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Abstract

In this paper we introduce so-called hierarchical interaction models where we assume that
the computation of the value of a function m : R? — R is done in several layers, where in
each layer a function of at most d* inputs computed by the previous layer is evaluated.
We investigate two different regression estimates based on polynomial splines and on
neural networks and show that if the regression function satisfies a hierarchical interaction
model and all occurring functions in the model are smooth, the rate of convergence of
these estimates depends on d* (and not on d). Hence in this case the estimates can
achieve good rate of convergence even for large d and are in this sense able to circumvent
the so-called curse of dimensionality.

AMS classification: Primary 62G08; secondary 62G20.
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1. Introduction

In nonparametric regression a random vector (X,Y) with values in R? x R satisfying
EY? < oo is given and the goal is to predict the value of Y given the value of X. If the
main aim of the analysis is minimization of the mean squared error or Lo risk, then a
function m* : R¢ — R is sought satisfying

E{|Y —m*(X)]*} = min E{|Y — f(X)[*}.
(Y = m (OP) = min B{Y - /(0)P)
Let m: R? — R, m(x) = E{Y|X = 2} be the so-called regression function. Since

E{]Y - f(X)I*} = E{]Y - m(X)]*} + / |f(x) — m(z)"Px (dz)
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(cf., e.g., Section 1.1 in Gyorfi et al. (2002)), the regression function is the optimal
predictor m* = m, and any function f : R? — R is a good predictor in the sense that its
Lo risk is close to the optimal value if and only if the Lo error

[ 1@~ m(@)PPx ()
is small. In nonparametric regression a set of data
Dy ={(X1,Y1),...,(Xpn,Yn)}

is given, where (X,Y), (X1,Y1), (X2,Y2), ...are independent and identically distributed
random variables, and the aim is to construct a regression estimate my,(-) = my(-, Dy)
such that its Lo error

[ o)~ @) PP )

is small. See Gyorfi et al. (2002) for a systematic and rigorous coverage of nonparametric
regression estimation.

In order to derive nontrivial results on the rate of convergence of the expected Ls error,
it is necessary to impose smoothness assumptions on m (cf., e.g., Theorem 3.1 in Gyorfi et
al. (2002)). It was shown in Stone (1982) that the optimal minimax rate of convergence
for estimation of (p,C')-smooth regression function (where roughly speaking, see below
for the exact definition, the regression function is p-times continuously differentiable) is

__2p
n 2rt+d,

If d is large compared to p, then this rate of convergence is rather slow, which is a
consequence of the fact, that high-dimensional regression problems are especially difficult
to solve due to so—called curse of dimensionality. But unfortunately, most applications
are high-dimensional problems and hence very hard to solve. The only way to circumvent
this curse of dimensionality is to impose additional assumptions on the regression function
in order to derive better rates of convergence.

Stone (1985) proposed to impose an additivity condition on the structure of the re-
gression function. He assumed that

m(@,..,e®) =mi@D) +-- 4+ ma@?) (@ = @,..., D)7 R

for (p, C)-smooth univariate functions my,...,mg : R — R, and he was able to show that
in this case n=2P/(2r+1) is the optimal minimax rate of convergence. A generalization of
this approach to so—called interaction models was presented in Stone (1994). Here it was
assumed that for some d* € {1,...,d} the regression function satisfies

m(z) = Z mp(xr),

where |I| denotes the cardinality of the set I, m are (p, C)-smooth functions defined on
R and for z = (M, ... 2@ and T = {iy,...,ig-} with 1 < iy < -+ < ige < d we



set x; = (a:(“), . ,x(id*))T. In other words, it is assumed that the regression function
is a sum of (p, C')-smooth functions where each function in the sum depends on at most
d* of the components of 2. Under this assumption it was shown that n=2¢/(2p+d%) ig the
optimal minimax rate of convergence.

Other assumptions which yield good rates of convergence even for high dimensional
data include single index models and projection pursuit. In single index models it is
assumed that

m() = g(a’z) (v €R),

where g : R — R is an univariate function and a € R? is a d-dimensional vector (cf., e.g.,
Hérdle, Hall and Ichimura (1993), Hérdle and Stoker (1989), Yu and Ruppert (2002) and
Kong and Xia (2007)). In projection pursuit the regression function is allowed to be a
sum of functions of the above form, i.e.,

K
m(z) = ng(a;‘gw) (z € R),
k=1

where K € N is a natural number, g : R — R are univariate functions and a; € R? are d-
dimensional vectors (cf., e.g., Friedman and Stuetzle (1981)). If the univariate functions
above are (p, C')-smooth, then corresponding regression estimates can achieve under these
assumptions the corresponding univariate rates of convergence (cf., e.g., Chapter 22 in
Gyorfi et al. (2002)).

A mixture of parametric and nonparametric approach is achieved in semiparametric
models. Here it is assumed that for a part of the components of x the influence on
the regression function is known and is described by a parametric model (e.g., a linear
model), and only the remaining part is estimated nonparametrically (cf., e.g., Hardle
et al. (2004)). Under this assumption the corresponding estimates are able to achieve
rates of convergence corresponding to d* dimensional problems, where d* is the number
of components of x for which a parametric model is not given.

