣∣∣∣∣ > ε

4

 .

Step 3: Because of the independence of U1, . . . , Ubn/2c and Dn we can conclude by the
Theorem of Fubini that

P

 sup
θ∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui ·
∫
|f̂θ(y,Xi)− f(y,Xi)| dy

∣∣∣∣∣∣ > ε

4


=

∫
P

 sup
θ∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui ·
∫
|f̄θ(y, xi)− f(y, xi)| dy

∣∣∣∣∣∣ > ε

4

 d

n⊗
i=1

P(Xi,Yi)(xi, yi)

where for θ = (h,H)

f̄θ(y, x) =

∑n
i=bn/2c+1K

(
‖x−xi‖
H

)
K
(
|y−yi|
h

)
hn
∑n

i=bn/2c+1K
(
‖x−xj‖
H

) .

Now we want to replace the supremum of an infinite set by a supremum of a finite set.
Therefore, we try to find a finite family {gα}α of functions gα : R× Rd → R+ such that
for any θ1 = (h1, H1) ∈ Θ we find gα with

1

bn/2c

bn/2c∑
i=1

∣∣∣∣∣
∫
|f̄(h1,H1)(y, xi)− gα(y, xi)| dy

∣∣∣∣∣ ≤ ε

8
.

Let (x1, y1), . . . , (xn, yn) ∈ Rd × R be fixed. At first we let h1 > 0 be fixed and consider
f̄(h1,H1)(y, xi), i = 1, . . . , bn/2c:

f̄(h1,H1)(y, xi) =

n∑
j=bn/2c+1

Wj(xi) ·
1

h1
K

(
|y − yj |
h1

)
,

with

Wj(x) =
K
(
‖x−xj‖
H1

)
∑n

k=bn/2c+1K
(
‖x−xk‖
H1

) =
1{‖x−xj‖≤H1}∑n

k=bn/2c+1 1{‖x−xk‖≤H1}
.
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The number of different vectors Wj =
(
Wj(x1), . . . ,Wj(xbn/2c)

)
for arbitrary H1 > 0 is

bounded by the number of matrices of the form

δ = (δi,j) i=1,...,bn/2c
j=bn/2c+1,...,n

=
(
1{‖xi−xj‖≤H1}

)
i=1,...,bn/2c

j=bn/2c+1,...,n

∈ {0, 1}bn/2c×dn/2e. (6)

This follows from the fact that Wj , (j = {bn/2c+ 1, . . . , n}) is a function of δ. For small
H1 > 0 all entries are zero, except the entries where xi = xj for i ∈ {1, . . . , bn/2c},
j ∈ {bn/2c, . . . , n}. If one entry δi,j changes with increasing H1, it becomes one and
stays one for larger values of H1. Hence, there are Ln := bn/2c · dn/2e + 1 possibilities
for the matrix (6) that we denote by δ

(m)
i,j , m = 1, . . . , Ln. Now we define a class of

functions

g
(m)
h1

(y, xi) =
n∑

j=bn/2c+1

δ
(m)
i,j∑n

k=bn/2c+1 δ
(m)
i,k

· 1

h1
K

(
|y − yj |
h1

)
for i = 1 . . . , bn/2c, m = 1, . . . , Ln such that for all i ∈ {1 . . . , bn/2c} there exists
m∗ ∈ {1, . . . , Ln} with

f̄θ(y, xi) = g
(m∗)
h1

(y, xi).

Now we let H1 > 0 be fix and h1 ∈ [1/n, n] be arbitrary. Let Gn be an equidistant grid on
[1/n, n] with width 1

n
√

8n
. We choose h∗ = arg minh∈Gn |h1−h| and thus, |h1−h∗| ≤ 1

n
√

8n
.