In any application these estimates achieve good rates of convergence only if the imposed
assumptions are satisfied. Our research in this paper is motivated by applications in
connection with complex technical systems, which are constructed in a modular form
(in particular a load bearing structure studied currently by the Collaborative Research
Centre 805 at the Technische Universitdt Darmstadt). If such systems are constructed
in a modular form, then it seems to be realistic to model the outcome of the system
as a function of the results of the modular parts of it, where each of the modular parts
computes a function depending only on a few of the components of the high-dimensional
input. In the simplest case we formulate this by assuming that our regression function
satisfies

m(x) = g(fl(xh)v . wfd*(xfd*)) (.’L’ € Rd)v

where d* € {1,...d}, I,...,I;+ C{1,...,d} are sets of cardinality d* and g, fi1,..., fa
are (p, C')-smooth functions defined on R%". The corresponding general assumption can
be found in Section 2. In the general assumption the above model is recursively applied,
which is reasonable especially if we consider a complex technical system constructed in



a modular form, where each modular part may be again a complex system constructed
in a similar modular form. Under the above assumption we show that suitable defined
spline and neural network estimates achieve (up to some logarithmic factor) the rate of
convergence n 2P/ (2p+d"),

Throughout the paper the following notation is used: The sets of natural numbers,
natural numbers including 0, integers, non-negative real numbers and real numbers are
denoted by N, Ny, Z, Ry and R, resp. Let D C R? and let f : R — R be a real-valued
function defined on R?. We write x = argmax.cp f(2) if max.cp f(z) exists and if
satisfies

r€e€D and f(x)= r;leapr(z).

The Euclidean and the supremum norms of € R? are denoted by ||z|| and |z||s, resp.
For f:RY = R
[flloc = sup |f(x)

reR4

is its supremum norm, and the supremum norm of f on a set A C R? is denoted by

[flloc,a = sup | f ().
€A

The support of an R% valued random variable X is abbreviated by
supp(X) = {x € R? : Px(S,(x)) > 0 for all 7 > O} ,

where S, (z) is the ball of radius r around x.

The outline of this paper is as follows: The assumption on the structure of the re-
gression function is described in Section 2, in Section 3 we introduce estimates based on
polynomial splines and present a result concerning their rates of convergence, Section 4
does the same for neural networks, and Section 5 contains the proofs.

2. Hierarchical interaction models

In this section we formalize the assumption that a function value is computed in several
layers where in each layer a function of at most d* inputs is computed and where the
inputs are outputs of the previous layer (or components of the input variable, in case
that there is no previous layer). We do this in the following recursive definition.

Definition 1. Letd € N, d* € {1,...,d} and m : RY = R.
a) We say that m satisfies a hierarchical interaction model of order d* and level
0, if there exist I C {1,...,d} with |I| = d* and f:R? — R such that

m(x) = f(xy) for all z € RY.

b) We say that m satisfies a hierarchical interaction model of order d* and level
1+ 1, if there exist g : R — R and f1,..., f4« : R* = R such that fi,..., fq satisfy a
hierarchical interaction model of order d* and level | and such that

m(zx) =g (fi(x),..., fo(z)) for all z € RY



The class of functions satisfying a hierarchical interaction model of order 1 neither
includes all additive functions nor all functions satisfying the assumption of projection
pursuit. But after a slight extension of the definition, which we present next, all such
functions are included.

Definition 2. Let d € N, d* € {1,...,d} and m : R? — R.
a) We say that m satisfies a generalized hierarchical interaction model of order
d* and level 0, if there exist ai,...,ag- € R* and f: R — R such that

m(x) = flalz,... ,adT*x) for all x € R?.

b) We say that m satisfies a generalized hierarchical interaction model of order d*
and level [ + 1, if there exist K €N, g, : RT - R (k=1,...,K) and figes oo fae g
RY - R (k = 1,...,K) such that fiks o farg (k= 1,...,K) satisfy a generalized
hierarchical interaction model of order d* and level | and such that

K
m(x) = ng (fix(@), ..., fark(z)) forallx e R,
k=1

Obviously, each hierarchical interaction model is also a generalized hierarchical inter-
action model of the same order and same level (because we can choose aj s as unit vectors
and K = 1). Furthermore, additive functions, all functions satisfying the assumption of
projection pursuit or of interaction model belong to the class of generalized hierarchical
interaction model of order d* and level 1, where d* = 1 in case of additive functions or
projection pursuit.

Our smoothness assumptions imposed on the functions occurring in a hierarchical
interaction model are formalized in the next definition.

Definition 3. a) Let p = k+s for some k € Ny and 0 < s < 1. A function m : RY > R
is called (p, C')-smooth, if for every a = (a1, ..., o) € Nd with Z;lzl o = k the partial

derivative oz exists and satisfies

Fm
8x?1...8xd
*m *m

_ <Oy — ~|I8
8:6?1...8:133‘1@) 8x?1...8:ﬂgd(z) <Cllz =]

for all z, 2z € RY,
b) We say that the (generalized) hierarchical interaction model in Definition 1
(Definition 2) is (p,C)—smooth, if all functions occurring in its definition are (p,C)—
smooth according to part a) of this definition.
Remark 1. a) If

m(z) =g (fi(2),..., fa-(x)) (z€R?)
for some (p, C')-smooth functions ¢ : RY — R and fi,..., fs : R — R, then we get in
case p <1

im(z) —m(2)| = g (fi(2),..., fa=(2)) = g (f1(2), .-, fa= (2))]



< C-Vd- max |f;(z) — fi(2)[".
Jj=1,....d

Using this and
lor = z1]] < [l — =

for I C {1,...,d} and x,z € R? we see that for any p < 1 any function which satisfies a
hierarchical interaction model of level [ which is (p, C')-smooth according to Definition 3
b) is (p'*1, C)-smooth according to Definition 3 a).

b) In the definition of (generalized) hierarchical interaction model it is possible to choose
some of the occurring functions as projections on some component of their input, which
are always (p, C')-smooth functions. Consequently, (p,C')-smooth functions depending
on at most d* components of its input variable belong to the class of functions satisfy-
ing (p, C')-smooth (generalized) hierarchical interaction models of order d* and any fixed
level. Therefore we can conclude from Stone (1982) that the minimax rate of convergence
of estimation of (p,C)-smooth (generalized) hierarchical interaction models of order d*
is lower bounded by n~2P/(2»+d") " In the next two sections we show that suitably de-
fined spline and neural network estimates achieve this rate of convergence up to some
logarithmic factor. In order to simplify the notation the result for splines is derived only
for hierarchical interaction models, however the result for neural networks considers also
generalized hierarchical interaction models.

3. Estimates based on polynomial splines

In the next two sections we study least squares estimates defined by

R 2
mn() = arg min — ; |Y; — h(Xi)[, (1)
where H, is a set of functions h : R — R. For simplicity we assume here and in the
sequel that the minimum above indeed exists. When this is not the case our theoretical
results also hold for any estimate which minimizes the above empirical Ly risk up to a
small additional term (e.g., 1/n).

In this section we will define H,, by using tensor products of polynomial splines, i.e.,
tensor products of piecewise polynomials satisfying a global smoothness condition. Con-
cerning applications of tensor products of polynomial splines in nonparametric regression
we refer to Friedman (1991), Stone (1994), Stone et al. (1997), Kohler (2000) and the
literature cited therein.

In the sequel we introduce spaces of tensor product B-splines defined on R? and then
compose them according to the definition of hierarchical interaction models. Our func-
tion spaces will depend on parameters o > 0 (controlling the supremum norm of the
functions), 8 > 0 (controlling the support of the functions), v > 0 (controlling the Lip-
schitz constant of the functions), My € N (the degree of the splines), K € N (controlling
the degrees of freedom) and d (the dimension of R).



We start by introducing univariate space of polynomial spline functions and a corre-
sponding B-spline basis consisting of basis functions with compact support as follows:
For K € Nand M € Ng set up, = k- 3/K (k € Z). For k € Z let By : R — R be the
univariate B-spline of degree M with knot sequence (u;);cz and support supp(By v) =
[k, gt ar+1]. In case M = 0 this means that By, o is the indicator function of the interval
[ug, uk+1), and for M =1 we have

T—ug
Ut 1 — Uk , Uk S x S Uk+1,
— Uk42—Z
Bra(r) = § miZiy otk <7 < upgo,
0 ,else,

(so-called hat-function). The general definition of By ps can be found, e.g., in de Boor
(1978), or in Section 14.1 of Gorfi et al. (2002). These B-splines are basis functions of
sets of univariate piecewise polynomials of degree M, where the piecewise polynomials
are globally (M — 1)-times continuously differentiable and where the M-th derivative of
the functions have jump points only at the knots u; (I € Z).

For k = (ky,. .., kq) € Z* we define the tensor product B-spline By : R? — R by

Bk,M(x(1)7 ceey x(d)) = Bkl,M(x(l)) T Bkd,M(x(d)) (.%'(1)7 s 7x(d) € R)

And we define S pr as the set of all linear combinations of all those of the above tensor
product B-splines, where the support has nonempty intersection with (—3, 3)%, i.e., we
set

SK,M: E ak‘Bk,M ax € R
ke{—-K—-M,~K—M+1,...,K—1}d

It can be shown by using standard arguments from spline theory, that the functions in
Sk, are in each component (M —1)-times continuously differentiable, that they are equal
to a (multivariate) polynomial of degree less than or equal to M (in each component) on
each rectangle

[ukl’ukl+1) X X [ukd’ukd-‘rl) (k= (k1,....kq) € Zd)’

and that they vanish outside of the set

B 51
o BTM ]

oo e

For our estimate we need to impose bounds on the supremum norm and the Lipschitz
constant of our functions. We do this by restricting the coefficients in the spline space
as follows: Let e; be the i-th unit vector in R? (i = 1,...,d). Then we set