Since K is the naive kernel it holds

1

bn/2c

bn/2c∑
i=1

∫ ∣∣∣f̄(h1,H1)(y, xi)− f̄(h∗,H1)(y, xi)
∣∣∣ dy

=
1

bn/2c

bn/2c∑
i=1

∫ ∣∣∣∣∣∣
n∑

j=bn/2c+1

Wj(xi) ·
(

1

h1
K

(
|y − yj |
h1

)
− 1

h∗
K

(
|y − yj |
h∗

))∣∣∣∣∣∣ dy
≤ 1

bn/2c

bn/2c∑
i=1

n∑
j=bn/2c+1

Wj(xi) ·
∫ ∣∣∣∣ 1

h1
K

(
|z|
h1

)
− 1

h∗
K

(
|z|
h∗

)∣∣∣∣ dz
≤
∫ ∣∣∣∣ 1

h1
K

(
|z|
h1

)
− 1

h∗
K

(
|z|
h∗

)∣∣∣∣ dz · 1

bn/2c

bn/2c∑
i=1

n∑
j=bn/2c+1

Wj(xi)

≤
∫ ∣∣∣∣ 1

h1
K

(
|z|
h1

)
− 1

h∗
K

(
|z|
h∗

)∣∣∣∣ dz · 1
≤
∫ ∣∣∣∣ 1

h1
K

(
|z|
h1

)
− 1

h∗
K

(
|z|
h1

)∣∣∣∣ dz +

∫ ∣∣∣∣ 1

h∗
K

(
|z|
h1

)
− 1

h∗
K

(
|z|
h∗

)∣∣∣∣ dz
=

∣∣∣∣ 1

h1
− 1

h∗

∣∣∣∣ ∫ K

(
|z|
h1

)
dz +

1

h∗

∫ ∣∣∣∣K ( |z|h1

)
−K

(
|z|
h∗

)∣∣∣∣ dz
=

∣∣∣∣ 1

h1
− 1

h∗

∣∣∣∣ · h1 +
1

h∗
· |h1 − h∗|

=
2

h∗
· |h1 − h∗|
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≤2n · 1

n
√

8n
=

2√
8n
≤ ε

8
.

Hence, for all θ = (h1, H1) ∈ Pn there exist m ∈ {1, . . . , Ln} and h ∈ Gn with

g
(m)
h (y, xi) =

n∑
j=bn/2c+1

δ
(m)
i,j∑n

k=bn/2c+1 δ
(m)
i,k

· 1

h
K

(
|y − yj |

h

)
,

i = 1 . . . , bn/2c, such that

1

bn/2c

bn/2c∑
i=1

∣∣∣∣∣
∫
|f̄(h1,H1)(y, xi)− g

(m)
h (y, xi)| dy

∣∣∣∣∣ ≤ ε

8
.

By repeated application of the triangle inequality we conclude

P

 sup
θ∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui ·
∫
|f̄θ(y, xi)− f(y, xi)| dy

∣∣∣∣∣∣ > ε

4


≤P

 sup
m∈{1,...,Ln}

h∈Gn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui ·
∫
|ĝ(m)
h (y, xi)− f(y, xi)| dy

∣∣∣∣∣∣+
ε

8
>
ε

4


≤P

 sup
m∈{1,...,Ln}

h∈Gn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui ·
∫
|ĝ(m)
h (y, xi)− f(y, xi)| dy

∣∣∣∣∣∣ > ε

8


≤Ln · |Gn| · sup

m∈{1,...,Ln}
h∈Gn

P


∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui ·
∫
|ĝ(m)
h (y, xi)− f(y, xi)| dy

∣∣∣∣∣∣ > ε

8


≤
√

8n9/2 · sup
m∈{1,...,Ln}

h∈Gn

P


∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui ·
∫
|ĝ(m)
h (y, xi)− f(y, xi)| dy

∣∣∣∣∣∣ > ε

8

 ,

where the last inequality follows from a trivial computation.
Step 4: The random variables

Zi := Ui ·
∫
|ĝ(m)
h (y, xi)− f(y, xi)| dy (i = 1, . . . , bn/2c)

are independent, take values in [−2, 2] and satisfy E{Zi} = 0 by definition of Ui. With
the Hoeffding inequality we can conclude

P


∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui ·
∫
|ĝ(m)
h (y, xi)− f(y, xi)| dy

∣∣∣∣∣∣ > ε

8


≤2 · exp

(
−2bn/2c(ε2/64)

42

)
= 2 · exp

(
−bn/2cε

2

512

)
.
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Therfore we have for ε =
√

2304 logn
bn/2c

E

 1

bn/2c

bn/2c∑
i=1

∫
|f̂θ̂(y,Xi)− f(y,Xi)| dy −

∫ ∫
|f̂θ̂(y,X)− f(y,X)| dyPX(dx)


≤ε+ 4

√
8n9/2

∫ ∞
ε

P


∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui ·
∫
|ĝ(m)
h (y, xi)− f(y, xi)| dy

∣∣∣∣∣∣ > u

8

 du

≤ε+ 4
√

8n9/2

∫ ∞
ε

2 · exp

(
−bn/2cu

2

512

)
du

≤ε+ 8
√

8n9/2

∫ ∞
ε

exp

(
−bn/2cεu

512

)
du

≤ε+
4096

√
8n9/2

bn/2c · ε
exp

(
−bn/2cε

2

512

)
≤48

√
log n

bn/2c
+

242√
bn/2c · log n

.

�

Lemma 3 It holds for all n > 1

E(∆) ≤ 17

√
log n

bn/2c
+

16√
bn/2c · log n

.

Proof. Step 1: Let ε >
√

8
bn/2c . For givenX1, . . . , Xbn/2c we let Y1, . . . , Ybn/2c, Ȳ1, . . . , Ȳbn/2c

be conditionally independent and Ȳi be distributed as Yi (for given Xi) for all i ∈
{1, . . . , bn/2c}. Now we select θ̄1, θ̄2 ∈ Pn in dependence ofDn :=

{
(X1, Y1), . . . , (Xbn/2c, Ybn/2c)

}
such that ∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

∫
Ai(θ̄1,θ̄2)

f(y,Xi) dy −
1

bn/2c

bn/2c∑
i=1

1Ai(θ̄1,θ̄2)(Yi)

∣∣∣∣∣∣ > ε.

If no θ̄1, θ̄2 ∈ Pn exists such that the above condition is fulfilled, we choose arbitrary
θ̄1, θ̄2 ∈ Pn. We define

Zi :=

∫
Ai(θ̄1,θ̄2)

f(y,Xi) dy − 1Ai(θ̄1,θ̄2)(Ȳi)

for all i ∈ {1, . . . , bn/2c} and thus, E{Zi| Dn} = 0. Furthermore,

P


∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Zi

∣∣∣∣∣∣ > ε

2

∣∣∣∣∣Dn

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=P


∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Zi −E{Zi| Dn}

∣∣∣∣∣∣ > ε

2

∣∣∣∣∣Dn


=E

{
1
{
∣∣∣ 1
bn/2c

∑bn/2c
i=1 Zi−E{Zi| Dn}

∣∣∣2> ε2

4
}

∣∣∣∣∣Dn
}

≤E

 4

ε2
·

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Zi −E{Zi| Dn}

∣∣∣∣∣∣
2

· 1{∣∣∣ 1
bn/2c

∑bn/2c
i=1 Zi−E{Zi| Dn}

∣∣∣2> ε2

4

}
∣∣∣∣∣Dn


≤ 4

ε2
E


∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Zi −E{Zi| Dn}

∣∣∣∣∣∣
2 ∣∣∣∣∣Dn


=

V

{
1
bn/2c

∑bn/2c
i=1 Zi

∣∣∣∣∣Dn
}

ε2/4
.

Because of the conditional independence of Ȳ1, . . . , Ȳbn/2c it holds

V

 1

bn/2c

bn/2c∑
i=1

Zi

∣∣∣∣∣Dn
 =V

 1

bn/2c

bn/2c∑
i=1

(∫
Ai(θ̄1,θ̄2)

f(y,Xi) dy − 1Ai(θ̄1,θ̄2)(Ȳi)

)∣∣∣∣∣Dn


=
1

bn/2c2
bn/2c∑
i=1

V

{∫
Ai(θ̄1,θ̄2)

f(y,Xi) dy − 1Ai(θ̄1,θ̄2)(Ȳi)

∣∣∣∣∣Dn
}

≤ 1

bn/2c2
bn/2c∑
i=1

E


∣∣∣∣∣
∫
Ai(θ̄1,θ̄2)

f(y,Xi) dy − 1Ai(θ̄1,θ̄2)(Ȳi)

∣∣∣∣∣
2 ∣∣∣∣∣Dn


≤ 1

bn/2c2
bn/2c∑
i=1

1 =
1

bn/2c
.