/3.
Vd- K

SK7M7a7/87’77d - { Z ak ) BkvM : ‘ak‘ S a’ |ak - akfez‘ S (7; - 17 tee 7d)7

kezd



ai = 0 if supp(Biar) N (=B, B)? = @}-

The definition of the B-splines implies that Sg 74.,,4 is a subset of a linear vector
space of dimension (2 - K + M)?. Furthermore, by standard results on B-splines and
their derivatives (cf., e.g., Lemmas 14.4 and 14.6 in Gyorfi et al. (2002)) it can be shown
that the functions in Sk 7,a,8,y,4 are bounded in absolute value by «a and are for M > 0
Lipschitz continuous with Lipschitz constant bounded by v (since all partial derivatives
of order one are bounded in absolute value by ~/v/d).

Now we assume that we have given a hierarchical interaction model of order d* and
that we know all subsets I occurring in its definition. We use them to define similarly a
composition of our spline spaces as follows:

For level 0 we define H(®) by choosing I C {1,...,d} with |I| = d* and by setting

HO = {h ‘RS R h(z)=f(zy) (zeR?) for some f € SK,M,oc,,Bmd*} .

For level 1 +1 we define ’Hgl), cee H((ll*) according to the functions chosen in the definition
of our hierarchical interaction model of level [ and set

HD = {h ‘RS R k() =g(fi(x),..., fo(z) (z€RY  for some

9 € Sk Ma8y,d f1€ Hﬁ”, oo far € H&Q}-

If we choose this function space in our estimate (1), we get the following result.

Theorem 1. Let (X,Y), (X1,Y1), (X2,Y2), ... be independent and identically distributed

random variables with values in R® x R such that
Eexp (01 'Y2) < 00

for some constant ¢1 > 0. Let m be the corresponding regression function and assume
that m satisfies a hierarchical interaction model of order d* and level | € Ny, which is
(p, C)—smooth according to Definition 3 for some p € N and C > 0. Furthermore assume
that supp(X) is bounded.

Let my, be the least squares estimate defined by (1), where the function space is cho-
sen as above using tensor product spline functions and where the construction is done
accordingly to the hierarchical interaction model for m with parameters

K=K,= [nl/@p*d*)-‘ ,a = a, =logn, s =B, =logn and v =, = logn
and degree M > p — 1. Then we have for n sufficiently large

E/ mn(2) — m(2)PPx (dz) < 3 - logm™< (20} () . =20/ Cr+d),



Remark 1. In the definition of the estimate in Theorem 1 we have to choose parameters
depending on the smoothness and the structure of the assumed hierarchical interaction
model, which is not possible in an application since there the smoothness of the regression
function will be usually unknown. But there are standard data-driven methods to choose
the parameters of a regression estimate, e.g., splitting of the sample (cf., e.g., Chapter 7
in Gyorfi et al. (2002)). If we apply splitting of the sample, then the result of Theorem
1 can be shown also for an estimate whose definition does not depend on the smoothness
of the regression function.

4. Estimates based on neural networks

In this section we assume that the function space H, in the definition of our least
squares estimate (1) consists of multilayer feedforward neural networks. The starting
point in defining such neural networks is the choice of a so-called sigmoidal function
o : R — [0,1]. Usually one uses here so-called squashing functions which are defined as
functions o : R — [0, 1] which are nondecreasing and satisfy

lim o(x)=0 and lim o(x)=1.
T——00 T—00

Examples of sigmoidal functions which are squashing functions include the logistic squasher
1
) = T ep(—a)
or the Gaussian squasher
— [ ew(-a/a
exp(—u u.
2 - T —00 p

Multilayer feedforward neural networks with sigmoidal functions can be defined recur-
sively as follows: A multilayer feedforward neural network with [ hidden layers, Ky, ...,
K; € N neurons in the first, second, ..., I-th layer, respectively, and sigmoidal function
o is a real-valued function defined on R? of the form

o(z) =

K;
f@) =3 " @)+, (2)
i=1
for some cél), R cy()l € R and for fi(l)‘s recursively defined by
Kr—l
1@ =o | 3y ) ey 3)
j=1
for some cz(fofl), el Cz(';rl,)l € R and
@) =0 [ 3 ef -2+ (4)
j=1



© 0 R

for some CigrCig

For applications 'of neural networks to nonlinear function estimation, classification
and learning we refer the reader to the monographs Hertz, Krogh and Palmer (1991),
Devroye, Gyorfi and Lugosi (1996), Ripley (2008), Anthony and Bartlett (1999), Gyorfi
et al. (2002), Haykin (2008) and Hastie, Tibshirani and Friedman (2011). Consistency of
nonparametric regression estimates using neural networks has been studied by Mielniczuk
and Tyrcha (1993) and Lugosi and Zeger (1995). The rate of convergence of neural
network regression estimates with one hidden layer has been analyzed by Barron (1991;
1993) and McCaffrey and Gallant (1994), and in connection with feedforward neural
network with two hidden layers in Kohler and Krzyzak (2005).