With ε >
√

8
bn/2c we can conclude that

P


∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

(∫
Ai(θ̄1,θ̄2)

f(y,Xi) dy − 1Ai(θ̄1,θ̄2)(Ȳi)

)∣∣∣∣∣∣ > ε

2

∣∣∣∣∣Dn
 ≤ 4

bn/2cε2
≤ 1

2
.

Thereby and by the definition of θ̄1, θ̄2 we have

P

 sup
θ1,θ2∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

(
1Ai(θ1,θ2)(Yi)− 1Ai(θ1,θ2)(Ȳi)

)∣∣∣∣∣∣ > ε

2


≥P


∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

(
1Ai(θ̄1,θ̄2)(Yi)− 1Ai(θ̄1,θ̄2)(Ȳi)

)∣∣∣∣∣∣ > ε

2


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≥P

{∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

(
1Ai(θ̄1,θ̄2)(Yi)−

∫
Ai(θ̄1,θ̄2)

f(y,Xi) dy

)∣∣∣∣∣∣ > ε,

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

(∫
Ai(θ̄1,θ̄2)

f(y,Xi) dy − 1Ai(θ̄1,θ̄2)(Ȳi)

)∣∣∣∣∣∣ ≤ ε

2

}

=E

{
P

{∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

(
1Ai(θ̄1,θ̄2)(Yi)−

∫
Ai(θ̄1,θ̄2)

f(y,Xi) dy

)∣∣∣∣∣∣ > ε,

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

(∫
Ai(θ̄1,θ̄2)

f(y,Xi) dy − 1Ai(θ̄1,θ̄2)(Ȳi)

)∣∣∣∣∣∣ ≤ ε

2

∣∣∣∣∣Dn
}}

=E

{
1{∣∣∣ 1

bn/2c
∑bn/2c
i=1

(
1Ai(θ̄1,θ̄2)(Yi)−

∫
Ai(θ̄1,θ̄2) f(y,Xi) dy

)∣∣∣>ε
}·

P

{∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

(∫
Ai(θ̄1,θ̄2)

f(y,Xi) dy − 1Ai(θ̄1,θ̄2)(Ȳi)

)∣∣∣∣∣∣ ≤ ε

2

∣∣∣∣∣Dn
}}

≥E

{
1{∣∣∣ 1

bn/2c
∑bn/2c
i=1

(
1Ai(θ̄1,θ̄2)(Yi)−

∫
Ai(θ̄1,θ̄2) f(y,Xi) dy

)∣∣∣>ε
} · 1

2

}

=
1

2
·P

{∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

(
1Ai(θ̄1,θ̄2)(Yi)−

∫
Ai(θ̄1,θ̄2)

f(y,Xi) dy

)∣∣∣∣∣∣ > ε

}

=
1

2
·P

{
sup

θ1,θ2∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

(
1Ai(θ1,θ2)(Yi)−

∫
Ai(θ1,θ2)

f(y,Xi) dy

)∣∣∣∣∣∣ > ε

}
.

Hence,

P

{
sup

θ1,θ2∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

(
1Ai(θ1,θ2)(Yi)−

∫
Ai(θ1,θ2)

f(y,Xi) dy

)∣∣∣∣∣∣ > ε

}

≤2 ·P

 sup
θ1,θ2∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

(
1Ai(θ1,θ2)(Yi)− 1Ai(θ1,θ2)(Ȳi)

)∣∣∣∣∣∣ > ε

2

 .

Step 2: Let U1, . . . , Ubn/2c be independent random variables with

P{Ui = 1} = P{Ui = −1} =
1

2
, i = 1, . . . , bn/2c

such that U1, . . . , Ubn/2c is independent of (X1, Y1), . . . , (Xbn/2c, Ybn/2c) and Ȳ1, . . . , Ȳbn/2c.
Because of the conditional independence of Y1, . . . , Ybn/2c, Ȳ1, . . . , Ȳbn/2c, the conditional
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joint distribution of Y1, . . . , Ybn/2c and Ȳ1, . . . , Ȳbn/2c is not affected if one randomly in-
terchanges Yi, Ȳi, (i ∈ {1, . . . , bn/2c}). Let Xn

1 = {X1, . . . , Xn}. Then, it holds

P

 sup
θ1,θ2∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

1Ai(θ1,θ2)(Yi)− 1Ai(θ1,θ2)(Ȳi)