Our choice of the set of neural networks suitable for estimation of generalized hierar-
chical interaction models is motivated by the following approximation result presented
in Mhaskar (1993): Let m : R? — R be a (p, C')-smooth function, where 0 < p < 1, let
N € N and let A be a compact subset of R%. Then there exists a neural network

Nd d d
t(z) = Z Ci- 0 Z bij-o (Z @ik x® 4 az‘,j?()) +bio| +co
=1

j=1 k=1
with two hidden layers such that

[t(x) —m(z)| <e3-C- %

for "nearly” all x € A (see Lemma 6 below for details).
Now assume that m satisfies a generalized hierarchical interaction model of order d*
and level 0, which is (p, C')—smooth, i.e.,

m(z) = flalz,... alz) for all z € RY

for some ay, . .., ag € R and some (p, C')-smooth function f : R¥ — R. Approximating
f by the above feedforward neural network with two hidden layers defined on R we
see that we can approximate m by the following feedforward neural network with two
hidden layers defined on R%:

Ne* d* d
f@)=> ci-o > bij-o (Z ai g - x® + ai,j,O) +big | +co (z€R?).(5)
i—1 j=1 k=1

Here in the first and in the second hidden layer we are using d* - N4 and N? neurons,
respectively. However, the neural network has only

N 414 N (@ +1)+ N .d* - (d+1) =N - (@*-d+2-d*+1)+1 (6)

weights. This is due to the fact, that the two hidden layers of the neural network are not
completely connected. Instead, each neuron in the second hidden layer is connected with

10



d* neurons in the first hidden layer, and this is done in such a way that each neuron in
the first hidden layer is connected with exactly one neuron in the second hidden layer.

For N e N, d e N, d* € {1,...,d} and a > 0 we denote the sets of all functions
f : R — R which satisfy (5) for some a; jk,bij,ci € R, where

lai ikl <o, |bij|<a and |¢| <o

for all i € {0,1,..., N}, j € {0,1,...,d"} and k € {0,1,...,d}, by Fy'qrit nereorks),
Motivated by the deﬁnltlon of a generalized hierarchical interaction model we define
so—called spaces of hierarchical neural networks with parameters K, N, d*, d and level [
as follows. In case [ = 0 we set

,H(()) _ ]_-](\?Lzur;l networks)
’ *7 7a :

And for | > 0 we define

K
HO = {h:RMR Coh(@) =Y g (Aa@), .. fer(@)  (zeRY
k=1

]:-(neural networks)

for some g € N.d*.d* o and fj € H(l_l)}.

The class H© is a set neural networks with two hidden layers and number of weights
given by (6). From this one can conclude recursively that for [ > 0 the class HO is a set
neural networks with 2 - [ hidden layers, where the weights can be parameterized by

(K + 1)t (Nd* S(d+1)2+ 1)

many parameters (there are in fact much more weights in the neural networks, however,
the are related to each other (in the sense that they are products of weights a; j of the
network at level 2r 4+ 1 and of weights ¢; of the network at level 2r) and can therefore be
parameterized by the above number of parameters).

Next we choose in our least squares estimate (1) the set H, as the set H", with
parameters K = K42, N = K,,, d*, d and level [, where d* and [ are the values from
the definition of the generalized hierarchical interaction model for m. Then the following
result holds.

Theorem 2. Let (X,Y), (X1,Y1), (X2,Y2), ... be independent and identically distributed
random variables with values in R* x R such that

Eexp (01 -Y2) < 00

for some constant ¢c; > 0 and such that supp(X) is bounded. Let m be the corresponding
regression function and assume that m satisfies a gemeralized hierarchical interaction
model of order d* which is (p,C)—smooth according to Definition 3 for some 0 < p < 1

11



and C > 0 and where all functions occurring in Definition 2 b) are Lipschitz continuous.
Let Kppay be the mazimal number of summands in the different levels in Definition 2 b).
Let m,, be the least squares estimate defined by (1) with H,, defined as above with

n O\ /@)
K, = and o, = n.
log(n)

Assume that the sigmoidal function o : R — [0,1] is a Lipschitz continuous squashing
function which satisfies

o) U <= i y>0 and |o(y|<— i y<O.

1
|yl

< | =

Then
E / () — m(@) 2P x (dz) < ¢4 - log(n) - n~20/@o+d").

Remark 2. The class of (p, C')-smooth generalized hierarchical interaction models of or-
der d*, where all functions occurring in Definition 2 b) are Lipschitz continuous, contains
all (p, C)—smooth functions which depend on at most d* of its input components, since
in the definition of generalized hierarchical interaction models all functions occurring in
Definition 2 might be chosen as projections. Consequently the rate of convergence in
Theorem 2 is optimal up to some logarithmic factor according to Stone (1982).

Remark 3. As in Remark 1 the parameters of our neural network estimate can be
chosen in a data-dependent way by splitting of the sample.