∣∣∣∣∣∣ > ε

2


=E

P

 sup
θ1,θ2∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

1Ai(θ1,θ2)(Yi)− 1Ai(θ1,θ2)(Ȳi)

∣∣∣∣∣∣ > ε

2

∣∣∣∣∣Xn
1




=E

P

 sup
θ1,θ2∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui ·
(
1Ai(θ1,θ2)(Yi)− 1Ai(θ1,θ2)(Ȳi)

)∣∣∣∣∣∣ > ε

2

∣∣∣∣∣Xn
1




≤P

 sup
θ1,θ2∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui · 1Ai(θ1,θ2)(Yi)

∣∣∣∣∣∣ > ε

4


+ P

 sup
θ1,θ2∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui · 1Ai(θ1,θ2)(Ȳi)

∣∣∣∣∣∣ > ε

4


=2 ·P

 sup
θ1,θ2∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui · 1Ai(θ1,θ2)(Yi)

∣∣∣∣∣∣ > ε

4

 .

Step 3: Because of the independence of U1, . . . , Ubn/2c and Dn we can conclude by the
Theorem of Fubini that

P

 sup
θ1,θ2∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui · 1Ai(θ1,θ2)(Yi)

∣∣∣∣∣∣ > ε

4


=

∫
P

 sup
θ1,θ2∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui · 1A∗i (θ1,θ2)(yi)

∣∣∣∣∣∣ > ε

4

 d
n⊗
i=1

P(Xi,Yi)(xi, yi),

where
A∗i (θ1, θ2) =

{
y ∈ R : f̂θ1(y, xi) > f̂θ2(y, xi)

}
.

Let (x1, y1), . . . , (xn, yn) ∈ Rd×R be fixed. Now we count how many different values the
vector (

1A∗1(θ1,θ2)(y1), . . . ,1A∗bn/2c(θ1,θ2)(ybn/2c)
)
∈ {0, 1}bn/2c (7)

can have for θ1 = (h1, H1), θ2 = (h2, H2) ∈ Pn. The number of different vectors(
1{f̂θ1 (yj ,xj)>f̂θ2 (yj ,xj)}

)
j=1,...,bn/2c
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with θ1 = (h1, H1), θ2 = (h2, H2) ∈ Pn is upper bounded by the number of different
vectors (

1{f̄θ1,c1 (yj ,xj)>f̄θ2,c2 (yj ,xj)}
)
j=1,...,bn/2c

with arbitrary c1, c2 > 0 and

f̄θ1,c1(yj , xj) := c1 ·
n∑

i=bn/2c+1

K

(
‖xj − xi‖

H1

)
K

(
|yj − yi|
h1

)
.

Now we count the number of different vectors of the form

vθ1 =

(
n∑

i=bn/2c+1

K

(
‖x1 − xi‖

H1

)
K

(
|y1 − yi|
h1

)
, . . . ,

n∑
i=bn/2c+1

K

(‖xbn/2c − xi‖
H1

)
K

( |ybn/2c − yi|
h1

))
.

This number is upper bounded by the number of matrices of the form

(δi,j) i=1,...,bn/2c
j=bn/2c+1,...,n

=

(
K

(
‖xi − xj‖

H1

)
K

(
|yi − yj |
h1

))
i=1,...,bn/2c

j=bn/2c+1,...,n

∈ {0, 1}bn/2c×dn/2e.

Because if one entry in the vector changes, at least one entry in the matrix must have
changed. We now consider the two matrices

δ(1) = (δ
(1)
i,j ) i=1,...,bn/2c

j=bn/2c+1,...,n

=

(
K

(
‖xi − xj‖

H1

))
i=1,...,bn/2c

j=bn/2c+1,...,n

∈ {0, 1}bn/2c×dn/2e

and

δ(2) = (δ
(2)
i,j ) i=1,...,bn/2c

j=bn/2c+1,...,n

=

(
K

(
|yi − yj |
h1

))
i=1,...,bn/2c

j=bn/2c+1,...,n

∈ {0, 1}bn/2c×dn/2e.

It holds
δi,j = 1⇐⇒ δ

(1)
i,j = δ

(2)
i,j = 1.