5. Proofs

5.1. A general result on least squares estimates

The estimates in Theorems 1 and 2 are least squares estimates. The Lo error of such
estimates depends on the approximation properties and the complexity of the used func-
tions spaces. The latter one can be measured by so-called covering numbers, which we
introduce next.

Definition 4. Let € > 0, let G be a set of functions g : R* — R, let 1, ..., x, € R?
and set xt = (z1,...,%n).
a) Every finite collection of functions g1, ..., gy : R — R with the property that for

every g € G there exists a j = j(g) € {1,..., N} such that

lg = gjlloo <€

1s called a supremum norm e—cover of G. The size of the smallest supremum norm e—
cover of G is called supremum norm e—covering number of G and is denoted by Noo(€,G).
Here we set Noo(€,G) = 00 in case that there exists no finite supremum norm e—cover of

g.

12



b) Every finite collection of functions gy, ..., gy : R* — R with the property that for
every g € G there exists a j = j(g) € {1,..., N} such that

72‘9 xz gj mz)’<6

is called a Ly norm e—cover of G on x}. The size of the smallest L1 norm e—cover of G
on x¥ is called L1 norm e—covering number of G on x and is denoted by Ni(e, G, z7).
Here we set N1(e, G, x}) = 00 in case that there exists no finite L1 norm e—cover of G on

Using the notion of covering numbers we can formulate the following general result on
the least squares estimates.

Lemma 1. Let (X,Y), (X1,Y1), (X2,Y2), ... be independent and identically distributed
random variables with values in R* x R such that

Eexp (cl ~Y2) < 00

for some constant c; > 0. Let m be the corresponding regression function and let m,, be
the least squares estimate defined by (1). Assume that the function space H,, consists of
functions bounded in absolute value by cs - log(n) and that its covering number satisfies

sup /\/1( ’Hn,x1> <J\f1< )
$17...,Cbn€Rd

for some Nq (%,Hn) > 3. Then

/ () — () PP (dz)

log (N7 (£, H
< c5-Togn)? - B M)y o [ 1hie) — ma)PPx(an)

Proof. The result is a consequence of the standard error bounds on least squares es-
timates derived by using results from the empirical process theory, cf., e.g., proof of
Theorem 11.5 in Gyorfi et al. (2002) and proof of Theorem 1 in Bagirov, Clausen and
Kohler (2009). O

5.2. Proof of Theorem 1

In the proof of Theorem 1 we will apply Lemma 1. In order to bound the covering
number and the approximation error (i.e., infrey, [ |h(z) — m(z)]*Px(dz)), we will
need the following auxiliary results.

Lemma 2. Let g,g:R? =R, fi, fi,..., fa, fa : R = R and define m and m by

m(z) = g(fi(),..., fa(x)) (2 €R?) and m(z)=g(fi(z),..., fa(x)) (xR

13



If g is Lipschitz continuous with Lipschitz constant C > 0, then we have for any x € R¢

d
m(x) —m(@)| < C-Vd- Y| fi(@) = (@) + g = gl

j=1

Proof. The result follows from the triangle inequality, the Lipschitz continuity of g and
a bound on the Lo norm by the L norm:

m(z) —m(@)] < [g(fi(2),. -, fa(@)) = g(fi(@), ... fa(@))|
+g(fi(x),- .., fa(@)) — g(fi(@), .., fa(x))]
< O (A =A@ fa@) = Fa@) ]|+ lg - gl
d
< C-Vd- Y |fi(@) = fi@)] + [lg = glleo-
j=1
O
Let G, Fi, ..., Fy be sets of functions f : R* — R and define
H = G(Fi,...,Fq)
= {h RS R k() =g(fi(x),..., falx) (zeR?) for some
gegafl eflv"'vfdefd}-
Lemma 3. Let G, Fi, ..., Fq be sets of functions f : R?* — R and define H =

G(Fi,...,Fq) as above. If the functions in G are Lipschitz continuous with Lipschitz
constant C > 0, then we have for any x} € (RH)™ and any € > 0:

d
N1(67H7$?) SN@O (gyg) : HNI (meclc'7f]7x?> .
7=1

Proof. Follows directly from Lemma 2. (]

Lemma 4. Let G, Fi, ..., Fy be sets of functions R* = R and define H = G(F1,. .., Fy)
as above. Let g, f1,..., fs: R = R and define m by

m(x) = g(fi(@),.... fa(x)) (z €RY).

If g is Lipschitz continuous with Lipschitz constant C > 0, then

d
inf ||m — hlle < Vd-C- inf ||fi — flleo + inf [|g — §|loo-
o o=l < V2 €3 it 1 =l + o a1

14



Proof. Follows directly from Lemma 2. (]
The following lemma describes a bound on the approximation error of the tensor
product spline spaces introduced in Section 3.

Lemma 5. Let p € N and C > 0 and let m : R? — R be a (p, C)—smooth function with
compact support. Let M >p—1, K € N and set

a=a, =logn,B=70,=logn and v =, =logn
and define the tensor product spline space Si v ,a,8,y,d4 as in Section 3. Then we have for

n sufficiently large
. log(n)>p
inf m — < cg-
fESK M, a,8,7,d ” fHoo =0 < K

Proof. Follows from Lemma 15.2, Theorem 15.1 and the proof of Theorem 15.2 in
Gyorfi et al. (2002). Here we use the fact that the coefficients of the spline approximand
constructed in the proof of Theorem 15.2 in Gyorfi et al. (2002) satisfy

(log n)?
Vd- K

for n sufficiently large, since ay is a linear combination of point evaluations of the bounded
function m and since ax —ax—., is a linear combinations of differences of point evaluations
of the Lipschitz continuous function m at points which have a supremum norm distance
less than or equal to (2M +2) - /K. O
Proof of Theorem 1: An easy discretization of the (bounded) coefficients in the defi-
nition of the spline space Sk 11,a,3,y,a+ together with Lemma 15.2 in Gyorfi et al. (2002)
shows that

lak| <logn and |akx — ak—e,| <

2 -log n> (@ K+M)*
€

Noo (€, Sk Mo yv.d+) < <

From this we get by a (w.r.t. [) recursive application of Lemma 3

1 *
(L) <o

x1,...,tn ERY

for n sufficiently large (for some constant ¢; which depends on ). Furthermore, recursive
application of Lemma 4 again together with Lemma 5 and the Lipschitz smoothness of
all functions g occuring in Definition 1 b) of the hierarchical interaction model from m
(which follows from the (p, C')-smoothness of the model and p > 1) implies

2p
inf /‘h ‘QPX(d:c) 1611?5n||h($) m(x )HOOSupp cs <10g[£n)>

hEHn

for n sufficiently large. Using these two bounds we get the assertion by an application of
Lemma 1 and the definition of K. O

15



5.3. Proof of Theorem 2

In the proof we will use the following auxiliary results.

Lemma 6. Let m : R — R be a (p,C)-smooth function, where 0 < p < 1, let N € N,
let A D [0,1]% be a compact subset of R, let n € (0,1] and let v be a probability measure
onRY. Let o : R — [0,1] be a squashing function. Then there exists a neural network

Nd
a:):Zcz Zb,] a(Za”k x()—ka”o)—kbo,] + co
i=1

7=1 =

with two hidden layers such that outside of a set of v-measure less than or equal to n we
have for all z € A

1
[t(z) — m(z)| < cg - Np
In case that o satisfies
1 1
IJ(y)—lléi if y>0 and IU(y)ISE| if y<o

the weights in the neural network above can be chosen such that
d+1 d 2 N
el <28 mlloe, [bigl S40d- N and aispl <240 (maxel + 1)

(ie{l,...,NY j kec{l,. . ,d}).

Proof. The result can be proven by modifying the proof of Theorem 3.4 in Mhaskar
(1993). For the sake of completeness we present a complete proof of this result in the
appendix. O

Lemma 7. Let o : R — [0,1] be a sigmotdal function which is Lipschitz continuous with
Lipschitz constant C > 1. Define f, f: R4 — R recursively by

Z A +Cé) and f(x Z(l 71 —l—c(())

for some c(()l),é(()l), cen, cﬁ?,égg € R and for fZ , f Q% recursively defined by

K,«71
K@= | ey @)+ ey
=1
and
r 1
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for some cgfofl),égofl), e cl('j};li)l,él(»j};li)l eR (re{2,...,l},ie{l,....,K,}) and
f(1 =0 Zc +C“)) and f(l) Zc(o) —1—65%)
for some 2(0) ..,cgcg, E%),...,EggGR(Z’G{l,...,Kl}). Then

+1
7 (r)
@) = F@)] < max{lleflao, 1} - (d+1)- 1+ 1) (1+_ P I)

l

I, +1 o) o)
7‘_0( T+ ) r=0,.. 7l7 ’H?fa‘{}r(+17] =0,.. 7K'r| b C’L7J|

for any x € R, where we have set Ko =d, K41 = 1 and cglz = cgl).

Proof. By triangle inequality and ||o]|s < 1 we get

(@) - F(z)]
K
l [ l l _(1
<SP ) - 7 |+Z\c 1P (@) + 1) — )]
=1
. o). #(1) , © _ 0
< K- max |¢!]- max 11O () = FO (@) + (K, + 1) (mas [ 2]

Using the Lipschitz continuity of ¢ and again the triangle inequality we get furthermore

11 (@) = £ ()]

Krfl KT*
< C‘ Cz(gfl) ) f](rfl)(x) Jr62(77'071) . (77“] 1) f](rfl)( )7 (r— 1)‘
j=1 j=1
(r—1) (r—1) 7(r—1)
<C. . T . \ — f\
<O Koy (4T a1 @)