For small h1, H1 all entries are zero, except the entries where xi = xj or yi = yj
for i ∈ {1, . . . , bn/2c}, j ∈ {bn/2c + 1, . . . , n}. We now increase h1, H1 and count
the number of changes. One by another entry turns one until all entries are one. At
first we consider δ(1)

i,j . With increasing H1 the entries of δ(1)
i,j become one and stay one.

Hence, there are bn/2c · dn/2e + 1 possibilities for this matrix. Analogously, there are
bn/2c · dn/2e+ 1 possibilities for the matrix δ(2)

i,j . Since δi,j = δ
(1)
i,j · δ

(2)
i,j , there are at most

(bn/2c · dn/2e+ 1)2 ≤ (n2/4 + 1)2 =: Ln possibilities for the above matrix δi,j .
For this reason we now assume that the above vector takes Ln different values z1, . . . , zLn ∈
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Rbn/2c for arbitrary θ ∈ Pn. There are L2
n possibilities to choose z, z̄ ∈ {z1, . . . , zLn}.

Let z = (z(1), . . . , z(bn/2c)), z̄ = (z̄(1), . . . , z̄(bn/2c)) and

Wz,z̄ = {(θ1, θ2) ∈ Pn × Pn| (vθ1 , vθ2) = (z, z̄)} .

For (θ1, θ2) ∈ Wz,z̄ and c1, c2 > 0 it holds:

yi ∈
{
y ∈ R| f̄θ1,c1(y, xi) > f̄θ2,c2(y, xi)

}
⇐⇒ z(i) >

c2

c1
z̄(i).

Thus, we have for (θ1, θ2) ∈ Wz,z̄{(
1{f̄θ1,c1 (yj ,xj)>f̄θ2,c2 (yj ,xj)}

)
j=1,...,bn/2c

∈ {0, 1}bn/2c
∣∣∣ c1, c2 > 0

}
=
{(

1{z(1)>c·z̄(1)}, . . . ,1{z(bn/2c)>c·z(bn/2c)}
)
∈ {0, 1}bn/2c

∣∣∣ c > 0
}
. (8)

The number of elements in (8) is upper bounded by bn/2c + 1, because for small c the
entries of the vector are (nearly) all zero and turn and stay one with growing c. Hence,
the number of possible vectors (7) is upper bounded by

(bn/2c+ 1) · L2
n = (bn/2c+ 1) · (n2/4 + 1)4 ≤ n9 (n > 1).

This means the supremum over θ1, θ2 is actually the supremum over at most n9 random
variables. Hence,

P

 sup
θ1,θ2∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui · 1A∗i (θ1,θ2)(yi)

∣∣∣∣∣∣ > ε

4


≤n9 sup

θ1,θ2∈Pn
P


∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui · 1A∗i (θ1,θ2)(yi)

∣∣∣∣∣∣ > ε

4


Step 4: With the Hoeffding inequality we can conclude

P


∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui · 1A∗i (θ1,θ2)(yi)

∣∣∣∣∣∣ > ε

4


≤2 · exp

− 2bn/2c(ε2/16)
1
bn/2c

∑bn/2c
i=1 22

 = 2 · exp

(
−bn/2cε

2

32

)
.

Therefore we have

P (∆ > ε) ≤4 ·P

{
sup

θ1,θ2∈Pn

∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui · 1A∗i (θ1,θ2)(yi)

∣∣∣∣∣∣ > ε

4

}
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≤4 · n9 sup
θ1,θ2∈Pn

P

{∣∣∣∣∣∣ 1

bn/2c

bn/2c∑
i=1

Ui · 1A∗i (θ1,θ2)(yi)

∣∣∣∣∣∣ > ε

4

}

≤8 · n9 exp

(
−bn/2cε

2

32

)
and with ε =

√
288 logn
bn/2c we get

E(∆) ≤ε+

∫ ∞
ε

P(∆ > u) du

≤ε+

∫ ∞
ε

8n9 · exp

(
−bn/2cu

2

32

)
du

≤ε+

∫ ∞
ε

8n9 · exp

(
−bn/2cεu

32

)
du

≤ε+
256n9

bn/2c · ε
· exp

(
−bn/2cε

2

32

)
du

≤17

√
log n

bn/2c
+

16√
bn/2c · log n

.

�
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