+C - (Kr—l + 1) . mal)é ‘c(r._l) — EET._l)L
= 1

Finally, in the same way we see

17 @) = BV @) < € max{llefoe, 1} (d+1) - max [eff — 7]
j 2

I8 7

which implies the assertion. O

Lemma 8. Let o : R — [0,1] be a sigmoidal function which is Lipschitz continuous with
Lipschitz constant C > 1 and let A be a compact subset of RY. Then for any | € N,
e A", d* e {1,...,d}, K,, > 2 and oy, > 2 we have

c10- K&
anKn> 10° 8y

N(e, HO, 2 < ey - (

for some constant c1g, which depends on 1, d and d*.
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Proof. The neural networks in H") can be parameterized using
(Kmaz +1)"- (Nd* S d+1)2+ 1)

many parameters. Discretizing them using a grid of size § > 0 results in a set of functions

of size "
2 ay \ K
n
< 0 > ’

which has according to Lemma 7 the property that for each f € HO there exists a
function f in this set satisfying

1f(z) — f(z)] < cra- (Ky - ap)2 - 0.

Here we have used that some of the weights of the neural network are products of the
above parameters, and that for such products we have

la-b—a-b| < la—al-[b|+|b—0]|al

< 2 max{’d‘ ) ’b’} ’ max{\a - a” )

b—B}.
The result follows by setting
€

0= .
c12 - (Kn . an)cl2

O
Proof of Theorem 2. Repeated application of Lemma 4, which is possible because
of the Lipschitz continuity of the functions occuring in Definition 2 b), together with
Lemma 6 implies

. ) 1\*

hlergn/m(x) m(x)|*Px(dz) < 13 - (Kn>

for n sufficiently large. Here we use that for a generalized hierarchical interaction model

the bound on the approximation error in Lemma 6 holds simultaneously for all occuring

functions outside of an event of P x—measure at most ¢4 /n2. And on this event the

integrand in the above integral is bounded in absolute value by c15 - Kff* < ci6 - n.
Furthermore, by Lemma 8 we can bound the covering number by

1 ped*
Nl(ﬁa/anlﬂf) < ¢y -5 En

for any x1,...,z, € supp(X). Using these two bounds we get the assertion by an
application of Lemma 1 and the definition of K. O
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A. Proof of Lemma 6.

In the proof we will use Proposition 3.8 in Mhaskar (1993), which we reformulate here
(in a slightly different form) as Lemma 9.
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Lemma 9. Let K C R? be a polytope bounded by hyperplanes v;-xz+b; > 0 (t=1,...,L),
where vy, ...,vp € R and by,...,bp € R. For § >0 set

Ky .= {xeRd v +bp >0 forallie{l,...,L}}

and
K§ = {xERd cvicr+ b < =6 forsomeiG{l,...,L}}.

Let o : R — [0, 1] be a squashing function. Let €, € (0,1] be arbitrary. Then there exists
a neural network of the form

L d
flz)=0 sz"ff Zci,j-x(i)+ci,0 + bo
i=1 j=1

satisfying

()] <1 for z € RY,
|f(x) = 1| <€ forxz € KY,
|f(z)| < e forx € K§. (7)

In case that the squashing function satisfies

1 1
!U(y)—llﬁg if y>0 and |o(y)|<-— if y<O,

|yl

the weights above can be chosen such that
4 4-L
|b;| < max E,Q-L and ¢ ;| < T-maX{Hleoo,\bll,...,HvLHOO,]bL]}

(i=0,...,L,j=0,....d).

Proof. Follows from the proof of Proposition 3.8 in Mhaskar (1993). O
Proof of Lemma 6. W.l.o.g we assume that A is a cube. We partition this cube into N¢
equivolume cubes of side length c16/N (where c16 > 1 since [0,1]¢ C A). Approximating
m by a piecewise constant approximand with respect to this partition yields (since m is
(p, C)—smooth) a function S satisfying

HS_mHoo,A <cig- NP 8)
S can be expressed in the form
d . .
Sy =m@)+ > di-[J? -2,
je{1,..,N}d i=1

where x; are the corners of the rectangles comprising the above partition and d; are
constants satisfying
|dj| <17 - NP
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(constructed by using differences of function values of m at the corners of the above
partition) and z; = max{x,0}. Let K; be the polytope defined by () — xy) >0
(i=1,...,d). Set e = N~¢ 0= n/(6-d- N) and apply Lemma 9 for each Kj (i.e., with
L=d, v, =e; and b; = fxgl), where e; denotes the i-th unit vector) to obtain f;(z)
satisfying (7) with K instead of K. Let

P(x) = m(xg) + Z dj - fj(z).
je{l,.., N}
Then we can conclude from (7)
|P(z) — S(z)| <ci7- NP
for all x € A which are not contained in

Uict,d Ujeqr,.. Ny {:1: eR? ¢ 2@ — 2l <p/(6-d- N)} . (9)

By shifting the positions of the x;’s in the i-th component we can construct [d/n] disjoint
versions of

UjG{L...,N}d {ZE S Rd : |gj(l) — xgz)‘ < 77/(6 .d- N)} ,

and since the sum of the r—measures of these sets is less than or equal to one, at least one
of them must have measure less than or equal to 1/d. Consequently we can shift the x;’s
such that (9) has v—measure less than 7. This together with (8) implies the assertion. [J
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